1
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. The neurotensin receptor 1 agonist PD149163 alleviates visceral hypersensitivity and colonic hyperpermeability in rat irritable bowel syndrome model. Neurogastroenterol Motil 2024; 36:e14925. [PMID: 39314062 DOI: 10.1111/nmo.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/30/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND An impaired intestinal barrier with the activation of corticotropin-releasing factor (CRF), Toll-like receptor 4 (TLR4), and proinflammatory cytokine signaling, resulting in visceral hypersensitivity, is a crucial aspect of irritable bowel syndrome (IBS). The gut exhibits abundant expression of neurotensin; however, its role in the pathophysiology of IBS remains uncertain. This study aimed to clarify the effects of PD149163, a specific agonist for neurotensin receptor 1 (NTR1), on visceral sensation and gut barrier in rat IBS models. METHODS The visceral pain threshold in response to colonic balloon distention was electrophysiologically determined by monitoring abdominal muscle contractions, while colonic permeability was measured by quantifying absorbed Evans blue in colonic tissue in vivo in adult male Sprague-Dawley rats. We employed the rat IBS models, i.e., lipopolysaccharide (LPS)- and CRF-induced visceral hypersensitivity and colonic hyperpermeability, and explored the effects of PD149163. KEY RESULTS Intraperitoneal PD149163 (160, 240, 320 μg kg-1) prevented LPS (1 mg kg-1, subcutaneously)-induced visceral hypersensitivity and colonic hyperpermeability dose-dependently. It also prevented the gastrointestinal changes induced by CRF (50 μg kg-1, intraperitoneally). Peripheral atropine, bicuculline (a GABAA receptor antagonist), sulpiride (a dopamine D2 receptor antagonist), astressin2-B (a CRF receptor subtype 2 [CRF2] antagonist), and intracisternal SB-334867 (an orexin 1 receptor antagonist) reversed these effects of PD149163 in the LPS model. CONCLUSIONS AND INFERENCES PD149163 demonstrated an improvement in visceral hypersensitivity and colonic hyperpermeability in rat IBS models through the dopamine D2, GABAA, orexin, CRF2, and cholinergic pathways. Activation of NTR1 may modulate these gastrointestinal changes, helping to alleviate IBS symptoms.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Center for Medical Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Saori Miyagishi
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
2
|
Funayama T, Nozu T, Ishioh M, Igarashi S, Tanaka H, Sumi C, Saito T, Toki Y, Hatayama M, Yamamoto M, Shindo M, Takahashi S, Okumura T. Splenectomy prevents brain orexin, ghrelin, or oxytocin but not GLP-1-induced improvement of intestinal barrier function in rats. Neurogastroenterol Motil 2024:e14949. [PMID: 39450642 DOI: 10.1111/nmo.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Accumulating evidence has suggested that neuropeptides such as orexin, ghrelin, or oxytocin act centrally in the brain to regulate intestinal barrier function through the vagus nerve. It has been reported that the vagal cholinergic anti-inflammatory pathway was blocked by splenectomy. In the present study, we therefore examined the effect of splenectomy on neuropeptides-induced improvement of increased intestinal permeability. METHODS Colonic permeability was determined in vivo by quantifying the absorbed Evans blue in colonic tissue for 15 min spectrophotometrically in rats. RESULTS Splenectomy increased colonic permeability. The increased permeability by splenectomy was significantly blocked by vagal activation induced by carbachol or 2-deoxy-d-glucose which was prevented by atropine, suggesting vagal activation could prevent colonic hyperpermeability in splenectomized rats. In the splenectomized rats, intracisternal injection of orexin, ghrelin, oxytocin, or butyrate failed to inhibit increased colonic permeability while intracisternal glucagon-like peptide-1 (GLP-1) analogue, liraglutide, potently blocked the increased colonic permeability in a dose-dependent manner. The liraglutide-induced improvement of increased colonic permeability was blocked by atropine in splenectomized rats. Intracisternal injection of GLP-1 receptor antagonist attenuated 2-deoxy-d-glucose-induced improvement of colonic hyperpermeability in splenectomized rats. CONCLUSION The present results suggested that the spleen is important in the improvement of intestinal barrier function by brain orexin, ghrelin or oxytocin, and butyrate. On the other hand, GLP-1 acts centrally in the brain to improve colonic hyperpermeability in a spleen-independent manner. All these results suggest that dual mechanisms (spleen dependent or independent) may exist for the brain-gut regulation in intestinal barrier function.
Collapse
Affiliation(s)
- Takuya Funayama
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Tsukasa Nozu
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Sho Igarashi
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroki Tanaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Chihiro Sumi
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Takeshi Saito
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Yasumichi Toki
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Mayumi Hatayama
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Masayo Yamamoto
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Motohiro Shindo
- Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | | | | |
Collapse
|
3
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Ishioh M, Nozu T, Miyagishi S, Igarashi S, Funayama T, Ueno N, Okumura T. Brain histamine improves colonic hyperpermeability through the basal forebrain cholinergic neurons, adenosine A2B receptors and vagus nerve in rats. Biochem Pharmacol 2024; 224:116201. [PMID: 38608783 DOI: 10.1016/j.bcp.2024.116201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Intestinal barrier dysfunction, leaky gut, is implicated in various diseases, including irritable bowel syndrome (IBS) and neurodegenerative conditions like Alzheimer's disease. Our recent investigation revealed that basal forebrain cholinergic neurons (BFCNs), critical for cognitive function, receive signals from butyrate and orexin, playing a role in regulating intestinal barrier function through adenosine A2B signaling and the vagus. This study explores the involvement and function of brain histamine, linked to BFCNs, in the regulation of intestinal barrier function. Colonic permeability, assessed by quantifying absorbed Evans blue in rat colonic tissue, showed that histamine did not affect increased colonic permeability induced by LPS when administered subcutaneously. However, intracisternal histamine administration improved colonic hyperpermeability. Elevating endogenous histamine levels in the brain with SKF91488, a histamine N-methyltransferase inhibitor, also improved colonic hyperpermeability. This effect was abolished by intracisternal chlorpheniramine, an histamine H1 receptor antagonist, not ranitidine, an H2 receptor antagonist. The SKF91488-induced improvement in colonic hyperpermeability was blocked by vagotomy, intracisternal pirenzepine (suppressing BFCNs activity), or alloxazine (an adenosine A2B receptor antagonist). Additionally, intracisternal chlorpheniramine injection eliminated butyrate-induced improvement in colonic hyperpermeability. These findings suggest that brain histamine, acting via the histamine H1 receptor, regulates intestinal barrier function involving BFCNs, adenosine A2B signaling, and the vagus. Brain histamine appears to centrally regulate intestinal barrier function influenced by butyrate, differentiating its actions from peripheral histamine in conditions like IBS, where mast cell-derived histamine induces leaky gut. Brain histamine emerges as a potential pharmacological target for diseases associated with leaky gut, such as dementia and IBS.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| | - Tsukasa Nozu
- Department of General Medicine, Asahikawa Medical University, Japan; Department of Regional Medicine and Education, Asahikawa Medical University, Japan; Center for Medical Education, Asahikawa Medical University, Japan
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Takuya Funayama
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Nobuhiro Ueno
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan
| |
Collapse
|
5
|
Nozu T, Arie H, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Tranilast alleviates visceral hypersensitivity and colonic hyperpermeability by suppressing NLRP3 inflammasome activation in irritable bowel syndrome rat models. Int Immunopharmacol 2024; 133:112099. [PMID: 38643709 DOI: 10.1016/j.intimp.2024.112099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/30/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Visceral hypersensitivity resulting from compromised gut barrier with activated immune system is a key feature of irritable bowel syndrome (IBS). Corticotropin-releasing factor (CRF) and Toll-like receptor 4 (TLR4) activate proinflammatory cytokine signaling to induce these changes, which is one of the mechanisms of IBS. As activation of the NLRP3 inflammasome by lipopolysaccharide (LPS) or TLR4 leads to release interleukin (IL)-1β, the NLRP3 inflammasome may be involved in the pathophysiology of IBS. Tranilast, an anti-allergic drug has been demonstrated to inhibit the NLRP3 inflammasome, and we evaluated the impact of tranilast on visceral hypersensitivity and colonic hyperpermeability induced by LPS or CRF (IBS rat model). Visceral pain threshold caused by colonic balloon distention was measured by monitoring abdominal muscle contractions electrophysiologically. Colonic permeability was determined by quantifying the absorbed Evans blue within the colonic tissue. Colonic protein levels of NLRP3 and IL-1β were assessed by immunoblot or ELISA. Intragastric administration of tranilast (20-200 mg/kg) for 3 days inhibited LPS (1 mg/kg)-induced visceral hypersensitivity and colonic hyperpermeability in a dose-dependent manner. Simultaneously, tranilast also abolished these alterations induced by CRF (50 µg/kg). LPS increased colonic protein levels of NLRP3 and IL-1β, and tranilast inhibited these changes. β-hydroxy butyrate, an NLRP3 inhibitor, also abolished visceral hypersensitivity and colonic hyperpermeability caused by LPS. In contrast, IL-1β induced similar GI alterations to LPS, which were not modified by tranilast. In conclusion, tranilast improved visceral pain and colonic barrier by suppression of the NLRP3 inflammasome in IBS rat models. Tranilast may be useful for IBS treating.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Hideyuki Arie
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Masatomo Ishioh
- Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Toshikatsu Okumura
- Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
6
|
Liang YF, Chen XQ, Zhang MT, Tang HY, Shen GM. Research Progress of Central and Peripheral Corticotropin-Releasing Hormone in Irritable Bowel Syndrome with Comorbid Dysthymic Disorders. Gut Liver 2024; 18:391-403. [PMID: 37551453 PMCID: PMC11096901 DOI: 10.5009/gnl220346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 08/09/2023] Open
Abstract
Irritable bowel syndrome (IBS) is considered a stress disorder characterized by psychological and gastrointestinal dysfunction. IBS patients not only suffer from intestinal symptoms such as abdominal pain, diarrhea, or constipation but also, experience dysthymic disorders such as anxiety and depression. Studies have found that corticotropin-releasing hormone plays a key role in IBS with comorbid dysthymic disorders. Next, we will summarize the effects of corticotropin-releasing hormone from the central nervous system and periphery on IBS with comorbid dysthymic disorders and relevant treatments based on published literatures in recent years.
Collapse
Affiliation(s)
- Yi Feng Liang
- College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei, China
| | - Xiao Qi Chen
- College of Acupuncture and Massage, Anhui University of Chinese Medicine, Hefei, China
| | - Meng Ting Zhang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - He Yong Tang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Guo Ming Shen
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
7
|
Liu XY, Wu SD. Fecal microbiota transplantation for treatment of irritable bowel syndrome: Current advances and future perspectives. Shijie Huaren Xiaohua Zazhi 2023; 31:922-932. [DOI: 10.11569/wcjd.v31.i22.922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/27/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a kind of functional gastroin-testinal disorder, characterized by recurrent abdominal pain and altered bowel habits. IBS adversely affects the quality of life of patients for the lack of effective treatment. The etiology of IBS remains poorly known. Previous studies suggested a possible role of gut dysbiosis in IBS pathogenesis. Fecal microbiota transplantation (FMT), which aims to reverse the gut dysbiosis, is a promising strategy in IBS management. In this review, we summarize the role of the gut microbiota in IBS pathogenesis from different aspects. We also review recent studies on efficacy evaluation of FMT in IBS. Besides, we discuss factors affecting the efficacy of FMT, hoping to provide a reference for future IBS treatment strategies targeting the gut microbiota.
Collapse
Affiliation(s)
- Xin-Yi Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Sheng-Di Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Phlorizin attenuates postoperative gastric ileus in rats. Neurogastroenterol Motil 2023; 35:e14659. [PMID: 37574874 DOI: 10.1111/nmo.14659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/04/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
BACKGROUND Postoperative ileus (POI) is a major complication of abdominal surgery (AS). Impaired gut barrier mediated via Toll-like receptor 4 (TLR4) and interleukin-1 (IL-1) receptor is involved in the development of POI. Phlorizin is a nonselective inhibitor of sodium-linked glucose transporters (SGLTs) and is known to improve lipopolysaccharide (LPS)-induced impaired gut barrier. This study aimed to clarify our hypothesis that AS-induced gastric ileus is mediated via TLR4 and IL-1 signaling, and phlorizin improves the ileus. METHODS AS consisted of a celiotomy and manipulation of the cecum for 1 min. Gastric emptying (GE) in 20 min with liquid meal was determined 3 h after the surgery in rats. The effect of subcutaneous (s.c.) injection of LPS (1 mg kg-1 ) was also determined 3 h postinjection. KEY RESULTS AS delayed GE, which was blocked by TAK-242, an inhibitor of TLR4 signaling and anakinra, an IL-1 receptor antagonist. LPS delayed GE, which was also mediated via TLR4 and IL-1 receptor. Phlorizin (80 mg kg-1 , s.c.) significantly improved delayed GE induced by both AS and LPS. However, intragastrical (i.g.) administration of phlorizin did not alter it. As gut mainly expresses SGLT1, SGLT2 may not be inhibited by i.g. phlorizin. The effect of phlorizin was blocked by ghrelin receptor antagonist in the LPS model. CONCLUSIONS & INFERENCES AS-induced gastric ileus is mediated via TLR4 and IL-1 signaling, which is simulated by LPS. Phlorizin improves the gastric ileus via activation of ghrelin signaling, possibly by inhibition of SGLT2. Phlorizin may be useful for the treatment of POI.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
- Center for Medical Education, Asahikawa Medical University, Asahikawa, Japan
| | - Saori Miyagishi
- Department of Medicine, Division of Gastroenterology and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Japan
| | - Masatomo Ishioh
- Department of Medicine, Division of Gastroenterology and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Japan
| | - Kaoru Takakusaki
- Department of Physiology, Division of Neuroscience, Asahikawa Medical University, Asahikawa, Japan
| | - Toshikatsu Okumura
- Department of Medicine, Division of Gastroenterology and Hematology/Oncology, Asahikawa Medical University, Asahikawa, Japan
- Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
9
|
Dudzińska E, Grabrucker AM, Kwiatkowski P, Sitarz R, Sienkiewicz M. The Importance of Visceral Hypersensitivity in Irritable Bowel Syndrome-Plant Metabolites in IBS Treatment. Pharmaceuticals (Basel) 2023; 16:1405. [PMID: 37895876 PMCID: PMC10609912 DOI: 10.3390/ph16101405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The visceral stimuli from the digestive tract are transmitted via afferent nerves through the spinal cord to the brain, where they are felt as pain. The overreaction observed in the brain of irritable bowel syndrome (IBS) patients may be due to increased peripheral sensitivity to stimuli from the gastrointestinal tract. Although the exact pathway is uncertain, attenuation of visceral hypersensitivity is still of interest in treating IBS. It has been shown that stress stimulates the sympathetic nervous system while inhibiting the vagus nerve (VN). In addition, stress factors lead to dysbiosis and chronic low-grade inflammation of the intestinal mucosa, which can lead to lower gastrointestinal visceral hypersensitivity. Therefore, an important goal in the treatment of IBS is the normalization of the intestinal microflora. An interesting option seems to be nutraceuticals, including Terminalia chebula, which has antibacterial and antimicrobial activity against various pathogenic Gram-positive and Gram-negative bacteria. Additionally, short-term transcutaneous vagus nerve stimulation can reduce the stress-induced increase in intestinal permeability, thereby reducing inflammation. The conducted studies also indicate a relationship between the stimulation of the vagus nerve (VN) and the activation of neuromodulatory networks in the central nervous system. Therefore, it seems reasonable to conclude that a two-way action through stimulating the VN and using nutraceuticals may become an effective therapy in treating IBS.
Collapse
Affiliation(s)
- Ewa Dudzińska
- Department of Dietetics and Nutrition Education, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andreas M. Grabrucker
- Department of Biological Sciences, University of Limerick, V94 PH61 Limerick, Ireland;
- Bernal Institute, University of Limerick, V94 PH61 Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 PH61 Limerick, Ireland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland;
| | - Robert Sitarz
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
- First Department of Surgical Oncology, St. John’s Cancer Center, 20-090 Lublin, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
10
|
Mizoguchi A, Higashiyama M, Wada A, Nishimura H, Tomioka A, Ito S, Tanemoto R, Nishii S, Inaba K, Sugihara N, Hanawa Y, Horiuchi K, Okada Y, Kurihara C, Akita Y, Narimatu K, Komoto S, Tomita K, Kawauchi S, Sato S, Hokari R. Visceral hypersensitivity induced by mild traumatic brain injury via the corticotropin-releasing hormone receptor: An animal model. Neurogastroenterol Motil 2023; 35:e14634. [PMID: 37357384 DOI: 10.1111/nmo.14634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Mild blast-induced traumatic brain injury (bTBI) induces various gut symptoms resembling human irritable bowel syndrome (IBS) as one of mental and behavioral disorders. However, the underlying mechanisms remain unclear. We investigated whether the extremely localized brain impact extracranially induced by laser-induced shock wave (LISW) evoked IBS-like phenomenon including visceral hypersensitivity and intestinal hyperpermeability in rats. METHODS The rats were subjected to LISW on the scalp to shock the entire brain. Visceral hypersensitivity was evaluated by the threshold pressure of abdominal withdrawal reflex (AWR) using a colorectal distension test. Permeability was evaluated by the concentration of penetrating FITC-dextran from intestine and the mRNA expression levels of tight junction family proteins. Involvement of corticotropin-releasing factor receptor (CRFR) 1 and 2 was examined by evaluating mRNA expression and modulating CRFR function with agonist, recombinant CRF (10 μg/kg), and antagonist, astressin (33 μg/kg). High-throughput sequencing of the gut microbiota was performed by MiSeqIII instrument and QIIME tool. KEY RESULTS The thresholds of the AWR were significantly lowered after LISW. Permeability was increased in small intestine by LISW along with decreased expression of tight junction ZO-1. LISW significantly increased CRFR1 expression and decreased CRFR2 expression. Visceral hypersensitivity was significantly aggravated by CRFR agonist and suppressed by CRFR antagonist. The α- and β-diversity of the fecal microbiota was altered after LISW. CONCLUSIONS AND INFERENCES LISW provoked visceral hypersensitivity, small intestinal hyperpermeability, altered expression of CRFRs and changes in the microbiota, suggesting that genuine bTBI caused by LISW can induce a pathophysiology comparable to that of human IBS.
Collapse
Affiliation(s)
- Akinori Mizoguchi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Akinori Wada
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Hiroyuki Nishimura
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Akira Tomioka
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Suguru Ito
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Rina Tanemoto
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shin Nishii
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kenichi Inaba
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Nao Sugihara
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Yoshinori Hanawa
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kazuki Horiuchi
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Yoshikiyo Okada
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Chie Kurihara
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Yoshihiro Akita
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kazuyuki Narimatu
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Shunsuke Komoto
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Kengo Tomita
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Saitama, Japan
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Saitama, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
11
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
12
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Imeglimin prevents visceral hypersensitivity and colonic hyperpermeability in irritable bowel syndrome rat model. J Pharmacol Sci 2023; 153:26-30. [PMID: 37524451 DOI: 10.1016/j.jphs.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
Visceral hypersensitivity and leaky gut, which are mediated via corticotropin-releasing factor (CRF) and Toll-like receptor 4 are key pathophysiology of irritable bowel syndrome (IBS). Metformin was reported to improve these gastrointestinal (GI) changes. In this study, we attempted to determine the effects of imeglimin, which was synthesized from metformin on GI function in IBS rat models. Imeglimin blocked lipopolysaccharide- or CRF-induced visceral hypersensitivity and colonic hyperpermeability. These effects were prevented by compound C or naloxone. These results suggest that imeglimin may be effective for the treatment of IBS by improved visceral sensation and colonic barrier via AMPK and opioid receptor.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
13
|
Chen X, Hu C, Yan C, Tao E, Zhu Z, Shu X, Guo R, Jiang M. Maternal separation leads to dynamic changes of visceral hypersensitivity and fecal metabolomics from childhood to adulthood. Sci Rep 2023; 13:7670. [PMID: 37169847 PMCID: PMC10175246 DOI: 10.1038/s41598-023-34792-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023] Open
Abstract
We assessed dynamic changes in visceral hypersensitivity and fecal metabolomics through a mouse model of irritable bowel syndrome (IBS) from childhood to adulthood. A mouse model of IBS was constructed with maternal separation (MS) in early life. Male mice aged 25, 40, and 70 days were used. Visceral sensitivity was assessed by recording the reaction between the abdominal withdrawal reflex and colorectal distension. Metabolomics was identified and quantified by liquid chromatography-tandem mass spectrometry. The visceral sensitivity of the MS group was significantly higher than that of the non-separation (NS) group in the three age groups. The top four fecal differential metabolites in the different age groups were lipids, lipid molecules, organic heterocyclic compounds, organic acids and derivatives, and benzenoids. Five identical differential metabolites were detected in the feces and ileal contents of the MS and NS groups at different ages, namely, benzamide, taurine, acetyl-L-carnitine, indole, and ethylbenzene. Taurine and hypotaurine metabolism were the most relevant pathways at P25, whereas histidine metabolism was the most relevant pathway at P40 and P70. Visceral hypersensitivity in the MS group lasted from childhood to adulthood. The different metabolites and metabolic pathways detected in MS groups of different ages provide a theoretical basis for IBS pathogenesis.
Collapse
Affiliation(s)
- Xiaolong Chen
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
- Department of Pediatrics, The First People's Hospital of Jiashan, Jiashan, 314100, China
| | - Chenmin Hu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Chenxi Yan
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Enfu Tao
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Zhenya Zhu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Xiaoli Shu
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Rui Guo
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China
| | - Mizu Jiang
- Pediatric Endoscopy Center and Gastrointestinal Laboratory, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China.
- Department of Gastroenterology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, 310052, China.
| |
Collapse
|
14
|
Igarashi S, Nozu T, Ishioh M, Funayama T, Sumi C, Saito T, Toki Y, Hatayama M, Yamamoto M, Shindo M, Tanabe H, Okumura T. Ghrelin prevents lethality in a rat endotoxemic model through central effects on the vagal pathway and adenosine A2B signaling : Brain ghrelin and anti-septic action. J Physiol Biochem 2023:10.1007/s13105-023-00962-4. [PMID: 37099079 DOI: 10.1007/s13105-023-00962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/17/2023] [Indexed: 04/27/2023]
Abstract
Accumulating evidence suggest that ghrelin plays a role as an antiseptic peptide. The present study aimed to clarify whether the brain may be implicated ghrelin's antiseptic action. We examined the effect of brain ghrelin on survival in a novel endotoxemic model achieved by treating rats with lipopolysaccharide (LPS) and colchicine. The observation of survival stopped three days after chemicals' injection or at death. Intracisternal ghrelin dose-dependently reduced lethality in the endotoxemic model; meanwhile, neither intraperitoneal injection of ghrelin nor intracisternal des-acyl-ghrelin injection affected the mortality rate. The brain ghrelin-induced lethality reduction was significantly blocked by surgical vagotomy. Moreover, intracisternal injection of a ghrelin receptor antagonist blocked the improved survival achieved by intracisternal ghrelin injection or intravenous 2-deoxy-d-glucose administration. Intracisternal injection of an adenosine A2B receptor agonist reduced the lethality and the ghrelin-induced improvement of survival was blocked by adenosine A2B receptor antagonist. I addition, intracisternal ghrelin significantly blocked the colonic hyperpermeability produced by LPS and colchicine. These results suggest that ghrelin acts centrally to reduce endotoxemic lethality. Accordingly, activation of the vagal pathway and adenosine A2B receptors in the brain may be implicated in the ghrelin-induced increased survival. Since the efferent vagus nerve mediates anti-inflammatory mechanisms, we speculate that the vagal cholinergic anti-inflammatory pathway is implicated in the decreased septic lethality caused by brain ghrelin.
Collapse
Affiliation(s)
- Sho Igarashi
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Masatomo Ishioh
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Takuya Funayama
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Chihiro Sumi
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Takeshi Saito
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Yasumichi Toki
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Mayumi Hatayama
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Masayo Yamamoto
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Motohiro Shindo
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Hiroki Tanabe
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa, 078-8510, Japan.
| |
Collapse
|
15
|
Funayama T, Nozu T, Ishioh M, Igarashi S, Sumi C, Saito T, Toki Y, Hatayama M, Yamamoto M, Shindo M, Tanabe H, Okumura T. Centrally administered GLP-1 analogue improves intestinal barrier function through the brain orexin and the vagal pathway in rats. Brain Res 2023; 1809:148371. [PMID: 37076092 DOI: 10.1016/j.brainres.2023.148371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Leaky gut, an altered intestinal barrier function, has been described in many diseases such as irritable bowel syndrome (IBS). We have recently demonstrated that orexin in the brain blocked leaky gut in rats, suggesting that the brain plays a role in regulation of intestinal barrier function. In the present study, we tried to clarify whether GLP-1 acts centrally in the brain to regulate intestinal barrier function and its mechanism. Colonic permeability was estimated in vivo by quantifying the absorbed Evans blue in colonic tissue in rats. Intracisternal injection of GLP-1 analogue, liraglutide dose-dependently abolished increased colonic permeability in response to lipopolysaccharide. Either atropine or surgical vagotomy blocked the central GLP-1-induced improvement of colonic hyperpermeability. Intracisternal GLP-1 receptor antagonist, exendin (9-39) prevented the central GLP-1-induced blockade of colonic hyperpermeability. In addition, intracisternal injection of orexin receptor antagonist, SB-334867 blocked the GLP-1-induced improvement of intestinal barrier function. On the other hand, subcutaneous liraglutide also improved leaky gut but larger doses of liraglutide were needed to block it. In addition, neither atropine nor vagotomy blocked subcutaneous liraglutide-induced improvement of leaky gut, suggesting that central or peripheral GLP-1 system works separately to improve leaky gut in a vagal-dependent or independent manner, respectively. These results suggest that GLP-1 acts centrally in the brain to reduce colonic hyperpermeability. Brain orexin signaling and the vagal cholinergic pathway play a vital role in the process. We would therefore suggest that activation of central GLP-1 signaling may be useful for leaky gut-related diseases such as IBS.
Collapse
Affiliation(s)
- Takuya Funayama
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Masatomo Ishioh
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Sho Igarashi
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Chihiro Sumi
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Takeshi Saito
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Yasumichi Toki
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Mayumi Hatayama
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Masayo Yamamoto
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Motohiro Shindo
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Hiroki Tanabe
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Toshikatsu Okumura
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan.
| |
Collapse
|
16
|
Meyer F, Wendling D, Demougeot C, Prati C, Verhoeven F. Cytokines and intestinal epithelial permeability: A systematic review. Autoimmun Rev 2023; 22:103331. [PMID: 37030338 DOI: 10.1016/j.autrev.2023.103331] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND The intestinal mucosa is composed of a well-organized epithelium, acting as a physical barrier to harmful luminal contents, while simultaneously ensuring absorption of physiological nutrients and solutes. Increased intestinal permeability has been described in various chronic diseases, leading to abnormal activation of subepithelial immune cells and overproduction of inflammatory mediators. This review aimed to summarize and evaluate the effects of cytokines on intestinal permeability. METHODS A systematic review of the literature was performed in the Medline, Cochrane and Embase databases, up to 01/04/2022, to identify published studies assessing the direct effect of cytokines on intestinal permeability. We collected data on the study design, the method of assessment of intestinal permeability, the type of intervention and the subsequent effect on gut permeability. RESULTS A total of 120 publications were included, describing a total of 89 in vitro and 44 in vivo studies. TNFα, IFNγ or IL-1β were the most frequently studied cytokines, inducing an increase in intestinal permeability through a myosin light-chain-mediated mechanism. In situations associated with intestinal barrier disruption, such as inflammatory bowel diseases, in vivo studies showed that anti-TNFα treatment decreased intestinal permeability while achieving clinical recovery. In contrast to TNFα, IL-10 decreased permeability in conditions associated with intestinal hyperpermeability. For some cytokines (e.g. IL-17, IL-23), results are conflicting, with both an increase and a decrease in gut permeability reported, depending on the study model, methodology, or the studied conditions (e.g. burn injury, colitis, ischemia, sepsis). CONCLUSION This systematic review provides evidence that intestinal permeability can be directly influenced by cytokines in numerous conditions. The immune environment probably plays an important role, given the variability of their effect, according to different conditions. A better understanding of these mechanisms could open new therapeutic perspectives for disorders associated with gut barrier dysfunction.
Collapse
Affiliation(s)
- Frédéric Meyer
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France; Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France
| | - Daniel Wendling
- Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France; EA 4266, EPILAB, Université de Franche-Comté, F-25000 Besançon, France
| | - Céline Demougeot
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Clément Prati
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France; Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France
| | - Frank Verhoeven
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France; Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France.
| |
Collapse
|
17
|
Sun Z, Wang X, Feng S, Xie C, Xing Y, Guo L, Zhao J, Ji C. A review of neuroendocrine immune system abnormalities in IBS based on the brain–gut axis and research progress of acupuncture intervention. Front Neurosci 2023; 17:934341. [PMID: 36968497 PMCID: PMC10034060 DOI: 10.3389/fnins.2023.934341] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common digestive disorder observed in clinics. Current studies suggest that the pathogenesis of the disease is closely related to abnormal brain–gut interactions, hypokinesia, visceral sensory hypersensitivity in the gastrointestinal tract, and alterations in the intestinal microenvironment. However, it is difficult for a single factor to explain the heterogeneity of symptoms. The Rome IV criteria emphasized the holistic biologic-psycho-social model of IBS, suggesting that symptoms of the disease are closely related to neurogastroenterology and various abnormalities in brain–gut interaction. This study comprehensively reviewed the relationship between the brain–gut axis and IBS, the structure of the brain–gut axis, and the relationship between the brain–gut axis and intestinal microenvironment, and discussed the relationship between the abnormal regulation of the nervous system, endocrine system, and immune system and the incidence of IBS on the basis of brain–gut axis. In terms of treatment, acupuncture therapy can regulate the neuroendocrine-immune system of the body and improve the intestinal microenvironment, and it has the advantages of safety, economy, and effectiveness. We study the pathogenesis of IBS from local to global and micro to macro, and review the use of acupuncture to treat the disease as a whole so as to provide new ideas for the treatment of the disease.
Collapse
Affiliation(s)
- Zhangyin Sun
- College of Acupuncture and Moxibustion, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Xuejiao Wang
- College of Acupuncture and Moxibustion, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Shangsheng Feng
- MOE Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Chaoju Xie
- College of Acupuncture and Moxibustion, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Yu Xing
- College of Acupuncture and Moxibustion, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Liang Guo
- College of Acupuncture and Moxibustion, Shaanxi University of Traditional Chinese Medicine, Xianyang, China
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, China
| | - Jingyu Zhao
- Department of Acupuncture and Moxibustion, Xi'an Hospital of Traditional Chinese Medicine, Xi'an, China
- *Correspondence: Jingyu Zhao
| | - Changchun Ji
- Department of Acupuncture and Moxibustion, Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, China
- Department of Acupuncture and Moxibustion, Shaanxi Provincial Institute of Traditional Chinese Medicine, Xi'an, China
- Changchun Ji
| |
Collapse
|
18
|
Sun Y, Li H, Liu L, Bai X, Wu L, Shan J, Sun X, Wang Q, Guo Y. A Novel Mast Cell Stabilizer JM25-1 Rehabilitates Impaired Gut Barrier by Targeting the Corticotropin-Releasing Hormone Receptors. Pharmaceuticals (Basel) 2022; 16:ph16010047. [PMID: 36678544 PMCID: PMC9866683 DOI: 10.3390/ph16010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/18/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
Mast cell (MC) plays a central role in intestinal permeability; however, few MC-targeting drugs are currently available for protection of the intestinal barrier in clinical practice. A nonfluorinated Lidocaine analog 2-diethylamino-N-2,5-dimethylphenyl acetamide (JM25-1) displays anti-allergic effect, but its impact on MC remains elusive. In this study, we explored whether JM25-1 has therapeutic potential on intestinal barrier defect through stabilizing MC. JM25-1 alleviated release of β-hexosaminidase and cytokine production of MC. The paracellular permeability was redressed by JM25-1 in intestinal epithelial cell monolayers co-cultured with activated MC. In vivo, JM25-1 diminished intestinal mucosal MC amount and cytokine production, especially downregulating the expression of CRHR1, accompanied by an increase of CRHR2. Protective effects appeared in JM25-1-treated stress rats with a recovery of weight and intestinal barrier integrity. Through network pharmacology analysis, JM25-1 showed a therapeutic possibility for irritable bowel syndrome (IBS) with predictive targeting on PI3K/AKT/mTOR signaling. As expected, JM25-1 reinforced p-PI3K, p-AKT, p-mTOR signaling in MC, while the mTOR inhibitor Rapamycin reversed the action of JM25-1 on the expression of CRHR1 and CRHR2. Moreover, JM25-1 successfully remedied intestinal defect and declined MC and CRHR1 expression in rat colon caused by colonic mucus of IBS patients. Our data implied that JM25-1 possessed therapeutic capacity against intestinal barrier defects by targeting the CRH receptors of MC through PI3K/AKT/mTOR signaling.
Collapse
Affiliation(s)
- Yueshan Sun
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Hong Li
- Laboratory of Ethnopharmacology, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lei Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Xiaoqin Bai
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Liping Wu
- Digestive Department, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Jing Shan
- Digestive Department, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Xiaobin Sun
- Digestive Department, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Qiong Wang
- Digestive Department, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
- Correspondence: (Q.W.); (Y.G.)
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu 610031, China
- Correspondence: (Q.W.); (Y.G.)
| |
Collapse
|
19
|
Ishioh M, Nozu T, Miyagishi S, Igarashi S, Funayama T, Ohhira M, Okumura T. Activation of basal forebrain cholinergic neurons improves colonic hyperpermeability through the vagus nerve and adenosine A2B receptors in rats. Biochem Pharmacol 2022; 206:115331. [PMID: 36330948 DOI: 10.1016/j.bcp.2022.115331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 12/14/2022]
Abstract
Intestinal barrier dysfunction, a leaky gut, contributes to the pathophysiology of various diseases such as dementia and irritable bowel syndrome (IBS). We recently clarified that orexin, ghrelin, or adenosine A2B signaling in the brain improved leaky gut through the vagus nerve. The present study was performed to clarify whether basal forebrain cholinergic neurons (BFCNs) are implicated in the central regulation of intestinal barrier function. We activated BFCNs using benzyl quinolone carboxylic acid (BQCA), a positive muscarinic M1 allosteric modulator, and evaluated colonic permeability by quantifying the absorbed Evans blue in rat colonic tissue. Intracisternal (not intraperitoneal) injection of BQCA blocked the increased colonic permeability in response to lipopolysaccharide. Vagotomy blocked BQCA-induced improvement of colonic hyperpermeability. Intracisternally administered pirenzepine, a muscarinic M1 selective antagonist, prevented intestinal barrier function improvement by intravenously administered 2-deoxy-d-glucose, central vagal stimulant. Adenosine A2B receptor antagonist but not dopamine or opioid receptor antagonist prevented BQCA-induced blockade of colonic hyperpermeability. Additionally, intracisternal injection of pirenzepine blocked orexin- or butyrate-induced intestinal barrier function improvement. These results suggest that BFCNs improve leaky gut through adenosine A2B signaling and the vagal pathway. Furthermore, BFCNs mediate orexin- or butyrate-induced intestinal barrier function improvement. Since BFCNs play a role in cognitive function and a leaky gut is associated with dementia, the present finding may lead us to speculate that BFCNs are involved in the development of dementia by regulating intestinal barrier function.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Saori Miyagishi
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Takuya Funayama
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan; Center for Medical Education, Asahikawa Medical University, Japan
| |
Collapse
|
20
|
Tan C, Yan Q, Ma Y, Fang J, Yang Y. Recognizing the role of the vagus nerve in depression from microbiota-gut brain axis. Front Neurol 2022; 13:1015175. [PMID: 36438957 PMCID: PMC9685564 DOI: 10.3389/fneur.2022.1015175] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 08/08/2023] Open
Abstract
Depression is a worldwide disease causing severe disability, morbidity, and mortality. Despite abundant studies, the precise mechanisms underlying the pathophysiology of depression remain elusive. Recently, cumulate research suggests that a disturbance of microbiota-gut-brain axis may play a vital role in the etiology of depression while correcting this disturbance could alleviate depression symptoms. The vagus nerve, linking brain and gut through its afferent and efferent branches, is a critical route in the bidirectional communication of this axis. Directly or indirectly, the vagus afferent fibers can sense and relay gut microbiota signals to the brain and induce brain disorders including depression. Also, brain changes in response to stress may result in gut hyperpermeability and inflammation mediating by the vagal efferents, which may be detrimental to depression. Notably, vagus nerve stimulation owns an anti-inflammatory effect and was proved for depression treatment. Nevertheless, depression was accompanied by a low vagal tone, which may derive from response to stress and contribute to pathogenesis of depression. In this review, we aim to explore the role of the vagus nerve in depression from the perspective of the microbiota-gut-brain axis, highlighting the relationship among the vagal tone, the gut hyperpermeability, inflammation, and depression.
Collapse
Affiliation(s)
- Chaoren Tan
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| | - Qiqi Yan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| | - Yue Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongsheng Yang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
21
|
Hussain Z, Park H. Inflammation and Impaired Gut Physiology in Post-operative Ileus: Mechanisms and the Treatment Options. J Neurogastroenterol Motil 2022; 28:517-530. [PMID: 36250359 PMCID: PMC9577567 DOI: 10.5056/jnm22100] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Post-operative ileus (POI) is the transient cessation of coordinated gastrointestinal motility after abdominal surgical intervention. It decreases quality of life, prolongs length of hospital stay, and increases socioeconomic costs. The mechanism of POI is complex and multifactorial, and has been broadly categorized into neurogenic and inflammatory phase. Neurogenic phase mediated release of corticotropin-releasing factor (CRF) plays a central role in neuroinflammation, and affects both central autonomic response as well hypothalamic-pituitary-adrenal (HPA) axis. HPA-stress axis associated cortisol release adversely affects gut microbiota and permeability. Peripheral CRF (pCRF) is a key player in stress induced gastric emptying and colonic transit. It functions as a local effector and interacts with the CRF receptors on the mast cell to release chemical mediators of inflammation. Mast cells proteases disrupt epithelial barrier via protease activated receptor-2 (PAR-2). PAR-2 facilitates cytoskeleton contraction to reorient tight junction proteins such as occludin, claudins, junctional adhesion molecule, and zonula occludens-1 to open epithelial barrier junctions. Barrier opening affects the selectivity, and hence permeation of luminal antigens and solutes in the gastrointestinal tract. Translocation of luminal antigens perturbs mucosal immune system to further exacerbate inflammation. Stress induced dysbiosis and decrease in production of short chain fatty acids add to the inflammatory response and barrier disintegration. This review discusses potential mechanisms and factors involved in the pathophysiology of POI with special reference to inflammation and interlinked events such as epithelial barrier dysfunction and dysbiosis. Based on this review, we recommend CRF, mast cells, macrophages, and microbiota could be targeted concurrently for efficient POI management.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyojin Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Okumura T, Nozu T, Ishioh M, Igarashi S, Funayama T, Kumei S, Ohhira M. Oxytocin acts centrally in the brain to improve leaky gut through the vagus nerve and a cannabinoid signaling in rats. Physiol Behav 2022; 254:113914. [PMID: 35839845 DOI: 10.1016/j.physbeh.2022.113914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Brain oxytocin plays a role in gastrointestinal functions. Among them, oxytocin acts centrally to modulate gastrointestinal motility and visceral sensation. Intestinal barrier function, one of important gut functions, is also regulated by the central nervous system. Little is, however, known about a role of central oxytocin in the regulation of intestinal barrier function. The present study was performed to clarify whether brain oxytocin is also involved in regulation of intestinal barrier function and its mechanism. Colonic permeability was estimated in vivo by quantifying the absorbed Evans blue in colonic tissue in rats. Intracisternal injection of oxytocin dose-dependently abolished increased colonic permeability in response to lipopolysaccharide while intraperitoneal injection of oxytocin at the same dose failed to block it. Either atropine or surgical vagotomy blocked the central oxytocin-induced improvement of colonic hyperpermeability. Cannabinoid 1 receptor antagonist but not adenosine or opioid receptor antagonist prevented the central oxytocin-induced blockade of colonic hyperpermeability. In addition, intracisternal injection of oxytocin receptor antagonist blocked the ghrelin- or orexin-induced improvement of intestinal barrier function. These results suggest that oxytocin acts centrally in the brain to reduce colonic hyperpermeability. The vagal cholinergic pathway or cannabinoid 1 receptor signaling plays a vital role in the process. The oxytocin-induced improvement of colonic hyperpermeability mediates the central ghrelin- or orexin-induced improvement of intestinal barrier function. We would therefore suggest that activation of central oxytocin signaling may be useful for leaky gut-related diseases such as irritable bowel syndrome and autism.
Collapse
Affiliation(s)
- Toshikatsu Okumura
- Division of Metabolism, Asahikawa Medical University, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Masatomo Ishioh
- Division of Metabolism, Asahikawa Medical University, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Sho Igarashi
- Division of Metabolism, Asahikawa Medical University, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Takuya Funayama
- Division of Metabolism, Asahikawa Medical University, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Japan
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| |
Collapse
|
23
|
Elbadawi M, Ammar RM, Rabini S, Klauck SM, Efferth T. Modulation of Intestinal Corticotropin-Releasing Hormone Signaling by the Herbal Preparation STW 5-II: Possible Mechanisms for Irritable Bowel Syndrome Management. Pharmaceuticals (Basel) 2022; 15:ph15091121. [PMID: 36145342 PMCID: PMC9504045 DOI: 10.3390/ph15091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 11/25/2022] Open
Abstract
Corticotropin-releasing factor (CRF) mediates stress responses and alters the gut-brain axis, contributing to the pathogenesis of irritable bowel syndrome (IBS), which is recognized by abdominal pain accompanied by bowel habit disturbance. STW 5-II, a mixture of six herbal extracts, is clinically effective in functional dyspepsia and IBS. Here we aimed to establish an organoid-based stress-induced IBS-like model to investigate the mechanisms of action of STW 5-II. STW 5-II (10, 20, and 30 g/mL) was applied to intestinal organoids for 24 h before being treated with CRF (100 nM) for 48 h. The effects of STW 5-II on CRF signaling were investigated using several in vitro and in silico approaches. STW 5-II activities were further explored by in silico PyRx screening followed by molecular docking of the main 52 identified compounds in STW 5-II with both CRF receptors CRFR1 and CRFR2. CRF exposure stimulated inflammation and increased proinflammatory mediators, while STW 5-II dose-dependently counteracted these effects. STW 5-II inhibited CRF-induced claudin-2 overexpression and serotonin release. Docking of the STW 5-II constituents oleanolic acid and licorice saponin G2 to CRFR1 and CRFR2, respectively, showed a good affinity. These multi-target activities support and elucidate the clinically proven efficacy of STW 5-II in disorders of gut-brain interaction.
Collapse
Affiliation(s)
- Mohamed Elbadawi
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
| | - Ramy M. Ammar
- Medical Affairs, Bayer Consumer Health, 64295 Darmstadt, Germany
| | - Sabine Rabini
- Medical Affairs, Bayer Consumer Health, 64295 Darmstadt, Germany
| | - Sabine M. Klauck
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University-Mainz, 55128 Mainz, Germany
- Correspondence:
| |
Collapse
|
24
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Peripheral apelin mediates visceral hypersensitivity and impaired gut barrier in a rat irritable bowel syndrome model. Neuropeptides 2022; 94:102248. [PMID: 35526468 DOI: 10.1016/j.npep.2022.102248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/19/2022]
Abstract
Growing evidence indicates that visceral hypersensitivity and impaired gut barrier play an important role in the pathophysiology of irritable bowel syndrome (IBS). In animal models, these changes are known to be mediated via corticotropin-releasing factor (CRF)-Toll like receptor 4 (TLR4)-proinflammatory cytokine signaling. Apelin, an endogenous ligand of APJ, was reported to modulate CRF-induced enhanced colonic motility. In this context, we hypothesized that apelin also modulates visceral sensation and gut barrier, and tested this hypothesis. We measured visceral pain threshold in response to colonic balloon distention by abdominal muscle contractions assessed by electromyogram in rats. Colonic permeability was estimated by quantifying the absorbed Evans blue in colonic tissue. Intraperitoneal (ip) administration of [Ala13]-apelin-13, an APJ antagonist, blocked lipopolysaccharide (LPS)- or CRF-induced visceral hypersensitivity and colonic hyperpermeability (IBS model) in a dose-response manner. These inhibitory effects were blocked by compound C, an AMPK inhibitor, NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor or naloxone in the LPS model. On the other hand, ip [Pyr1]-apelin-13, an APJ agonist, caused visceral hypersensitivity and colonic hyperpermeability, and these effects were reversed by astressin, a CRF receptor antagonist, TAK-242, a TLR4 antagonist or anakinra, an interleukin-1 receptor antagonist. APJ system modulated CRF-TLR4-proinflammatory cytokine signaling to cause visceral hypersensitivity and colonic hyperpermeability. APJ antagonist blocked these GI changes in IBS models, which were mediated via AMPK, NO and opioid signaling. Apelin may contribute to the IBS pathophysiology, and the inhibition of apelinergic signaling may be a promising therapeutic option for IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
25
|
Tao E, Zhu Z, Hu C, Long G, Chen B, Guo R, Fang M, Jiang M. Potential Roles of Enterochromaffin Cells in Early Life Stress-Induced Irritable Bowel Syndrome. Front Cell Neurosci 2022; 16:837166. [PMID: 35370559 PMCID: PMC8964523 DOI: 10.3389/fncel.2022.837166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/09/2022] [Indexed: 12/04/2022] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, also known as disorders of the gut–brain interaction; however, the pathophysiology of IBS remains unclear. Early life stress (ELS) is one of the most common risk factors for IBS development. However, the molecular mechanisms by which ELS induces IBS remain unclear. Enterochromaffin cells (ECs), as a prime source of peripheral serotonin (5-HT), play a pivotal role in intestinal motility, secretion, proinflammatory and anti-inflammatory effects, and visceral sensation. ECs can sense various stimuli and microbiota metabolites such as short-chain fatty acids (SCFAs) and secondary bile acids. ECs can sense the luminal environment and transmit signals to the brain via exogenous vagal and spinal nerve afferents. Increasing evidence suggests that an ECs-5-HT signaling imbalance plays a crucial role in the pathogenesis of ELS-induced IBS. A recent study using a maternal separation (MS) animal model mimicking ELS showed that MS induced expansion of intestinal stem cells and their differentiation toward secretory lineages, including ECs, leading to ECs hyperplasia, increased 5-HT production, and visceral hyperalgesia. This suggests that ELS-induced IBS may be associated with increased ECs-5-HT signaling. Furthermore, ECs are closely related to corticotropin-releasing hormone, mast cells, neuron growth factor, bile acids, and SCFAs, all of which contribute to the pathogenesis of IBS. Collectively, ECs may play a role in the pathogenesis of ELS-induced IBS. Therefore, this review summarizes the physiological function of ECs and focuses on their potential role in the pathogenesis of IBS based on clinical and pre-clinical evidence.
Collapse
Affiliation(s)
- Enfu Tao
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- Wenling Maternal and Child Health Care Hospital, Wenling, China
| | - Zhenya Zhu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Chenmin Hu
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Gao Long
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Bo Chen
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Rui Guo
- Endoscopy Center and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience and Gastrointestinal Laboratory, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mizu Jiang
- Department of Gastroenterology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
- *Correspondence: Mizu Jiang,
| |
Collapse
|
26
|
Nozu T, Okumura T. Pathophysiological Commonality Between Irritable Bowel Syndrome and Metabolic Syndrome: Role of Corticotropin-releasing Factor-Toll-like Receptor 4-Proinflammatory Cytokine Signaling. J Neurogastroenterol Motil 2022; 28:173-184. [PMID: 35189599 PMCID: PMC8978123 DOI: 10.5056/jnm21002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 11/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) displays chronic abdominal pain with altered defecation. Most of the patients develop visceral hypersensitivity possibly resulting from impaired gut barrier and altered gut microbiota. We previously demonstrated that colonic hyperpermeability with visceral hypersensitivity in animal IBS models, which is mediated via corticotropin-releasing factor (CRF)-Toll-like receptor 4 (TLR4)-proinflammatory cytokine signaling. CRF impairs gut barrier via TLR4. Leaky gut induces bacterial translocation resulting in dysbiosis, and increases lipopolysaccharide (LPS). Activation of TLR4 by LPS increases the production of proinflammatory cytokines, which activate visceral sensory neurons to induce visceral hypersensitivity. LPS also activates CRF receptors to further increase gut permeability. Metabolic syndrome (MS) is a cluster of cardiovascular risk factors, including insulin resistance, obesity, dyslipidemia, and hypertension, and recently several researchers suggest the possibility that impaired gut barrier and dysbiosis with low-grade systemic inflammation are involved in MS. Moreover, TLR4-proinflammatory cytokine contributes to the development of insulin resistance and obesity. Thus, the existence of pathophysiological commonality between IBS and MS is expected. This review discusses the potential mechanisms of IBS and MS with reference to gut barrier and microbiota, and explores the possibility of existence of pathophysiological link between these diseases with a focus on CRF, TLR4, and proinflammatory cytokine signaling. We also review epidemiological data supporting this possibility, and discuss the potential of therapeutic application of the drugs used for MS to IBS treatment. This notion may pave the way for exploring novel therapeutic approaches for these disorders.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.,Center for Medical Education, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan.,Department of General Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
27
|
Lv Y, Wen J, Fang Y, Zhang H, Zhang J. Corticotropin-releasing factor receptor 1 (CRF-R1) antagonists: Promising agents to prevent visceral hypersensitivity in irritable bowel syndrome. Peptides 2022; 147:170705. [PMID: 34822913 DOI: 10.1016/j.peptides.2021.170705] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022]
Abstract
Corticotropin-releasing factor (CRF) is a 41-amino acid polypeptide that coordinates the endocrine system, autonomic nervous system, immune system, and physiological behavior. CRF is a signaling regulator in the neuro-endocrine-immune (NEI) network that mediates visceral hypersensitivity. Rodent models to simulate changes in intestinal motility similar to those reported in the irritable bowel syndrome (IBS), demonstrate that the CRF receptor 1 (CRF-R1) mediates intestinal hypersensitivity under many conditions. However, the translation of preclinical studies into clinical trials has not been successful possibly due to the lack of sufficient understanding of the multiple variants of CRF-R1 and CRF-R1 antagonists. Investigating the sites of action of central and peripheral CRF is critical for accelerating the translation from preclinical to clinical studies.
Collapse
Affiliation(s)
- Yuanxia Lv
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| | - Jing Wen
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| | - Yingying Fang
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| | - Haoyuan Zhang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong City, China.
| | - Jianwu Zhang
- School of Pharmacy, North Sichuan Medical College, Nanchong City, China.
| |
Collapse
|
28
|
Okumura T, Nozu T, Ishioh M, Igarashi S, Kumei S, Ohhira M. Centrally administered butyrate improves gut barrier function, visceral sensation and septic lethality in rats. J Pharmacol Sci 2021; 146:183-191. [PMID: 34116731 DOI: 10.1016/j.jphs.2021.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022] Open
Abstract
Short chain fatty acids readily crosses the gut-blood and blood-brain barrier and acts centrally to influence neuronal signaling. We hypothesized that butyrate, a short-chain fatty acid produced by bacterial fermentation, in the central nervous system may play a role in the regulation of intestinal functions. Colonic permeability and visceral sensation was evaluated in rats. Septic lethality was evaluated in a sepsis model induced by subcutaneous administration of both lipopolysaccharide and colchicine. Intracisternal butyrate dose-dependently improved colonic hyperpermeability and visceral nociception. In contrast, subcutaneous injection of butyrate failed to change it. Intracisternal orexin 1 receptor antagonist or surgical vagotomy blocked the central butyrate-induced improvement of colonic hyperpermeability. The improvement of intestinal hyperpermeability by central butyrate or intracisternal orexin-A was blocked by cannabinoid 1 or 2 receptor antagonist. Intracisternal butyrate significantly improved survival period in septic rats. These results suggest that butyrate acts in the central nervous system to improve gut permeability and visceral nociception through cannabinoid signaling. Endogenous orexin in the brain may mediate the reduction of intestinal hyperpermeability by central butyrate through the vagus nerve. We would suggest that improvement of leaky gut by central butyrate may induce visceral antinociception and protection from septic lethality.
Collapse
Affiliation(s)
- Toshikatsu Okumura
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Masatomo Ishioh
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Metabolism, Biosystemic Science, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| |
Collapse
|
29
|
Nozu T, Miyagishi S, Nozu R, Ishioh M, Takakusaki K, Okumura T. EMA401, an angiotensin II type 2 receptor antagonist blocks visceral hypersensitivity and colonic hyperpermeability in rat model of irritable bowel syndrome. J Pharmacol Sci 2021; 146:121-124. [PMID: 34030794 DOI: 10.1016/j.jphs.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022] Open
Abstract
Visceral hypersensitivity and impaired gut barrier are crucial pathophysiology of irritable bowel syndrome (IBS), and injection of lipopolysaccharide or corticotropin-releasing factor, and repeated water avoidance stress simulate these gastrointestinal changes in rat (IBS models). We previously demonstrated that losartan, an angiotensin II type 1 (AT1) receptor antagonist prevented these changes, and we attempted to determine the effects of EMA401, an AT2 receptor antagonist in the current study. EMA401 blocked visceral hypersensitivity and colonic hyperpermeability in these models, and naloxone reversed the effects by EMA401. These results suggest that EMA401 may improve gut function via opioid signaling in IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| |
Collapse
|
30
|
Sun H, Ma Y, An S, Wang Z. Altered gene expression signatures by calcitonin gene-related peptide promoted mast cell activity in the colon of stress-induced visceral hyperalgesia mice. Neurogastroenterol Motil 2021; 33:e14073. [PMID: 33382180 DOI: 10.1111/nmo.14073] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is possibly involved in recruitment of mucosal mast cells (MCs) in the gut that may be associated with the development of irritable bowel syndrome (IBS), but the role of CGRP on the activation of MCs is still unknown. METHODS Using RNA sequencing (RNA-seq), we examined differentially expressed genes (DEGs) in mouse MCs following CGRP treatment. The expression of key genes in colonic MCs and their relationship with CGRP-containing fibers were examined by immunofluorescence in chronic water-avoidance stress (WAS)-induced visceral hyperalgesia mice. KEY RESULTS A total of 29 DEGs were found significantly changed with 28 upregulated and 1 downregulated following treatment of MCs with CGRP. Bioinformatics analysis showed that key higher DEGs included those associated with response to corticotropin-releasing hormone (CRH), regulation of transcription, MC activation, and proliferation. These processes are enriched for genes associated with stress-induced MC activation in IBS. Western blot verified changes in representative DEGs (Nr4a3, Crem, Gpr35, FosB, Sphlk1) and real-time cell analysis (RTCA) verified the MC proliferation. The vast majority of colonic MCs nearly CGRP-containing fibers in WAS mice overexpressed only Nr4a3 with little to no FosB, Gpr35, Sphlk1, or Crem expression. Nr4a3 knockdown may attenuate the promotion effect of CGRP on MC viability. CONCLUSIONS & INFERENCES Our results suggest that CGRP is a critical regulator of key expressed genes in MC activation. Nr4a3 as a novel regulator of MC function may have an effect on stress-induced visceral hyperalgesia, and this may represent the novel target for drug development.
Collapse
Affiliation(s)
- Hanliang Sun
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Yanhan Ma
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuhong An
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Zhaojin Wang
- Department of Human Anatomy, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| |
Collapse
|
31
|
Nozu T, Miyagishi S, Ishioh M, Takakusaki K, Okumura T. Phlorizin attenuates visceral hypersensitivity and colonic hyperpermeability in a rat model of irritable bowel syndrome. Biomed Pharmacother 2021; 139:111649. [PMID: 33957565 DOI: 10.1016/j.biopha.2021.111649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
Visceral hypersensitivity and impaired gut barrier are crucial contributors to the pathophysiology of irritable bowel syndrome (IBS), and those are mediated via corticotropin-releasing factor (CRF)-Toll like receptor 4-pro-inflammatory cytokine signaling. Phlorizin is an inhibitor of sodium-linked glucose transporters (SGLTs), and known to have anti-cytokine properties. Thus, we hypothesized that phlorizin may improve these gastrointestinal changes in IBS, and tested this hypothesis in rat IBS models, i.e., lipopolysaccharide (LPS) or CRF-induced visceral hypersensitivity and colonic hyperpermeability. The visceral pain threshold in response to colonic balloon distention was estimated by abdominal muscle contractions by electromyogram, and colonic permeability was measured by quantifying the absorbed Evans blue in colonic tissue. Subcutaneous (s.c.) injection of phlorizin inhibited visceral hypersensitivity and colonic hyperpermeability induced by LPS in a dose-dependent manner. Phlorizin also blocked CRF-induced these gastrointestinal changes. Phlorizin is known to inhibit both SGLT1 and SGLT2, but intragastric administration of phlorizin may only inhibit SGLT1 because gut mainly expresses SGLT1. We found that intragastric phlorizin did not display any effects, but ipragliflozin, an orally active and selective SGLT2 inhibitor improved the gastrointestinal changes in the LPS model. Compound C, an adenosine monophosphate-activated protein kinase (AMPK) inhibitor, NG-nitro-L-arginine methyl ester, a nitric oxide (NO) synthesis inhibitor and naloxone, an opioid receptor antagonist reversed the effects of phlorizin. In conclusions, phlorizin improved visceral hypersensitivity and colonic hyperpermeability in IBS models. These effects may result from inhibition of SGLT2, and were mediated via AMPK, NO and opioid pathways. Phlorizin may be effective for the treatment of IBS.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Center for Medical Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
32
|
Jiang R, Lu XJ, Lu JF, Chen J. Characterization of ayu (Plecoglossus altivelis) urocortin: The function of an endocrine factor in monocyte/macrophage regulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103978. [PMID: 33338518 DOI: 10.1016/j.dci.2020.103978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/13/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Urocortin (UCN) is a hormone in the hypothalamic-pituitary-adrenal axis that is expressed in various immune cells. However, the function of teleost UCN in the immune system remains unclear. In this study, we cloned the cDNA sequence of UCN from ayu Plecoglossus altivelis (PaUCN). Sequence and phylogenetic tree analyses showed that PaUCN clustered within the fish UCN 1 group and was most related to the rainbow trout (Oncorhynchus mykiss) UCN. PaUCN was expressed in all tested tissues and its expression increased in the liver, spleen, head kidney, and gill upon Vibrio anguillarum infection. Mature PaUCN protein (mPaUCN) treatment affected the phagocytosis and bacterial killing of monocytes/macrophages (MO/MФ). mPaUCN reduced pro-inflammatory cytokine expression in MO/MФ, which was partially mediated via interaction with ayu interleukin-6. mPaUCN reduced bacterial load and increased the survival of V. anguillarum-infected ayu. Overall, UCN as an endocrine factor regulates the immune response of ayu after infection by activating MO/MФ, thus contributing to enhance fish survival.
Collapse
Affiliation(s)
- Rui Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
33
|
Ishioh M, Nozu T, Igarashi S, Tanabe H, Kumei S, Ohhira M, Takakusaki K, Okumura T. Activation of central adenosine A2B receptors mediate brain ghrelin-induced improvement of intestinal barrier function through the vagus nerve in rats. Exp Neurol 2021; 341:113708. [PMID: 33771554 DOI: 10.1016/j.expneurol.2021.113708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 11/16/2022]
Abstract
Leaky gut that is a condition reflecting intestinal barrier dysfunction has been attracting attention for its relations with many diseases such as irritable bowel syndrome or Alzheimer dementia. We have recently demonstrated that ghrelin acts in the brain to improve leaky gut via the vagus nerve. In the present study, we tried to clarify the precise central mechanisms by which ghrelin improves intestinal barrier function through the vagus nerve. Colonic permeability was estimated in vivo by quantifying the absorbed Evans blue in colonic tissue in rats. Adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), blocked the intracisternal ghrelin-induced improvement of intestinal hyperpermeability while dopamine, cannabinoid or opioid receptor antagonist failed to prevent it. Since DPCPX can block adenosine A1 and adenosine A2B receptors, we examined which subtype is involved in the mechanism. Intracisternal injection of adenosine A2B agonist but not adenosine A1 agonist improved colonic hyperpermeability, while peripheral injection of adenosine A2B agonist failed to improve it. Intracisternal adenosine A2B agonist-induced improvement of colonic hyperpermeability was blocked by vagotomy. Adenosine A2B specific antagonist, alloxazine blocked the ghrelin- or central vagal stimulation by 2-deoxy-d-glucose-induced improvement of intestinal hyperpermeability. These results suggest that activation of adenosine A2B receptors in the central nervous system is capable of improving intestinal barrier function through the vagal pathway, and the adenosine A2B receptors may mediate the ghrelin-induced improvement of leaky gut in a vagal dependent fashion. These findings may help us understand the pathophysiology in not only gastrointestinal diseases but also non-gastrointestinal diseases associated with the altered intestinal permeability.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Hiroki Tanabe
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Kaoru Takakusaki
- Division of Neuroscience, Department of Physiology, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Division of Metabolism, Systemic Bioscience, Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| |
Collapse
|
34
|
Igarashi S, Nozu T, Ishioh M, Kumei S, Saito T, Toki Y, Hatayama M, Yamamoto M, Shindo M, Tanabe H, Okumura T. Centrally administered orexin prevents lipopolysaccharide and colchicine induced lethality via the vagal cholinergic pathway in a sepsis model in rats. Biochem Pharmacol 2020; 182:114262. [DOI: 10.1016/j.bcp.2020.114262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022]
|
35
|
Imipramine improves visceral sensation and gut barrier in rat models of irritable bowel syndrome. Eur J Pharmacol 2020; 887:173565. [PMID: 32946869 DOI: 10.1016/j.ejphar.2020.173565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/18/2022]
Abstract
An impaired gut barrier, possibly leading to visceral hypersensitivity has been recently recognized to be one of the pivotal pathophysiology of irritable bowel syndrome (IBS). We previously showed that lipopolysaccharide (LPS), corticotropin-releasing factor (CRF), and repeated water avoidance stress (WAS) induce visceral hypersensitivity and colonic hyperpermeability via pro-inflammatory cytokine signaling (rat IBS models). Although the precise mechanisms of action are unclear, imipramine, a tricyclic antidepressant, improves IBS symptoms, and also has anticytokine properties. In this study, we hypothesized that imipramine improves the gut barrier to ameliorate IBS symptoms. To test this hypothesis, we determined its effects on visceral hypersensitivity and colonic hyperpermeability in rat IBS models. The visceral pain threshold in response to colonic balloon distention was electrophysiologically estimated by abdominal muscle contractions, and colonic permeability was measured by quantifying the absorbed Evans blue in colonic tissue in vivo. Subcutaneous imipramine injection (7, 20, 50 mg/kg) dose-dependently inhibited LPS-induced (1 mg/kg, subcutaneously) visceral hypersensitivity and colonic hyperpermeability. Imipramine also blocked these gastrointestinal (GI) changes induced by CRF (50 μg/kg, intraperitoneally) or repeated WAS (1 h daily for 3 days). Yohimbine (an α2-adrenoceptors antagonist), sulpiride (a dopamine D2 receptor antagonist), and naloxone hydrochloride (an opioid receptor antagonist) reversed these effects of imipramine in the LPS model. Therefore, imipramine may block GI changes in IBS via α2-adrenoceptors, dopamine D2, and opioid signaling. The improvement in the gut barrier resulting in inhibition of visceral pain is considered a valid mechanism of imipramine to ameliorate IBS symptoms.
Collapse
|
36
|
Ji Y, Hu B, Klontz C, Li J, Dessem D, Dorsey SG, Traub RJ. Peripheral mechanisms contribute to comorbid visceral hypersensitivity induced by preexisting orofacial pain and stress in female rats. Neurogastroenterol Motil 2020; 32:e13833. [PMID: 32155308 PMCID: PMC7319894 DOI: 10.1111/nmo.13833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/24/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Stress exacerbates many chronic pain syndromes including irritable bowel syndrome (IBS). Among these patient populations, many suffer from comorbid or chronic overlapping pain conditions and are predominantly female. Nevertheless, basic studies investigating chronic psychological stress-induced changes in pain sensitivity have been mostly carried out in male rodents. Our laboratory developed a model of comorbid pain hypersensitivity (CPH) (stress in the presence of preexisting orofacial pain inducing chronic visceral pain hypersensitivity that significantly outlasts transient stress-induced pain hypersensitivity (SIH)) facilitating the study of pain associated with IBS. Since CPH and SIH are phenotypically similar until SIH resolves and CPH persists, it is unclear if underlying mechanisms are similar. METHODS In the present study, the visceromotor response (VMR) to colorectal distention was recorded in the SIH and CPH models in intact females and ovariectomized rats plus estradiol replacement (OVx + E2). Over several months, rats were determined to be susceptible or resilient to stress and the role of peripheral corticotrophin-releasing factor (CRF) underlying in the pain hypersensitivity was examined. KEY RESULTS Stress alone induced transient (3-4 weeks) visceral hypersensitivity, though some rats were resilient. Comorbid conditions increased susceptibility to stress prolonging hypersensitivity beyond 13 weeks. Both models had robust peripheral components; hypersensitivity was attenuated by the CRF receptor antagonist astressin and the mast cell stabilizer disodium cromoglycate (DSCG). However, DSCG was less effective in the CPH model compared to the SIH model. CONCLUSIONS AND INFERENCES The data indicate many similarities but some differences in mechanisms contributing to comorbid pain conditions compared to transient stress-induced pain.
Collapse
Affiliation(s)
- Yaping Ji
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Bo Hu
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,Present address:
Key laboratory of Shaanxi Province for Craniofacial Precision Medicine ResearchXi’an Jiao Tong University College of StomatologyXi’anShaanxiChina
| | - Charles Klontz
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Jiyun Li
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Dean Dessem
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Susan G. Dorsey
- UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA,Department of Pain and Translational Symptom ScienceSchool of NursingUniversity of Maryland BaltimoreBaltimoreMDUSA
| | - Richard J. Traub
- Department of Neural and Pain SciencesSchool of DentistryUniversity of Maryland BaltimoreBaltimoreMDUSA,UM Center to Advance Chronic Pain ResearchUniversity of Maryland BaltimoreBaltimoreMDUSA
| |
Collapse
|
37
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Losartan improves visceral sensation and gut barrier in a rat model of irritable bowel syndrome. Neurogastroenterol Motil 2020; 32:e13819. [PMID: 32056324 DOI: 10.1111/nmo.13819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/03/2020] [Accepted: 01/22/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Lipopolysaccharide (LPS) or repeated water avoidance stress (WAS) induces visceral allodynia and colonic hyperpermeability via corticotropin-releasing factor (CRF) and proinflammatory cytokines, which is considered to be a rat irritable bowel syndrome (IBS) model. As losartan is known to inhibit proinflammatory cytokine release, we hypothesized that it improves these visceral changes. METHODS The threshold of visceromotor response (VMR), that is, abdominal muscle contractions induced by colonic balloon distention was electrophysiologically measured in rats. Colonic permeability was determined in vivo by quantifying the absorbed Evans blue in colonic tissue for 15 minutes spectrophotometrically. KEY RESULTS Lipopolysaccharide (1 mg kg-1 ) subcutaneously (s.c.) reduced the threshold of VMR and increased colonic permeability. Losartan (5-25 mg kg-1 s.c.) for 3 days inhibited these changes in a dose-dependent manner. Moreover, repeated WAS (1 hour daily for 3 days) or intraperitoneal injection of CRF (50 µg kg-1 ) induced the similar visceral changes as LPS, which were also eliminated by losartan. These effects by losartan in LPS model were reversed by GW9662 (a peroxisome proliferator-activated receptor-γ [PPAR-γ] antagonist), NG -nitro-L-arginine methyl ester (a nitric oxide [NO] synthesis inhibitor), or naloxone (an opioid receptor antagonist). Moreover, it also inhibited by sulpiride (a dopamine D2 receptor antagonist) or domperidone (a peripheral dopamine D2 antagonist). CONCLUSION & INFERENCES Losartan prevented visceral allodynia and colonic hyperpermeability in rat IBS models. These actions may be PPAR-γ-dependent and also mediated by the NO, opioid, and dopamine D2 pathways. Losartan may be useful for IBS treatment.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan.,Center for Medical Education, Asahikawa Medical University, Asahikawa, Japan
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Asahikawa, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, Asahikawa, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa, Japan.,Department of General Medicine, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
38
|
Ishioh M, Nozu T, Igarashi S, Tanabe H, Kumei S, Ohhira M, Okumura T. Ghrelin acts in the brain to block colonic hyperpermeability in response to lipopolysaccharide through the vagus nerve. Neuropharmacology 2020; 173:108116. [PMID: 32442542 DOI: 10.1016/j.neuropharm.2020.108116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/23/2020] [Accepted: 04/26/2020] [Indexed: 12/31/2022]
Abstract
Brain ghrelin plays a role in gastrointestinal functions. Among them, ghrelin acts centrally to stimulate gastrointestinal motility and induce visceral antinociception. Intestinal barrier function, one of important gastrointestinal functions, is also controlled by the central nervous system. Little is, however, known about a role of central ghrelin in regulation of intestinal permeability. The present study was performed to clarify whether brain ghrelin is also involved in regulation of intestinal barrier function and its mechanism. Colonic permeability was estimated in vivo by quantifying the absorbed Evans blue in colonic tissue in rats. Intracisternal injection of ghrelin dose-dependently abolished increased colonic permeability in response to LPS while intraperitoneal injection of ghrelin at the same dose or intracisternal injection of des-acyl-ghrelin failed to block it. Carbachol potently attenuated LPS-induced intestinal hyperpermeability, and atropine or bilateral subdiaphragmatic vagotomy prevented the improvement of intestinal hyperpermeability by central ghrelin. Intracisternal (D-Lys3)-GHRP-6, a selective ghrelin receptor antagonist, significantly blocked improvement of intestinal barrier function by intravenously administered 2-deoxy-d-glucose, central vagal stimulant. Intracisternal injection of orexin 1 receptor antagonist, SB-334867 blocked intracisternal ghrelin-induced improvement of colonic hyperpermeability. These results suggest that exogenously administered or endogenously released ghrelin acts centrally to improve a disturbed intestinal barrier function through orexinergic signaling and the vagal cholinergic pathway. Central ghrelin may be involved in the pathophysiology and be a novel therapeutic option in not only gastrointestinal diseases such as irritable bowel syndrome but also non-gastrointestinal diseases associated with the altered intestinal permeability.
Collapse
Affiliation(s)
- Masatomo Ishioh
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Japan
| | - Sho Igarashi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Hiroki Tanabe
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan
| | - Shima Kumei
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Masumi Ohhira
- Department of General Medicine, Asahikawa Medical University, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Japan; Department of General Medicine, Asahikawa Medical University, Japan.
| |
Collapse
|
39
|
Casado-Bedmar M, Keita ÅV. Potential neuro-immune therapeutic targets in irritable bowel syndrome. Therap Adv Gastroenterol 2020; 13:1756284820910630. [PMID: 32313554 PMCID: PMC7153177 DOI: 10.1177/1756284820910630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/11/2020] [Indexed: 02/04/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder characterized by recurring abdominal pain and disturbed bowel habits. The aetiology of IBS is unknown but there is evidence that genetic, environmental and immunological factors together contribute to the development of the disease. Current treatment of IBS includes lifestyle and dietary interventions, laxatives or antimotility drugs, probiotics, antispasmodics and antidepressant medication. The gut-brain axis comprises the central nervous system, the hypothalamic pituitary axis, the autonomic nervous system and the enteric nervous system. Within the intestinal mucosa there are close connections between immune cells and nerve fibres of the enteric nervous system, and signalling between, for example, mast cells and nerves has shown to be of great importance during GI disorders such as IBS. Communication between the gut and the brain is most importantly routed via the vagus nerve, where signals are transmitted by neuropeptides. It is evident that IBS is a disease of a gut-brain axis dysregulation, involving altered signalling between immune cells and neurotransmitters. In this review, we analyse the most novel and distinct neuro-immune interactions within the IBS mucosa in association with already existing and potential therapeutic targets.
Collapse
Affiliation(s)
- Maite Casado-Bedmar
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Åsa V. Keita
- Department of Biomedical and Clinical Sciences, Medical Faculty, Linköping University, Campus US, Linköping, 581 85, Sweden
| |
Collapse
|
40
|
Okumura T, Nozu T, Ishioh M, Igarashi S, Kumei S, Ohhira M. Brain orexin improves intestinal barrier function via the vagal cholinergic pathway. Neurosci Lett 2020; 714:134592. [DOI: 10.1016/j.neulet.2019.134592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/12/2019] [Accepted: 10/24/2019] [Indexed: 01/14/2023]
|
41
|
Accarie A, Vanuytsel T. Animal Models for Functional Gastrointestinal Disorders. Front Psychiatry 2020; 11:509681. [PMID: 33262709 PMCID: PMC7685985 DOI: 10.3389/fpsyt.2020.509681] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Functional gastrointestinal disorders (FGID), such as functional dyspepsia (FD) and irritable bowel syndrome (IBS) are characterized by chronic abdominal symptoms in the absence of an organic, metabolic or systemic cause that readily explains these complaints. Their pathophysiology is still not fully elucidated and animal models have been of great value to improve the understanding of the complex biological mechanisms. Over the last decades, many animal models have been developed to further unravel FGID pathophysiology and test drug efficacy. In the first part of this review, we focus on stress-related models, starting with the different perinatal stress models, including the stress of the dam, followed by a discussion on neonatal stress such as the maternal separation model. We also describe the most commonly used stress models in adult animals which brought valuable insights on the brain-gut axis in stress-related disorders. In the second part, we focus more on models studying peripheral, i.e., gastrointestinal, mechanisms, either induced by an infection or another inflammatory trigger. In this section, we also introduce more recent models developed around food-related metabolic disorders or food hypersensitivity and allergy. Finally, we introduce models mimicking FGID as a secondary effect of medical interventions and spontaneous models sharing characteristics of GI and anxiety-related disorders. The latter are powerful models for brain-gut axis dysfunction and bring new insights about FGID and their comorbidities such as anxiety and depression.
Collapse
Affiliation(s)
- Alison Accarie
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases, Metabolism and Ageing (ChroMetA), Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
42
|
Butyrate inhibits visceral allodynia and colonic hyperpermeability in rat models of irritable bowel syndrome. Sci Rep 2019; 9:19603. [PMID: 31862976 PMCID: PMC6925246 DOI: 10.1038/s41598-019-56132-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022] Open
Abstract
Lipopolysaccharide (LPS) or repeated water avoidance stress (WAS) induces visceral allodynia and gut hyperpermeability via corticotropin-releasing factor (CRF) and proinflammatory cytokines, which is a rat irritable bowel syndrome (IBS) model. As butyrate is known to suppress the release of proinflammatory cytokine, we hypothesized that butyrate alleviates these colonic changes in IBS models. The visceral pain was assessed by electrophysiologically measuring the threshold of abdominal muscle contractions in response to colonic distention. Colonic permeability was determined by measuring the absorbance of Evans blue in colonic tissue. Colonic instillation of sodium butyrate (SB; 0.37-2.9 mg/kg) for 3 days inhibited LPS (1 mg/kg)-induced visceral allodynia and colonic hyperpermeability dose-dependently. Additionally, the visceral changes induced by repeated WAS (1 h for 3 days) or CRF (50 µg/kg) were also blocked by SB. These effects of SB in the LPS model were eliminated by compound C, an AMPK inhibitor, or GW9662, a PPAR-γ antagonist, NG-nitro-L-arginine methyl ester, a NO synthesis inhibitor, naloxone or sulpiride. SB attenuated visceral allodynia and colonic hyperpermeability in animal IBS models. These actions may be AMPK and PPAR-γ dependent and also mediated by the NO, opioid and central dopamine D2 pathways. Butyrate may be effective for the treatment of IBS.
Collapse
|
43
|
Arie H, Nozu T, Miyagishi S, Ida M, Izumo T, Shibata H. Grape Seed Extract Eliminates Visceral Allodynia and Colonic Hyperpermeability Induced by Repeated Water Avoidance Stress in Rats. Nutrients 2019; 11:E2646. [PMID: 31689935 PMCID: PMC6893525 DOI: 10.3390/nu11112646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Grape seed extract (GSE) is rich in polyphenols composed mainly of proanthocyanidins, which are known to attenuate proinflammatory cytokine production. Repeated water avoidance stress (WAS) induces visceral allodynia and colonic hyperpermeability via toll-like receptor 4 (TLR4) and proinflammatory cytokine pathways, which is a rat irritable bowel syndrome (IBS) model. Thus, we explored the effects of GSE on repeated WAS (1 h for 3 days)-induced visceral allodynia and colonic hyperpermeability in Sprague-Dawley rats. Paracellular permeability, as evaluated by transepithelial electrical resistance and flux of carboxyfluorescein, was analyzed in Caco-2 cell monolayers treated with interleukin-6 (IL-6) and IL-1β. WAS caused visceral allodynia and colonic hyperpermeability, and intragastric administration of GSE (100 mg/kg, once daily for 11 days) inhibited these changes. Furthermore, GSE also suppressed the elevated colonic levels of IL-6, TLR4, and claudin-2 caused by WAS. Paracellular permeability was increased in Caco-2 cell monolayers in the presence of IL-6 and IL-1β, which was inhibited by GSE. Additionally, GSE suppressed the claudin-2 expression elevated by cytokine stimulation. The effects of GSE on visceral changes appear to be evoked by suppressing colonic TLR4-cytokine signaling and maintaining tight junction integrity. GSE may be useful for treating IBS.
Collapse
Affiliation(s)
- Hideyuki Arie
- Institute for Health Care Science, Suntory Wellness Limited, Seikadai 8-1-1, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Masayuki Ida
- Institute for Health Care Science, Suntory Wellness Limited, Seikadai 8-1-1, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
| | - Takayuki Izumo
- Institute for Health Care Science, Suntory Wellness Limited, Seikadai 8-1-1, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Limited, Seikadai 8-1-1, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
| |
Collapse
|
44
|
Dehydroepiandrosterone sulfate improves visceral sensation and gut barrier in a rat model of irritable bowel syndrome. Eur J Pharmacol 2019; 852:198-206. [DOI: 10.1016/j.ejphar.2019.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023]
|
45
|
Nozu T, Miyagishi S, Nozu R, Takakusaki K, Okumura T. Pioglitazone improves visceral sensation and colonic permeability in a rat model of irritable bowel syndrome. J Pharmacol Sci 2018; 139:46-49. [PMID: 30522964 DOI: 10.1016/j.jphs.2018.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 01/16/2023] Open
Abstract
Visceral hypersensitivity and impaired gut barrier with minor inflammation are considered to play an important role in the pathophysiology of irritable bowel syndrome (IBS). Since pioglitazone is known to have anti-inflammatory property, we hypothesized that pioglitazone is beneficial for treating IBS. In this study, the effect was tested in rat IBS models such as lipopolysaccharide or repeated water avoidance stress-induced visceral allodynia and increased colonic permeability. Pioglitazone blocked these visceral changes, and GW9662, a peroxisome proliferator-activated receptor gamma (PPAR-γ) antagonist fully reversed the effect by pioglitazone. These results suggest that PPAR-γ activation by pioglitazone may be useful for IBS treatment.
Collapse
Affiliation(s)
- Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Rintaro Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Kaoru Takakusaki
- Research Center for Brain Function and Medical Engineering, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Toshikatsu Okumura
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan; Department of General Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|