1
|
Liu K, Zhou X, Li C, Shen C, He G, Chen T, Cao M, Chen X, Zhang B, Chen L. YTHDF2 as a Mediator in BDNF-Induced Proliferation of Porcine Follicular Granulosa Cells. Int J Mol Sci 2024; 25:2343. [PMID: 38397033 PMCID: PMC10889522 DOI: 10.3390/ijms25042343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
In female mammals, the proliferation and apoptosis of granulosa cells (GCs) are critical in determining the fate of follicles and are influenced by various factors, including brain-derived neurotrophic factor (BDNF). Previous research has shown that BDNF primarily regulates GC proliferation through the PI3K/AKT, NF-kB, and CREB tumour pathways; however, the role of other molecular mechanisms in mediating BDNF-induced GC proliferation remains unclear. In this study, we investigated the involvement of the m6A reader YTH domain-containing family member 2 (YTHDF2) in BDNF-stimulated GC proliferation and its underlying mechanism. GCs were cultured in DMEM medium supplemented with varying BDNF concentrations (0, 10, 30, 75, and 150 ng/mL) for 24 h. The viability, number, and cell cycle of GCs were assessed using the CCK-8 assay, cell counting, and flow cytometry, respectively. Further exploration into YTHDF2's role in BDNF-stimulated GC proliferation was conducted using RT-qPCR, Western blotting, and sequencing. Our findings indicate that YTHDF2 mediates the effect of BDNF on GC proliferation. Additionally, this study suggests for the first time that BDNF promotes YTHDF2 expression by increasing the phosphorylation level of the ERK1/2 signalling pathway. This study offers a new perspective and foundation for further elucidating the mechanism by which BDNF regulates GC proliferation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lu Chen
- College of Animal Science, Jilin University, Changchun 130062, China; (K.L.); (X.Z.); (C.L.); (C.S.); (G.H.); (T.C.); (M.C.); (X.C.); (B.Z.)
| |
Collapse
|
2
|
Zhou J, Lin L, Liu L, Wang J, Xia G, Wang C. The transcriptome reveals the molecular regulatory network of primordial follicle depletion in obese mice. Fertil Steril 2023; 120:899-910. [PMID: 37247688 DOI: 10.1016/j.fertnstert.2023.05.165] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
OBJECTIVE To explore the dynamic transcriptional regulatory network of primordial follicle fate in obese mice to elucidate the potential mechanism of primordial follicle depletion. DESIGN Experimental study and transcriptomic analysis. ANIMALS Healthy (n=15) and obese (n=15) female mice. INTERVENTIONS Six-week-old CD-1 mice were divided into healthy and high-fat diet groups and fed continuously for 12 weeks. The diet of healthy mice contained 10% fat. The diet of high-fat mice contained 60% fat. MAIN OUTCOME MEASURES Primordial to primary follicle transition rate, gene expression changes, enriched Kyoto Encyclopedia of Genes and Genomes pathways, and ferroptosis. RESULTS Primordial follicle depletion was increased in the ovaries of obese mice. We found that deposited fat around primordial and primary follicles of obese mice was higher than that for healthy mice. The proliferation of granulosa cells around primary follicles was increased in obese mice. In addition, we uncovered specific gene signatures associated with the primordial to primary follicle transition (PPT) in obese mice using laser capture microdissection RNA sequencing analysis. Gene set enrichment analysis indicated that ferroptosis, cell oxidation, vascular endothelial growth factor, and mammalian target of rapamycin signaling were increased significantly in the primordial follicles of obese mice. Notably, the ferritin, acyl CoA synthetase long-chain family member 4, and solid carrier family 7 member 11 associated proteins of the ferroptosis signaling pathway were significantly increased in the PPT phase of obese mice. CONCLUSION Our work suggests that ferroptosis is a key pathway activated within immature ovarian follicles in the context of obesity and that the process may be involved in the physiological regulation of the PPT as well.
Collapse
Affiliation(s)
- Jiaqi Zhou
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Lin Lin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China
| | - Longping Liu
- School of Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Jianbin Wang
- School of Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Guoliang Xia
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China; Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, People's Republic of China
| | - Chao Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
3
|
The programmed death of fetal oocytes and the correlated surveillance mechanisms. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
4
|
Kim M, Hyun SH. Neurotrophic factors in the porcine ovary: Their effects on follicular growth, oocyte maturation, and developmental competence. Front Vet Sci 2022; 9:931402. [PMID: 36032306 PMCID: PMC9399750 DOI: 10.3389/fvets.2022.931402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022] Open
Abstract
Pigs are cost-effective industrial animals because they produce a large number of offspring and have shorter rebreeding intervals compared with other animals, such as non-human primates. The reproductive physiology of pigs has been studied over the past several decades. However, there is not enough research on the effects of the neurotrophic factors on the ovarian physiology and development in pigs. As the ovary is a highly innervated organ, various neurotrophic factors during ovarian development can promote the growth of nerve fibers and improve the development of ovarian cells. Thus, investigating the role of neurotrophic factors on ovarian development, and the relationship between neurotrophic factors and porcine female reproduction is worth studying. In this review, we focused on the physiological roles of various neurotrophic factors in porcine ovaries and summarized the current status of the studies related to the relationship between neurotrophic factors and porcine ovarian development.
Collapse
Affiliation(s)
- Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, South Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, South Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, South Korea
- *Correspondence: Sang-Hwan Hyun
| |
Collapse
|
5
|
Chen X, Bai X, Liu H, Zhao B, Yan Z, Hou Y, Chu Q. Population Genomic Sequencing Delineates Global Landscape of Copy Number Variations that Drive Domestication and Breed Formation of in Chicken. Front Genet 2022; 13:830393. [PMID: 35391799 PMCID: PMC8980806 DOI: 10.3389/fgene.2022.830393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
Copy number variation (CNV) is an important genetic mechanism that drives evolution and generates new phenotypic variations. To explore the impact of CNV on chicken domestication and breed shaping, the whole-genome CNVs were detected via multiple methods. Using the whole-genome sequencing data from 51 individuals, corresponding to six domestic breeds and wild red jungle fowl (RJF), we determined 19,329 duplications and 98,736 deletions, which covered 11,123 copy number variation regions (CNVRs) and 2,636 protein-coding genes. The principal component analysis (PCA) showed that these individuals could be divided into four populations according to their domestication and selection purpose. Seventy-two highly duplicated CNVRs were detected across all individuals, revealing pivotal roles of nervous system (NRG3, NCAM2), sensory (OR), and follicle development (VTG2) in chicken genome. When contrasting the CNVs of domestic breeds to those of RJFs, 235 CNVRs harboring 255 protein-coding genes, which were predominantly involved in pathways of nervous, immunity, and reproductive system development, were discovered. In breed-specific CNVRs, some valuable genes were identified, including HOXB7 for beard trait in Beijing You chicken; EDN3, SLMO2, TUBB1, and GFPT1 for melanin deposition in Silkie chicken; and SORCS2 for aggressiveness in Luxi Game fowl. Moreover, CSMD1 and NTRK3 with high duplications found exclusively in White Leghorn chicken, and POLR3H, MCM9, DOCK3, and AKR1B1L found in Recessive White Rock chicken may contribute to high egg production and fast-growing traits, respectively. The candidate genes of breed characteristics are valuable resources for further studies on phenotypic variation and the artificial breeding of chickens.
Collapse
Affiliation(s)
- Xia Chen
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xue Bai
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Binbin Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China
| | - Zhixun Yan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yali Hou
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,China National Center for Bioinformation, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
6
|
Tanbakooei S, Haramshahi SMA, Vahabzadeh G, Barati M, Katebi M, Golab F, Shetabi Q, Niknam N, Roudbari L, Rajabi Fomeshi M, Amini Moghadam S. Ovarian Stem Cells Differentiation into Primary Oocytes Using Follicle Stimulating Hormone, Basic Fibroblast Growth Factor, and Neurotrophin 3. J Reprod Infertil 2022; 22:241-250. [PMID: 34987985 PMCID: PMC8669404 DOI: 10.18502/jri.v22i4.7649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background: In vitro obtaining oocytes can be an appropriate alternative for patients with gonadal insufficiency or cancer survivors. The purpose of the current research was isolating stem cells from ovarian cortical tissue as well as evaluating the effectiveness of follicle stimulating hormone (FSH), basic fibroblast growth factor (bFGF), and neurotrophin 3 (NT3) in differentiating to oocyte-like cells. Methods: A human ovary was dissected and cortical tissue pieces were cultured for cell isolation. Isolated cells were divided into 8 groups (3 cases in each group) of control, FSH, NT3, bFGF, FSH+NT3, FSH+bFGF, NT3+bFGF, and FSH+NT3+ bFGF. Pluripotency specific gene (OCT4-A and Nanog), initial germ cells (c-KIT and VASA) and PF growth initiators (GDF-9 and Lhx-8) were evaluated by qRTPCR. Experiments were performed in triplicate and there were 3 samples in each group. The results were analyzed using one-way ANOVA and p-value less than 0.05 was considered statistically significant. Results: Flow cytometry results showed that cells isolated from the ovarian cortex expressed markers of pluripotency. The results showed that the expression of Nanog, OCT4, GDF-9 and VASA was significantly increased in FSH+NT3 group, while treatment with bFGF caused significant expression of c-KIT and Lhx-8 (p<0.05). Also, according to the results, isolated cells treated with NT3 significantly increased c-KIT expression. Conclusion: According to our results, the ovarian cortex cells could be differentiated into primordial follicles if treated with the proper combination of FSH, bFGF, and NT3. These findings provided a new perspective for the future of in vitro gamete proudest.
Collapse
Affiliation(s)
- Sara Tanbakooei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gelareh Vahabzadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Barati
- Department of Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Katebi
- Department of Anatomy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Qazal Shetabi
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Narges Niknam
- Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Leila Roudbari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Motahareh Rajabi Fomeshi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Amini Moghadam
- Department of Gynecology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Dell'Aversana C, Cuomo F, Longobardi S, D'Hooghe T, Caprio F, Franci G, Santonastaso M, Colacurci N, Barone S, Pisaturo V, Valerio D, Altucci L. Age-related miRNome landscape of cumulus oophorus cells during controlled ovarian stimulation protocols in IVF cycles. Hum Reprod 2021; 36:1310-1325. [PMID: 33454781 PMCID: PMC8058597 DOI: 10.1093/humrep/deaa364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/06/2020] [Indexed: 12/26/2022] Open
Abstract
STUDY QUESTION Is the microRNA (miRNA) expression pattern of cumulus oophorus cells (COCs) in women undergoing medically assisted reproduction (MAR) procedures differentially modulated according to patient age and gonadotropin treatment strategy? SUMMARY ANSWER Maternal age is an independent factor impacting miRNA expression in COCs while gonadotropin treatment may affect follicular miRNA expression and IVF efficacy. WHAT IS KNOWN ALREADY Epigenetic mechanisms in female infertility are complex and poorly studied. DNA methylation, histone modifications, miRNAs and nucleosome positioning influence cellular machinery through positive and negative feedback mechanisms either alone or interactively. miRNAs are important regulators during oogenesis, spermatogenesis and early embryogenesis, and are reported to play a role in regulating crosstalk between the oocyte and COCs. Although miRNome analysis has been performed in female human reproductive tissues (endometrium, myometrium, cervix and ovaries), epigenetic modifications in women with infertility have not been explored in detail. In addition, the impact of gonadotropin treatments during MAR on miRNA expression in COCs has not been fully investigated. STUDY DESIGN, SIZE, DURATION This study was carried out in 53 COC samples obtained from mature metaphase II (MII) oocytes in 53 women undergoing MAR treatment. A total of 38 samples for assay development were pooled by maternal age and gonadotropin treatment into four predetermined subgroups: ≥36 years and recombinant human FSH (r-hFSH), n = 10; ≥36 years and r-hFSH+ recombinant human-luteinizing hormone (r-hLH), n = 10; ≤35 years and r-hFSH, n = 9; ≤35 years and r-hFSH+r-hLH, n = 9. miRNome profiles were determined and compared between subgroups. Expression of defined miRNAs was validated in the remaining fifteen samples, representative of each subgroup, by quantitative polymerase chain reaction (PCR). PARTICIPANTS/MATERIALS, SETTING, METHODS COCs were processed for miRNA-enriched total RNA extraction and pooled in homogeneous subgroups to obtain a sufficient amount and quality of starting material to perform the analysis. Each pooled sample underwent miRNA profiling using PCR assay system to examine expression of 752 human miRNAs without pre-amplification. Data were analyzed using the delta-delta Ct method for relative quantitation and prediction of target genes (with at least four algorithms predicting the same miRNA-gene interaction pair (HIT)>4). The miRSystem database provided functional annotation enrichment (raw P-value <0.05) of co-expressed miRNAs. MAIN RESULTS AND THE ROLE OF CHANCE We found distinctive miRNA expression profiles in each subgroup correlating with age and MAR stimulation. In addition, a number of selective and co-expressed miRNAs were revealed by comparative analysis. A cluster of 37 miRNAs were commonly but differentially expressed in all four pools. Significant differences were observed in expression regulation of 37 miRNAs between age groups (≤35 or ≥36) in women receiving r-hFSH+r-hLH compared to those receiving r-hFSH alone. Higher concentrations and increased numbers of miRNAs were recorded in younger than in older patients, regardless of treatment. Functional and expression studies performed to retrieve common miRNome profiles revealed an enrichment of biological functions in oocyte growth and maturation, embryo development, steroidogenesis, ovarian hyperstimulation, apoptosis and cell survival, glucagon and lipid metabolism, and cell trafficking. The highest scored pathways of target genes of the 37 common miRNAs were associated with mitogen-activated protein kinase (MAPK) signaling pathways, G alpha signaling, transcription regulation, tight junctions, RNA polymerase I and III, and mitochondrial transcription. We identified a potential age- and MAR stimulation-dependent signature in the miRNA landscape of COCs. LIMITATIONS, REASONS FOR CAUTION We cannot rule out the possibility that other unknown individual genetic or clinical factors may have interfered with the reported results. Since miRNA profiling was conducted with a predefined array of target probes, other miRNA molecules, potentially modulated by age and hormonal stimulation, may have been missed in this study. WIDER IMPLICATIONS OF THE FINDINGS miRNA expression in COCs is modulated by gonadotropin treatment and correlates strongly with age. A better understanding of the expression patterns and functions of miRNAs may lead to the development of novel therapeutics to treat ovarian dysfunction and improve fertility in older women. STUDY FUNDING/COMPETING INTEREST This study was funded by Merck KGaA, Darmstadt, Germany. All authors declared no competing interest, except SL and TD who are fully employed by Merck KGaA. TRIAL REGISTRATION NUMBER N/A
Collapse
Affiliation(s)
- C Dell'Aversana
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy.,Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore' (IEOS)-National Research Council (CNR), Naples 80131, Italy
| | - F Cuomo
- EPI-C S.r.l., Naples 80138, Italy
| | | | | | - F Caprio
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy
| | - G Franci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy.,Department of Medicine, Surgery and Dentistry "ScuolaMedicaSalernitana", University of Salerno, Baronissi, SA 84081, Italy
| | - M Santonastaso
- Department of Woman, Child and General and Special Surgery, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy
| | - N Colacurci
- Outpatient Fertility Unit, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy.,Department of Woman, Child and General and Special Surgery, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy
| | - S Barone
- Department of Assisted Reproduction, Versilia Hospital, Lido di Camaiore, Lucca 55049, Italy
| | - V Pisaturo
- Department of Reproductive Medicine, International Evangelical Hospital, Genoa 16122, Italy
| | - D Valerio
- Merck Serono S.p.A, Rome 00176, Italy.,Institute of Genetic Research (IRG), Naples 80143, Italy
| | - L Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples 80138, Italy
| |
Collapse
|
8
|
Chang HM, Wu HC, Sun ZG, Lian F, Leung PCK. Neurotrophins and glial cell line-derived neurotrophic factor in the ovary: physiological and pathophysiological implications. Hum Reprod Update 2020; 25:224-242. [PMID: 30608586 PMCID: PMC6390169 DOI: 10.1093/humupd/dmy047] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/22/2018] [Accepted: 12/27/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Neurotrophins [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4)] and glial cell line-derived neurotrophic factor (GDNF) are soluble polypeptide growth factors that are widely recognized for their roles in promoting cell growth, survival and differentiation in several classes of neurons. Outside the nervous system, neurotrophin (NT) and GDNF signaling events have substantial roles in various non-neural tissues, including the ovary. OBJECTIVE AND RATIONALE The molecular mechanisms that promote and regulate follicular development and oocyte maturation have been extensively investigated. However, most information has been obtained from animal models. Even though the fundamental process is highly similar across species, the paracrine regulation of ovarian function in humans remains poorly characterized. Therefore, this review aims to summarize the expression and functional roles of NTs and GDNF in human ovarian biology and disorders, and to describe and propose the development of novel strategies for diagnosing, treating and preventing related abnormalities. SEARCH METHODS Relevant literature in the English language from 1990 to 2018 describing the role of NTs and GDNF in mammalian ovarian biology and phenotypes was comprehensively selected using PubMed, MEDLINE and Google Scholar. OUTCOMES Studies have shown that the neurotrophins NGF, BDNF, NT-3 and NT-4 as well as GDNF and their functional receptors are expressed in the human ovary. Recently, gathered experimental data suggest putative roles for NT and GDNF signaling in the direct control of ovarian function, including follicle assembly, activation of the primordial follicles, follicular growth and development, oocyte maturation, steroidogenesis, ovulation and corpus luteum formation. Additionally, crosstalk occurs between these ovarian regulators and the endocrine signaling system. Dysregulation of the NT system may negatively affect ovarian function, leading to reproductive pathology (decreased ovarian reserve, polycystic ovary syndrome and endometriosis), female infertility and even epithelial ovarian cancers. WIDER IMPLICATIONS A comprehensive understanding of the expression, actions and underlying molecular mechanisms of the NT/GDNF system in the human ovary is essential for novel approaches to therapeutic and diagnostic interventions in ovarian diseases and to develop more safe, effective methods of inducing ovulation in ART in the treatment of female infertility.
Collapse
Affiliation(s)
- Hsun-Ming Chang
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hai-Cui Wu
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zhen-Gao Sun
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Lian
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peter C K Leung
- Integrative Medicine Research Centre of Reproduction and Heredity, the Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Spindola LM, Santoro ML, Pan PM, Ota VK, Xavier G, Carvalho CM, Talarico F, Sleiman P, March M, Pellegrino R, Brietzke E, Grassi-Oliveira R, Mari JJ, Gadelha A, Miguel EC, Rohde LA, Bressan RA, Mazzotti DR, Sato JR, Salum GA, Hakonarson H, Belangero SI. Detecting multiple differentially methylated CpG sites and regions related to dimensional psychopathology in youths. Clin Epigenetics 2019; 11:146. [PMID: 31639064 PMCID: PMC6805541 DOI: 10.1186/s13148-019-0740-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/08/2019] [Indexed: 02/07/2023] Open
Abstract
Background Psychiatric symptomatology during late childhood and early adolescence tends to persist later in life. In the present longitudinal study, we aimed to identify changes in genome-wide DNA methylation patterns that were associated with the emergence of psychopathology in youths from the Brazilian High-Risk Cohort (HRC) for psychiatric disorders. Moreover, for the differentially methylated genes, we verified whether differences in DNA methylation corresponded to differences in mRNA transcript levels by analyzing the gene expression levels in the blood and by correlating the variation of DNA methylation values with the variation of mRNA levels of the same individuals. Finally, we examined whether the variations in DNA methylation and mRNA levels were correlated with psychopathology measurements over time. Methods We selected 24 youths from the HRC who presented with an increase in dimensional psychopathology at a 3-year follow-up as measured by the Child Behavior Checklist (CBCL). The DNA methylation and gene expression data were compared in peripheral blood samples (n = 48) obtained from the 24 youths before and after developing psychopathology. We implemented a methodological framework to reduce the effect of chronological age on DNA methylation using an independent population of 140 youths and the effect of puberty using data from the literature. Results We identified 663 differentially methylated positions (DMPs) and 90 differentially methylated regions (DMRs) associated with the emergence of psychopathology. We observed that 15 DMPs were mapped to genes that were differentially expressed in the blood; among these, we found a correlation between the DNA methylation and mRNA levels of RB1CC1 and a correlation between the CBCL and mRNA levels of KMT2E. Of the DMRs, three genes were differentially expressed: ASCL2, which is involved in neurogenesis; HLA-E, which is mapped to the MHC loci; and RPS6KB1, the gene expression of which was correlated with an increase in the CBCL between the time points. Conclusions We observed that changes in DNA methylation and, consequently, in gene expression in the peripheral blood occurred concurrently with the emergence of dimensional psychopathology in youths. Therefore, epigenomic modulations might be involved in the regulation of an individual’s development of psychopathology.
Collapse
Affiliation(s)
- Leticia M Spindola
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Marcos L Santoro
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Pedro M Pan
- LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Vanessa K Ota
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil
| | - Gabriela Xavier
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil
| | - Carolina M Carvalho
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Fernanda Talarico
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil.,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil
| | - Patrick Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Michael March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | | | - Rodrigo Grassi-Oliveira
- Brain Institute, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jair J Mari
- LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Ary Gadelha
- LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Euripedes C Miguel
- Department of Psychiatry, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
| | - Luis A Rohde
- Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rodrigo A Bressan
- LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil.,Department of Psychiatry, UNIFESP, São Paulo, Brazil
| | - Diego R Mazzotti
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, USA
| | - João R Sato
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil
| | - Giovanni A Salum
- Department of Psychiatry, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Sintia I Belangero
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Leitão da Cunha, Vila Clementino, Sao Paulo, SP, Brazil. .,LiNC - Laboratory of Integrative Neuroscience, UNIFESP, São Paulo, Brazil. .,Department of Psychiatry, UNIFESP, São Paulo, Brazil.
| |
Collapse
|
10
|
Neurotrophins and Trk receptors in the developing and adult ovary of Coturnix coturnix japonica. Ann Anat 2018; 219:35-43. [PMID: 29842992 DOI: 10.1016/j.aanat.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 02/20/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
Abstract
NGF, BDNF, NT-3 and their specific receptors TrkA, TrkB and TrkC are known to be involved in the development and maintenance of vertebrates' nervous system. However, these molecules play a role also in non-neuronal tissue, such as in the reproductive system. In this study we investigated the presence and localization of neurotrophins and Trk receptors to unravel their potential role in the developing and adult ovary of Japanese quail, a model species well suited for reproduction studies. Western blotting analysis on ovaries of three month old quails in the period of egg laying showed the presence of pro and mature forms of neurotrophins and splice variants of Trk receptors. Immunohistochemical investigation reported that in embryonic ovaries from the 9th day of incubation to the hatching NGF and NT-3 were observed in the cortical and medullar areas respectively, whereas Trk receptors were observed in both areas. In adult ovary, all NTs were detected in glandular stromal cells, NGF and NT-3 also in the nervous component. Regarding follicle components, NGF and BDNF were observed in oocytes and follicular cells. All TrK receptors were present in nervous components and only TrkA in glandular stromal cells. In follicles, TrkA was present in oocyte cytoplasm and TrkB in theca cells. The results suggest an involvement of the neurotrophin system in the quail ovary physiology, promoting the oocyte development and follicular organization in the embryo, as well as oocyte and follicular maturation in adults.
Collapse
|
11
|
The pericyte secretome: Potential impact on regeneration. Biochimie 2018; 155:16-25. [PMID: 29698670 DOI: 10.1016/j.biochi.2018.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/20/2018] [Indexed: 12/11/2022]
Abstract
Personalized and regenerative medicine is an emerging therapeutic strategy that is based on cell biology and biomedical engineering used to develop biological substitutes to maintain normal function or restore damaged tissues and organs. The secretory capacities of different cell types are now explored as such possible therapeutic regenerative agents in a variety of diseases. A secretome can comprise chemokines, cytokines, growth factors, but also extracellular matrix components, microvesicles and exosomes as well as genetic material and may differ depending on the tissue and the stimulus applied to the cell. With regard to clinical applications, the secretome of mesenchymal stem cells (MSC) is currently the most widely explored. However, other cell types such as pericytes may have similar properties as MSC and the potential therapeutic possibilities of these cells are only just beginning to emerge. In this review, we will summarize the currently available data describing the secretome of pericytes and its potential implications for tissue regeneration, whereby we especially focus on brain pericytes as potential new target cell for neuroregeneration and brain repair.
Collapse
|
12
|
Kallen A, Polotsky AJ, Johnson J. Untapped Reserves: Controlling Primordial Follicle Growth Activation. Trends Mol Med 2018; 24:319-331. [PMID: 29452791 DOI: 10.1016/j.molmed.2018.01.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 12/18/2022]
Abstract
Even with the benefit of assisted reproductive technologies (ART), many women are unable to conceive and deliver healthy offspring. One common cause of infertility is the inability to produce eggs capable of contributing to live birth. This can occur despite standard-of-care treatment to maximize the recovery of eggs from growing ovarian follicles. Dormant primordial follicles in the human ovary are a 'reserve ' that can be exploited clinically to overcome this problem. We discuss how controlling primordial follicle growth activation (PFGA) can produce increased numbers of high-quality eggs available for fertility treatment(s). We consider the state of the art in interventions used to control PFGA, and consider genetic and epigenetic strategies on the horizon that might improve compromised oocyte quality to increase live births.
Collapse
Affiliation(s)
- Amanda Kallen
- Yale University School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Reproductive Endocrinology, New Haven, CT, USA
| | - Alex J Polotsky
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Divisions of Reproductive Endocrinology and Infertility and Reproductive Sciences, Aurora, CO 80045, USA
| | - Joshua Johnson
- University of Colorado Anschutz Medical Campus, Department of Obstetrics and Gynecology, Divisions of Reproductive Endocrinology and Infertility and Reproductive Sciences, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Wang C, Zhou B, Xia G. Mechanisms controlling germline cyst breakdown and primordial follicle formation. Cell Mol Life Sci 2017; 74:2547-2566. [PMID: 28197668 PMCID: PMC11107689 DOI: 10.1007/s00018-017-2480-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 12/11/2022]
Abstract
In fetal females, oogonia proliferate immediately after sex determination. The progress of mitosis in oogonia proceeds so rapidly that the incompletely divided cytoplasm of the sister cells forms cysts. The oogonia will then initiate meiosis and arrest at the diplotene stage of meiosis I, becoming oocytes. Within each germline cyst, oocytes with Balbiani bodies will survive after cyst breakdown (CBD). After CBD, each oocyte is enclosed by pre-granulosa cells to form a primordial follicle (PF). Notably, the PF pool formed perinatally will be the sole lifelong oocyte source of a female. Thus, elucidating the mechanisms of CBD and PF formation is not only meaningful for solving mysteries related to ovarian development but also contributes to the preservation of reproduction. However, the mechanisms that regulate these phenomena are largely unknown. This review summarizes the progress of cellular and molecular research on these processes in mice and humans.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Bo Zhou
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Guoliang Xia
- State Key Laboratory for Agro-Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Pankhurst MW. A putative role for anti-Müllerian hormone (AMH) in optimising ovarian reserve expenditure. J Endocrinol 2017; 233:R1-R13. [PMID: 28130407 DOI: 10.1530/joe-16-0522] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/24/2017] [Indexed: 12/31/2022]
Abstract
The mammalian ovary has a finite supply of oocytes, which are contained within primordial follicles where they are arrested in a dormant state. The number of primordial follicles in the ovary at puberty is highly variable between females of the same species. Females that enter puberty with a small ovarian reserve are at risk of a shorter reproductive lifespan, as their ovarian reserve is expected to be depleted faster. One of the roles of anti-Müllerian hormone (AMH) is to inhibit primordial follicle activation, which slows the rate at which the ovarian reserve is depleted. A simple interpretation is that the function of AMH is to conserve ovarian reserve. However, the females with the lowest ovarian reserve and the greatest risk of early reserve depletion have the lowest levels of AMH. In contrast, AMH apparently strongly inhibits primordial follicle activation in females with ample ovarian reserve, for reasons that remain unexplained. The rate of primordial follicle activation determines the size of the developing follicle pool, which in turn, determines how many oocytes are available to be selected for ovulation. This review discusses the evidence that AMH regulates the size of the developing follicle pool by altering the rate of primordial follicle activation in a context-dependent manner. The expression patterns of AMH across life are also consistent with changing requirements for primordial follicle activation in the ageing ovary. A potential role of AMH in the fertility of ageing females is proposed herein.
Collapse
Affiliation(s)
- Michael W Pankhurst
- Department of AnatomySchool of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Abstract
The ovary, the female gonad, serves as the source for the germ cells as well as the major supplier of steroid sex hormones. During embryonic development, the primordial germ cells (PGCs) are specified, migrate to the site of the future gonad, and proliferate, forming structures of germ cells nests, which will eventually break down to generate the primordial follicles (PMFs). Each PMF contains an oocyte arrested at the first prophase of meiosis, surrounded by a flattened layer of somatic pre-granulosa cells. Most of the PMFs are kept dormant and only a selected population is activated to join the growing pool of follicles in a process regulated by both intra- and extra-oocyte factors. The PMFs will further develop into secondary pre-antral follicles, a stage which depends on bidirectional communication between the oocyte and the surrounding somatic cells. Many of the signaling molecules involved in this dialog belong to the transforming growth factor β (TGF-β) superfamily. As the follicle continues to develop, a cavity called antrum is formed. The resulting antral follicles relay on the pituitary gonadotropins, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) for their development. Most of the follicles undergo atretic degeneration and only a subset of the antral follicles, known as the dominant follicles, will reach the preovulatory stage at each reproductive cycle, respond to LH, and subsequently ovulate, releasing a fertilizable oocyte. The remaining somatic cells in the raptured follicle will undergo terminal differentiation and form the corpus luteum, which secretes progesterone necessary to maintain pregnancy.
Collapse
|
16
|
Affiliation(s)
- Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA
| |
Collapse
|
17
|
Xiao N, Le QT. Neurotrophic Factors and Their Potential Applications in Tissue Regeneration. Arch Immunol Ther Exp (Warsz) 2015; 64:89-99. [PMID: 26611762 DOI: 10.1007/s00005-015-0376-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022]
Abstract
Neurotrophic factors are growth factors that can nourish neurons and promote neuron survival and regeneration. They have been studied as potential drug candidates for treating neurodegenerative diseases. Since their identification, there are more and more evidences to indicate that neurotrophic factors are also expressed in non-neuronal tissues and regulate the survival, anti-inflammation, proliferation and differentiation in these tissues. This mini review summarizes the characteristics of the neurotrophic factors and their potential clinical applications in the regeneration of neuronal and non-neuronal tissues.
Collapse
Affiliation(s)
- Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA.
| | - Quynh-Thu Le
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
Streiter S, Fisch B, Sabbah B, Ao A, Abir R. The importance of neuronal growth factors in the ovary. Mol Hum Reprod 2015; 22:3-17. [DOI: 10.1093/molehr/gav057] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 10/14/2015] [Indexed: 12/29/2022] Open
|
19
|
Pelosi E, Forabosco A, Schlessinger D. Genetics of the ovarian reserve. Front Genet 2015; 6:308. [PMID: 26528328 PMCID: PMC4606124 DOI: 10.3389/fgene.2015.00308] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/24/2015] [Indexed: 11/13/2022] Open
Abstract
Primordial follicles or non-growing follicles (NGFs) are the functional unit of reproduction, each comprising a single germ cell surrounded by supporting somatic cells. NGFs constitute the ovarian reserve (OR), prerequisite for germ cell ovulation and the continuation of the species. The dynamics of the reserve is determined by the number of NGFs formed and their complex subsequent fates. During the reproductive lifespan, the OR progressively diminishes due to follicle atresia as well as recruitment, maturation, and ovulation. The depletion of the OR is the major determining driver of menopause, which ensues when the number of primordial follicles falls below a threshold of ∼1,000. Therefore, genes and processes involved in follicle dynamics are particularly important to understand the process of menopause, both in the typical reproductive lifespan and in conditions like primary ovarian insufficiency, defined as menopause before age 40. Genes and their variants that affect the timing of menopause thereby provide candidates for diagnosis of and intervention in problems of reproductive lifespan. We review the current knowledge of processes and genes involved in the development of the OR and in the dynamics of ovarian follicles.
Collapse
Affiliation(s)
- Emanuele Pelosi
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | | | - David Schlessinger
- Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
20
|
Feeney A, Nilsson E, Skinner MK. Cytokine (IL16) and tyrphostin actions on ovarian primordial follicle development. Reproduction 2014; 148:321-31. [PMID: 24970835 DOI: 10.1530/rep-14-0246] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An ovarian follicle is composed of an oocyte and surrounding theca and granulosa cells. Oocytes are stored in an arrested state within primordial follicles until they are signaled to re-initiate development by undergoing primordial-to-primary follicle transition. Previous gene bionetwork analyses of primordial follicle development identified a number of critical cytokine signaling pathways and genes potentially involved in the process. In the current study, candidate regulatory genes and pathways from the gene network analyses were tested for their effects on the formation of primordial follicles (follicle assembly) and on primordial follicle transition using whole ovary organ culture experiments. Observations indicate that the tyrphostin inhibitor (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one increased follicle assembly significantly, supporting a role for the MAPK signaling pathway in follicle assembly. The cytokine interleukin 16 (IL16) promotes primordial-to-primary follicle transition as compared with the controls, where as Delta-like ligand 4 (DLL4) and WNT-3A treatments have no effect. Immunohistochemical experiments demonstrated the localization of both the cytokine IL16 and its receptor CD4 in the granulosa cells surrounding each oocyte within the ovarian follicle. The tyrphostin LDN193189 (LDN) is an inhibitor of the bone morphogenic protein receptor 1 within the TGFB signaling pathway and was found to promote the primordial-to-primary follicle transition. Observations support the importance of cytokines (i.e., IL16) and cytokine signaling pathways in the regulation of early follicle development. Insights into regulatory factors affecting early primordial follicle development are provided that may associate with ovarian disease and translate to improved therapy in the future.
Collapse
Affiliation(s)
- Amanda Feeney
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| | - Eric Nilsson
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| | - Michael K Skinner
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| |
Collapse
|
21
|
Nilsson EE, Larsen G, Skinner MK. Roles of Gremlin 1 and Gremlin 2 in regulating ovarian primordial to primary follicle transition. Reproduction 2014; 147:865-74. [PMID: 24614542 DOI: 10.1530/rep-14-0005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A network of extracellular signaling factors has previously been shown to act in concert to control the ovarian primordial to primary follicle transition. The current study was designed to investigate the roles of the endogenous bone morphogenetic protein (BMP) inhibitors Gremlin 1 (GREM1) and GREM2 in primordial follicle transition in the rat ovary. GREM1 and GREM2 treatments were found to reverse the effects of anti-Müllerian hormone (AMH) to inhibit follicle transition in a whole-ovary culture system. GREM1 reversed the effect of BMP4 to stimulate primordial follicle transition. Immunohistochemical studies showed that GREM2, but not GREM1, was present in primordial follicles suggesting that GREM2 may regulate primordial follicle transition in vivo. Co-immunoprecipitation studies indicated that GREM2 directly binds to AMH, as well as to BMP4. Transcriptome analyses of ovaries treated with GREM2 or GREM1 yielded negligible numbers of differentially expressed genes, suggesting that the immediate effects of GREM2 or GREM1 appear to be at the level of protein-protein interactions, rather than direct actions on the cells. A number of other ovarian growth factors were found to influence the expression of Grem2. Observations suggest that Grem2 is a part of the signaling network of growth factors that regulate the primordial to primary follicle transition. Insights into the regulatory networks affecting the pool of primordial follicles are important to understand the molecular basis for reproductive diseases such as primary ovarian insufficiency.
Collapse
Affiliation(s)
- Eric E Nilsson
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| | - Ginger Larsen
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| | - Michael K Skinner
- School of Biological SciencesCenter for Reproductive Biology, Washington State University, Pullman, Washington 99164-4236, USA
| |
Collapse
|
22
|
Vanorny DA, Prasasya RD, Chalpe AJ, Kilen SM, Mayo KE. Notch signaling regulates ovarian follicle formation and coordinates follicular growth. Mol Endocrinol 2014; 28:499-511. [PMID: 24552588 DOI: 10.1210/me.2013-1288] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ovarian follicles form through a process in which somatic pregranulosa cells encapsulate individual germ cells from germ cell syncytia. Complementary expression of the Notch ligand, Jagged1, in germ cells and the Notch receptor, Notch2, in pregranulosa cells suggests a role for Notch signaling in mediating cellular interactions during follicle assembly. Using a Notch reporter mouse, we demonstrate that Notch signaling is active within somatic cells of the embryonic ovary, and these cells undergo dramatic reorganization during follicle histogenesis. This coincides with a significant increase in the expression of the ligands, Jagged1 and Jagged2; the receptor, Notch2; and the target genes, Hes1 and Hey2. Histological examination of ovaries from mice with conditional deletion of Jagged1 within germ cells (J1 knockout [J1KO]) or Notch2 within granulosa cells (N2 knockout [N2KO]) reveals changes in follicle dynamics, including perturbations in the primordial follicle pool and antral follicle development. J1KO and N2KO ovaries also contain multi-oocytic follicles, which represent a failure to resolve germ cell syncytia, and follicles with enlarged oocytes but lacking somatic cell growth, signifying a potential role of Notch signaling in follicle activation and the coordination of follicle development. We also observed decreased cell proliferation and increased apoptosis in the somatic cells of both conditional knockout lines. As a consequence of these defects, J1KO female mice are subfertile; however, N2KO female mice remain fertile. This study demonstrates important functions for Jagged1 and Notch2 in the resolution of germ cell syncytia and the coordination of somatic and germ cell growth within follicles of the mouse ovary.
Collapse
Affiliation(s)
- Dallas A Vanorny
- Department of Molecular Biosciences and Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | | | | | | | | |
Collapse
|
23
|
Linher-Melville K, Li J. The roles of glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor and nerve growth factor during the final stage of folliculogenesis: a focus on oocyte maturation. Reproduction 2013; 145:R43-54. [PMID: 23166367 DOI: 10.1530/rep-12-0219] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurotrophic factors were first identified to promote the growth, survival or differentiation of neurons and have also been associated with the early stages of ovarian folliculogenesis. More recently, their effects on the final stage of follicular development, including oocyte maturation and early embryonic development, have been reported. Glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are expressed in numerous peripheral tissues outside of the CNS, most notably the ovary, are now known to stimulate oocyte maturation in various species, also enhancing developmental competence. The mechanisms that underlie their actions in antral follicles, as well as the targets ultimately controlled by these factors, are beginning to emerge. GDNF, BDNF and NGF, alone or in combination, could be added to the media currently utilized for in vitro oocyte maturation, thereby potentially increasing the production and/or quality of early embryos.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8S4L8 Canada
| | | |
Collapse
|
24
|
Abstract
During oogenesis in mammals, the germ line interacts with ovarian somatic cells as follicles assemble, grow, ovulate, and die. As a result, these interactions with granulosa cells determine germ cell fate as the oocyte undergoes hypertrophy, the final stages of meiosis, and preparations required for successful fertilization. Over the past 15 years, investigators using a range of experimental approaches have uncovered the existence of multiple modalities for signaling between the oocyte and companion granulosa cells that play essential and sometimes overlapping roles during the growth and maturative phases of oogenesis. Five modalities of intercellular signaling are considered in the context of regulating oocyte gene expression, metabolism, spatial patterning, and the cell cycle. While some forms of signaling predominate at specific stages of oogenesis, such as during the assembly of primordial follicles, it is apparent that combinations of modalities work in concert to control events associated with ovulation when both nuclear and cytoplasmic maturation occur. A final key feature of the signaling platform underscoring the protracted process of oogenesis is the existence of negative and positive feedback loops designed to coordinate the tempo of oogenesis and folliculogenesis at key developmental transitions.
Collapse
Affiliation(s)
- Lynda K McGinnis
- Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, Missouri, USA
| | | | | |
Collapse
|
25
|
Abstract
Summary Nerve growth factor (NGF) is a prototype member of the neurotrophins family and has important functions in the maintenance of viability and proliferation of neuronal and non-neuronal cells, such as certain ovarian cells. The present review highlights the role of NGF and its receptors on ovarian follicle development. NGF initiates its multiple actions through binding to two classes of receptors: the high affinity receptor tyrosine kinase A (TrkA) and the low-affinity receptor p75. Different intracytoplasmic signalling pathways may be activated through binding to NGF due to variation in the receptors. The TrkA receptor activates predominantly phosphatidylinositol-3-kinase (PI3K) and mitogenic activated protein kinase (MAPK) to promote cell survival and proliferation. The activation of the phospholipase type Cγ (PLCγ) pathway, which results in the production of diacylglycerol (DAG) and inositol triphosphate (IP3), culminates in the release of calcium from the intracytoplasmic cellular stocks. However, the details of activation through p75 receptor are less well known. Expression of NGF and its receptors is localized in ovarian cells (oocyte, granulosa, theca and interstitial cells) from several species, which suggests that NGF and its receptors may regulate some ovarian functions such as follicular survival or development. Thus, the use of NGF in culture medium for ovarian follicles may be of critical importance for researchers who want to promote follicular development in vitro in the future.
Collapse
|
26
|
Oron G, Ao A, Friedman O, Fisch B, Zhang XY, Ben-Haroush A, Peled Y, Abir R. Expression of neurotrophin 3 and its tropomyosin-related kinase receptor C in human preantral follicles. Fertil Steril 2011; 95:2056-62. [DOI: 10.1016/j.fertnstert.2011.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 02/06/2011] [Accepted: 02/07/2011] [Indexed: 01/19/2023]
|
27
|
Gougeon A. Human ovarian follicular development: from activation of resting follicles to preovulatory maturation. ANNALES D'ENDOCRINOLOGIE 2010; 71:132-43. [PMID: 20362973 DOI: 10.1016/j.ando.2010.02.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 02/12/2010] [Accepted: 02/15/2010] [Indexed: 11/25/2022]
Abstract
By integrating morphometrical and endocrinological data, as well as biological effects of various molecules synthesized by the human follicle, we propose a dynamic view of the follicle growth within the human ovary. Folliculogenesis starts with entry of resting follicles into the growth phase, a process where the kit system plays a key role. Several months are required for a new growing follicle to reach the preantral stage (0.15mm), then 70 additional days to reach the size of 2mm. Early growing follicle growth is regulated by subtle interactions between follicle-stimulating hormone (FSH) and local factors produced by theca and granulosa cells (GCs), as well as the oocyte. From the time they enter the selectable stage during the late luteal phase, follicles become sensitive to cyclic changes of FSH in terms of granulosa cell proliferation. During the early follicular phase, the early selected follicle grows very quickly and estradiol is present in the follicular fluid. However, the total steroid production remains moderate. From the mid-follicular phase, the preovulatory follicle synthesizes high quantities of estradiol, then after the mid-cycle gonadotropin surge, very large amounts of progesterone. At this stage of development, the responsiveness of the follicle to gonadotropins is maximum, especially to luteinizing hormone (LH) that triggers granulosa wall dissociation and cumulus expansion as well as oocyte nuclear maturation. Thus, as the follicle develops, its responsiveness to gonadotropins progressively increases under the control of local factors acting in an autocrine/paracrine fashion.
Collapse
Affiliation(s)
- A Gougeon
- Inserm U865, Anipath, faculté de médecine Laënnec, 7, rue Guillaume-Paradin, 69372 Lyon cedex 08, France.
| |
Collapse
|
28
|
Abstract
In the human ovary, early in pre-natal life, oocytes are surrounded by pre-granulosa follicular cells to form primordial follicles. These primordial oocytes remain dormant, often for decades, until recruited into the growing pool throughout a woman's adult reproductive years. Activation of follicle growth and subsequent development of growing oocytes in pre-antral follicles are major biological checkpoints that determine an individual females reproductive potential. In the past decade, great strides have been made in the elucidation of the molecular and cellular mechanisms underpinning maintenance of the quiescent primordial follicle pool and initiation and development of follicle growth. Gaining an in-depth knowledge of the intracellular signalling systems that control oocyte preservation and follicle activation has significant implications for improving female reproductive productivity and alleviating infertility. It also has application in domestic animal husbandry, feral animal population control and contraception in women.
Collapse
Affiliation(s)
- Eileen A McLaughlin
- Reproductive Science Group, School of Environmental & Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | | |
Collapse
|