1
|
Zhao ZY, Siow Y, Liu LY, Li X, Wang HL, Lei ZM. The SPARC-related modular calcium binding 1 ( Smoc1 ) regulated by androgen is required for mouse gubernaculum development and testicular descent. Asian J Androl 2025; 27:44-51. [PMID: 39119686 DOI: 10.4103/aja202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/22/2024] [Indexed: 08/10/2024] Open
Abstract
ABSTRACT Testicular descent occurs in two consecutive stages: the transabdominal stage and the inguinoscrotal stage. Androgens play a crucial role in the second stage by influencing the development of the gubernaculum, a structure that pulls the testis into the scrotum. However, the mechanisms of androgen actions underlying many of the processes associated with gubernaculum development have not been fully elucidated. To identify the androgen-regulated genes, we conducted large-scale gene expression analyses on the gubernaculum harvested from luteinizing hormone/choriogonadotropin receptor knockout ( Lhcgr KO) mice, an animal model of inguinoscrotal testis maldescent resulting from androgen deficiency. We found that the expression of secreted protein acidic and rich in cysteine (SPARC)-related modular calcium binding 1 ( Smoc1 ) was the most severely suppressed at both the transcript and protein levels, while its expression was the most dramatically induced by testosterone administration in the gubernacula of Lhcgr KO mice. The upregulation of Smoc1 expression by testosterone was curtailed by the addition of an androgen receptor antagonist, flutamide. In addition, in vitro studies demonstrated that SMOC1 modestly but significantly promoted the proliferation of gubernacular cells. In the cultures of myogenic differentiation medium, both testosterone and SMOC1 enhanced the expression of myogenic regulatory factors such as paired box 7 ( Pax7 ) and myogenic factor 5 ( Myf5 ). After short-interfering RNA-mediated knocking down of Smoc1 , the expression of Pax7 and Myf5 diminished, and testosterone alone did not recover, but additional SMOC1 did. These observations indicate that SMOC1 is pivotal in mediating androgen action to regulate gubernaculum development during inguinoscrotal testicular descent.
Collapse
Affiliation(s)
- Zhi-Yi Zhao
- Department of Andrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yong Siow
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Ling-Yun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Xian Li
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Hong-Liang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Zhen-Min Lei
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
2
|
Zhang SS, Larrabee L, Chang AH, Desai S, Sloan L, Wang X, Wu Y, Parvez N, Amaratunga K, Hartman AC, Whitnall A, Mason J, Barton NP, Chu AY, Davitte JM, Csakai AJ, Tibbetts CV, Tolbert AE, O'Keefe H, Polanco J, Foley J, Kmett C, Kehler J, Kozejova G, Wang F, Mayer AP, Koenig P, Foletti D, Pitts SJ, Schnackenberg CG. Discovery of RXFP2 genetic association in resistant hypertensive men and RXFP2 antagonists for the treatment of resistant hypertension. Sci Rep 2024; 14:13209. [PMID: 38851835 PMCID: PMC11162469 DOI: 10.1038/s41598-024-62804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
Hypertension remains a leading cause of cardiovascular and kidney diseases. Failure to control blood pressure with ≥ 3 medications or control requiring ≥ 4 medications is classified as resistant hypertension (rHTN) and new therapies are needed to reduce the resulting increased risk of morbidity and mortality. Here, we report genetic evidence that relaxin family peptide receptor 2 (RXFP2) is associated with rHTN in men, but not in women. This study shows that adrenal gland gene expression of RXFP2 is increased in men with hypertension and the RXFP2 natural ligand, INSL3, increases adrenal steroidogenesis and corticosteroid secretion in human adrenal cells. To address the hypothesis that RXFP2 activation is an important mechanism in rHTN, we discovered and characterized small molecule and monoclonal antibody (mAb) blockers of RXFP2. The novel chemical entities and mAbs show potent, selective inhibition of RXFP2 and reduce aldosterone and cortisol synthesis and release. The RXFP2 mAbs have suitable rat pharmacokinetic profiles to evaluate the role of RXFP2 in the development and maintenance of rHTN. Overall, we identified RXFP2 activity as a potential new mechanism in rHTN and discovered RXFP2 antagonists for the future interrogation of RXFP2 in cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Lance Larrabee
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Andrew H Chang
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Sapna Desai
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Lisa Sloan
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Xin Wang
- Research, 23andMe, 223 N Mathilda Ave., Sunnyvale, CA, 94086, USA
| | - Yixuan Wu
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Nazia Parvez
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Karen Amaratunga
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Allison C Hartman
- Medicinal Science and Technology, GSK, 1250 S. Collegeville Rd., Collegeville, PA, 19426, USA
| | - Abby Whitnall
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Joseph Mason
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Nicholas P Barton
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Audrey Y Chu
- Genomic Sciences, GSK, 300 Technology Square, Cambridge, MA, 02139, USA
| | | | - Adam J Csakai
- Medicinal Science and Technology, GSK, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | | | - Audrey E Tolbert
- Medicinal Science and Technology, GSK, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Heather O'Keefe
- Medicinal Science and Technology, GSK, 200 Cambridgepark Drive, Cambridge, MA, 02140, USA
| | - Jessie Polanco
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Joseph Foley
- Novel Human Genetics Research Unit, GSK, 1250 S. Collegeville Rd., Collegeville, PA, 19426, USA
| | - Casey Kmett
- DMPK, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Jonathan Kehler
- Bioanalysis, Immunogenicity and Biomarkers, GSK, 1250 S. Collegeville Rd., Collegeville, PA, 19426, USA
| | - Gabriela Kozejova
- Medicinal Science and Technology, GSK, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Feng Wang
- DMPK, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Andrew P Mayer
- Bioanalysis, Immunogenicity and Biomarkers, GSK, 1250 S. Collegeville Rd., Collegeville, PA, 19426, USA
| | - Patrick Koenig
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Davide Foletti
- Therapeutics Division, 23andMe, 349 Oyster Point Blvd, South San Francisco, CA, 94080, USA
| | - Steven J Pitts
- Research, 23andMe, 223 N Mathilda Ave., Sunnyvale, CA, 94086, USA
| | | |
Collapse
|
3
|
Fonseca PAS, Suárez-Vega A, Arranz JJ, Gutiérrez-Gil B. Integration of selective sweeps across the sheep genome: understanding the relationship between production and adaptation traits. Genet Sel Evol 2024; 56:40. [PMID: 38773423 PMCID: PMC11106937 DOI: 10.1186/s12711-024-00910-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Livestock populations are under constant selective pressure for higher productivity levels for different selective purposes. This pressure results in the selection of animals with unique adaptive and production traits. The study of genomic regions associated with these unique characteristics has the potential to improve biological knowledge regarding the adaptive process and how it is connected to production levels and resilience, which is the ability of an animal to adapt to stress or an imbalance in homeostasis. Sheep is a species that has been subjected to several natural and artificial selective pressures during its history, resulting in a highly specialized species for production and adaptation to challenging environments. Here, the data from multiple studies that aim at mapping selective sweeps across the sheep genome associated with production and adaptation traits were integrated to identify confirmed selective sweeps (CSS). RESULTS In total, 37 studies were used to identify 518 CSS across the sheep genome, which were classified as production (147 prodCSS) and adaptation (219 adapCSS) CSS based on the frequency of each type of associated study. The genes within the CSS were associated with relevant biological processes for adaptation and production. For example, for adapCSS, the associated genes were related to the control of seasonality, circadian rhythm, and thermoregulation. On the other hand, genes associated with prodCSS were related to the control of feeding behaviour, reproduction, and cellular differentiation. In addition, genes harbouring both prodCSS and adapCSS showed an interesting association with lipid metabolism, suggesting a potential role of this process in the regulation of pleiotropic effects between these classes of traits. CONCLUSIONS The findings of this study contribute to a deeper understanding of the genetic link between productivity and adaptability in sheep breeds. This information may provide insights into the genetic mechanisms that underlie undesirable genetic correlations between these two groups of traits and pave the way for a better understanding of resilience as a positive ability to respond to environmental stressors, where the negative effects on production level are minimized.
Collapse
Affiliation(s)
- Pablo A S Fonseca
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Aroa Suárez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Juan J Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain
| | - Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana S/N, 24071, León, Spain.
| |
Collapse
|
4
|
Tanyel FC. Obliteration of the Processus Vaginalis After Testicular Descent. Balkan Med J 2024; 41:89-96. [PMID: 38270075 PMCID: PMC10913120 DOI: 10.4274/balkanmedj.galenos.2024.2023-12-111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
The testis develops in the abdominal cavity and descends into the scrotum. Although numerous theories have been proposed, the mechanism of descent and the reason for its inhibition remain unknown. Furthermore, none of the explanations account for the other occurrences related to the descent, such as failed obliteration of the processus vaginalis, or the reasons for the decrease in fertility and increase in the risk of malignancy associated with an undescended testis. The gubernaculum is a primitive mesenchymal tissue that was first described in 1786. However, the role of the gubernaculum in the descent process remains obscure. The testis descends through the processus vaginalis. Although the processus vaginalis (PV) is usually defined as a simple peritoneal protrusion, it actively develops into the gubernaculum. The gubernaculum gives rise to the smooth muscles that surround the processus vaginalis. The striated cremaster muscle (CM) is also derived from the gubernaculum. Because the testis descends through the processus vaginalis, the muscles develop to propel the testis. After propelling the testis, the smooth muscle (SM) undergoes programmed cell death. The initiation of programmed cell death through the intrinsic pathway requires activation of phospholipase C. A transient shift in the autonomic balance via a decrease in the sympathetic tonus and an increase in the parasympathetic tonus is essential for initiating this programmed cell death. Programmed cell death in the SM is the physiological pathway for the obliteration of the processus vaginalis. Differences in the timing, intensity, or duration of this physiological pathway result in pathological conditions. A shift before testicular descent diminishes the SM content that is required to propel the testis, and thus inhibits descent. The early shift persists throughout childhood and results in the decrease in fertility and increase in the risk of malignancy because of the differences in signal transduction. Despite a successful descent, persistence of the shift alters the contractility of the CM by increasing the cytosolic calcium levels. Contracted CMs retracts or even ascends the testis. Inadequate intensity or duration of the shift of autonomic tonus causes failure of the programmed cell death. Persistence of the SM hinders the obliteration of PV and gives rise to hydroceles or inguinal hernias depending on the amount of residual smooth muscles. Similar findings from different countries support these explanations. Thus, our proposed mechanism satisfactorily explains the process of descent while considering all the factors related to the process of testicular descent.
Collapse
|
5
|
Орешкина ЕМ, Болотова НВ, Пылаев ТЕ, Аверьянов АП, Райгородская НЮ. [Hormonal and genetic causes of cryptorchidism]. PROBLEMY ENDOKRINOLOGII 2023; 69:99-106. [PMID: 37968957 PMCID: PMC10680546 DOI: 10.14341/probl13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 04/28/2023] [Indexed: 11/17/2023]
Abstract
Cryptorchidism is the most frequent congenital disorders of the reproductive system, is present in 2-3% of term newborn boys. Genes involved in embryonic testicular migration are known but their role in cryptorchidism development are not investigated enough. Genetical causes of cryptorchidism are identified in 5-7% of patients. The article contains data on the role of insulin-like peptide 3 and its receptor, anti-Müllerian hormone, gonadotropins, androgens in embryonic testicular migration. INSL3 and AMH are presented as markers of testicular dysfunction associated with cryptorchidism. Hypogonadotropic hypogonadism is also associated with cryptorchidism and can be diagnosed based on it. Results of modern investigations determine the necessary of hormonal and genetical examination of patients with isolated cryptorchidism to detect causes of cryptorchidism and manage of patients.
Collapse
Affiliation(s)
- Е. М. Орешкина
- Саратовский государственный медицинский университет им. В.И. Разумовского
| | - Н. В. Болотова
- Саратовский государственный медицинский университет им. В.И. Разумовского
| | - Т. Е. Пылаев
- Саратовский государственный медицинский университет им. В.И. Разумовского
| | - А. П. Аверьянов
- Саратовский государственный медицинский университет им. В.И. Разумовского
| | - Н. Ю. Райгородская
- Саратовский государственный медицинский университет им. В.И. Разумовского
| |
Collapse
|
6
|
Ben-Jemaa S, Adam G, Boussaha M, Bardou P, Klopp C, Mandonnet N, Naves M. Whole genome sequencing reveals signals of adaptive admixture in Creole cattle. Sci Rep 2023; 13:12155. [PMID: 37500674 PMCID: PMC10374910 DOI: 10.1038/s41598-023-38774-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
The Creole cattle from Guadeloupe (GUA) are well adapted to the tropical environment. Its admixed genome likely played an important role in such adaptation. Here, we sought to detect genomic signatures of selection in the GUA genome. For this purpose, we sequenced 23 GUA individuals and combined our data with sequenced genomes of 99 animals representative of European, African and indicine groups. We detect 17,228,983 single nucleotide polymorphisms (SNPs) in the GUA genome, providing the most detailed exploration, to date, of patterns of genetic variation in this breed. We confirm the higher level of African and indicine ancestries, compared to the European ancestry and we highlight the African origin of indicine ancestry in the GUA genome. We identify five strong candidate regions showing an excess of indicine ancestry and consistently supported across the different detection methods. These regions encompass genes with adaptive roles in relation to immunity, thermotolerance and physical activity. We confirmed a previously identified horn-related gene, RXFP2, as a gene under strong selective pressure in the GUA population likely owing to human-driven (socio-cultural) pressure. Findings from this study provide insight into the genetic mechanisms associated with resilience traits in livestock.
Collapse
Affiliation(s)
- Slim Ben-Jemaa
- INRAE, ASSET, 97170, Petit-Bourg, France.
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, 2049, Ariana, Tunisia.
| | | | - Mekki Boussaha
- AgroParisTech, GABI, INRAE, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Philippe Bardou
- GenPhySE, Ecole Nationale Vétérinaire de Toulouse (ENVT), INRA, Université de Toulouse, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
- Sigenae, INRAE, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
| | - Christophe Klopp
- Genotoul Bioinfo, BioInfoMics, MIAT UR875, Sigenae, INRAE, Castanet-Tolosan, France
| | | | | |
Collapse
|
7
|
Ba H, Wang X, Wang D, Ren J, Wang Z, Sun HX, Hu P, Zhang G, Wang S, Ma C, Wang Y, Wang E, Chen L, Liu T, Gu Y, Li C. Single-cell transcriptome reveals core cell populations and androgen-RXFP2 axis involved in deer antler full regeneration. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:43. [PMID: 36542206 PMCID: PMC9772379 DOI: 10.1186/s13619-022-00153-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Deer antlers constitute a unique mammalian model for the study of both organ formation in postnatal life and annual full regeneration. Previous studies revealed that these events are achieved through the proliferation and differentiation of antlerogenic periosteum (AP) cells and pedicle periosteum (PP) cells, respectively. As the cells resident in the AP and the PP possess stem cell attributes, both antler generation and regeneration are stem cell-based processes. However, the cell composition of each tissue type and molecular events underlying antler development remain poorly characterized. Here, we took the approach of single-cell RNA sequencing (scRNA-Seq) and identified eight cell types (mainly THY1+ cells, progenitor cells, and osteochondroblasts) and three core subclusters of the THY1+ cells (SC2, SC3, and SC4). Endothelial and mural cells each are heterogeneous at transcriptional level. It was the proliferation of progenitor, mural, and endothelial cells in the activated antler-lineage-specific tissues that drove the rapid formation of the antler. We detected the differences in the initial differentiation process between antler generation and regeneration using pseudotime trajectory analysis. These may be due to the difference in the degree of stemness of the AP-THY1+ and PP-THY1+ cells. We further found that androgen-RXFP2 axis may be involved in triggering initial antler full regeneration. Fully deciphering the cell composition for these antler tissue types will open up new avenues for elucidating the mechanism underlying antler full renewal in specific and regenerative medicine in general.
Collapse
Affiliation(s)
- Hengxing Ba
- grid.440668.80000 0001 0006 0255Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China ,Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Xin Wang
- grid.21155.320000 0001 2034 1839BGI-Shenzhen, Shenzhen, 518083 Guangdong China ,grid.49470.3e0000 0001 2331 6153Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Datao Wang
- grid.440668.80000 0001 0006 0255Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China ,grid.410727.70000 0001 0526 1937Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, 130112, Changchun, China
| | - Jing Ren
- grid.440668.80000 0001 0006 0255Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China ,Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Zhen Wang
- grid.440668.80000 0001 0006 0255Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China ,Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Hai-Xi Sun
- grid.21155.320000 0001 2034 1839BGI-Shenzhen, Shenzhen, 518083 Guangdong China
| | - Pengfei Hu
- grid.440668.80000 0001 0006 0255Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China ,Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Guokun Zhang
- grid.440668.80000 0001 0006 0255Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China ,Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Shengnan Wang
- grid.440668.80000 0001 0006 0255Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China ,Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Chao Ma
- grid.440668.80000 0001 0006 0255Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China ,Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Yusu Wang
- grid.440668.80000 0001 0006 0255Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China ,Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China
| | - Enpeng Wang
- grid.440665.50000 0004 1757 641XJilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117 China
| | - Liang Chen
- grid.49470.3e0000 0001 2331 6153Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Tianbin Liu
- grid.21155.320000 0001 2034 1839BGI-Shenzhen, Shenzhen, 518083 Guangdong China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ying Gu
- grid.21155.320000 0001 2034 1839BGI-Shenzhen, Shenzhen, 518083 Guangdong China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.21155.320000 0001 2034 1839Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120 Guangdong China
| | - Chunyi Li
- grid.440668.80000 0001 0006 0255Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, 130600 China ,Jilin Provincial Key Laboratory of Deer Antler Biology, Changchun, 130600 China ,grid.464353.30000 0000 9888 756XCollege of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
8
|
Sun P, Wang H, Liu L, Guo K, Li X, Cao Y, Ko C, Lan ZJ, Lei Z. Aberrant activation of KRAS in mouse theca-interstitial cells results in female infertility. Front Physiol 2022; 13:991719. [PMID: 36060690 PMCID: PMC9437434 DOI: 10.3389/fphys.2022.991719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
KRAS plays critical roles in regulating a range of normal cellular events as well as pathological processes in many tissues mediated through a variety of signaling pathways, including ERK1/2 and AKT signaling, in a cell-, context- and development-dependent manner. The in vivo function of KRAS and its downstream targets in gonadal steroidogenic cells for the development and homeostasis of reproductive functions remain to be determined. To understand the functions of KRAS signaling in gonadal theca and interstitial cells, we generated a Kras mutant (tKrasMT) mouse line that selectively expressed a constitutively active KrasG12D in these cells. KrasG12D expression in ovarian theca cells did not block follicle development to the preovulatory stage. However, tKrasMT females failed to ovulate and thus were infertile. The phosphorylated ERK1/2 and forkhead box O1 (FOXO1) and total FOXO1 protein levels were markedly reduced in tKrasMT theca cells. KrasG12D expression in theca cells also curtailed the phosphorylation of ERK1/2 and altered the expression of several ovulation-related genes in gonadotropin-primed granulosa cells. To uncover downstream targets of KRAS/FOXO1 signaling in theca cells, we found that the expression of bone morphogenic protein 7 (Bmp7), a theca-specific factor involved in ovulation, was significantly elevated in tKrasMT theca cells. Chromosome immunoprecipitation assays demonstrated that FOXO1 interacted with the Bmp7 promoter containing forkhead response elements and that the binding activity was attenuated in tKrasMT theca cells. Moreover, Foxo1 knockdown caused an elevation, whereas Foxo1 overexpression resulted in an inhibition of Bmp7 expression, suggesting that KRAS signaling regulates FOXO1 protein levels to control Bmp7 expression in theca cells. Thus, the anovulation phenotype observed in tKrasMT mice may be attributed to aberrant KRAS/FOXO1/BMP7 signaling in theca cells. Our work provides the first in vivo evidence that maintaining normal KRAS activity in ovarian theca cells is crucial for ovulation and female fertility.
Collapse
Affiliation(s)
- Penghao Sun
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Hongliang Wang
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Zhenmin Lei, ; Hongliang Wang,
| | - Lingyun Liu
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Kaimin Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Xian Li
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, United States
| | - Yin Cao
- Department of Andrology, The First Hospital of Jilin University, Changchun, China
| | - Chemyong Ko
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zi-Jian Lan
- Birth Defects Center, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Zhenmin Lei
- Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY, United States
- *Correspondence: Zhenmin Lei, ; Hongliang Wang,
| |
Collapse
|
9
|
Ivell R, Mamsen LS, Andersen CY, Anand-Ivell R. Expression and Role of INSL3 in the Fetal Testis. Front Endocrinol (Lausanne) 2022; 13:868313. [PMID: 35464060 PMCID: PMC9019166 DOI: 10.3389/fendo.2022.868313] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Insulin-like peptide 3 (INSL3) is a small peptide hormone of the insulin-relaxin family which is produced and secreted by the fetal Leydig cells in the testes only. It appears to be undetectable in female fetuses. In the human fetus INSL3 synthesis begins immediately following gonadal sex determination at weeks 7 to 8 post coitum and the peptide can be detected in amniotic fluid 1 to 2 weeks later. INSL3 acts through a unique G-protein-coupled receptor, called RelaXin-like Family Peptide receptor 2 (RXFP2), which is expressed by the mesenchymal cells of the gubernacular ligament linking the testes to the inguinal wall. The role of INSL3 in the male fetus is to cause a thickening of the gubernaculum which then retains the testes in the inguinal region, while the remainder of the abdominal organs grow away in an antero-dorsal direction. This represents the first phase of testis descent and is followed later in pregnancy by the second inguino-scrotal phase whereby the testes pass into the scrotum through the inguinal canal. INSL3 acts as a significant biomarker for Leydig cell differentiation in the fetus and may be reduced by maternal exposure to endocrine disrupting chemicals, such as xenoestrogens or phthalates, leading to cryptorchidism. INSL3 may have other roles within the fetus, but as a Leydig cell biomarker its reduction acts also as a surrogate for anti-androgen action.
Collapse
Affiliation(s)
- Richard Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, United Kingdom
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, Section 5712, Juliane Marie Centre for Women, Children and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, Section 5712, Juliane Marie Centre for Women, Children and Reproduction, Rigshospitalet, University Hospital of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ravinder Anand-Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
10
|
Errico A, Camoglio FS, Zampieri N, Dando I. Testicular Torsion: Preliminary Results of In Vitro Cell Stimulation Using Chorionic Gonadotropin. Cells 2022; 11:cells11030450. [PMID: 35159259 PMCID: PMC8834308 DOI: 10.3390/cells11030450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Testicular torsion is a pathology that occurs in young males generally before the age of 25. Despite surgery representing the only effective approach, there is still a need to identify a marker that can predict whether a preserved testicle will be functional. In addition, no therapeutic approach is currently considered in the post-operative phase. Through an approach based on the in vitro culture of a tissue strictly linked to the testicle, the gubernaculum, we defined the healthy state of the organ and the possible responsiveness to a therapy used in the andrology field, chorionic gonadotropin (hCG). Firstly, we optimized a protocol to obtain viable cells starting from a small piece of gubernacular tissue harvested during surgery with the aim to amplify cells in vitro. Intriguingly, only for a patient whose testicle had been removed during surgery due to an excessive necrotic area, gubernacular cells were not able to grow in culture. These data support the possibility of exploiting the gubernaculum to evaluate the healthy state of the testicle. Then, as we demonstrate that gubernacular cells express a luteinizing hormone receptor, to which hCG is specific, we analyzed the cellular response to hCG treatment on in vitro cultured cells derived from patients affected by testicular torsion. Our study opens the way for the possibility of evaluating testicle wellbeing after derotation through in vitro culture of a small piece of gubernaculum together with predicting the response to the treatment with hCG, which can have a positive effect on cell proliferation and vascularization.
Collapse
Affiliation(s)
- Andrea Errico
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
| | - Francesco Saverio Camoglio
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Paediatric Fertility Lab, Woman and Child Hospital, Division of Pediatric Surgery, University of Verona, 37134 Verona, Italy;
| | - Nicola Zampieri
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, Paediatric Fertility Lab, Woman and Child Hospital, Division of Pediatric Surgery, University of Verona, 37134 Verona, Italy;
- Correspondence: (N.Z.); (I.D.); Tel.: +39-045-8127129 (N.Z.); +39-045-8027169 (I.D.)
| | - Ilaria Dando
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy;
- Correspondence: (N.Z.); (I.D.); Tel.: +39-045-8127129 (N.Z.); +39-045-8027169 (I.D.)
| |
Collapse
|
11
|
Abstract
Cryptorchidism, i.e., undescended testis, is one of the most common genital malformations in newborn male babies. The birth rate of cryptorchidism varies from 1.6 to 9.0 %. Etiology of disrupted testicular descent is complex and predisposing causes include genetic, hormonal, environmental, lifestyle and maternal factors. Testicular descent occurs in two major steps and testicular hormones and normal function of hypothalamic-pituitary-testicular axis are important for normal descent. Several gene mutations are associated with syndromic cryptorchidism but they are rarely found in boys with isolated undescended testis. Testicular regression can also cause an empty scrotum. Normal male genital phenotype indicates that the boy has had functioning testis during development. Torsion of the testis can cause testicular regression but in many cases the reason for vanishing testis remains elusive. In this narrative review we discuss genetics of cryptorchidism and testicular regression.
Collapse
Affiliation(s)
- Heidi P Elamo
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland.
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland; Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Pediatrics, Turku University Hospital, Turku, Finland.
| |
Collapse
|
12
|
Ge W, Chen M, Tian W, Chen J, Zhao Y, Xian H, Chen J, Xu Y. Global 3'UTR shortening and down-regulation of repeated element related piRNA play crucial roles in boys with cryptorchidism. Genomics 2021; 113:633-645. [PMID: 33485952 DOI: 10.1016/j.ygeno.2021.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/10/2021] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Cryptorchidism is the most common congenital defect in children's genitourinary system. Decades of research have identified both environmental and genetic factors contribute to the etiology. METHODS Small-RNA/mRNA-seq were performed on testicular tissues from cryptorchidism patients. Downstream analysis included mRNA expression, piRNA expression and miRNA expression. RESULTS We find a global downregulation of repeated element related piRNA expression as well as a global 3'UTR shortening of mRNAs in patients with cryptorchidism. We also find that genes with shortened 3'UTR which are highly enriched in vascular endothelial growth and protein ubiquitination, tend to be up-regulated in cryptorchidism. These results indicate that boys with cryptorchidism may not have normal piRNA functions to protect developmental tissues from transposon invasion. Dysregulated shortened 3'UTR genes may affect normal testicular tissue development. CONCLUSION In summary, our findings also provided the first landscape of gene regulation in cryptorchidism, especially in terms of post-transcriptional regulations.
Collapse
Affiliation(s)
- Wenliang Ge
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Minhua Chen
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Wei Tian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jianan Chen
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yinshuang Zhao
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Xian
- Department of Pediatric Surgery, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, China.
| | - Yunzhao Xu
- Prenatal Diagnosis Center, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China; Department of Obstetrics and Gynecology, School of Medicine, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
13
|
Ivell R, Alhujaili W, Kohsaka T, Anand-Ivell R. Physiology and evolution of the INSL3/RXFP2 hormone/receptor system in higher vertebrates. Gen Comp Endocrinol 2020; 299:113583. [PMID: 32800774 DOI: 10.1016/j.ygcen.2020.113583] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022]
Abstract
Although the insulin-like peptide hormone INSL3 and its cognate receptor RXFP2 (relaxin-family peptide receptor 2) have existed throughout chordate evolution, their physiological diversification appears to be linked closely with mammalian emergence and radiation. In contrast, they have been lost in birds and reptiles. Both hormone and receptor are expressed from autosomal genes which have maintained their synteny across vertebrate evolution. Whereas the INSL3 gene comprises only two exons closely linked to the JAK3 gene, RXFP2 is normally encoded by 18 exons. Both genes, however, are subject to alternative splicing to yield a variety of possibly inactive or antagonistic molecules. In mammals, the INSL3-RXFP2 dyad has maintained a probably primitive association with gametogenesis, seen also in fish, whereby INSL3 promotes the survival, growth and differentiation of male germ cells in the testis and follicle development in the ovary. In addition, however, the INSL3/RXFP2 system has adopted a typical 'neohormone' profile, essential for the promotion of internal fertilisation and viviparity; fetal INSL3 is essential for the first phase of testicular descent into a scrotum, and also appears to be associated with male phenotype, in particular horn and skeletal growth. Circulating INSL3 is produced exclusively by the mature testicular Leydig cells in male mammals and acts as a potent biomarker for testis development during fetal and pubertal development as well as in ageing. As such it can be used also to monitor seasonally breeding animals as well as to investigate environmental or lifestyle conditions affecting development. Nevertheless, most information about INSL3 and RXFP2 comes from a very limited selection of species; it will be especially useful to gain further information from a more diverse range of animals, especially those whose evolution has led them to express unusual reproductive phenotypes.
Collapse
Affiliation(s)
- Richard Ivell
- School of Bioscience, University of Nottingham, Sutton Bonington, LE2 5RD, UK; School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE2 5RD, UK.
| | - Waleed Alhujaili
- School of Bioscience, University of Nottingham, Sutton Bonington, LE2 5RD, UK
| | - Tetsuya Kohsaka
- Dept. of Applied Life Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Japan
| | | |
Collapse
|
14
|
Abstract
Insulin-like 3 peptide (INSL3) is a member of the insulin-like peptide superfamily and is the only known physiological ligand of relaxin family peptide receptor 2 (RXFP2), a G protein-coupled receptor (GPCR). In mammals, INSL3 is primarily produced both in testicular Leydig cells and in ovarian theca cells, but circulating levels of the hormone are much higher in males than in females. The INSL3/RXFP2 system has an essential role in the development of the gubernaculum for the initial transabdominal descent of the testis and in maintaining proper reproductive health in men. Although its function in female physiology has been less well-characterized, it was reported that INSL3 deletion affects antral follicle development during the follicular phase of the menstrual cycle and uterus function. Since the discovery of its role in the reproductive system, the study of INSL3/RXFP2 has expanded to others organs, such as skeletal muscle, bone, kidney, thyroid, brain, and eye. This review aims to summarize the various advances in understanding the physiological function of this ligand-receptor pair since its first discovery and elucidate its future therapeutic potential in the management of various diseases.
Collapse
Affiliation(s)
- Maria Esteban-Lopez
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
15
|
Zhou Y, Zhang D, Liu B, Hu D, Shen L, Long C, Yu Y, Lin T, Liu X, He D, Wei G. Bioinformatic identification of key genes and molecular pathways in the spermatogenic process of cryptorchidism. Genes Dis 2019; 6:431-440. [PMID: 31832523 PMCID: PMC6889044 DOI: 10.1016/j.gendis.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022] Open
Abstract
This study aims to determine key genes and pathways that could play important roles in the spermatogenic process of patients with cryptorchidism. The gene expression profile data of GSE25518 was obtained from the Gene Expression Omnibus (GEO) database. Microarray data were analyzed using BRB-Array Tools to identify differentially expressed genes (DEGs) between high azoospermia risk (HAZR) patients and controls. In addition, other analytical methods were deployed, including hierarchical clustering analysis, class comparison between patients with HAZR and the normal control group, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and the construction of a protein–protein interaction (PPI) network. In total, 1015 upregulated genes and 1650 downregulated genes were identified. GO and KEGG analysis revealed enrichment in terms of changes in the endoplasmic reticulum cellular component and the endoplasmic reticulum protein synthetic process in the HAZR group. Furthermore, the arachidonic acid pathway and mTOR pathway were also identified as important pathways, while RICTOR and GPX8 were indentified as key genes involved in the spermatogenic process of patients with cryptorchidism. In present study, we found that changes in the synthesis of endoplasmic reticulum proteins, arachidonic acid and the mTOR pathway are important in the incidence and spermatogenic process of cryptorchidism. GPX8 and RICTOR were also identified as key genes associated with cryptorchidism. Collectively, these data may provide novel clues with which to explore the precise etiology and mechanism underlying cryptorchidism and cryptorchidism-induced human infertility.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Deying Zhang
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
- Corresponding author. Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| | - Bo Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Dong Hu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Chunlan Long
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Yihang Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Tao Lin
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, China
- Chongqing Key Laboratory of Pediatrics, China
- Corresponding author. Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, China.
| |
Collapse
|
16
|
Sinopidis X, Mourelatou R, Kostopoulou E, Karvela A, Rojas-Gil AP, Tsekoura E, Georgiou G, Spiliotis BE. Novel combined insulin-like 3 variations of a single nucleotide in cryptorchidism. J Pediatr Endocrinol Metab 2019; 32:987-994. [PMID: 31444964 DOI: 10.1515/jpem-2018-0547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/17/2019] [Indexed: 11/15/2022]
Abstract
Background Insulin-like 3 hormone (INSL3) is involved in the process of testicular descent, and has been thoroughly studied in cryptorchidism. However, INSL3 allelic variations found in the human genome were heterozygous and only a few of them were found exclusively in patients with cryptorchidism. Under this perspective, we aimed to study the presence of INSL3 allelic variations in a cohort of patients with cryptorchidism and to estimate their potential consequences. Methods Blood samples were collected from 46 male patients with non-syndromic cryptorchidism and from 43 age-matched controls. DNA extraction and polymerase chain reaction (PCR) were performed for exons 1 and 2 of the INSL3 gene in all subjects. Sequencing analysis was carried out on the PCR products. All data were grouped according to testicular location. Results Seven variations of a single nucleotide (SNVs) were identified both in patients with cryptorchidism and in controls: rs2286663 (c.27G > A), rs1047233 (c.126A > G) and rs6523 (c.178A > G) at exon 1, rs74531687 (c.191-30C > T) at the intron, rs121912556 (c.305G > A) at exon 2 and rs17750642 (c.*101C > A) and rs1003887 (c.*263G > A) at the untranslated region (UTR). The allelic variants rs74531687 and rs121912556 were found for the first time in the Greek population. The novel homozygotic combination of the three allelic variants rs1047233-rs6523-rs1003887 seemed to present a stronger correlation with more severe forms of cryptorchidism. Conclusions The combination of specific INSL3 SNVs rather than the existence of each one of them alone may offer a new insight into the involvement of allelic variants in phenotypic variability and severity.
Collapse
Affiliation(s)
- Xenophon Sinopidis
- Assistant Professor, Department of Pediatric Surgery, School of Medicine, University of Patras, 26504 Rion, Patras, Greece
| | - Roza Mourelatou
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of Patras, Patras, Greece
| | - Eirini Kostopoulou
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of Patras, Patras, Greece
| | - Alexia Karvela
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of Patras, Patras, Greece
| | - Andrea-Paola Rojas-Gil
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of Patras, Patras, Greece
| | - Efstathia Tsekoura
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of Patras, Patras, Greece
| | - George Georgiou
- Department of Pediatric Surgery, Children's Hospital, Patras, Greece
| | - Bessie E Spiliotis
- Department of Pediatrics, Research Laboratory of the Division of Pediatric Endocrinology and Diabetes, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
17
|
Mäkelä JA, Koskenniemi JJ, Virtanen HE, Toppari J. Testis Development. Endocr Rev 2019; 40:857-905. [PMID: 30590466 DOI: 10.1210/er.2018-00140] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/17/2018] [Indexed: 12/28/2022]
Abstract
Production of sperm and androgens is the main function of the testis. This depends on normal development of both testicular somatic cells and germ cells. A genetic program initiated from the Y chromosome gene sex-determining region Y (SRY) directs somatic cell specification to Sertoli cells that orchestrate further development. They first guide fetal germ cell differentiation toward spermatogenic destiny and then take care of the full service to spermatogenic cells during spermatogenesis. The number of Sertoli cells sets the limits of sperm production. Leydig cells secrete androgens that determine masculine development. Testis development does not depend on germ cells; that is, testicular somatic cells also develop in the absence of germ cells, and the testis can produce testosterone normally to induce full masculinization in these men. In contrast, spermatogenic cell development is totally dependent on somatic cells. We herein review germ cell differentiation from primordial germ cells to spermatogonia and development of the supporting somatic cells. Testicular descent to scrota is necessary for normal spermatogenesis, and cryptorchidism is the most common male birth defect. This is a mild form of a disorder of sex differentiation. Multiple genetic reasons for more severe forms of disorders of sex differentiation have been revealed during the last decades, and these are described along with the description of molecular regulation of testis development.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jaakko J Koskenniemi
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
18
|
Sansone A, Kliesch S, Isidori AM, Schlatt S. AMH and INSL3 in testicular and extragonadal pathophysiology: what do we know? Andrology 2019; 7:131-138. [DOI: 10.1111/andr.12597] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/09/2019] [Accepted: 01/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- A. Sansone
- Center of Reproductive Medicine and Andrology Department of Clinical and Surgical Andrology Institute of Reproductive and Regenerative Biology Münster Germany
- Department of Experimental Medicine Section of Medical Pathophysiology Food Science and Endocrinology – Sapienza University of Rome Rome Italy
| | - S. Kliesch
- Center of Reproductive Medicine and Andrology Department of Clinical and Surgical Andrology Institute of Reproductive and Regenerative Biology Münster Germany
| | - A. M. Isidori
- Department of Experimental Medicine Section of Medical Pathophysiology Food Science and Endocrinology – Sapienza University of Rome Rome Italy
| | - S. Schlatt
- Center of Reproductive Medicine and Andrology Department of Clinical and Surgical Andrology Institute of Reproductive and Regenerative Biology Münster Germany
| |
Collapse
|
19
|
Harrison SM, Bush NC, Wang Y, Mucher ZR, Lorenzo AJ, Grimsby GM, Schlomer BJ, Büllesbach EE, Baker LA. Insulin-Like Peptide 3 (INSL3) Serum Concentration During Human Male Fetal Life. Front Endocrinol (Lausanne) 2019; 10:596. [PMID: 31611843 PMCID: PMC6737488 DOI: 10.3389/fendo.2019.00596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/13/2019] [Indexed: 12/28/2022] Open
Abstract
Context: Insulin-like peptide 3 (INSL3), a protein hormone produced by Leydig cells, may play a crucial role in testicular descent as male INSL3 knockout mice have bilateral cryptorchidism. Previous studies have measured human fetal INSL3 levels in amniotic fluid only. Objective: To measure INSL3 serum levels and mRNA in fetal umbilical cord blood and fetal testes, respectively. Design: INSL3 concentrations were assayed on 50 μl of serum from male human fetal umbilical cord blood by a non-commercial highly sensitive and specific radioimmunoassay. For secondary confirmation, quantitative real-time PCR was used to measure INSL3 relative mRNA expression in 7 age-matched human fetal testes. Setting: UT Southwestern Medical Center, Dallas, TX and Medical University of South Carolina, Charleston, SC. Patients or other Participants: Twelve human male umbilical cord blood samples and 7 human male testes were obtained from fetuses 14-21 weeks gestation. Male sex was verified by leukocyte genomic DNA SRY PCR. Interventions: None. Main Outcome Measures: Human male fetal INSL3 cord blood serum concentrations and testicular relative mRNA expression. Results: INSL3 serum concentrations during human male gestational weeks 15-20 were 2-4 times higher than published prepubertal male levels and were 5-100 times higher than previous reports of INSL3 concentrations obtained from amniotic fluid. Testicular fetal INSL3 mRNA relative expression was low from weeks 14-16, rose significantly weeks 17 and 18, and returned to low levels at week 21. Conclusions: These findings further support the role of INSL3 in human testicular descent and could prove relevant in uncovering the pathophysiology of cryptorchidism.
Collapse
Affiliation(s)
- Steven M. Harrison
- Clinical R&D Sequencing Platform, Broad Institute, MIT and Harvard, Cambridge, MA, United States
| | | | - Yi Wang
- Endocrinology Division, Department of Internal Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zachary R. Mucher
- Department of Urology, Memorial Hermann Health System, Houston, TX, United States
| | - Armando J. Lorenzo
- Department of Pediatric Urology, Hospital for Sick Children, Toronto, ON, Canada
| | | | - Bruce J. Schlomer
- Division of Pediatric Urology, Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Erika E. Büllesbach
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Linda A. Baker
- John W. Duckett MD Laboratory in Pediatric Urology, Division of Pediatric Urology, Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Linda A. Baker
| |
Collapse
|
20
|
Rodprasert W, Virtanen HE, Mäkelä JA, Toppari J. Hypogonadism and Cryptorchidism. Front Endocrinol (Lausanne) 2019; 10:906. [PMID: 32010061 PMCID: PMC6974459 DOI: 10.3389/fendo.2019.00906] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/11/2019] [Indexed: 01/24/2023] Open
Abstract
Congenital cryptorchidism (undescended testis) is one of the most common congenital urogenital malformations in boys. Prevalence of cryptorchidism at birth among boys born with normal birth weight ranges from 1.8 to 8.4%. Cryptorchidism is associated with a risk of low semen quality and an increased risk of testicular germ cell tumors. Testicular hormones, androgens and insulin-like peptide 3 (INSL3), have an essential role in the process of testicular descent from intra-abdominal position into the scrotum in fetal life. This explains the increased prevalence of cryptorchidism among boys with diseases or syndromes associated with congenitally decreased secretion or action of androgens, such as patients with congenital hypogonadism and partial androgen insensitivity syndrome. There is evidence to support that cryptorchidism is associated with decreased testicular hormone production later in life. It has been shown that cryptorchidism impairs long-term Sertoli cell function, but may also affect Leydig cells. Germ cell loss taking place in the cryptorchid testis is proportional to the duration of the condition, and therefore early orchiopexy to bring the testis into the scrotum is the standard treatment. However, the evidence for benefits of early orchiopexy for testicular endocrine function is controversial. The hormonal treatments using human chorionic gonadotropin (hCG) or gonadotropin-releasing hormone (GnRH) to induce testicular descent have low success rates, and therefore they are not recommended by the current guidelines for management of cryptorchidism. However, more research is needed to assess the effects of hormonal treatments during infancy on future male reproductive health.
Collapse
Affiliation(s)
- Wiwat Rodprasert
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- The Population Research Centre, University of Turku, Turku, Finland
- *Correspondence: Wiwat Rodprasert
| | - Helena E. Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- The Population Research Centre, University of Turku, Turku, Finland
| | - Juho-Antti Mäkelä
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- The Population Research Centre, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- The Population Research Centre, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| |
Collapse
|
21
|
Özdamar MY, Şahin S, Zengin K, Seçkin S, Gürdal M. Detection of insulin-like growth factor receptor-1 in the human cremaster muscle and its role in the etiology of the undescended testis. Asian J Surg 2019; 42:290-296. [DOI: 10.1016/j.asjsur.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 11/24/2022] Open
|
22
|
Anand-Ivell R, Cohen A, Nørgaard-Pedersen B, Jönsson BAG, Bonde JP, Hougaard DM, Lindh CH, Toft G, Lindhard MS, Ivell R. Amniotic Fluid INSL3 Measured During the Critical Time Window in Human Pregnancy Relates to Cryptorchidism, Hypospadias, and Phthalate Load: A Large Case-Control Study. Front Physiol 2018; 9:406. [PMID: 29740335 PMCID: PMC5928321 DOI: 10.3389/fphys.2018.00406] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022] Open
Abstract
The period of the first to second trimester transition in human pregnancy represents a sensitive window for fetal organogenesis, particularly in regard to the development of the male reproductive system. This is a time of relative analytical inaccessibility. We have used a large national biobank of amniotic fluid samples collected at routine amniocentesis to determine the impacts of exogenous endocrine disruptor load on specific fetal biomarkers at this critical time. While adrenal and testicular steroids are highly correlated, they are also mostly positively influenced by increasing phthalate load, represented by the metabolites 7cx-MMeHP and 5cx-MEPP, by perfluorooctane sulfonate (PFOS) exposure, and by smoking, suggesting an adrenal stress response. In contrast, the testis specific biomarkers insulin-like peptide 3 (INSL3) and androstenedione are negatively impacted by the phthalate endocrine disruptors. Using a case-control design, we show that cryptorchidism and hypospadias are both significantly associated with increased amniotic concentration of INSL3 during gestational weeks 13-16, and some, though not all steroid biomarkers. Cases are also linked to a specifically increased variance in the Leydig cell biomarker INSL3 compared to controls, an effect exacerbated by maternal smoking. No influence of phthalate metabolites or PFOS was evident on the distribution of cases and controls. Considering that several animal and human studies have shown a negative impact of phthalate load on fetal and cord blood INSL3, respectively, the present results suggest that such endocrine disruptors may rather be altering the relative dynamics of testicular development and consequent hormone production, leading to a desynchronization of tissue organization during fetal development. Being born small for gestational age appears not to impact on the testicular biomarker INSL3 in second trimester amniotic fluid.
Collapse
Affiliation(s)
| | - Arieh Cohen
- Section of Neonatal Screening and Hormones, Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Bent Nørgaard-Pedersen
- Section of Neonatal Screening and Hormones, Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Bo A. G. Jönsson
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Jens-Peter Bonde
- Department of Occupational and Environmental Medicine, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David M. Hougaard
- Section of Neonatal Screening and Hormones, Department of Clinical Biochemistry and Immunology, Statens Serum Institut, Copenhagen, Denmark
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Gunnar Toft
- Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten S. Lindhard
- Perinatal Epidemiology Research Unit, Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Richard Ivell
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
23
|
Miller JM, Festa-Bianchet M, Coltman DW. Genomic analysis of morphometric traits in bighorn sheep using the Ovine Infinium ® HD SNP BeadChip. PeerJ 2018; 6:e4364. [PMID: 29473002 PMCID: PMC5817937 DOI: 10.7717/peerj.4364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/23/2018] [Indexed: 11/20/2022] Open
Abstract
Elucidating the genetic basis of fitness-related traits is a major goal of molecular ecology. Traits subject to sexual selection are particularly interesting, as non-random mate choice should deplete genetic variation and thereby their evolutionary benefits. We examined the genetic basis of three sexually selected morphometric traits in bighorn sheep (Ovis canadensis): horn length, horn base circumference, and body mass. These traits are of specific concern in bighorn sheep as artificial selection through trophy hunting opposes sexual selection. Specifically, horn size determines trophy status and, in most North American jurisdictions, if an individual can be legally harvested. Using between 7,994–9,552 phenotypic measures from the long-term individual-based study at Ram Mountain (Alberta, Canada), we first showed that all three traits are heritable (h2 = 0.15–0.23). We then conducted a genome-wide association study (GWAS) utilizing a set of 3,777 SNPs typed in 76 individuals using the Ovine Infinium® HD SNP BeadChip. We found suggestive association for body mass at a single locus (OAR9_91647990). The absence of strong associations with SNPs suggests that the traits are likely polygenic. These results represent a step forward for characterizing the genetic architecture of fitness related traits in sexually dimorphic ungulates.
Collapse
Affiliation(s)
- Joshua M Miller
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Current affiliation: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | | | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Barthold JS, Ivell R. Perspective: A Neuro-Hormonal Systems Approach to Understanding the Complexity of Cryptorchidism Susceptibility. Front Endocrinol (Lausanne) 2018; 9:401. [PMID: 30083133 PMCID: PMC6065160 DOI: 10.3389/fendo.2018.00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022] Open
Abstract
Nonsyndromic cryptorchidism is a common multifactorial, condition with long-term risks of subfertility and testicular cancer. Revealing the causes of cryptorchidism will likely improve prediction and prevention of adverse outcomes. Herein we provide our current perspective of cryptorchidism complexity in a synthesis of cumulative clinical and translational data generated by ourselves and others. From our recent comparison of genome-wide association study (GWAS) data of cryptorchidism with or without testicular germ cell tumor, we identified RBFOX family genes as candidate susceptibility loci. Notably, RBFOX proteins regulate production of calcitonin gene-related peptide (CGRP), a sensory neuropeptide linked to testicular descent in animal models. We also re-analyzed existing fetal testis transcriptome data from a rat model of inherited cryptorchidism (the LE/orl strain) for enrichment of Leydig cell progenitor genes. The majority are coordinately downregulated, consistent with known reduced testicular testosterone levels in the LE/orl fetus, and similarly suppressed in the gubernaculum. Using qRT-PCR, we found dysregulation of dorsal root ganglia (DRG) sensory transcripts ipsilateral to undescended testes. These data suggest that LE/orl cryptorchidism is associated with altered signaling in possibly related cell types in the testis and gubernaculum as well as DRG. Complementary rat and human studies thus lead us to propose a multi-level, integrated neuro-hormonal model of testicular descent. Variants in genes encoding RBFOX family proteins and/or their transcriptional targets combined with environmental exposures may disrupt this complex pathway to enhance cryptorchidism susceptibility. We believe that a systems approach is necessary to provide further insight into the causes and consequences of cryptorchidism.
Collapse
Affiliation(s)
- Julia S. Barthold
- Nemours Biomedical Research, Division of Urology, Alfred I. duPont Hospital for Children, Wilmington, DE, United States
- *Correspondence: Julia S. Barthold
| | - Richard Ivell
- School of Biosciences and School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| |
Collapse
|
25
|
Fénichel P, Chevalier N, Lahlou N, Coquillard P, Wagner-Mahler K, Pugeat M, Panaïa-Ferrari P, Brucker-Davis F. Endocrine Disrupting Chemicals Interfere With Leydig Cell Hormone Pathways During Testicular Descent in Idiopathic Cryptorchidism. Front Endocrinol (Lausanne) 2018; 9:786. [PMID: 30687232 PMCID: PMC6335363 DOI: 10.3389/fendo.2018.00786] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022] Open
Abstract
Cryptorchidism, a frequent genital malformation in male newborn, remains in most cases idiopathic. On the basis of experimental, epidemiological, and clinical data, it has been included in the testicular dysgenesis syndrome and believed to be influenced, together with genetic and anatomic factors, by maternal exposure to endocrine disrupting chemicals (EDCs). Here, we analyze how EDCs may interfere with the control of testicular descent, which is regulated by two Leydig cell hormones, testosterone, and insulin like peptide 3 (INSL3).
Collapse
Affiliation(s)
- Patrick Fénichel
- Department of Reproductive Endocrinology, University Hospital of Nice, Nice, France
- Institut National de la Recherche Médicale, UMR U1065, Université Nice-Sophia Antipolis, Nice, France
- *Correspondence: Patrick Fénichel
| | - Nicolas Chevalier
- Department of Reproductive Endocrinology, University Hospital of Nice, Nice, France
- Institut National de la Recherche Médicale, UMR U1065, Université Nice-Sophia Antipolis, Nice, France
| | - Najiba Lahlou
- Department of Hormonology and Metabolic Disorders, Hôpital Cochin, APHP, Paris-Descartes University, Paris, France
| | | | | | - Michel Pugeat
- Institut National de la Recherche Médicale, U1060 CaRMen, Fédération d'Endocrinologie, Hospices Civils de Lyon-1, Bron, France
| | | | - Françoise Brucker-Davis
- Department of Reproductive Endocrinology, University Hospital of Nice, Nice, France
- Institut National de la Recherche Médicale, UMR U1065, Université Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
26
|
Li N, Liu T, Guo K, Zhu J, Yu G, Wang S, Ye L. Effect of mono-(2-ethylhexyl) phthalate (MEHP) on proliferation of and steroid hormone synthesis in rat ovarian granulosa cells in vitro. J Cell Physiol 2017; 233:3629-3637. [PMID: 29034469 DOI: 10.1002/jcp.26224] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/09/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Na Li
- Department of Occupational and Environmental Health; School of Public Health, Jilin University; Changchun Jilin China
- Department of Disciplines and Research Management; The Second Hospital Affiliated to Dalian Medical University; Dalian Liaoning China
| | - Te Liu
- Department of Occupational and Environmental Health; School of Public Health, Jilin University; Changchun Jilin China
| | - Kun Guo
- Department of Occupational and Environmental Health; School of Public Health, Jilin University; Changchun Jilin China
| | - Jian Zhu
- Department of Occupational and Environmental Health; School of Public Health, Jilin University; Changchun Jilin China
| | - Guangyan Yu
- Department of Occupational and Environmental Health; School of Public Health, Jilin University; Changchun Jilin China
| | - Shuyue Wang
- Department of Emergency; China-Japan Union Hospital, Jilin University; Changchun Jilin China
| | - Lin Ye
- Department of Disciplines and Research Management; The Second Hospital Affiliated to Dalian Medical University; Dalian Liaoning China
| |
Collapse
|
27
|
Gutiérrez-Gil B, Esteban-Blanco C, Wiener P, Chitneedi PK, Suarez-Vega A, Arranz JJ. High-resolution analysis of selection sweeps identified between fine-wool Merino and coarse-wool Churra sheep breeds. Genet Sel Evol 2017; 49:81. [PMID: 29115919 PMCID: PMC5674817 DOI: 10.1186/s12711-017-0354-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/19/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND With the aim of identifying selection signals in three Merino sheep lines that are highly specialized for fine wool production (Australian Industry Merino, Australian Merino and Australian Poll Merino) and considering that these lines have been subjected to selection not only for wool traits but also for growth and carcass traits and parasite resistance, we contrasted the OvineSNP50 BeadChip (50 K-chip) pooled genotypes of these Merino lines with the genotypes of a coarse-wool breed, phylogenetically related breed, Spanish Churra dairy sheep. Genome re-sequencing datasets of the two breeds were analyzed to further explore the genetic variation of the regions initially identified as putative selection signals. RESULTS Based on the 50 K-chip genotypes, we used the overlapping selection signals (SS) identified by four selection sweep mapping analyses (that detect genetic differentiation, reduced heterozygosity and patterns of haplotype diversity) to define 18 convergence candidate regions (CCR), five associated with positive selection in Australian Merino and the remainder indicating positive selection in Churra. Subsequent analysis of whole-genome sequences from 15 Churra and 13 Merino samples identified 142,400 genetic variants (139,745 bi-allelic SNPs and 2655 indels) within the 18 defined CCR. Annotation of 1291 variants that were significantly associated with breed identity between Churra and Merino samples identified 257 intragenic variants that caused 296 functional annotation variants, 275 of which were located across 31 coding genes. Among these, four synonymous and four missense variants (NPR2_His847Arg, NCAPG_Ser585Phe, LCORL_Asp1214Glu and LCORL_Ile1441Leu) were included. CONCLUSIONS Here, we report the mapping and genetic variation of 18 selection signatures that were identified between Australian Merino and Spanish Churra sheep breeds, which were validated by an additional contrast between Spanish Merino and Churra genotypes. Analysis of whole-genome sequencing datasets allowed us to identify divergent variants that may be viewed as candidates involved in the phenotypic differences for wool, growth and meat production/quality traits between the breeds analyzed. The four missense variants located in the NPR2, NCAPG and LCORL genes may be related to selection sweep regions previously identified and various QTL reported in sheep in relation to growth traits and carcass composition.
Collapse
Affiliation(s)
- Beatriz Gutiérrez-Gil
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
| | - Cristina Esteban-Blanco
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
- Fundación Centro Supercomputación de Castilla y León, Campus de Vegazana, León, 24071 Spain
| | - Pamela Wiener
- Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG UK
| | - Praveen Krishna Chitneedi
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
| | - Aroa Suarez-Vega
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
| | - Juan-Jose Arranz
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, León, 24071 Spain
| |
Collapse
|
28
|
Hutson JM, Lopez-Marambio FA. The possible role of AMH in shortening the gubernacular cord in testicular descent: A reappraisal of the evidence. J Pediatr Surg 2017; 52:1656-1660. [PMID: 28599968 DOI: 10.1016/j.jpedsurg.2017.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/12/2017] [Accepted: 05/19/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Anti-Müllerian hormone (AMH), also called Müllerian inhibiting substance (MIS), is glycoprotein hormone secreted by the fetal Sertoli cells to regulate regression of the Müllerian ducts, the anlagen of the uterus, fallopian tubes, and upper vagina. After its existence was predicted in 1946 and its isolation and purification in the 1970's, a huge amount of information has been gathered on its molecular biology and function in the last 30-40years. Once thought to be a locally acting factor in the male fetus during sexual differentiation, it is now recognized as an endocrine hormone present in both sexes and with functions throughout life. One of the remaining controversies is the possible role of AMH during fetal testicular descent. In the human with aberrant AMH function, the boy has cryptorchidism with persistent Müllerian duct syndrome (PMDS), where the testes are often intraabdominal and on an abnormally long gubernacular cord. By contrast, in rodent models knockout of the AMH gene does not cause cryptorchidism. METHODS/RESULTS In this review we examined the evidence in the literature for and against a role for AMH in testicular descent and considered the implications of the different anatomy of the gubernacular cord in rodents versus children. CONCLUSION We conclude that AMH may have a role in shortening the gubernacular cord in humans which is concealed in rodent models by differences in anatomy of the gubernacular cord in rodents. The controversy could be resolved by re-examination of the gubernacular cord in boys with PMDS and mice with AMHKO. TYPE OF STUDY Review. LEVEL OF EVIDENCE V.
Collapse
Affiliation(s)
- John M Hutson
- Department of Paediatrics, University of Melbourne, Australia; Urology Department, The Royal Children's Hospital, Melbourne, Australia; F Douglas Stephens Surgical Research Group, Murdoch Childrens Research Institute, Melbourne, Australia.
| | | |
Collapse
|
29
|
Lan ZJ, Krause MS, Redding SD, Li X, Wu GZ, Zhou HX, Bohler HC, Ko C, Cooney AJ, Zhou J, Lei ZM. Selective deletion of Pten in theca-interstitial cells leads to androgen excess and ovarian dysfunction in mice. Mol Cell Endocrinol 2017; 444:26-37. [PMID: 28137614 DOI: 10.1016/j.mce.2017.01.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/05/2017] [Accepted: 01/25/2017] [Indexed: 12/24/2022]
Abstract
Theca cell-selective Pten mutation (tPtenMT) in mice resulted in increases in PDK1 and Akt phosphorylation, indicating an over-activation of PI3K signaling in the ovaries. These mice displayed elevated androgen levels, ovary enlargement, antral follicle accumulation, early fertility loss and increased expression of Lhcgr and genes that are crucial to androgenesis. These abnormalities were partially reversed by treatments of PI3K or Akt inhibitor. LH actions in Pten deficient theca cells were potentiated. The phosphorylation of Foxo1 was increased, while the binding of Foxo1 to forkhead response elements in the Lhcgr promoter was reduced in tPtenMT theca cells, implying a mechanism by which PI3K/Akt-induced upregulation of Lhcgr in theca cells might be mediated by reducing the inhibitory effect of Foxo1 on the Lhcgr promoter. The phenotype of tPtenMT females is reminiscent of human PCOS and suggests that dysregulated PI3K cascade in theca cells may be involved in certain types of PCOS pathogenesis.
Collapse
Affiliation(s)
- Zi-Jian Lan
- Division of Life Sciences and Center for Animal Nutrigenomics & Applied Animal Nutrition, Alltech Inc., Nicholasville, KY 40356, USA
| | - M S Krause
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - S D Redding
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - X Li
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - G Z Wu
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - H X Zhou
- Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - H C Bohler
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - C Ko
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - A J Cooney
- Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX 78712, USA
| | - Junmei Zhou
- Central Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200000, China
| | - Z M Lei
- Department of OB/GYN & Women's Health, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
30
|
Abstract
SummaryThe objective of the present study was to describe the frequency of the main racial traits of Morada Nova sheep and simulate the impact of this culling on the response to selection for birth weight. The data from sex, coat colour, hoof pigmentation, muzzle pigmentation, polled and cryptorchidism were collected individually at weaning from 385 Morada Nova sheep of the red variety, born between 2010 and 2012, which belonged to four different flocks in the state of Ceará, Brazil. To estimate the impact of culling of animals due to racial pattern on the genetic improvement of the Morada Nova population, the genetic gains in birth weight per generation were calculated considering the following different scenarios of culling due to racial pattern in a simulated population. The present results indicate that the most urgent step is flexibilization of the requirement of dark muzzles and hooves. The selection of Morada Nova sheep based on racial pattern has caused losses in the genetic gain for productive traits such as birth weight. Readaptation of the official racial pattern established for Morada Nova sheep is necessary so that the racial pattern is achieved and an adequate number of animals will be available for selection.
Collapse
|
31
|
Kardos M, Luikart G, Bunch R, Dewey S, Edwards W, McWilliam S, Stephenson J, Allendorf FW, Hogg JT, Kijas J. Whole‐genome resequencing uncovers molecular signatures of natural and sexual selection in wild bighorn sheep. Mol Ecol 2015; 24:5616-32. [DOI: 10.1111/mec.13415] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Marty Kardos
- Division of Biological Sciences University of Montana Missoula MT 59812 USA
- Evolutionary Biology Centre Uppsala University SE‐75236 Uppsala Sweden
| | - Gordon Luikart
- Division of Biological Sciences University of Montana Missoula MT 59812 USA
- Division of Biological Sciences Flathead Lake Biological Station Fish and Wildlife Genomics Group University of Montana Polson MT 59860 USA
| | - Rowan Bunch
- CSIRO Agriculture 306 Carmody Road St Lucia Brisbane Qld 4067 Australia
| | - Sarah Dewey
- Grand Teton National Park Moose WY 83012 USA
| | - William Edwards
- Wyoming Game and Fish Department Wildlife Disease Laboratory Laramie WY 82070 USA
| | - Sean McWilliam
- CSIRO Agriculture 306 Carmody Road St Lucia Brisbane Qld 4067 Australia
| | | | - Fred W. Allendorf
- Division of Biological Sciences University of Montana Missoula MT 59812 USA
| | - John T. Hogg
- Montana Conservation Science Institute Missoula MT 59803 USA
| | - James Kijas
- CSIRO Agriculture 306 Carmody Road St Lucia Brisbane Qld 4067 Australia
| |
Collapse
|
32
|
Chen L, Wang R, Wang W, Lu W, Xiao Y, Wang D, Dong Z. Hormone Inhibition During Mini-Puberty and Testicular Function in Male Rats. Int J Endocrinol Metab 2015; 13:e25465. [PMID: 26587029 PMCID: PMC4648129 DOI: 10.5812/ijem.25465] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 05/11/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The mini-pubertal period of almost six hours in neonatal male rats is thought to be an important stage in sexual development. OBJECTIVES The aim of this study was to investigate the effect of hormone inhibition during mini-puberty on testicular function in male rats. MATERIALS AND METHODS We measured serum testosterone (T), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels in male rats at different time points after birth by enzyme linked immunosorbent assay (ELISA) and established a "no mini-puberty" model by ether inhalation. The mRNA expression levels of testicular androgen receptor (AR), insulin-like growth factor 3 (INSL3), anti-Mullerian hormone (AMH), and ghrelin were determined by real-time polymerase chain reaction (PCR) assays on postnatal days 45 and 75. Testicular tissue biopsies were stained with hematoxylin and eosin (H & E) and the structure, number and maturity of testis cells (including spermatogenic, Sertoli, and Leydig cells) were observed under microscopy at the same time. RESULTS Serum T and LH levels peaked at two hours after birth, while FSH peaked at hour 0, and bilateral testicular weight peaked at four hours after birth. The rats that underwent ether inhalation five minutes after birth had markedly reduced serum hormone levels. The mini-puberty model group revealed visible morphologic alterations in the tests on postnatal day 45. Then, on postnatal day 75, the mRNA expression level of AMH significantly decreased (P < 0.05) in the same group. CONCLUSIONS The inhibition of mini-puberty period in male rats was demonstrated to have an effect on their testicular function to some extent.
Collapse
Affiliation(s)
- Lifen Chen
- Department of Pediatrics, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ruifang Wang
- Department of Pediatrics, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wei Wang
- Department of Pediatrics, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wenli Lu
- Department of Pediatrics, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yuan Xiao
- Department of Pediatrics, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Defen Wang
- Department of Pediatrics, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhiya Dong
- Department of Pediatrics, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
- Corresponding author: Zhiya Dong, Department of Pediatrics, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, P. O. Box: 200025, Shanghai, China. Tel: +86-2164370045, Fax: +86-2164370045, E-mail:
| |
Collapse
|
33
|
Fénichel P, Lahlou N, Coquillard P, Panaïa-Ferrari P, Wagner-Mahler K, Brucker-Davis F. Cord blood insulin-like peptide 3 (INSL3) but not testosterone is reduced in idiopathic cryptorchidism. Clin Endocrinol (Oxf) 2015; 82:242-7. [PMID: 24826892 DOI: 10.1111/cen.12500] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/02/2014] [Accepted: 05/09/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cryptorchidism, the most frequent congenital malformation in full-term male newborns, increases the risk of hypofertility and testicular cancer. Most cases remain idiopathic but epidemiological and experimental studies have suggested a role of both genetic and environmental factors. Physiological testicular descent is regulated by two major Leydig hormones: insulin-like peptide 3 (INSL3) and testosterone. OBJECTIVES To study the endocrine context at birth as a reflection of late pregnancy in isolated idiopathic cryptorchidism and to analyse the possible disruptions of INSL3 and/or testosterone. METHODS From a prospective case-control study at Nice University Hospital, we assessed 180 boys born after 34 weeks gestation: 52 cryptorchid (48 unilateral, 4 bilateral; 26 transient, 26 persistent), and 128 controls matched for term, weight and time of birth. INSL3 and testosterone were measured in cord blood and compared in both groups as were other components of the pituitary-gonadic axis: LH, HCG, FSH, AMH and SHBG. RESULTS INSL3 was decreased in cryptorchid boys (P = 0·031), especially transient cryptorchid (P = 0·029), while testosterone was unchanged as were the other hormones measured. INSL3 was significantly decreased (P = 0·018) in the group of 20 with nonpalpable testes compared with the group of 21 with palpable testes (15 suprascrotal, five inguinal, one high scrotal) according to Scorer classification. In the whole population, INSL3 correlated positively with LH and negatively with AMH, but with no other measured hormones. CONCLUSIONS INSL3 but not testosterone is decreased at birth in idiopathic cryptorchidism, especially in transient forms. This hormonal decrease may contribute to the impaired testicular descent along with genetic and anatomical factors. Whether foetal environment (nutritional and/or toxicological) interferes with INSL3 secretion in humans remains to be confirmed.
Collapse
Affiliation(s)
- Patrick Fénichel
- Department of Endocrinology, Diabetology and Reproductive Medicine, CHU Nice, Nice, France; Institut National de la Recherche Médicale, UMR U1065, Université Nice-Sophia Antipolis, Nice, France
| | | | | | | | | | | |
Collapse
|
34
|
Chevalier N, Brucker-Davis F, Lahlou N, Coquillard P, Pugeat M, Pacini P, Panaïa-Ferrari P, Wagner-Mahler K, Fénichel P. A negative correlation between insulin-like peptide 3 and bisphenol A in human cord blood suggests an effect of endocrine disruptors on testicular descent during fetal development. Hum Reprod 2014; 30:447-53. [PMID: 25527819 DOI: 10.1093/humrep/deu340] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
STUDY QUESTION Does a relationship exist between insulin-like peptide 3 (INSL3) and selected environmental endocrine disruptors (EEDs) in human cord blood (cb)? SUMMARY ANSWER In the whole population (cryptorchid and control boys) cbINSL3 correlated negatively with cb free bisphenol A (BPA) providing indirect evidence for an impact of EEDs on fetal Leydig cell INSL3 production. WHAT IS KNOWN ALREADY INSL3 is a major regulator of testicular descent. This hormone has been shown to be decreased in cord blood from boys with idiopathic cryptorchidism, the most frequent male malformation. Fetal exposure to several EEDs has been suspected to be involved in the occurrence of idiopathic cryptorchidism. STUDY DESIGN, SIZE, DURATION Correlations between cb INSL3 or testosterone and cb free bioactive BPA and maternal milk polychlorinated biphenyls (PCB153), dichlorodiphenyldichloroethylene (DDE), and monobutyl phthalate (mBP) were assessed in newborn boys in a prospective case-control study. All boys (n = 6246) born after 34 weeks of gestation were systematically screened at birth for cryptorchidism over a 3-year period (2002-2005), and a diagnosis of cryptorchidism confirmed by a senior paediatrician. PARTICIPANTS/MATERIALS, SETTING, METHODS We studied 52 cryptorchid (26 transient, 26 persistent) and 128 control boys born at two hospitals in southern France. INSL3 was assayed in CB by a modified validated enzyme-linked immunosorbent assay. Testosterone was measured in CB after diethyl-ether extraction by means of ultra-pressure liquid chromatography-tandem mass spectrometry. Free cbBPA was measured after an extraction step with a radioimmunoassay validated after comparison of values obtained by high-pressure liquid chromatography-mass spectrometry. The xenobiotic analysis in mothers' milk was performed after fat extraction by gas chromatography-mass spectrometry. MAIN RESULTS AND THE ROLE OF CHANCE EED concentrations were not increased in the cryptorchid versus control group although a trend for increased mBP (P = 0.09) was observed. In the whole study population, cb levels of BPA correlated negatively with INSL3 (P = 0.01; R² = 0.05) but not with testosterone. No other EED correlated with INSL3 or with testosterone. LIMITATIONS, REASONS FOR CAUTION The levels of BPA and INSL3 in cb may not reflect chronic fetal exposure to EEDs. The deleterious impact of EEDs on fetal testicular descent during specific windows of development has yet to be demonstrated. WIDER IMPLICATIONS OF THE FINDINGS The negative correlation between cb free BPA and INSL3 provides indirect evidence for an impact of EEDs on human fetal Leydig cell INSL3 production and points to cbINSL3 as a possible target of EED action during fetal testis development.
Collapse
Affiliation(s)
- Nicolas Chevalier
- Department of Endocrinology, Diabetology and Reproductive Medicine, CHU Nice, Nice, France Institut National de la Recherche Médicale, UMR U1065, Université Nice-Sophia Antipolis, Nice, France
| | - Françoise Brucker-Davis
- Department of Endocrinology, Diabetology and Reproductive Medicine, CHU Nice, Nice, France Institut National de la Recherche Médicale, UMR U1065, Université Nice-Sophia Antipolis, Nice, France
| | - Najiba Lahlou
- Department of Hormonology and Metabolic Disorders, Hôpital Cochin, APHP, Paris-Descartes University, Paris, France
| | - Patrick Coquillard
- Institut Sophia-Agrobiotech [INRA-CNRS, Nice University], 06903 Sophia-Antipolis, France
| | - Michel Pugeat
- Institut National de la Recherche Médicale U1060 CaRMen, Fédération d'Endocrinologie, Hospices civils de Lyon, Université Lyon-1, Bron, France
| | - Patricia Pacini
- Laboratoire de l'Environnement de la Ville de Nice, Nice, France
| | | | | | - Patrick Fénichel
- Department of Endocrinology, Diabetology and Reproductive Medicine, CHU Nice, Nice, France Institut National de la Recherche Médicale, UMR U1065, Université Nice-Sophia Antipolis, Nice, France
| |
Collapse
|
35
|
Duarte C, Kobayashi Y, Kawamoto T, Moriyama K. RELAXIN enhances differentiation and matrix mineralization through Relaxin/insulin-like family peptide receptor 2 (Rxfp2) in MC3T3-E1 cells in vitro. Bone 2014; 65:92-101. [PMID: 24857857 DOI: 10.1016/j.bone.2014.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 04/18/2014] [Accepted: 05/05/2014] [Indexed: 01/19/2023]
Abstract
RELAXIN (RLN) is a polypeptide hormone of the insulin-like hormone family; it facilitates birth by softening and widening the pubic symphysis and cervix in many mammals, including humans. The role of RLN in bone metabolism was recently suggested by its ability to induce osteoclastogenesis and activate osteoclast function. RLN binds to RELAXIN/INSULIN-LIKE FAMILY PEPTIDE 1 (RXFP1) and 2 (RXFP2), with varying species-specific affinities. Young men with mutated RXFP2 are at high risk for osteoporosis, as RXFP2 influences osteoblast metabolism by binding to INSULIN-LIKE PEPTIDE 3 (INSL3). However, there have been no reports on RLN function in osteoblast differentiation and mineralization or on the functionally dominant receptors for RLN in osteoblasts. We previously described Rxfp1 and 2 expression patterns in developing mouse oral components, including the maxillary and mandibular bones, Meckel's cartilage, tongue, and tooth primordia. We hypothesized that Rln/Rxfp signaling is a key mediator of skeletal development and metabolism. Here, we present the gene expression patterns of Rxfp1 and 2 in developing mouse calvarial frontal bones as determined by in situ hybridization. In addition, RLN enhanced osteoblastic differentiation and caused abnormal mineralization and extracellular matrix metabolism through Rxfp2, which was predominant over Rxfp1 in MC3T3-E1 mouse calvarial osteoblasts. Our data suggest a novel role for Rln in craniofacial skeletal development and metabolism through Rxfp2.
Collapse
Affiliation(s)
- Carolina Duarte
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Yukiho Kobayashi
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; Hard Tissue Genome Research Center, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 Japan.
| | - Tatsuo Kawamoto
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan.
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Department of Maxillofacial Reconstruction and Function, Division of Maxillofacial/Neck Reconstruction, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; Hard Tissue Genome Research Center, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 Japan.
| |
Collapse
|
36
|
|
37
|
Bay K, Anand-Ivell R. Human Testicular Insulin-Like Factor 3 and Endocrine Disrupters. VITAMINS & HORMONES 2014; 94:327-48. [DOI: 10.1016/b978-0-12-800095-3.00012-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Ivell R, Heng K, Anand-Ivell R. Insulin-Like Factor 3 and the HPG Axis in the Male. Front Endocrinol (Lausanne) 2014; 5:6. [PMID: 24478759 PMCID: PMC3902607 DOI: 10.3389/fendo.2014.00006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/13/2014] [Indexed: 11/30/2022] Open
Abstract
The hypothalamic-pituitary-gonadal (HPG) axis comprises pulsatile GnRH from the hypothalamus impacting on the anterior pituitary to induce expression and release of both LH and FSH into the circulation. These in turn stimulate receptors on testicular Leydig and Sertoli cells, respectively, to promote steroidogenesis and spermatogenesis. Both Leydig and Sertoli cells exhibit negative feedback to the pituitary and/or hypothalamus via their products testosterone and inhibin B, respectively, thereby allowing tight regulation of the HPG axis. In particular, LH exerts both acute control on Leydig cells by influencing steroidogenic enzyme activity, as well as chronic control by impacting on Leydig cell differentiation and gene expression. Insulin-like peptide 3 (INSL3) represents an additional and different endpoint of the HPG axis. This Leydig cell hormone interacts with specific receptors, called RXFP2, on Leydig cells themselves to modulate steroidogenesis, and on male germ cells, probably to synergize with androgen-dependent Sertoli cell products to support spermatogenesis. Unlike testosterone, INSL3 is not acutely regulated by the HPG axis, but is a constitutive product of Leydig cells, which reflects their number and/or differentiation status and their ability therefore to produce various factors including steroids, together this is referred to as Leydig cell functional capacity. Because INSL3 is not subject to the acute episodic fluctuations inherent in the HPG axis itself, it serves as an excellent marker for Leydig cell differentiation and functional capacity, as in puberty, or in monitoring the treatment of hypogonadal patients, and at the same time buffering the HPG output.
Collapse
Affiliation(s)
- Richard Ivell
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, SA , Australia ; Leibniz Institute for Farm Animal Biology , Dummerstorf , Germany
| | - Kee Heng
- School of Molecular and Biomedical Science, University of Adelaide , Adelaide, SA , Australia
| | | |
Collapse
|
39
|
Hampel U, Klonisch T, Sel S, Schulze U, Garreis F, Seitmann H, Zouboulis CC, Paulsen FP. Insulin-like factor 3 promotes wound healing at the ocular surface. Endocrinology 2013; 154:2034-45. [PMID: 23539510 DOI: 10.1210/en.2012-2201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tear fluid is known to contain many different hormones with relevance for ocular surface homeostasis. We studied the presence and functional role of insulin-like factor 3 (INSL3) and its cognate receptor RXFP2 (relaxin/insulin-like family peptide receptor 2) at the ocular surface and in tears. Expression of human INSL3 and RXFP2 was determined in tissues of the ocular surface and lacrimal apparatus; in human corneal (HCE), conjunctival (HCjE), and sebaceous (SC) epithelial cell lines; and in human tears by RT-PCR and ELISA. We investigated effects of human recombinant INSL3 (hrINSL3) on cell proliferation and cell migration and the influence of hrINSL3 on the expression of MMP2, -9, and -13 and TIMP1 and -2 was quantified by real-time PCR and ELISA in HCE, HCjE, and SC cells. We used a C57BL/6 mouse corneal defect model to elucidate the effect of topical application of hrINSL3 on corneal wound healing. INSL3 and RXFP2 transcripts and INSL3 protein were detected in all tissues and cell lines investigated. Significantly higher concentrations of INSL3 were detected in tears from male vs. female volunteers. Stimulation of HCE, HCjE, and SC with hrINSL3 significantly increased cell proliferation in HCjE and SC and migration of HCjE. Treatment with hrINSL3 for 24 hours regulated MMP2, TIMP1, and TIMP2 expression. The local application of hrINSL3 onto denuded corneal surface resulted in significantly accelerated corneal wound healing in mice. These findings suggest a novel and gender-specific role for INSL3 and cognate receptor RXFP2 signaling in ocular surface homeostasis and determined a novel role for hrINSL3 in corneal wound healing.
Collapse
Affiliation(s)
- Ulrike Hampel
- Department of Anatomy II, Friedrich Alexander University Erlangen-Nürnberg, Faculty of Medicine, Universitätsstrasse 19, 91054 Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhou C, Zhang J, Ma J, Jiang A, Tang G, Mai M, Zhu L, Bai L, Li M, Li X. Gene expression profiling reveals distinct features of various porcine adipose tissues. Lipids Health Dis 2013; 12:75. [PMID: 23705929 PMCID: PMC3679871 DOI: 10.1186/1476-511x-12-75] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 05/22/2013] [Indexed: 12/15/2022] Open
Abstract
Background The excessive accumulation of body fat is a major risk factor to develop a variety of metabolic diseases. To investigate the systematic association between the differences in gene expression profiling and adipose deposition, we used pig as a model, and measured the gene expression profiling of six variant adipose tissues in male and females from three pig breeds which display distinct fat level. Results We identified various differential expressed genes among breeds, tissues and between sexes, and further used a clustering method to identify sets of functionally co-expression genes linked to different obesity-related phenotypes. Our results reveal that the subcutaneous adipose tissues mainly modulate metabolic indicators, nonetheless, the visceral adipose tissues as well as the intermuscular adipose tissue were mainly associated with the impaired inflammatory and immune response. Conclusions The present study provided the evidence of gene expression profiling that the subcutaneous adipose tissues are mainly affected the metabolism process, whereas the visceral and intermuscular adipose tissues should been term as the metabolic risk factors of obesity.
Collapse
Affiliation(s)
- Chaowei Zhou
- Institute of Animal Genetics & Breeding, College of Animal Science & Technology, Sichuan Agricultural University, Ya'an, Sichuan 625000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Functional link between bone morphogenetic proteins and insulin-like peptide 3 signaling in modulating ovarian androgen production. Proc Natl Acad Sci U S A 2013; 110:E1426-35. [PMID: 23530236 DOI: 10.1073/pnas.1222216110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) are firmly implicated as intra-ovarian regulators of follicle development and steroidogenesis. Here we report a microarray analysis showing that treatment of cultured bovine theca cells (TC) with BMP6 significantly (>twofold; P < 0.01) up- or down-regulated expression of 445 genes. Insulin-like peptide 3 (INSL3) was the most heavily down-regulated gene (-43-fold) with cytochrome P450, subfamily XVII (CYP17A1) and other key steroidogenic transcripts including steroidogenic acute regulatory protein (STAR), cytochrome P450 family 11, subfamily A1 (CYP11A1) and 3 beta-hydroxysteroid dehydrogenase type 1 (HSD3B1) also down-regulated. BMP6 also reduced expression of nuclear receptor subfamily 5A1 (NR5A1) known to target the promoter regions of the aforementioned genes. Real-time PCR confirmed these findings and also revealed a marked reduction in expression of INSL3 receptor, relaxin/insulin-like family peptide receptor 2 (RXFP2). Secretion of INSL3 protein and androstenedione were also suppressed suggesting a functional link between BMP and INSL3 pathways in controlling androgen synthesis. RNAi-mediated knockdown of INSL3 reduced INSL3 mRNA (75%) and protein (94%) level and elicited a 77% reduction in CYP17A1 mRNA and 83% reduction in androstenedione secretion. Knockdown of RXFP2 also reduced CYP17A1 expression (81%) and androstenedione secretion (88%). Conversely, treatment with exogenous (human) INSL3 increased androstenedione secretion ∼twofold. The CYP17A1 inhibitor abiraterone abolished androgen secretion and reduced expression of both INSL3 and RXFP2. Collectively, these findings indicate a positive autoregulatory role for INSL3 signaling in maintaining thecal androgen production, and visa versa. Moreover, BMP6-induced suppression of thecal androgen synthesis may be mediated, at least in part, by reduced INSL3-RXFP2 signaling.
Collapse
|
42
|
Rantakokko P, Main KM, Wohlfart-Veje C, Kiviranta H, Airaksinen R, Vartiainen T, Skakkebæk NE, Toppari J, Virtanen HE. Association of placenta organotin concentrations with congenital cryptorchidism and reproductive hormone levels in 280 newborn boys from Denmark and Finland. Hum Reprod 2013; 28:1647-60. [PMID: 23520400 DOI: 10.1093/humrep/det040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
STUDY QUESTION Is the placental burden of organotin compounds (OTCs) associated with congenital cryptorchidism in infant offspring from Finland and Denmark? SUMMARY ANSWER Increasing concentrations of OTCs had a negative association with cryptorchidism in Finland, whereas a positive association was found in Denmark. WHAT IS KNOWN ALREADY The rapid increase in the prevalence of cryptorchidism suggests that environmental factors, such as endocrine disruptors, may be involved. OTCs are endocrine disruptors at very low concentrations due to activation of the retinoid X receptor (RXR). STUDY DESIGN, SIZE, DURATION Between the years 1997 and 2001, placentas from mothers of cryptorchid boys and from healthy controls were collected from Denmark (39 cases, 129 controls) and Finland (56 cases, 56 controls). In Denmark 33 and 6 boys, and in Finland 22 and 34 boys had mild or severe cryptorchidism, respectively. The association between concentrations of four OTCs [monobutyltin (MBT), dibutyltin (DBT), tributyltin (TBT) and triphenyltin (TPhT)] and case-control status was estimated. PARTICIPANTS/MATERIALS, SETTING, METHODS In both countries, placenta samples were selected from larger cohorts. In Finland placenta samples were collected from boys with cryptorchidism at birth and matched controls (nested case-control design). Matching criteria were parity, maternal smoking (yes/no), diabetes (yes/no), gestational age (±7 days) and date of birth (±14 days). Numbers of controls per case was 1. In Denmark, all available placentas from cryptorchid boys were chosen and control placentas were selected randomly from the total Danish cohort (case-cohort design). The average number of controls per case was 3.3. OTCs in placenta samples were analysed with liquid extraction, ethylation and gas chromatography-mass spectrometry determination and coded by country-specific tertiles. MAIN RESULTS AND THE ROLE OF CHANCE Generally, the concentrations of OTCs were very low. For most analytes, a large proportion of samples (29-96% depending on the country and case-control status) had OTC concentrations below the limit of quantification (LOQ). As an exception, the concentration of TBT was >LOQ in 99% of Finnish placentas. The mean concentrations of DBT and TBT were 1.5 and 7 times higher in Finland than in Denmark, respectively. For DBT in Danish placentas, the odds ratio (OR) for cryptorchidism in the second tertile (0.10-0.14 ng/g) when compared with the first tertile (<0.10 ng/g, <LOQ) was 3.13 (95% CI 1.19-8.26) and the OR for the third tertile (≥0.15 ng/g) when compared with the first tertile was 4.01 (95% CI 1.42-11.33). For TBT in Finnish placentas, the OR for cryptorchidism in the second tertile (0.10-0.39 ng/g) when compared with the first tertile (<0.1 ng/g) was 0.61 (95% CI 0.18-2.01) and the OR for the third tertile (≥0.40 ng/g) when compared with the first tertile was 0.13 (95% CI 0.03-0.54). LIMITATIONS, REASONS FOR CAUTION The main limitation of the study was the relatively small number of mother-boy pairs that limits the extrapolation of the study results to the general population. Also misclassification of exposure is a reason for caution for two reasons: because the concentrations of most OTCs were below or only barely above the LOQ in a large proportion of samples and because it is not known how well OTCs measured from placenta represent exposure at the time window that is relevant for cryptorchidism occurrence. WIDER IMPLICATIONS OF THE FINDINGS This is the first study to measure the concentrations of OTCs from human placenta samples, and to associate these concentrations to cryptorchidism. As opposite results were obtained with regard to OTC concentration in placenta and cryptorchidism status in Finland and Denmark, and no mechanism is known at the moment by which OTCs could affect testicular descent, these results cannot be generalized to other populations. However, some animal tests described in the literature show opposite effects of OTCs on fat deposition at different ranges of exposure. It is also clearly shown in the literature that TBT has an impact on sexual development of gastropods through RXR. As TBT is known to activate human RXR, further laboratory studies should be designed to explore the potential impact of TBT on male sexual development.
Collapse
Affiliation(s)
- Panu Rantakokko
- National Institute for Health and Welfare, Department of Environmental Health, Chemical Exposure Unit, Neulaniementie 4, FI-70210 Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
44
|
Philibert P, Boizet-Bonhoure B, Bashamboo A, Paris F, Aritake K, Urade Y, Leger J, Sultan C, Poulat F. Unilateral cryptorchidism in mice mutant for Ptgds. Hum Mutat 2012; 34:278-82. [PMID: 23076868 DOI: 10.1002/humu.22231] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 09/17/2012] [Indexed: 11/09/2022]
Abstract
The pathophysiology of cryptorchidism, abnormal testicular descent, remains poorly understood. In this study, we show that both heterozygous and homozygous mice deficient for lipocalin-type prostaglandin D(2) (PGD(2) ) synthase (Ptgds) presented unilateral cryptorchidism affecting the second phase of testicular descent in 16% and 24% of cases, respectively. The adult cryptorchid testes show an increase in spermatogonia apoptosis along with a global decrease in the tubule size parameters, whereas the gubernaculum of newborn mutants present some histological abnormalities. Disruption of the inguinoscrotal phase did not present impairment of the androgen pathway but rather a decrease in Rxfp2 mRNA expression in the gubernaculum. These observations led us to investigate the role of the PGD(2) signaling pathway in human testicular migration through PTGDS sequencing of DNA from 29 children with cryptorchidism. However, none of the investigated cases presented mutations in the PTGDS gene. Nevertheless, our results identify the PTGDS enzyme as a novel component in the cryptorchidism puzzle.
Collapse
Affiliation(s)
- Pascal Philibert
- Département d'Hormonologie, Hôpital Lapeyronie, CHU de Montpellier et Université Montpellier 1, Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Zhang H, Wang Z, Wang S, Li H. Progress of genome wide association study in domestic animals. J Anim Sci Biotechnol 2012; 3:26. [PMID: 22958308 PMCID: PMC3506437 DOI: 10.1186/2049-1891-3-26] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 08/14/2012] [Indexed: 01/29/2023] Open
Abstract
Domestic animals are invaluable resources for study of the molecular architecture of complex traits. Although the mapping of quantitative trait loci (QTL) responsible for economically important traits in domestic animals has achieved remarkable results in recent decades, not all of the genetic variation in the complex traits has been captured because of the low density of markers used in QTL mapping studies. The genome wide association study (GWAS), which utilizes high-density single-nucleotide polymorphism (SNP), provides a new way to tackle this issue. Encouraging achievements in dissection of the genetic mechanisms of complex diseases in humans have resulted from the use of GWAS. At present, GWAS has been applied to the field of domestic animal breeding and genetics, and some advances have been made. Many genes or markers that affect economic traits of interest in domestic animals have been identified. In this review, advances in the use of GWAS in domestic animals are described.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture, Harbin, 150030, People's Republic of China.
| | | | | | | |
Collapse
|
46
|
Virtanen HE, Adamsson A. Cryptorchidism and endocrine disrupting chemicals. Mol Cell Endocrinol 2012; 355:208-20. [PMID: 22127307 DOI: 10.1016/j.mce.2011.11.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 10/15/2022]
Abstract
Prospective clinical studies have suggested that the rate of congenital cryptorchidism has increased since the 1950s. It has been hypothesized that this may be related to environmental factors. Testicular descent occurs in two phases controlled by Leydig cell-derived hormones insulin-like peptide 3 (INSL3) and testosterone. Disorders in fetal androgen production/action or suppression of Insl3 are mechanisms causing cryptorchidism in rodents. In humans, prenatal exposure to potent estrogen diethylstilbestrol (DES) has been associated with increased risk of cryptorchidism. In addition, epidemiological studies have suggested that exposure to pesticides may also be associated with cryptorchidism. Some case-control studies analyzing environmental chemical levels in maternal breast milk samples have reported associations between cryptorchidism and chemical levels. Furthermore, it has been suggested that exposure levels of some chemicals may be associated with infant reproductive hormone levels.
Collapse
|
47
|
Kaftanovskaya EM, Huang Z, Barbara AM, De Gendt K, Verhoeven G, Gorlov IP, Agoulnik AI. Cryptorchidism in mice with an androgen receptor ablation in gubernaculum testis. Mol Endocrinol 2012; 26:598-607. [PMID: 22322597 DOI: 10.1210/me.2011-1283] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Androgens play a critical role in the development of the male reproductive system, including the positioning of the gonads. It is not clear, however, which developmental processes are influenced by androgens and what are the target tissues and cells mediating androgen signaling during testicular descent. Using a Cre-loxP approach, we have produced male mice (GU-ARKO) with conditional inactivation of the androgen receptor (Ar) gene in the gubernacular ligament connecting the epididymis to the caudal abdominal wall. The GU-ARKO males had normal testosterone levels but developed cryptorchidism with the testes located in a suprascrotal position. Although initially subfertile, the GU-ARKO males became sterile with age. We have shown that during development, the mutant gubernaculum failed to undergo eversion, a process giving rise to the processus vaginalis, a peritoneal outpouching inside the scrotum. As a result, the cremasteric sac did not form properly, and the testes remained in the low abdominal position. Abnormal development of the cremaster muscles in the GU-ARKO males suggested the participation of androgens in myogenic differentiation; however, males with conditional AR inactivation in the striated or smooth muscle cells had a normal testicular descent. Gene expression analysis showed that AR deficiency in GU-ARKO males led to the misexpression of genes involved in muscle differentiation, cell signaling, and extracellular space remodeling. We therefore conclude that AR signaling in gubernacular cells is required for gubernaculum eversion and outgrowth. The GU-ARKO mice provide a valuable model of isolated cryptorchidism, one of the most common birth defects in newborn boys.
Collapse
Affiliation(s)
- Elena M Kaftanovskaya
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Kijas JW, Lenstra JA, Hayes B, Boitard S, Porto Neto LR, San Cristobal M, Servin B, McCulloch R, Whan V, Gietzen K, Paiva S, Barendse W, Ciani E, Raadsma H, McEwan J, Dalrymple B. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol 2012; 10:e1001258. [PMID: 22346734 PMCID: PMC3274507 DOI: 10.1371/journal.pbio.1001258] [Citation(s) in RCA: 544] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 12/28/2011] [Indexed: 12/19/2022] Open
Abstract
Genomic structure in a global collection of domesticated sheep reveals a history of artificial selection for horn loss and traits relating to pigmentation, reproduction, and body size. Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species. During the process of domestication, mankind recruited animals from the wild into a captive environment, changing their morphology, behaviour, and genetics. In the case of sheep, domestication and subsequent selection by their animal handlers over thousands of years has produced a spectrum of breeds specialised for the production of wool, milk, and meat. We sought to use this population history to search for the genes that directly underpin phenotypic variation. We collected DNA from 2,819 sheep, belonging to 74 breeds sampled from around the world, and assessed the genotype of each animal at nearly 50,000 locations across the genome. Our results show that sheep breeds have maintained high levels of genetic diversity, in contrast to other domestic animals such as dogs. We also show that particular regions of the genome contain strong evidence for accelerated change in response to artificial selection. The most prominent example was identified in response to breeding for the absence of horns, a trait now common across many modern breeds. Furthermore, we demonstrate that other genomic regions under selection in sheep contain genes controlling pigmentation, reproduction, and body size.
Collapse
|
49
|
Bay K, Andersson AM. Human testicular insulin-like factor 3: in relation to development, reproductive hormones and andrological disorders. ACTA ACUST UNITED AC 2011; 34:97-109. [PMID: 20550598 DOI: 10.1111/j.1365-2605.2010.01074.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Knockout of the gene encoding insulin-like factor 3 (INSL3) results in cryptorchidism in mice due to disruption of the transabdominal phase of testicular descent. This finding was essential for understanding the complete course of testis descensus, and wound up years of speculations regarding the endocrine regulation of this process. INSL3 is, along with testosterone, a major secretory product of testicular Leydig cells. In addition to its crucial function in testicular descent, INSL3 is suggested to play a paracrine role in germ cell survival and an endocrine role in bone metabolism. INSL3 is produced in human prenatal and neonatal, and in adult Leydig cells to various extents, and is in a developmental context regulated like testosterone, with production during second trimester, an early postnatal peak and increasing secretion during puberty, resulting in high adult serum levels. INSL3 production is entirely dependent on the state of Leydig cell differentiation, and is stimulated by the long-term trophic effects mediated by luteinizing hormone (LH). Once differentiated, Leydig cells apparently express INSL3 in a constitutive manner, and the hormone is thereby insensitive to the acute, steroidogenic effects of LH, which for example is an important factor in the regulation of testosterone. Clinically, serum INSL3 levels can turn out to be a usable tool to monitor basal Leydig cell function in patients with various disorders affecting Leydig cell function. According to animal studies, foetal INSL3 production is, directly or indirectly, sensitive to oestrogenic or anti-androgenic compounds. This provides important insight into the mechanism by which maternal exposure to endocrine disrupters can result in cryptorchidism in the next generation. Conclusively, INSL3 is an interesting testicular hormone with potential clinical value as a marker for Leydig cell function. It should be considered on a par with testosterone in the evaluation of testicular function and the consequences of Leydig cell dysfunction.
Collapse
Affiliation(s)
- K Bay
- University Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark.
| | | |
Collapse
|
50
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:231-4. [PMID: 21844704 DOI: 10.1097/med.0b013e3283473d73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|