1
|
Liu W, Du L, Li J, He Y, Tang M. Microenvironment of spermatogonial stem cells: a key factor in the regulation of spermatogenesis. Stem Cell Res Ther 2024; 15:294. [PMID: 39256786 PMCID: PMC11389459 DOI: 10.1186/s13287-024-03893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Spermatogonial stem cells (SSCs) play a crucial role in the male reproductive system, responsible for maintaining continuous spermatogenesis. The microenvironment or niche of SSCs is a key factor in regulating their self-renewal, differentiation and spermatogenesis. This microenvironment consists of multiple cell types, extracellular matrix, growth factors, hormones and other molecular signals that interact to form a complex regulatory network. This review aims to provide an overview of the main components of the SSCs microenvironment, explore how they regulate the fate decisions of SSCs, and discuss the potential impact of microenvironmental abnormalities on male reproductive health.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Li Du
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University School of Medicine, Changsha, China
| | - Junjun Li
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China
| | - Yan He
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| | - Mengjie Tang
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, China.
| |
Collapse
|
2
|
Sahraei H, Mogheiseh A, Nazifi S, Divar M, Iraji F. Canine and feline foetal fluids: Volume, hormonal and biochemical characterization during pregnancy. Vet Med Sci 2024; 10:e1452. [PMID: 38654677 PMCID: PMC11040235 DOI: 10.1002/vms3.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/12/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND AND OBJECTIVES This study aimed to evaluate the volume, the concentration of steroid hormones, and biochemical composition of the foetal fluids at different gestational ages in dogs and cats. METHODS Following the ovariohysterectomy, the allantoic and amniotic fluid samples were collected from pregnant bitches and queens and were assigned to different groups according to their gestational age. RESULTS The canine and feline allantoic fluid volume increased during pregnancy, reached its maximum values on days 40-49 and then decreased. The canine and feline amniotic fluid volume increased steadily by the last days of pregnancy. In spite of significant changes of sex hormones in the foetal fluids, their concentration and ratios were not significantly different between male and female fetuses. The canine amniotic cortisol concentration increased until days 40-49 and decreased significantly afterwards. The maximum cortisol concentrations in the feline allantoic and amniotic fluids were observed on days 50-60 and 40-49, respectively. During the canine pregnancy, the concentrations of calcium, phosphorus, chloride, sodium, triglyceride, cholesterol, total protein, albumin and the activities of aminotransferase (AST), alkaline phosphatase (ALP), amylase and gamma-glutamyl transferase (GGT) in the amniotic fluid were higher than the allantoic fluid. The magnesium, potassium, lactate dehydrogenase (LDH) activity, creatine and lipase were higher in the allantoic fluid. In the feline allantoic fluid, potassium, magnesium, phosphorus, creatinine, albumin and glucose concentrations and the activities of creatine kinase (CK), GGT, LDH and lipase were higher. The ALP, AST activities, sodium and calcium concentrations were higher in the amniotic fluid (p < 0.05). CONCLUSION Volume of foetal fluids was determined in dogs and cats. Concentration of sex hormones did not different between male and female fetuses.
Collapse
Affiliation(s)
- Hossein Sahraei
- Department of clinical Sciences, School of Veterinary MedicineShiraz UniversityShirazFarsIran
| | - Asghar Mogheiseh
- Department of clinical Sciences, School of Veterinary MedicineShiraz UniversityShirazFarsIran
| | - Saeed Nazifi
- Department of clinical Sciences, School of Veterinary MedicineShiraz UniversityShirazFarsIran
| | - Mohammad‐Reza Divar
- Department of clinical Sciences, School of Veterinary MedicineShiraz UniversityShirazFarsIran
| | - Fatemeh Iraji
- Department of clinical Sciences, School of Veterinary MedicineShiraz UniversityShirazFarsIran
| |
Collapse
|
3
|
Wei X, Zhang Z, Gu Y, Zhang R, Huang J, Li F, He Y, Lu S, Wu Y, Zeng W, Liu X, Liu C, Liu J, Ao L, Shi F, Chen Q, Lin Y, Du J, Jin G, Xia Y, Ma H, Zheng Y, Huo R, Cao J, Shen H, Hu Z. Inter- and trans-generational impacts of real-world PM 2.5 exposure on male-specific primary hypogonadism. Cell Discov 2024; 10:44. [PMID: 38649348 PMCID: PMC11035589 DOI: 10.1038/s41421-024-00657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/02/2024] [Indexed: 04/25/2024] Open
Abstract
Exposure to PM2.5, a harmful type of air pollution, has been associated with compromised male reproductive health; however, it remains unclear whether such exposure can elicit transgenerational effects on male fertility. Here, we aim to examine the effect of paternal exposure to real-world PM2.5 on the reproductive health of male offspring. We have observed that paternal exposure to real-world PM2.5 can lead to transgenerational primary hypogonadism in a sex-selective manner, and we have also confirmed this phenotype by using an external model. Mechanically, we have identified small RNAs (sRNAs) that play a critical role in mediating these transgenerational effects. Specifically, miR6240 and piR016061, which are present in F0 PM sperm, regulate intergenerational transmission by targeting Lhcgr and Nsd1, respectively. We have also uncovered that piR033435 and piR006695 indirectly regulate F1 PM sperm methylation by binding to the 3'-untranslated region of Tet1 mRNA. The reduced expression of Tet1 resulted in hypermethylation of several testosterone synthesis genes, including Lhcgr and Gnas, impaired Leydig cell function and ultimately led to transgenerational primary hypogonadism. Our findings provide insights into the mechanisms underlying the transgenerational effects of paternal PM2.5 exposure on reproductive health, highlighting the crucial role played by sRNAs in mediating these effects. The findings underscore the significance of paternal pre-conception interventions in alleviating the adverse effects of environmental pollutants on reproductive health.
Collapse
Affiliation(s)
- Xiaoyu Wei
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhonghao Zhang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yayun Gu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jie Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuai Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yifei Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wentao Zeng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaorui Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenzi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyi Liu
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fuquan Shi
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, Shandong, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China.
| | - Hongbing Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
Weniger M, Mattes M, Grünewald TGP, Köhler K, Hübner A, Beuschlein F, Reisch N. Quantitative Characterization of Ectopic Adrenal Gene Expression in Fetal Testes in 21-Hydroxylase Deficient Mice. Horm Metab Res 2024; 56:38-44. [PMID: 38171371 DOI: 10.1055/a-2216-0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Testicular adrenal rest tumors (TART) are a frequent and fertility impairing long-term complication in males with classic congenital adrenal hyperplasia. Due to lack of clear experimental data on their origin, they are hypothesized to be derived from ectopic adrenocortical cells within testicular tissue mainly growing upon stimulation by chronically elevated levels of adrenocorticotropin (ACTH). Alternatively, a more totipotent embryological origin has been discussed as the potential source of these tumors. The aim of this study was to quantify alterations of ectopic expression of adrenocortical genes (CYP11B1, CYP11B2, CYP21, MC2R) and the Leydig cell specific marker (INSL3) in testicular tissue of fetal 21-hydroxylase deficient (21OHD) mice. Timed-pregnancy studies were performed using H-2aw18 (aw18)-mice. Testes and adrenals of E15.5 and E18.5 mouse fetuses were used for real-time PCR and immunohistochemistry. Gene expression levels were analyzed for genotype-dependent alterations and compared with immunohistochemistry. While enzymes of steroidogenesis showed a significant increased expression in adrenals of 21OHD mice at both E15.5 and E18.5 compared to wild-type (WT) mice, expression levels were unaltered in testes of 21OHD mice. When compared to WT adrenals a significant increase of INSL3 expression in adrenals of 21OHD mice at E15.5 and E18.5 was detected. Cells with adrenocortical properties in mice fetal testis differ from in situ adrenocortical cells in gene expression and growth at E15.5 and E18.5. These findings suggest that the different local regulation and different local niche in adrenals and testes influence growth of aberrant adrenal cells.
Collapse
Affiliation(s)
| | - Maria Mattes
- Medizinische Klinik IV, LMU Klinikum München, Munich, Germany
| | - Thomas G P Grünewald
- Max Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, LMU Klinikum München, Munich, Germany
| | - Katrin Köhler
- Pediatric Endocrinology, Children's Hospital, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Angela Hübner
- Pediatric Endocrinology, Children's Hospital, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Felix Beuschlein
- Medizinische Klinik IV, LMU Klinikum München, Munich, Germany
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zürich, Zürich, Switzerland
| | - Nicole Reisch
- Medizinische Klinik IV, LMU Klinikum München, Munich, Germany
| |
Collapse
|
5
|
Whiley PAF, Luu MCM, O’Donnell L, Handelsman DJ, Loveland KL. Testis exposure to unopposed/elevated activin A in utero affects somatic and germ cells and alters steroid levels mimicking phthalate exposure. Front Endocrinol (Lausanne) 2023; 14:1234712. [PMID: 37727456 PMCID: PMC10505732 DOI: 10.3389/fendo.2023.1234712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023] Open
Abstract
Correct fetal testis development underpins adult male fertility, and TGFβ superfamily ligands control key aspects of this process. Transcripts encoding one such ligand, activin A, are upregulated in testes after sex determination and remain high until after birth. Testis development requires activin signalling; mice lacking activin A (Inhba KO) display altered somatic and germ cell proliferation, disrupted cord elongation and altered steroid synthesis. In human pregnancies with pre-eclampsia, the foetus is inappropriately exposed to elevated activin A. To learn how this affects testis development, we examined mice lacking the potent activin inhibitor, inhibin, (Inha KO) at E13.5, E15.5 and PND0. At E13.5, testes appeared similar in WT and KO littermates, however E15.5 Inha KO testes displayed two germline phenotypes: (1) multinucleated germ cells within cords, and (2) germ cells outside of cords, both of which are documented following in utero exposure to endocrine disrupting phthalates in rodents. Quantitation of Sertoli and germ cells in Inha KO (modelling elevated activin A) and Inhba KO (low activin A) testes using immunofluorescence demonstrated activin A bioactivity determines the Sertoli/germ cell ratio. The 50% reduction in gonocytes in Inha KO testes at birth indicates unopposed activin A has a profound impact on embryonic germ cells. Whole testis RNAseq on Inha KO mice revealed most transcripts affected at E13.5 were present in Leydig cells and associated with steroid biosynthesis/metabolism. In agreement, androstenedione (A4), testosterone (T), and the A4:T ratio were reduced in Inha KO testes at E17.5, confirming unopposed activin A disrupts testicular steroid production. E15.5 testes cultured with either activin A and/or mono-2-ethylhexyl phthalate (MEHP) generated common histological and transcriptional outcomes affecting germline and Leydig cells, recapitulating the phenotype observed in Inha KO testes. Cultures with activin A and MEHP together provided evidence of common targets. Lastly, this study extends previous work focussed on the Inhba KO model to produce a signature of activin A bioactivity in the fetal testis. These outcomes show the potential for elevated activin A signalling to replicate some aspects of fetal phthalate exposure prior to the masculinization programming window, influencing fetal testis growth and increasing the risk of testicular dysgenesis.
Collapse
Affiliation(s)
- Penny A. F. Whiley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Michael C. M. Luu
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Liza O’Donnell
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | | | - Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
6
|
Ersoy B, Ovalı GY, Canda E, Onur E, Özyurt BC, Tansuğ N. The relationship between ultrasonographically measured testicular volumes and cord blood inhibin B concentrations in healthy term male neonates. Reprod Biol 2023; 23:100786. [PMID: 37429065 DOI: 10.1016/j.repbio.2023.100786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023]
Abstract
Serum inhibin B (INHB) concentrations are associated with testicular volumes (TV) in all periods of childhood. The aim of the study was to investigate the relationship between TV measured by ultrasonography (US) and cord blood inhibin B and total testosterone (TT) concentrations, stratified by mode of delivery. In total 90 male infants were included. Testes of healthy, term newborns were evaluated by US on the third day after delivery. TV were calculated using two formulae: The ellipsoid formula [length (mm) × width (mm2) × π/6] and Lambert formula [length (mm) x width (mm) x height (mm) x 0.71]. Cord blood was taken for the determination of total testosterone (TT) and INHB. TT and INHB concentrations were evaluated according to TV percentiles (<10th, 10th-90th, >90th). There was a strong positive correlation between mean TV calculated with both formulae by percentile group (r = 0.777, r = 0.804, r = 0.846; p < 0.001). Cord blood INHB, but not TT were significantly lower in newborns with TV < 10th percentile compared to those with TV between 10 and 90th percentile and > 90th percentile (p < 0.05). There was a positive correlation between left and right TV calculated by either formula, and cord blood INHB (r = 0.212, 0.313, 0.320, 0.246,p < 0.05), not TT. There was no significant difference between hormones and TV when grouped by mode of delivery (p > 0.05). The Lambert and ellipsoid formulas are equally reliable in calculating neonatal testicular by ultrasound. INHB concentration is high in cord blood and positively correlated with neonatal TV. Cord blood INHB concentration may be an indicator for early detection of testicular structure and function disorders in neonates.
Collapse
Affiliation(s)
- Betül Ersoy
- Celal Bayar University, Faculty of Medicine, Department of Pediatrics, Division of Pediatric Endocrinology and Metabolism, Manisa, Turkey.
| | - Gülgün Yılmaz Ovalı
- Celal Bayar University, Faculty of Medicine, Department of Radiology, Manisa, Turkey
| | - Ebru Canda
- Ege University, Faculty of Medicine, Department of Pediatrics, İzmi̇r, Turkey
| | - Ece Onur
- Celal Bayar University, Faculty of Medicine, Department of Clinical Biochemistry, Manisa, Turkey
| | - Beyhan Cengiz Özyurt
- Celal Bayar University, Faculty of Medicine, Department of Public Health, Mani̇sa, Turkey
| | - Nermin Tansuğ
- İstinye University, School of Medicine, Department of Pediatrics, Division of Neonatalogy, İstanbul, Turkey
| |
Collapse
|
7
|
Elcombe CS, Monteiro A, Ghasemzadeh-Hasankolaei M, Padmanabhan V, Lea R, Sinclair KD, Evans NP, Bellingham M. Developmental exposure to a real-life environmental chemical mixture alters testicular transcription factor expression in neonatal and pre-pubertal rams, with morphological changes persisting into adulthood. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104152. [PMID: 37209889 PMCID: PMC10457458 DOI: 10.1016/j.etap.2023.104152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Environmental chemical (EC) exposure may be impacting male reproductive health. The translationally relevant biosolids treated pasture (BTP) sheep model was used to investigate gestational low-level EC mixture exposure on the testes of F1 male offspring. Adult rams from ewes exposed to BTP 1 month before and throughout pregnancy had more seminiferous tubules with degeneration and depletion of elongating spermatids, indicating possible "recovery" from previously reported testicular dysgenesis syndrome-like phenotype in neonatal and pre-pubertal BTP lambs. Expression of transcription factors CREB1 (neonatal) and BCL11A and FOXP2 (pre-pubertal) were significantly higher in the BTP exposed testes, with no changes seen in adults. Increased CREB1, which is crucial for testes development and regulation of steroidogenic enzymes, could be an adaptive response to gestational EC exposure to facilitate the phenotypic recovery. Overall, this demonstrates that testicular effects from gestational exposure to low-level mixtures of ECs can last into adulthood, potentially impacting fertility and fecundity.
Collapse
Affiliation(s)
- Chris S Elcombe
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Ana Monteiro
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | | | - Richard Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Neil P Evans
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Michelle Bellingham
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
8
|
Tinning H, Edge JC, DeBem THC, Deligianni F, Giovanardi G, Pensabene V, Meirelles FV, Forde N. Review: Endometrial function in pregnancy establishment in cattle. Animal 2023; 17 Suppl 1:100751. [PMID: 37567655 DOI: 10.1016/j.animal.2023.100751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
The endometrium is fundamentally required for successful pregnancy in ruminants and species where the posthatching conceptus undergoes a protracted elongation and peri-implantation phase of pregnancy. Moreover, there are substantial waves of pregnancy loss during this pre- and peri-implantation period of pregnancy the precise source of which has not been clearly defined i.e., the maternal uterine contribution to this loss. Understanding the molecular interactions required for successful pregnancy in cattle will allow us to intervene to support pregnancy success during this vulnerable window. The endometrium contributes to most key developmental milestones of pregnancy establishment, including (1) contributing to the regulation of the oestrus cycle, (2) nourishing the preimplantation conceptus, (3) responding to the conceptus to create a more receptive microenvironment, (4) providing essential biophysical support, and (5) signalling and producing factors which affect the mother systemically. This review will summarise what we currently know about conceptus-maternal interactions as well as identify the gaps in our knowledge that could be filled with newer in vitro model approaches. These include the use of microfluidics, organ-on-a-chip devices, and bioinformatic approaches. This will help maximise food production efficiency (both meat and dairy) and decrease the environmental burden, while enhancing our understanding of the fundamental processes required for successful implantation in cattle.
Collapse
Affiliation(s)
- H Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - J C Edge
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - T H C DeBem
- Department of Veterinary Medicine, College of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Sao Paulo, Brazil
| | - F Deligianni
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - G Giovanardi
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom; School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - V Pensabene
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - F V Meirelles
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - N Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
9
|
Cunha GR, Cao M, Aksel S, Derpinghaus A, Baskin LS. Mouse-human species differences in early testicular development and its implications. Differentiation 2023; 129:79-95. [PMID: 35667976 DOI: 10.1016/j.diff.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/16/2022] [Accepted: 04/24/2022] [Indexed: 01/25/2023]
Abstract
The mouse has been used as a model of human organogenesis with the tacit assumption that morphogenetic and molecular mechanisms in mice are translatable to human organogenesis. While many morphogenetic and molecular mechanisms are shared in mice and humans, many anatomic, morphogenetic, and molecular differences have been noted. Two critical gaps in our knowledge prevent meaningful comparisons of mouse versus human testicular development: (a) human testicular development is profoundly under-represented in the literature, and (b) an absence of a detailed day-by-day ontogeny of mouse testicular development from E11.5 to E16.5 encompassing the ambisexual stage to seminiferous cord formation. To address these deficiencies, histologic and immunohistochemical studies were pursued in comparable stages of mouse and human testicular development with a particular emphasis on Leydig, Sertoli and myoid cells through review of the literature and new observations. For example, an androgen-receptor-positive testicular medulla is present in the developing human testis but not in the developing mouse testis. The human testicular medulla and associated mesonephros were historically described as the source of Sertoli cells in seminiferous cords. Consistent with this idea, the profoundly androgen receptor (AR)-positive human testicular medulla was shown to be a zone of mesenchymal to epithelial transition and a zone from which AR-positive cells appear to migrate into the human testicular cortex. While mouse Sertoli and Leydig cells have been proposed to arise from coelomic epithelium, Sertoli (SOX9) or Leydig (HSD3B1) cell markers are absent from the immediate coelomic zone of the developing human testis, perhaps because Leydig and Sertoli cell precursors are undifferentiated when they egress from the coelomic epithelium. The origin of mouse and human myoid cells remains unclear. This study provides a detailed comparison of the early stages of testicular development in human and mouse emphasizing differences in developmental processes.
Collapse
Affiliation(s)
- Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Sena Aksel
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amber Derpinghaus
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| |
Collapse
|
10
|
Acosta-Martínez M. Hypothalamic-Pituitary-Gonadal Axis Disorders Impacting Fertility in Both Sexes and the Potential of Kisspeptin-Based Therapies to Treat Them. Handb Exp Pharmacol 2023; 282:259-288. [PMID: 37439848 DOI: 10.1007/164_2023_666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Impaired function of the hypothalamic-pituitary-gonadal (HPG) axis can lead to a vast array of reproductive disorders some of which are inherited or acquired, but many are of unknown etiology. Among the clinical consequences of HPG impairment, infertility is quite common. According to the latest report from the World Health Organization, the global prevalence of infertility during a person's lifetime is a staggering 17.5% which translate into 1 out of every 6 people experiencing it. In both sexes, infertility is associated with adverse health events, and if unresolved, infertility can cause substantial psychological stress, social stigmatization, and economic strain. Even though significant advances have been made in the management and treatment of infertility, low or variable efficacy of treatments and medication adverse effects still pose a significant problem. However, the discovery that in humans inactivating mutations in the gene encoding the kisspeptin receptor (Kiss1R) results in pubertal failure and infertility has expanded our understanding of the mechanisms underlying the neuroendocrine control of reproduction, opening up potential new therapies for the treatment of infertility disorders. In this chapter we provide an overview of common infertility disorders affecting men and women, their recommended treatments, and the potential of kisspeptin-based pharmacotherapies to treat them.
Collapse
Affiliation(s)
- Maricedes Acosta-Martínez
- Department of Physiology and Biophysics, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA.
| |
Collapse
|
11
|
Aksel S, Cao M, Derpinghaus A, Baskin LS, Cunha GR. Ontogeny of mouse Sertoli, Leydig and peritubular myoid cells from embryonic day 10 to adulthood. Differentiation 2023; 129:96-108. [PMID: 35317954 DOI: 10.1016/j.diff.2022.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/25/2023]
Abstract
We present a comprehensive description of the differentiating somatic cell types (Sertoli, Leydig, and peritubular myoid cells) of the mouse testis from embryonic day 10.5 (E10.5) to adulthood, postnatal day 60 (P60). Immunohistochemistry was used to analyze expression of: Sox9 (a Sertoli cell marker), 3βHSD-1 (a fetal Leydig cell marker), 3βHSD-6 (an adult Leydig cell marker), α-actin (a peritubular myoid cell marker), and androgen receptor (a marker of all three somatic cell types). The temporal-spatial expression of these markers was used to interrogate findings of earlier experimental studies on the origin of Sertoli, Leydig and peritubular myoid cells, as well as extend previous descriptive studies across a broader developmental period (E10.5-P60). Such comparisons demonstrate inconsistencies that require further examination and raise questions regarding conservation of developmental mechanisms across higher vertebrate species.
Collapse
Affiliation(s)
- Sena Aksel
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Mei Cao
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amber Derpinghaus
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Laurence S Baskin
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Gerald R Cunha
- Department of Urology, University of California, 400 Parnassus Avenue, San Francisco, CA, 94143, USA.
| |
Collapse
|
12
|
Sepponen K, Lundin K, Yohannes DA, Vuoristo S, Balboa D, Poutanen M, Ohlsson C, Hustad S, Bifulco E, Paloviita P, Otonkoski T, Ritvos O, Sainio K, Tapanainen JS, Tuuri T. Steroidogenic factor 1 (NR5A1) induces multiple transcriptional changes during differentiation of human gonadal-like cells. Differentiation 2022; 128:83-100. [DOI: 10.1016/j.diff.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/14/2022] [Accepted: 08/14/2022] [Indexed: 11/03/2022]
|
13
|
Lecante LL, Gaye B, Delbes G. Impact of in Utero Rat Exposure to 17Alpha-Ethinylestradiol or Genistein on Testicular Development and Germ Cell Gene Expression. FRONTIERS IN TOXICOLOGY 2022; 4:893050. [PMID: 35722060 PMCID: PMC9201280 DOI: 10.3389/ftox.2022.893050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Although the decline in male fertility is believed to partially result from environmental exposures to xenoestrogens during critical developmental windows, the underlying mechanisms are still poorly understood. Experimental in utero exposures in rodents have demonstrated the negative impact of xenoestrogens on reproductive development, long-term adult reproductive function and offspring health. In addition, transcriptomic studies have demonstrated immediate effects on gene expression in fetal reproductive tissues, However, the immediate molecular effects on the developing germ cells have been poorly investigated. Here, we took advantage of a transgenic rat expressing the green fluorescent protein specifically in germ cells allowing purification of perinatal GFP-positive germ cells. Timed-pregnant rats were exposed to ethinylestradiol (EE2, 2 μg/kg/d), genistein (GE, 10 mg/kg/d) or vehicle by gavage, from gestational days (GD) 13–19; testes were sampled at GD20 or post-natal (PND) 5 for histological analysis and sorting of GFP-positive cells. While EE2-exposed females gained less weight during treatment compared to controls, neither treatment affected the number of pups per litter, sex ratio, anogenital distance, or body and gonadal weights of the offspring. Although GE significantly decreased circulating testosterone at GD20, no change was observed in either testicular histology or germ cell and sertoli cell densities. Gene expression was assessed in GFP-positive cells using Affymetrix Rat Gene 2.0 ST microarrays. Analysis of differentially expressed genes (DEGs) (p < 0.05; fold change 1.5) identified expression changes of 149 and 128 transcripts by EE2 and GE respectively at GD20, and 287 and 207 transcripts at PND5, revealing an increased effect after the end of treatment. Only about 1% of DEGs were common to both stages for each treatment. Functional analysis of coding DEG revealed an overrepresentation of olfactory transduction in all groups. In parallel, many non-coding RNAs were affected by both treatments, the most represented being small nucleolar and small nuclear RNAs. Our data suggest that despite no immediate toxic effects, fetal exposure to xenoestrogens can induce subtle immediate changes in germ cell gene expression. Moreover, the increased number of DEGs between GD20 and PND5 suggests an effect of early exposures with latent impact on later germ cell differentiation.
Collapse
|
14
|
Faure MC, Khoueiry R, Quanico J, Acloque H, Guerquin MJ, Bertoldo MJ, Chevaleyre C, Ramé C, Fournier I, Salzet M, Dupont J, Froment P. In Utero Exposure to Metformin Reduces the Fertility of Male Offspring in Adulthood. Front Endocrinol (Lausanne) 2021; 12:750145. [PMID: 34745014 PMCID: PMC8565088 DOI: 10.3389/fendo.2021.750145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Metformin is a drug used for the treatment of type 2 diabetes and disorders associated with insulin resistance. Metformin is also used in the treatment of pregnancy disorders such as gestational diabetes. However, the consequences of foetal exposure to metformin on the fertility of exposed offspring remain poorly documented. In this study, we investigated the effect of in utero metformin exposure on the fertility of female and male offspring. We observed that metformin is detectable in the blood of the mother and in amniotic fluid and blood of the umbilical cord. Metformin was not measurable in any tissues of the embryo, including the gonads. The effect of metformin exposure on offspring was sex specific. The adult females that had been exposed to metformin in utero presented no clear reduction in fertility. However, the adult males that had been exposed to metformin during foetal life exhibited a 30% reduction in litter size compared with controls. The lower fertility was not due to a change in sperm production or the motility of sperm. Rather, the phenotype was due to lower sperm head quality - significantly increased spermatozoa head abnormality with greater DNA damage - and hypermethylation of the genomic DNA in the spermatozoa associated with lower expression of the ten-eleven translocation methylcytosine dioxygenase 1 (TET1) protein. In conclusion, while foetal metformin exposure did not dramatically alter gonad development, these results suggest that metabolic modification by metformin during the foetal period could change the expression of epigenetic regulators such as Tet1 and perturb the genomic DNA in germ cells, changes that might contribute to a reduced fertility.
Collapse
Affiliation(s)
- Mélanie C. Faure
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Rita Khoueiry
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Jusal Quanico
- Université Lille 1, INSERM U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Villeneuve d’Ascq, France
| | - Hervé Acloque
- Université Paris-Saclay, INRAE, AgroParisTech, Génétique Animale et Biologie Intégrative (GABI), Jouy-en-Josas, France
| | - Marie-Justine Guerquin
- UMR967 INSERM, Commissariat à l'Énergie Atomique (CEA)/Direction de la Recherche Fondamentale (DRF)/Institut de Radiobiologie Cellulaire et Moléculaire (iRCM)/Service Cellules Souches et Radiation (SCSR)/LDG, Université Paris Diderot, Sorbonne Paris Cité, Université Paris-Sud, Université Paris-Saclay, Laboratory of Development of the Gonads, Fontenay aux Roses, France
| | - Michael J. Bertoldo
- Fertility and Research Centre, School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW, Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Claire Chevaleyre
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Christelle Ramé
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Isabelle Fournier
- Université Lille 1, INSERM U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Villeneuve d’Ascq, France
| | - Michel Salzet
- Université Lille 1, INSERM U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), Villeneuve d’Ascq, France
| | - Joëlle Dupont
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| | - Pascal Froment
- l’Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), UMR85 Physiologie de la Reproduction et des Comportements/Centre national de la Recherche Scientifique (CNRS), UMR7247/Université François Rabelais de Tours/Institut français du Cheval et de l'Équitation (IFCE), Nouzilly, France
| |
Collapse
|
15
|
Sharifi S, Caracciolo G, Pozzi D, Digiacomo L, Swann J, Daldrup-Link HE, Mahmoudi M. The role of sex as a biological variable in the efficacy and toxicity of therapeutic nanomedicine. Adv Drug Deliv Rev 2021; 174:337-347. [PMID: 33957181 DOI: 10.1016/j.addr.2021.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
Males and females have physiological, hormonal, and genetic differences that can cause different responses to medicinal treatments. The role of sex in the pharmacokinetics and pharmacodynamics of drugs is well established in the literature. However, researchers have yet to robustly and consistently consider the impact of sex differences on the pharmacokinetics and pharmacodynamics of nanomedicine formulations when designing nanomedicine therapeutics and/or constructing clinical trials. In this review, we highlight the physiological and anatomical differences between sexes and discuss how these differences can influence the therapeutic efficacy, side effects, and drug delivery safety of nanomedicine products. A deep understanding of the effects of sex on nano-based drug delivery agents will robustly improve the risk assessment process, resulting in safer formulations, successful clinical translation, and improved therapeutic efficacies for both sexes.
Collapse
|
16
|
Kothandapani A, Larsen MC, Lee J, Jorgensen JS, Jefcoate CR. Distinctive functioning of STARD1 in the fetal Leydig cells compared to adult Leydig and adrenal cells. Impact of Hedgehog signaling via the primary cilium. Mol Cell Endocrinol 2021; 531:111265. [PMID: 33864885 DOI: 10.1016/j.mce.2021.111265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
STARD1 stimulates cholesterol transfer to mitochondrial CYP11A1 for conversion to pregnenolone. A cholesterol-binding START domain is guided by an N-terminal domain in a cell selective manner. Fetal and adult Leydig cells (FLC, ALC) show distinct Stard1 regulation. sm- FISH microscopy, which resolves individual molecules of Stard1 mRNA, shows uniformly high basal expression in each FLC. In ALC, in vivo, and cultured MA-10 cells, basal Stard1 expression is minimal. PKA activates loci asynchronously, with delayed splicing/export of 3.5 kb mRNA to mitochondria. After 60 min, ALC transition to an integrated mRNA delivery to mitochondria that is seen in FLC. Sertoli cells cooperate in Stard1 stimulation in FLC by delivering DHH to the primary cilium. There PTCH, SMO and cholesterol cooperate to release GLI3 to activate the Stard1 locus, probably by directing histone changes. ALC lack cilia. PKA then primes locus activation. FLC and ALC share similar SIK/CRTC/CREB regulation characterized for adrenal cells.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Michele Campaigne Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Jinwoo Lee
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
17
|
Kothandapani A, Jefcoate CR, Jorgensen JS. Cholesterol Contributes to Male Sex Differentiation Through Its Developmental Role in Androgen Synthesis and Hedgehog Signaling. Endocrinology 2021; 162:6204698. [PMID: 33784378 PMCID: PMC8168945 DOI: 10.1210/endocr/bqab066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/17/2022]
Abstract
Two specialized functions of cholesterol during fetal development include serving as a precursor to androgen synthesis and supporting hedgehog (HH) signaling activity. Androgens are produced by the testes to facilitate masculinization of the fetus. Recent evidence shows that intricate interactions between the HH and androgen signaling pathways are required for optimal male sex differentiation and defects of either can cause birth anomalies indicative of 46,XY male variations of sex development (VSD). Further, perturbations in cholesterol synthesis can cause developmental defects, including VSD, that phenocopy those caused by disrupted androgen or HH signaling, highlighting the functional role of cholesterol in promoting male sex differentiation. In this review, we focus on the role of cholesterol in systemic androgen and local HH signaling events during fetal masculinization and their collective contributions to pediatric VSD.
Collapse
Affiliation(s)
- Anbarasi Kothandapani
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Correspondence: Anbarasi Kothandapani, PhD, Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53705, USA. E-mail:
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Joan S Jorgensen
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- Correspondence: Joan S. Jorgensen, DVM, PhD, Department of Comparative Biosciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53705, USA. E-mail:
| |
Collapse
|
18
|
Sararols P, Stévant I, Neirijnck Y, Rebourcet D, Darbey A, Curley MK, Kühne F, Dermitzakis E, Smith LB, Nef S. Specific Transcriptomic Signatures and Dual Regulation of Steroidogenesis Between Fetal and Adult Mouse Leydig Cells. Front Cell Dev Biol 2021; 9:695546. [PMID: 34262907 PMCID: PMC8273516 DOI: 10.3389/fcell.2021.695546] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022] Open
Abstract
Leydig cells (LC) are the main testicular androgen-producing cells. In eutherian mammals, two types of LCs emerge successively during testicular development, fetal Leydig cells (FLCs) and adult Leydig cells (ALCs). Both display significant differences in androgen production and regulation. Using bulk RNA sequencing, we compared the transcriptomes of both LC populations to characterize their specific transcriptional and functional features. Despite similar transcriptomic profiles, a quarter of the genes show significant variations in expression between FLCs and ALCs. Non-transcriptional events, such as alternative splicing was also observed, including a high rate of intron retention in FLCs compared to ALCs. The use of single-cell RNA sequencing data also allowed the identification of nine FLC-specific genes and 50 ALC-specific genes. Expression of the corticotropin-releasing hormone 1 (Crhr1) receptor and the ACTH receptor melanocortin type 2 receptor (Mc2r) specifically in FLCs suggests a dual regulation of steroidogenesis. The androstenedione synthesis by FLCs is stimulated by luteinizing hormone (LH), corticotrophin-releasing hormone (CRH), and adrenocorticotropic hormone (ACTH) whereas the testosterone synthesis by ALCs is dependent exclusively on LH. Overall, our study provides a useful database to explore LC development and functions.
Collapse
Affiliation(s)
- Pauline Sararols
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Diane Rebourcet
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Annalucia Darbey
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia
| | - Michael K Curley
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Françoise Kühne
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Emmanouil Dermitzakis
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Faculty of Medicine, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Lee B Smith
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, Australia.,Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Adegoke EO, Rahman MS, Pang MG. Bisphenols Threaten Male Reproductive Health via Testicular Cells. Front Endocrinol (Lausanne) 2020; 11:624. [PMID: 33042007 PMCID: PMC7518410 DOI: 10.3389/fendo.2020.00624] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Male reproductive function and health are largely dependent on the testes, which are strictly regulated by their major cell components, i. e., Sertoli, Leydig, and germ cells. Sertoli cells perform a crucial phagocytic function in addition to supporting the development of germ cells. Leydig cells produce hormones essential for male reproductive function, and germ cell quality is a key parameter for male fertility assessment. However, these cells have been identified as primary targets of endocrine disruptors, including bisphenols. Bisphenols are a category of man-made organic chemicals used to manufacture plastics, epoxy resins, and personal care products such as lipsticks, face makeup, and nail lacquers. Despite long-term uncertainty regarding their safety, bisphenols are still being used worldwide, especially bisphenol A. While considerable attention has been paid to the effects of bisphenols on health, current bisphenol-related reproductive health cases indicate that greater attention should be given to these chemicals. Bisphenols, especially bisphenol A, F, and S, have been reported to elicit various effects on testicular cells, including apoptosis, DNA damage, disruption of intercommunication among cells, mitochondrial damage, disruption of tight junctions, and arrest of proliferation, which threaten male reproductive health. In addition, bisphenols are xenoestrogens, which alter organs and cells functions via agonistic or antagonistic interplay with hormone receptors. In this review, we provide in utero, in vivo, and in vitro evidence that currently available brands of bisphenols impair male reproductive health through their action on testicular cells.
Collapse
Affiliation(s)
| | | | - Myung-Geol Pang
- Department of Animal Science and Technology and BET Research Institute, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
20
|
Whiley PAF, O'Donnell L, Moody SC, Handelsman DJ, Young JC, Richards EA, Almstrup K, Western PS, Loveland KL. Activin A Determines Steroid Levels and Composition in the Fetal Testis. Endocrinology 2020; 161:5818588. [PMID: 32274496 DOI: 10.1210/endocr/bqaa058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/08/2020] [Indexed: 12/19/2022]
Abstract
Activin A promotes fetal mouse testis development, including driving Sertoli cell proliferation and cord morphogenesis, but its mechanisms of action are undefined. We performed ribonucleic acid sequencing (RNA-seq) on testicular somatic cells from fetal activin A-deficient mice (Inhba KO) and wildtype littermates at embryonic day (E) E13.5 and E15.5. Analysis of whole gonads provided validation, and cultures with a pathway inhibitor discerned acute from chronic effects of altered activin A bioactivity. Activin A deficiency predominantly affects the Sertoli cell transcriptome. New candidate targets include Minar1, Sel1l3, Vnn1, Sfrp4, Masp1, Nell1, Tthy1 and Prss12. Importantly, the testosterone (T) biosynthetic enzymes present in fetal Sertoli cells, Hsd17b1 and Hsd17b3, were identified as activin-responsive. Activin-deficient testes contained elevated androstenedione (A4), displayed an Inhba gene dose-dependent A4/T ratio, and contained 11-keto androgens. The remarkable accumulation of lipid droplets in both Sertoli and germ cells at E15.5 indicated impaired lipid metabolism in the absence of activin A. This demonstrated for the first time that activin A acts on Sertoli cells to determine local steroid production during fetal testis development. These outcomes reveal how compounds that perturb fetal steroidogenesis can function through cell-specific mechanisms and can indicate how altered activin levels in utero may impact testis development.
Collapse
Affiliation(s)
- Penny A F Whiley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Liza O'Donnell
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Sarah C Moody
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | | | - Julia C Young
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| | - Elizabeth A Richards
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Kristian Almstrup
- Department of Growth and Reproduction and International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Copenhagen University Hospital, Copenhagen, Denmark
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Kate L Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash University, Clayton, Victoria, Australia
- Department of Anatomy and Developmental Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
21
|
Kilcoyne KR, Mitchell RT. Effect of environmental and pharmaceutical exposures on fetal testis development and function: a systematic review of human experimental data. Hum Reprod Update 2020; 25:397-421. [PMID: 30869130 PMCID: PMC6601394 DOI: 10.1093/humupd/dmz004] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/06/2018] [Accepted: 01/23/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Overall, the incidence of male reproductive disorders has increased in recent decades. Testicular development during fetal life is crucial for subsequent male reproductive function. Non-genomic factors such as environmental chemicals, pharmaceuticals and lifestyle have been proposed to impact on human fetal testicular development resulting in subsequent effects on male reproductive health. Whilst experimental studies using animal models have provided support for this hypothesis, more recently a number of experimental studies using human tissues and cells have begun to translate these findings to determine direct human relevance. OBJECTIVE AND RATIONALE The objective of this systematic review was to provide a comprehensive description of the evidence for effects of prenatal exposure(s) on human fetal testis development and function. We present the effects of environmental, pharmaceutical and lifestyle factors in experimental systems involving exposure of human fetal testis tissues and cells. Comparison is made with existing epidemiological data primarily derived from a recent meta-analysis. SEARCH METHODS For identification of experimental studies, PubMed and EMBASE were searched for articles published in English between 01/01/1966 and 13/07/2018 using search terms including ‘endocrine disruptor’, ‘human’, ‘fetal’, ‘testis’, ‘germ cells’, ‘testosterone’ and related search terms. Abstracts were screened for selection of full-text articles for further interrogation. Epidemiological studies involving exposure to the same agents were extracted from a recent systematic review and meta-analysis. Additional studies were identified through screening of bibliographies of full-texts of articles identified through the initial searches. OUTCOMES A total of 25 experimental studies and 44 epidemiological studies were included. Consistent effects of analgesic and phthalate exposure on human fetal germ cell development are demonstrated in experimental models, correlating with evidence from epidemiological studies and animal models. Furthermore, analgesic-induced reduction in fetal testosterone production, which predisposes to the development of male reproductive disorders, has been reported in studies involving human tissues, which also supports data from animal and epidemiological studies. However, whilst reduced testosterone production has been demonstrated in animal studies following exposure(s) to a variety of environmental chemicals including phthalates and bisphenol A, these effects are not reproduced in experimental approaches using human fetal testis tissues. WIDER IMPLICATIONS Direct experimental evidence for effects of prenatal exposure(s) on human fetal testis development and function exists. However, for many exposures the data is limited. The increasing use of human-relevant models systems in which to determine the effects of environmental exposure(s) (including mixed exposures) on development and function of human tissues should form an important part of the process for assessment of such exposures by regulatory bodies to take account of animal–human differences in susceptibility.
Collapse
Affiliation(s)
- Karen R Kilcoyne
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK.,Royal Hospital for Sick Children, Edinburgh, UK
| |
Collapse
|
22
|
In utero heat stress alters postnatal phenotypes in swine. Theriogenology 2020; 154:110-119. [PMID: 32540511 DOI: 10.1016/j.theriogenology.2020.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/05/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022]
Abstract
The prenatal environment influences offspring health and development, and this is readily apparent when considering the well-described effects of maternal nutrition and stress on the postnatal metabolism, neural function, and stress response of progeny. Moreover, in laboratory species, sheep, and humans, the effects of in utero heat stress on offspring development have been described in detail for >50 years. Despite our extensive knowledge of the postnatal phenotypes elicited by in utero stressors, the carryover effects of in utero heat stress in pigs have only recently begun to be elucidated. The effects of climate change on increasing global temperatures, combined with greater metabolic heat production in modern swine, has increased heat stress susceptibility in pigs. Greater heat stress susceptibility can negatively affect swine welfare and performance and may impact future generations of pigs through in utero heat stress. Pigs exposed to in utero heat stress develop a variety of postnatal phenotypes that prevent profitable production, and compromise health, and welfare in commercial production systems. Specifically, in utero heat stress alters the postnatal stress response, core body temperature, response to an immune challenge, and is teratogenic. In addition, in utero heat stress changes postnatal body composition through reduced lean and increased adipose tissue accretion rates, respectively. Furthermore, in utero heat stress reduces piglet birth weight, body weight gain, and reproductive efficiency. Although the economic impact of in utero heat stress in pigs has yet to be determined, it likely rivals the postnatal consequences of heat stress and is a threat to the global sustainability of swine production.
Collapse
|
23
|
Roselli CE. Programmed for Preference: The Biology of Same-Sex Attraction in Rams. Neurosci Biobehav Rev 2020; 114:12-15. [PMID: 32311371 DOI: 10.1016/j.neubiorev.2020.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/09/2023]
Abstract
The sheep is a valuable model to test whether hormone mechanisms that sexually differentiate the brain underlie the expression of sexual partner preferences because as many as 8% of rams prefer same-sex partners. This review presents an overview and update of the experimental evidence that supports this hypothesis. New evidence is presented that demonstrates a critical role for kisspeptin-GnRH signaling for regulating stable fetal testosterone levels necessary for masculinization of brain and behavior. Although these studies provide substantial support for the idea that prenatal hormones program sexual preferences, further experimentation is needed to establish causality.
Collapse
Affiliation(s)
- Charles E Roselli
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR, 97239-3098, USA.
| |
Collapse
|
24
|
Amodei R, Gribbin K, He W, Lindgren I, Corder KR, Jonker SS, Estill CT, Coolen LM, Lehman MN, Whitler W, Stormshak F, Roselli CE. Role for Kisspeptin and Neurokinin B in Regulation of Luteinizing Hormone and Testosterone Secretion in the Fetal Sheep. Endocrinology 2020; 161:bqaa013. [PMID: 32005991 PMCID: PMC7079722 DOI: 10.1210/endocr/bqaa013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/29/2020] [Indexed: 11/19/2022]
Abstract
Evidence suggests that the hypothalamic-pituitary-gonadal (HPG) axis is active during the critical period for sexual differentiation of the ovine sexually dimorphic nucleus, which occurs between gestational day (GD) 60 and 90. Two possible neuropeptides that could activate the fetal HPG axis are kisspeptin and neurokinin B (NKB). We used GD85 fetal lambs to determine whether intravenous administration of kisspeptin-10 (KP-10) or senktide (NKB agonist) could elicit luteinizing hormone (LH) release. Immunohistochemistry and fluorescent in situ hybridization (FISH) were employed to localize these peptides in brains of GD60 and GD85 lamb fetuses. In anesthetized fetuses, KP-10 elicited robust release of LH that was accompanied by a delayed rise in serum testosterone in males. Pretreatment with the GnRH receptor antagonist (acyline) abolished the LH response to KP-10, confirming a hypothalamic site of action. In unanesthetized fetuses, senktide, as well as KP-10, elicited LH release. The senktide response of females was greater than that of males, indicating a difference in NKB sensitivity between sexes. Gonadotropin-releasing hormone also induced a greater LH discharge in females than in males, indicating that testosterone negative feedback is mediated through pituitary gonadotrophs. Kisspeptin and NKB immunoreactive cells in the arcuate nucleus were more abundant in females than in males. Greater than 85% of arcuate kisspeptin cells costained for NKB. FISH revealed that the majority of these were kisspeptin/NKB/dynorphin (KNDy) neurons. These results support the hypothesis that kisspeptin-GnRH signaling regulates the reproductive axis of the ovine fetus during the prenatal critical period acting to maintain a stable androgen milieu necessary for brain masculinization.
Collapse
Affiliation(s)
- Rebecka Amodei
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Kyle Gribbin
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| | - Wen He
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Isa Lindgren
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon
| | - Keely R Corder
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon
| | - Sonnet S Jonker
- Center for Developmental Health, Oregon Health and Science University, Portland, Oregon
| | - Charles T Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Lique M Coolen
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - Michael N Lehman
- Brain Health Research Institute, Kent State University, Kent, Ohio
- Department of Biological Sciences, Kent State University, Kent, Ohio
| | - William Whitler
- College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Fred Stormshak
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon
| | - Charles E Roselli
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
25
|
Afsar J, Kachuei A, Hashemipour M, Larki-Harchegani A, Shabib S. A rare enzymatic defect, true isolated 17,20-lyase deficiency leading to endocrine disorders and infertility: case report. Gynecol Endocrinol 2020; 36:297-302. [PMID: 31691616 DOI: 10.1080/09513590.2019.1683819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The cytochrome P450 17A1 catalyzes the formation of 17-hydroxysteroids and 17-ketosteroid. Most defects in CYP17A1 impair both enzymatic activities and cause a combined 17α-hydroxylase/17,20-lyase deficiency, which impairs hormone production (cortisol and sex steroids), sexual development, and puberty. Isolated 17,20-lyase deficiency is usually defined by evidently normal activity of 17α-hydroxylase with a dramatic decline of 17,20-lyase activity or complete inactivity. The changes in enzyme activity lead to a lack in the production of sex steroids with normal levels of glucocorticoid and mineralocorticoid hormones. A 24-years-old married woman, as a product of a consanguineous marriage, presented with infertility and a background marked by primary amenorrhea. Laboratory data showed low normal serum cortisol levels and low levels of 17-hydroxyprogesterone. Also, her adrenal androgens were low but estradiol was normal. The chromosomal investigation uncovered a male karyotype of 46, XY. These clinical and laboratory evidence confirm the determination of an isolated 17,20-lyase deficiency in a genotypic male.
Collapse
MESH Headings
- 46, XX Disorders of Sex Development/complications
- 46, XX Disorders of Sex Development/diagnosis
- 46, XX Disorders of Sex Development/genetics
- Adolescent
- Adrenal Hyperplasia, Congenital/complications
- Adrenal Hyperplasia, Congenital/diagnosis
- Adrenal Hyperplasia, Congenital/genetics
- Adrenal Hyperplasia, Congenital/surgery
- Endocrine System Diseases/diagnosis
- Endocrine System Diseases/etiology
- Endocrine System Diseases/surgery
- Female
- Glucocorticoids/therapeutic use
- Humans
- Infertility, Female/diagnosis
- Infertility, Female/etiology
- Infertility, Female/genetics
- Infertility, Female/surgery
- Iran
- Mutation, Missense
- Orchiectomy
- Siblings
- Steroid 17-alpha-Hydroxylase/genetics
- Steroid 17-alpha-Hydroxylase/metabolism
- Young Adult
Collapse
Affiliation(s)
- Jamileh Afsar
- Department of Internal Medicine, School of Medicine, Al-Zahra Hospital, Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Kachuei
- Department of Internal Medicine, School of Medicine, Al-Zahra Hospital, Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahin Hashemipour
- Department of Pediatrics, School of Medicine, Imam Hossein Hospital, Isfahan Endocrine and Metabolism Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Larki-Harchegani
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Somayeh Shabib
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Abstract
This article contains a systematic review of the main developments that have occurred in the area of male hypogonadism between the publication of the Endocrine Society Guidelines of 2010 and 2018 and after 2018.
Collapse
Affiliation(s)
- Marco Marcelli
- Department of Medicine, Division of Endocrinology, Baylor College of Medicine, Houson, Texas, USA .,Section of Endocrinology, Michael E DeBakey VA Medical Center, Houston, Texas, USA
| | - Sanjay Navin Mediwala
- Department of Medicine, Division of Endocrinology, Baylor College of Medicine, Houson, Texas, USA.,Section of Endocrinology, Michael E DeBakey VA Medical Center, Houston, Texas, USA
| |
Collapse
|
27
|
Shima Y. Development of fetal and adult Leydig cells. Reprod Med Biol 2019; 18:323-330. [PMID: 31607792 PMCID: PMC6780029 DOI: 10.1002/rmb2.12287] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/09/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In mammals, two distinct Leydig cell populations, fetal Leydig cells (FLCs) and adult Leydig cells (ALCs), appear in the prenatal and postnatal testis, respectively. Although the functional differences between these cell types have been well described, the developmental relationship between FLCs and ALCs has not been fully understood. In this review, I focus on the cellular origins of FLCs and ALCs as well as the developmental and functional links between them. METHODS I surveyed previous reports about FLC and/or ALC development and summarized the findings. MAIN FINDINGS Fetal Leydig cells and ALCs were identified to have separate origins in the fetal and neonatal testis, respectively. However, several studies suggested that FLCs and ALCs share a common progenitor pool. Moreover, perturbation of FLC development at the fetal stage induces ALC dysfunction in adults, suggesting a functional link between FLCs and ALCs. Although the lineage relationship between FLCs and ALCs remains controversial, a recent study suggested that some FLCs dedifferentiate at the fetal stage, and that these cells serve as ALC stem cells. CONCLUSION Findings obtained from animal studies might provide clues to the causative mechanisms of male reproductive dysfunctions such as testicular dysgenesis syndrome in humans.
Collapse
Affiliation(s)
- Yuichi Shima
- Department of AnatomyKawasaki Medical SchoolKurashikiOkayamaJapan
| |
Collapse
|
28
|
Izvolskaia MS, Sharova VS, Ignatiuk VM, Voronova SN, Zakharova LA. Abolition of prenatal lipopolysaccharide-induced reproductive disorders in rat male offspring by fulvestrant. Andrologia 2018; 51:e13204. [DOI: 10.1111/and.13204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 10/18/2018] [Accepted: 10/29/2018] [Indexed: 01/16/2023] Open
Affiliation(s)
- Marina S. Izvolskaia
- Koltsov Institute of Developmental Biology; Russian Academy of Sciences; Moscow Russia
| | - Victoria S. Sharova
- Koltsov Institute of Developmental Biology; Russian Academy of Sciences; Moscow Russia
| | | | - Svetlana N. Voronova
- Koltsov Institute of Developmental Biology; Russian Academy of Sciences; Moscow Russia
| | - Liudmila A. Zakharova
- Koltsov Institute of Developmental Biology; Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
29
|
Kojima K, Nakamura H, Komeya M, Yamanaka H, Makino Y, Okada Y, Akiyama H, Torikai N, Sato T, Fujii T, Kimura H, Ogawa T. Neonatal testis growth recreated in vitro by two-dimensional organ spreading. Biotechnol Bioeng 2018; 115:3030-3041. [PMID: 30144353 PMCID: PMC6283240 DOI: 10.1002/bit.26822] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 07/27/2018] [Accepted: 08/23/2018] [Indexed: 01/15/2023]
Abstract
Organ culture experiments can be hampered by central degeneration or necrosis due to the inadequate permeation of oxygen and nutrients, which deteriorates the function and growth of cultured tissues. In the current study, we aimed to overcome this limitation of organ culture through spreading the tissue two dimensionally on an agarose gel stand and molding into a disc shape by placing a ceiling of polydimethylsiloxane (PDMS) chip, which is highly oxygen permeable. By this, every part of the tissue can receive a sufficient supply of oxygen through PDMS as well as nutrients through the agarose gel below. This method not only prevented central necrosis of tissues, but also supported the tissue growth over time. In addition, such growth, as volume enlargement, could be easily measured. Under these conditions, we examined the effect of several factors on the growth of neonatal mouse testis, and found that follicle stimulating hormone (FSH) and insulin significantly promoted the growth. These results are in good agreement with previous in vivo reports. Notably, the growth achieved over 7 days in our in vitro system is almost comparable to, about 80% of, that observed in vivo. Thus, we successfully monitored the promotion of tissue growth beyond the limits of the conventional organ culture method. This extremely simple method could offer a unique platform to evaluate the growth as well as functional properties of organs, not only the testis but also others as well.
Collapse
Affiliation(s)
- Kazuaki Kojima
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Association of Medical Science, Yokohama City University, Yokohama, Japan
| | - Hiroko Nakamura
- Department of Mechanical Engineering, Tokai University, Hiratsuka, Japan
| | - Mitsuru Komeya
- Department of Urology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hiroyuki Yamanaka
- Department of Urology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yoshinori Makino
- Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Okada
- Laboratory of Pathology and Development, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Nobuhito Torikai
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Association of Medical Science, Yokohama City University, Yokohama, Japan
| | - Takuya Sato
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Association of Medical Science, Yokohama City University, Yokohama, Japan
| | - Teruo Fujii
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Hiroshi Kimura
- Department of Mechanical Engineering, Tokai University, Hiratsuka, Japan
| | - Takehiko Ogawa
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Association of Medical Science, Yokohama City University, Yokohama, Japan.,Department of Urology, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
30
|
Amato CM, Boyd M, Yang J, McCoy KA. Organizational effects of the antiandrogen, vinclozolin, on penis development in the mouse†. Biol Reprod 2018; 99:639-649. [DOI: 10.1093/biolre/ioy087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/12/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ciro M Amato
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Morgan Boyd
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Joshua Yang
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Krista A McCoy
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
31
|
Braun BC, Okuyama MW, Müller K, Dehnhard M, Jewgenow K. Steroidogenic enzymes, their products and sex steroid receptors during testis development and spermatogenesis in the domestic cat (Felis catus). J Steroid Biochem Mol Biol 2018; 178:135-149. [PMID: 29196065 DOI: 10.1016/j.jsbmb.2017.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 11/23/2017] [Indexed: 11/30/2022]
Abstract
In the present study we comprehensively characterize intratesticular sex steroid production, metabolism and receptors in the domestic cat to elucidate the role of testosterone, estradiol and progesterone in testis development, steroid synthesis and spermatogenesis. There is a great demand for new concepts of fertility control in domestic (feral) cats and wild felids. The acquired knowledge will help to understand the regulation of spermatogenesis in felids, and may reveal new target points for male contraception. Progesterone and androgens are produced throughout all stages of testicular development; their synthesizing enzymes are mainly expressed in Leydig cells, and to a much lesser extent also in tubular cells. Aromatase (CYP19A1), the estrogen synthesizing enzyme, is only present in the tubuli and is first detectable in spermatocytes and round spermatids at puberty. As shown by elevated expression of the enzymes steroid 5-α-reductase type 1 (SRD5A) and aldo-keto-reductase family 1 member C3 (AKR1C3), the capacity to metabolize particular steroids increases during testis development. Apparently, this refers to a decreasing intra-testicular testosterone concentration per mg tissue with increasing testis weight during postpuberty. The increasing potential of sulfation of E2 by estrogen sulfotransferase (SULT1E1) with ongoing development might be responsible for the low level of unconjugated intratesticular estradiol in all stages of development probably due to facilitated excretion of conjugated estrogens. For the first time, expression of the progesterone membrane receptor components 1 and 2 (PGRMC1, PGRMC2) was studied in mammalian testis tissue. Both of these and also the progesterone receptor (PGR) are expressed depending on the developmental stage and cell type, suggesting an important regulatory role of progesterone in the testis. Androgen receptor (AR) is present in almost all cell types except for some spermatogenic cells. The co-localization of aromatase with estrogen receptor alpha (ESR1) in spermatocytes and round spermatids of domestic cat testis indicates an auto-/paracrine function of estrogen in spermatogenesis. In summary, the testis of the domestic cat is an important source of sex steroids. All of them could act within the testis but additionally, at least androgens and estrogens are likely secreted by the testis, partly as conjugated steroids.
Collapse
Affiliation(s)
- Beate C Braun
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany.
| | - Minami W Okuyama
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| | - Karin Müller
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| | - Martin Dehnhard
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| | - Katarina Jewgenow
- Leibniz Institute for Zoo and Wildlife Research, Department of Reproduction Biology, PF700430, 10324 Berlin, Germany
| |
Collapse
|
32
|
Yakubu MT, Atoyebi AR. Brysocarpus coccineus (Schum & Thonn) root reinstates sexual competence and testicular function in paroxetine-induced sexual dysfunction in male Wistar rats. Andrologia 2018; 50:e12980. [PMID: 29468717 DOI: 10.1111/and.12980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2017] [Indexed: 01/23/2023] Open
Abstract
The effects of aqueous extract of Brysocarpus coccineus roots (AEBCR) were studied on sexual behaviour and testicular function of paroxetine-induced sexual dysfunction (SD) in male rats. Ninety, sexually matured male rats (150.88 ± 5.53 g) were assigned into two groups: A and B. Fifteen SD animals from group B were each allotted to B1, B2, B3, B4 and B5 and received distilled water (DW), Powmax M (7.14 mg/kg body weight, b.w.) 50, 100 and 150 mg/kg b.w of AEBCR, respectively, for 7 days while the non-SD animals (group A) received DW. Eleven secondary metabolites were present in AEBCR. The lowered (p < .05) ejaculation frequency, penile erection index and penile grooming, higher mount and intromission frequencies, prolonged (p < .05) latencies of mount, intromission, ejaculation, and post-ejaculatory interval, reduced (p < .05) serum luteinising hormone, follicle stimulating hormone, testosterone, nitric oxide and testicular function indices, degenerated seminiferous tubules and low luminal spermatozoa contents by paroxetine were significantly (p < .05) attenuated and/or reinstated by AEBCR and Powmax M. The restoration of androgen-dependent sexual and testicular functions in SD male rats by AEBCR validates its folkloric use as aphrodisiac. Clinical studies are desirable to ascertain the efficacy of AEBCR in SD.
Collapse
Affiliation(s)
- M T Yakubu
- Phytopharmacology, Toxicology and Reproductive Biochemistry Research Laboratory, Department of Biochemistry, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - A R Atoyebi
- Phytopharmacology, Toxicology and Reproductive Biochemistry Research Laboratory, Department of Biochemistry, University of Ilorin, Ilorin, Kwara State, Nigeria
| |
Collapse
|
33
|
Ibuprofen alters human testicular physiology to produce a state of compensated hypogonadism. Proc Natl Acad Sci U S A 2018; 115:E715-E724. [PMID: 29311296 PMCID: PMC5789927 DOI: 10.1073/pnas.1715035115] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Concern has been raised over increased male reproductive disorders in the Western world, and the disruption of male endocrinology has been suggested to play a central role. Several studies have shown that mild analgesics exposure during fetal life is associated with antiandrogenic effects and congenital malformations, but the effects on the adult man remain largely unknown. Through a clinical trial with young men exposed to ibuprofen, we show that the analgesic resulted in the clinical condition named "compensated hypogonadism," a condition prevalent among elderly men and associated with reproductive and physical disorders. In the men, luteinizing hormone (LH) and ibuprofen plasma levels were positively correlated, and the testosterone/LH ratio decreased. Using adult testis explants exposed or not exposed to ibuprofen, we demonstrate that the endocrine capabilities from testicular Leydig and Sertoli cells, including testosterone production, were suppressed through transcriptional repression. This effect was also observed in a human steroidogenic cell line. Our data demonstrate that ibuprofen alters the endocrine system via selective transcriptional repression in the human testes, thereby inducing compensated hypogonadism.
Collapse
|
34
|
Copping KJ, Ruiz-Diaz MD, Rutland CS, Mongan NP, Callaghan MJ, McMillen IC, Rodgers RJ, Perry VEA. Peri-conception and first trimester diet modifies reproductive development in bulls. Reprod Fertil Dev 2018; 30:703-720. [DOI: 10.1071/rd17102] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 09/19/2017] [Indexed: 01/21/2023] Open
Abstract
Nutritional perturbation during gestation alters male reproductive development in rodents and sheep. In cattle both the developmental trajectory of the feto–placental unit and its response to dietary perturbations is dissimilar to that of these species. This study examined the effects of dietary protein perturbation during the peri-conception and first trimester periods upon reproductive development in bulls. Nulliparous heifers (n = 360) were individually fed a high- or low-protein diet (HPeri and LPeri) from 60 days before conception. From 24 until 98 days post conception, half of each treatment group changed to the alternative post-conception high- or low-protein diet (HPost and LPost) yielding four treatment groups in a 2 × 2 factorial design. A subset of male fetuses (n = 25) was excised at 98 days post conception and fetal testis development was assessed. Reproductive development of singleton male progeny (n = 40) was assessed until slaughter at 598 days of age, when adult testicular cytology was evaluated. Low peri-conception diet delayed reproductive development: sperm quality was lowered during pubertal development with a concomitant delay in reaching puberty. These effects were subsequent to lower FSH concentrations at 330 and 438 days of age. In the fetus, the low peri-conception diet increased the proportion of seminiferous tubules and decreased blood vessel area in the testis, whereas low first trimester diet increased blood vessel number in the adult testis. We conclude that maternal dietary protein perturbation during conception and early gestation may alter male testis development and delay puberty in bulls.
Collapse
|
35
|
Kilcoyne KR, Mitchell RT. Assessing the impact of in-utero exposures: potential effects of paracetamol on male reproductive development. Arch Dis Child 2017; 102:1169-1175. [PMID: 28588045 DOI: 10.1136/archdischild-2016-311374] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 12/21/2022]
Abstract
Human male reproductive disorders (cryptorchidism, hypospadias, testicular cancer and low sperm counts) are common and some may be increasing in incidence worldwide. These associated disorders can arise from subnormal testosterone production during fetal life. This has resulted in a focus on in-utero environmental influences that may result in reproductive effects on the offspring in later life. Over recent years, there has been a dramatic increase in the scientific literature describing associations between in-utero environmental exposures (eg, industrial chemicals and pharmaceuticals) and subsequent reproductive outcomes in male offspring. This includes studies investigating a potential role for in-utero analgesic exposure(s) on the fetal testis; however, providing definitive evidence of such effects presents numerous challenges. In this review, we describe an approach to assessing the potential clinical relevance of in-utero (and postnatal) environmental exposures on subsequent male reproductive function using exposure to the analgesic paracetamol as an example.
Collapse
Affiliation(s)
- Karen R Kilcoyne
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK.,Department of Diabetes and Endocrinology, Royal Hospital for Sick Children, Edinburgh, UK
| |
Collapse
|
36
|
Picut CA, Ziejewski MK, Stanislaus D. Comparative Aspects of Pre- and Postnatal Development of the Male Reproductive System. Birth Defects Res 2017; 110:190-227. [PMID: 29063715 DOI: 10.1002/bdr2.1133] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
This review describes pre- and postnatal development of the male reproductive system in humans and laboratory animals, and highlights species differences in the timing and control of hormonal and morphologic events. Major differences are that the fetal testis is dependent on gonadotropins in humans, but is independent of such in rats; humans have an extended postnatal quiescent period, whereas rats exhibit no quiescence; and events such as secretion by the prostate and seminal vesicles, testicular descent, and the appearance of spermatogonia are all prenatal events in humans, but are postnatal events in rats. Major differences in the timing of the developmental sequence between rats and humans include: gonocyte transformation period (rat: postnatal day 0-9; human: includes gestational week 22 to 9 months of age); masculinization programming window (rat: gestational day 15.5-17.5; human: gestational week 9-14); and mini-puberty (rat: 0-6 hr after birth; human: 3-6 months of age). Endocrine disruptors can cause unique lesions in the prenatal and early postnatal testis; therefore, it is important to consider the differences in the timing of the developmental sequence when designing preclinical studies as identification of windows of sensitivity for endocrine disruption or toxicants will aid in interpretation of results and provide clues to a mode of action. Birth Defects Research 110:190-227, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Catherine A Picut
- Charles River Laboratories, Pathology Associates, Durham, North Carolina
| | - Mary K Ziejewski
- GlaxoSmithKline Research & Development, King of Prussia, Pennsylvania
| | - D Stanislaus
- GlaxoSmithKline Research & Development, King of Prussia, Pennsylvania
| |
Collapse
|
37
|
Penny GM, Cochran RB, Pihlajoki M, Kyrönlahti A, Schrade A, Häkkinen M, Toppari J, Heikinheimo M, Wilson DB. Probing GATA factor function in mouse Leydig cells via testicular injection of adenoviral vectors. Reproduction 2017; 154:455-467. [PMID: 28710293 PMCID: PMC5589507 DOI: 10.1530/rep-17-0311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/09/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022]
Abstract
Testicular Leydig cells produce androgens essential for proper male reproductive development and fertility. Here, we describe a new Leydig cell ablation model based on Cre/Lox recombination of mouse Gata4 and Gata6, two genes implicated in the transcriptional regulation of steroidogenesis. The testicular interstitium of adult Gata4flox/flox ; Gata6flox/flox mice was injected with adenoviral vectors encoding Cre + GFP (Ad-Cre-IRES-GFP) or GFP alone (Ad-GFP). The vectors efficiently and selectively transduced Leydig cells, as evidenced by GFP reporter expression. Three days after Ad-Cre-IRES-GFP injection, expression of androgen biosynthetic genes (Hsd3b1, Cyp17a1 and Hsd17b3) was reduced, whereas expression of another Leydig cell marker, Insl3, was unchanged. Six days after Ad-Cre-IRES-GFP treatment, the testicular interstitium was devoid of Leydig cells, and there was a concomitant loss of all Leydig cell markers. Chromatin condensation, nuclear fragmentation, mitochondrial swelling, and other ultrastructural changes were evident in the degenerating Leydig cells. Liquid chromatography-tandem mass spectrometry demonstrated reduced levels of androstenedione and testosterone in testes from mice injected with Ad-Cre-IRES-GFP. Late effects of treatment included testicular atrophy, infertility and the accumulation of lymphoid cells in the testicular interstitium. We conclude that adenoviral-mediated gene delivery is an expeditious way to probe Leydig cell function in vivo Our findings reinforce the notion that GATA factors are key regulators of steroidogenesis and testicular somatic cell survival.Free Finnish abstract: A Finnish translation of this abstract is freely available at http://www.reproduction-online.org/content/154/4/455/suppl/DC2.
Collapse
Affiliation(s)
- Gervette M Penny
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Rebecca B Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Marjut Pihlajoki
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kyrönlahti
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anja Schrade
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Merja Häkkinen
- University of Eastern FinlandSchool of Pharmacy, Kuopio, Finland
| | - Jorma Toppari
- Department of PhysiologyInstitute of Biomedicine, University of Turku and Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
- Department of Developmental BiologyWashington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
38
|
Shima Y, Morohashi KI. Leydig progenitor cells in fetal testis. Mol Cell Endocrinol 2017; 445:55-64. [PMID: 27940302 DOI: 10.1016/j.mce.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Testicular Leydig cells play pivotal roles in masculinization of organisms by producing androgens. At least two distinct Leydig cell populations sequentially emerge in the mammalian testis. Leydig cells in the fetal testis (fetal Leydig cells) appear just after initial sex differentiation and induce masculinization of male fetuses. Although there has been a debate on the fate of fetal Leydig cells in the postnatal testis, it has been generally believed that fetal Leydig cells regress and are completely replaced by another Leydig cell population, adult Leydig cells. Recent studies revealed that gene expression patterns are different between fetal and adult Leydig cells and that the androgens produced in fetal Leydig cells are different from those in adult Leydig cells in mice. Although these results suggested that fetal and adult Leydig cells have distinct origins, several recent studies of mouse models support the hypothesis that fetal and adult Leydig cells arise from a common progenitor pool. In this review, we first provide an overview of previous knowledge, mainly from mouse studies, focusing on the cellular origins of fetal Leydig cells and the regulatory mechanisms underlying fetal Leydig cell differentiation. In addition, we will briefly discuss the functional differences of fetal Leydig cells between human and rodents. We will also discuss recent studies with mouse models that give clues for understanding how the progenitor cells in the fetal testis are subsequently destined to become fetal or adult Leydig cells.
Collapse
Affiliation(s)
- Yuichi Shima
- Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
39
|
Umehara T, Kawashima I, Kawai T, Hoshino Y, Morohashi KI, Shima Y, Zeng W, Richards JS, Shimada M. Neuregulin 1 Regulates Proliferation of Leydig Cells to Support Spermatogenesis and Sexual Behavior in Adult Mice. Endocrinology 2016; 157:4899-4913. [PMID: 27732090 PMCID: PMC5133346 DOI: 10.1210/en.2016-1478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adult Leydig cells are derived from proliferating stem/progenitor Leydig cells in the infant testis and subsequent differentiation to steroidogenic cells in adult mice. Leydig cell proliferation in the infant testis occurs primarily in response to increased levels of LH that induce Leydig cell expression of neuregulin 1 (NRG1). Depletion of NRG1 in Nrg1 mutant mice (Nrg1flox;flox;Cyp19a1Cre mice) dramatically reduces Leydig cell proliferation in the infant testes, leading to a reduction of testis weight, epididymial weight, and serum T in the adult mutant mice. The mutant mice are subfertile due to impaired sexual behavior and abnormal elongation of the spermatogenic cells. These defects were reversed by T treatment of the mutant mice in vivo. Furthermore, NRG1 alone induces the proliferation of Leydig cells in cultures of infant (d 10) testes obtained from mutant mice. Collectively these results show that LH induction of NRG1 directly drives the proliferation of Leydig cells in the infant testis, leading to an obligatory number of adult Leydig cells required for the production of sufficient androgen to support and maintain spermatogenesis and sexual behavior of adult male mice.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Ikko Kawashima
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Tomoko Kawai
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Yumi Hoshino
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Ken-Ichirou Morohashi
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Yuichi Shima
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Wenxian Zeng
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - JoAnne S Richards
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| | - Masayuki Shimada
- Graduate School of Biosphere Science (T.U., I.K., T.K., Y.H., W.Z., M.S.), Hiroshima University, Higashi-Hiroshima 7398528, Japan; Laboratory of Sex Differentiation (K.M., Y.S.), Graduate School of Medicine, Kyusyu University, Fukuoka 8258585, Japan; College of Animal Science and Technology (W.Z., Y.S.), Northwest A&F University, Yangling, 712100 China; and Department of Molecular and Cellular Biology (J.S.R.), Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
40
|
Hersmus R, van Bever Y, Wolffenbuttel KP, Biermann K, Cools M, Looijenga LHJ. The biology of germ cell tumors in disorders of sex development. Clin Genet 2016; 91:292-301. [PMID: 27716895 DOI: 10.1111/cge.12882] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 01/01/2023]
Abstract
Development of a malignant germ cell tumor, i.e., germ cell cancer (GCC) in individuals with disorders of sex development (DSD) depends on a number of (epi-)genetic factors related to early gonadal- and germ cell development, possibly related to genetic susceptibility. Fetal development of germ cells is orchestrated by strict processes involving specification, migration and the development of a proper gonadal niche. In this review we will discuss the early (epi-)genetic events in normal and aberrant germ cell and gonadal development. Focus will be on the formation of the precursor lesions of GCC in individuals who have DSD. In our view, expression of the different embryonic markers in, and epigenetic profile of the precursor lesions reflects the developmental stage in which these cells are blocked in their maturation. Therefore, these are not a primary pathogenetic driving force. Progression later in life towards a full blown cancer likely depends on additional factors such as a changed endocrine environment in a susceptible individual. Genetic susceptibility is, as evidenced by the presence of specific risk genetic variants (SNPs) in patients with a testicular GCC, related to genes involved in early germ cell and gonadal development.
Collapse
Affiliation(s)
- Remko Hersmus
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yolande van Bever
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katja P Wolffenbuttel
- Department of Pediatric Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Katharina Biermann
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martine Cools
- Department of Pediatric Endocrinology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | | |
Collapse
|
41
|
Roselli CE, Amodei R, Gribbin KP, Corder K, Stormshak F, Estill CT. Excess Testosterone Exposure Alters Hypothalamic-Pituitary-Testicular Axis Dynamics and Gene Expression in Sheep Fetuses. Endocrinology 2016; 157:4234-4245. [PMID: 27673555 PMCID: PMC5086533 DOI: 10.1210/en.2016-1411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal exposure to excess androgen may result in impaired adult fertility in a variety of mammalian species. However, little is known about what feedback mechanisms regulate gonadotropin secretion during early gestation and how they respond to excess T exposure. The objective of this study was to determine the effect of exogenous exposure to T on key genes that regulate gonadotropin and GnRH secretion in fetal male lambs as compared with female cohorts. We found that biweekly maternal testosterone propionate (100 mg) treatment administered from day 30 to day 58 of gestation acutely decreased (P < .05) serum LH concentrations and reduced the expression of gonadotropin subunit mRNA in both sexes and the levels of GnRH receptor mRNA in males. These results are consistent with enhanced negative feedback at the level of the pituitary and were accompanied by reduced mRNA levels for testicular steroidogenic enzymes, suggesting that Leydig cell function was also suppressed. The expression of kisspeptin 1 mRNA, a key regulator of GnRH neurons, was significantly greater (P < .01) in control females than in males and reduced (P < .001) in females by T exposure, indicating that hypothalamic regulation of gonadotropin secretion was also affected by androgen exposure. Although endocrine homeostasis was reestablished 2 weeks after maternal testosterone propionate treatment ceased, additional differences in the gene expression of GnRH, estrogen receptor-β, and kisspeptin receptor (G protein coupled receptor 54) emerged between the treatment cohorts. These changes suggest the normal trajectory of hypothalamic-pituitary axis development was disrupted, which may, in turn, contribute to negative effects on fertility later in life.
Collapse
Affiliation(s)
- Charles E Roselli
- Department of Physiology and Pharmacology (C.E.R., R.A., K.P.G.), Oregon Health and Science University, Portland, Oregon 97239-3098; and Department of Animal and Rangeland Sciences (K.C., F.S., C.T.E.) and College of Veterinary Medicine (C.T.E.), Oregon State University, Corvallis, Oregon 97331-4501
| | - Rebecka Amodei
- Department of Physiology and Pharmacology (C.E.R., R.A., K.P.G.), Oregon Health and Science University, Portland, Oregon 97239-3098; and Department of Animal and Rangeland Sciences (K.C., F.S., C.T.E.) and College of Veterinary Medicine (C.T.E.), Oregon State University, Corvallis, Oregon 97331-4501
| | - Kyle P Gribbin
- Department of Physiology and Pharmacology (C.E.R., R.A., K.P.G.), Oregon Health and Science University, Portland, Oregon 97239-3098; and Department of Animal and Rangeland Sciences (K.C., F.S., C.T.E.) and College of Veterinary Medicine (C.T.E.), Oregon State University, Corvallis, Oregon 97331-4501
| | - Keely Corder
- Department of Physiology and Pharmacology (C.E.R., R.A., K.P.G.), Oregon Health and Science University, Portland, Oregon 97239-3098; and Department of Animal and Rangeland Sciences (K.C., F.S., C.T.E.) and College of Veterinary Medicine (C.T.E.), Oregon State University, Corvallis, Oregon 97331-4501
| | - Fred Stormshak
- Department of Physiology and Pharmacology (C.E.R., R.A., K.P.G.), Oregon Health and Science University, Portland, Oregon 97239-3098; and Department of Animal and Rangeland Sciences (K.C., F.S., C.T.E.) and College of Veterinary Medicine (C.T.E.), Oregon State University, Corvallis, Oregon 97331-4501
| | - Charles T Estill
- Department of Physiology and Pharmacology (C.E.R., R.A., K.P.G.), Oregon Health and Science University, Portland, Oregon 97239-3098; and Department of Animal and Rangeland Sciences (K.C., F.S., C.T.E.) and College of Veterinary Medicine (C.T.E.), Oregon State University, Corvallis, Oregon 97331-4501
| |
Collapse
|
42
|
Liu C, Rodriguez K, Yao HHC. Mapping lineage progression of somatic progenitor cells in the mouse fetal testis. Development 2016; 143:3700-3710. [PMID: 27621062 DOI: 10.1242/dev.135756] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/17/2016] [Indexed: 12/14/2022]
Abstract
Testis morphogenesis is a highly orchestrated process involving lineage determination of male germ cells and somatic cell types. Although the origin and differentiation of germ cells are known, the developmental course specific for each somatic cell lineage has not been clearly defined. Here, we construct a comprehensive map of somatic cell lineage progression in the mouse testis. Both supporting and interstitial cell lineages arise from WT1+ somatic progenitor pools in the gonadal primordium. A subpopulation of WT1+ progenitor cells acquire SOX9 expression and become Sertoli cells that form testis cords, whereas the remaining WT1+ cells contribute to progenitor cells in the testis interstitium. Interstitial progenitor cells diversify through the acquisition of HES1, an indication of Notch activation, at the onset of sex determination. HES1+ interstitial progenitors, through the action of Sertoli cell-derived Hedgehog signals, become positive for GLI1. The GLI1+ interstitial cells eventually develop into two cell lineages: steroid-producing fetal Leydig cells and non-steroidogenic cells. The fetal Leydig cell population is restricted by Notch2 signaling from the neighboring somatic cells. The non-steroidogenic progenitor cells retain their undifferentiated state during fetal stage and become adult Leydig cells in post-pubertal testis. These results provide the first lineage progression map that illustrates the sequential establishment of somatic cell populations during testis morphogenesis.
Collapse
Affiliation(s)
- Chang Liu
- Reproductive and Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Karina Rodriguez
- Reproductive and Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Group, National Institute of Environmental Health Sciences, Durham, NC 27709, USA
| |
Collapse
|
43
|
Lai MS, Wang CY, Yang SH, Wu CC, Sun HS, Tsai SJ, Chuang JI, Chen YC, Huang BM. The expression profiles of fibroblast growth factor 9 and its receptors in developing mice testes. Organogenesis 2016; 12:61-77. [PMID: 27078042 DOI: 10.1080/15476278.2016.1171448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An expressional lack of fibroblast growth factor 9 (FGF9) would cause male-to-female sex reversal in the mouse, implying the essential role of FGF9 in testicular organogenesis and maturation. However, the temporal expression of FGF9 and its receptors during testicular development remains elusive. In this study, immunohistochemistry was used to identify the localization of FGF9 and its receptors at different embryonic and postnatal stages in mice testes. Results showed that FGF9 continuously expressed in the testis during development. FGF9 had highest expression in the interstitial region at 17-18 d post coitum (dpc) and in the spermatocytes, spermatids and Leydig cell on postnatal days (pnd) 35-65. Regarding receptor expression, FGFR1 and FGFR4 were evenly expressed in the whole testis during the embryonic and postnatal stages. However, FGFR2 and FGFR3 were widely expressed during the embryonic testis development with higher FGFR2 expression in seminiferous tubules at 16-18 dpc and higher FGFR3 expression in interstitial region at 17-18 dpc. In postnatal stage, FGFR2 extensively expressed with higher expression at spermatids and Leydig cells on 35-65 pnd and FGFR3 widely expressed in the whole testis. Taken together, these results strongly suggest that FGF9 is correlated with the temporal expression profiles of FGFR2 and FGFR3 and possibly associated with testis development.
Collapse
Affiliation(s)
- Meng-Shao Lai
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - Chia-Yih Wang
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,b Department of Cell Biology and Anatomy , College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - Shang-Hsun Yang
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,c Department of Physiology , College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - Chia-Ching Wu
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,b Department of Cell Biology and Anatomy , College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - H Sunny Sun
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,d Institute of Molecular Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - Shaw-Jenq Tsai
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,c Department of Physiology , College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - Jih-Ing Chuang
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,c Department of Physiology , College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| | - Yung-Chia Chen
- e Department of Anatomy , School of Medicine, Kaohsiung Medical University , Kaohsiung , Taiwan , Republic of China
| | - Bu-Miin Huang
- a Institute of Basic Medicine, College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China.,b Department of Cell Biology and Anatomy , College of Medicine, National Cheng Kung University , Tainan , Taiwan , Republic of China
| |
Collapse
|
44
|
Martino-Andrade AJ, Liu F, Sathyanarayana S, Barrett ES, Redmon JB, Nguyen RHN, Levine H, Swan SH. Timing of prenatal phthalate exposure in relation to genital endpoints in male newborns. Andrology 2016; 4:585-93. [PMID: 27062102 DOI: 10.1111/andr.12180] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/06/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Prior studies report that penile size and male anogenital distance (AGD), sensitive markers of androgen action in utero, may be shortened by prenatal exposure to certain phthalates, including diethylhexyl phthalate (DEHP), but no human study has investigated the importance of exposure timing in these associations. The aim of this study was to examine the significance of exposure timing on the action of prenatal phthalates in particular DEHP, on male infant penile size and AGD. In The Infant Development and the Environment Study (TIDES) we measured penile width (PW) as well as anoscrotal distance (AGDAS ) and anopenile distance (AGPAP ) in newborn males. We modeled these endpoints in relation to phthalate metabolite concentrations in maternal urine samples collected in each trimester (T1, T2, and T3) in a subset of TIDES mothers (N = 168). PW was inversely associated with T2 oxidized DEHP metabolites, mono-2-ethyl-5-oxohexyl (MEOHP, β=-0.48; 95% confidence interval, -0.93, -0.02), MEHHP (-0.48; -0.92, -0.05), mono-2-ethyl-5-carboxypentyl (MECPP, -0.51; -1.01, -0.004), although no appreciable associations were seen between PW and T1 and T3 DEHP metabolite concentrations in this subset. Concentrations of DEHP metabolites in T1 urine samples were inversely related to male AGD. For example, in T1 samples in this subset of women mono-2-ethyl-5-hydroxyhexyl (MEHHP) was inversely associated with male AGDAP (β = -1.73; 95% confidence interval, -3.45, 0.0004). However, no appreciable associations were seen between AGD measures and any DEHP metabolite in T2 and T3 samples. These data suggest that DEHP exposure is inversely associated with AGD and PW, with PW primarily associated with T2 exposure and AGD associations seen only for T1 exposure, but no associations were found between T3 DEHP metabolites and any of these genital endpoints. These findings are consistent with data on critical windows in rodent studies, supporting the biological plausibility of these associations in humans.
Collapse
Affiliation(s)
- A J Martino-Andrade
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Physiology, Federal University of Parana, Curitiba, Brazil
| | - F Liu
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA, USA.,Seattle Children's Research Institute, Seattle, WA, USA
| | - E S Barrett
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - J B Redmon
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - R H N Nguyen
- Department of Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - H Levine
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Braun School of Public Health and Community Medicine, Hebrew University-Hadassah and the Hebrew University Center of Excellence in Agriculture and Environmental Health, Jerusalem, Israel
| | - S H Swan
- Department of Preventive Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
45
|
In utero betamethasone affects 3β-hydroxysteroid dehydrogenase and inhibin-α immunoexpression during testis development. J Dev Orig Health Dis 2016; 7:342-9. [PMID: 27019950 DOI: 10.1017/s2040174416000118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Prenatal glucocorticoids, commonly used in women at risk of preterm delivery, can predispose the newborn to disease in later life. Since male reproductive function is likely to reflect testis development during fetal life, we studied the effects of prenatal glucocorticoids on two key intra-testicular factors that play roles in cellular proliferation and differentiation, 3β-hydroxysteroid dehydrogenase (3β-HSD) and inhibin-α. Pregnant sheep (n=42) were treated with betamethasone (0.5 mg/kg) or saline (control) at 104, 111 and 118 days of gestation (DG). Testicular tissue was sampled from fetuses at 121 and 132DG, and from lambs at 45 and 90 postnatal days (PD). Within the betamethasone treated group, 3β-HSD immunostaining area was greater at 121DG than at 90PD (P=0.04), but the intensity of immunostaining was higher at 90PD than at 121DG (P=0.04), 132DG (P=0.04) and 45PD (P=0.03). Control animals showed no changes in 3β-HSD area or intensity of immunostaining. No significant differences were observed between treated and control animals in immunostaining area, but immunostaining was more intense in the treated group than in the control group at 90PD (P=0.03). For inhibin-α, the proportion of immunostaining area declined in treated offspring from 121DG to 45PD, in contrast to control values, but recovered fully by 90PD, concomitantly with the onset of spermatogenesis. In conclusion, prenatal betamethasone increased the postnatal testicular expression of inhibin-α but reduced the expression of 3β-HSD. These effects could compromise androgen-mediated testicular development and therefore adult capacity for spermatogenesis.
Collapse
|
46
|
Ashworth CJ, George SO, Hogg CO, Lai YT, Brunton PJ. Sex-specific prenatal stress effects on the rat reproductive axis and adrenal gland structure. Reproduction 2016; 151:709-17. [PMID: 27026714 PMCID: PMC5065086 DOI: 10.1530/rep-16-0097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/29/2016] [Indexed: 11/08/2022]
Abstract
Social stress during pregnancy has profound effects on offspring physiology. This study examined whether an ethologically relevant social stress during late pregnancy in rats alters the reproductive axis and adrenal gland structure in post-pubertal male and female offspring. Prenatally stressed (PNS) pregnant rats (n=9) were exposed to an unfamiliar lactating rat for 10 min/day from day 16 to 20 of pregnancy inclusive, whereas control pregnant rats (n=9) remained in their home cages. Gonads, adrenal glands and blood samples were obtained from one female and one male from each litter at 11 to 12-weeks of age. Anogenital distance was measured. There was no treatment effect on body, adrenal or gonad weight at 11-12 weeks. PNS did not affect the number of primordial, secondary or tertiary ovarian follicles, numbers of corpora lutea or ovarian FSH receptor expression. There was an indication that PNS females had more primary follicles and greater ovarian aromatase expression compared with control females (both P=0.09). PNS males had longer anogenital distances (0.01±0.0 cm/g vs 0.008±0.00 cm/g; P=0.007) and higher plasma FSH concentrations (0.05 ng/mL vs 0.006 ng/mL; s.e.d.=0.023; P=0.043) compared with control males. There were no treatment effects on the number of Sertoli cells or seminiferous tubules, seminiferous tubule area, plasma testosterone concentration or testis expression of aromatase, FSH receptor or androgen receptor. PNS did not affect adrenal size. These data suggest that the developing male reproductive axis is more sensitive to maternal stress and that PNS may enhance aspects of male reproductive development.
Collapse
Affiliation(s)
- Cheryl J Ashworth
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Edinburgh, UK
| | - Susan O George
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Edinburgh, UK
| | - Charis O Hogg
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Edinburgh, UK
| | - Yu-Ting Lai
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Edinburgh, UK
| | - Paula J Brunton
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesUniversity of Edinburgh, Edinburgh, UK
| |
Collapse
|
47
|
Smith LB, O'Shaughnessy PJ, Rebourcet D. Cell-specific ablation in the testis: what have we learned? Andrology 2015; 3:1035-49. [PMID: 26446427 PMCID: PMC4950036 DOI: 10.1111/andr.12107] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 01/15/2023]
Abstract
Testicular development and function is the culmination of a complex process of autocrine, paracrine and endocrine interactions between multiple cell types. Dissecting this has classically involved the use of systemic treatments to perturb endocrine function, or more recently, transgenic models to knockout individual genes. However, targeting genes one at a time does not capture the more wide‐ranging role of each cell type in its entirety. An often overlooked, but extremely powerful approach to elucidate cellular function is the use of cell ablation strategies, specifically removing one cellular population and examining the resultant impacts on development and function. Cell ablation studies reveal a more holistic overview of cell–cell interactions. This not only identifies important roles for the ablated cell type, which warrant further downstream study, but also, and importantly, reveals functions within the tissue that occur completely independently of the ablated cell type. To date, cell ablation studies in the testis have specifically removed germ cells, Leydig cells, macrophages and recently Sertoli cells. These studies have provided great leaps in understanding not possible via other approaches; as such, cell ablation represents an essential component in the researchers’ tool‐kit, and should be viewed as a complement to the more mainstream approaches to advancing our understanding of testis biology. In this review, we summarise the cell ablation models used in the testis, and discuss what each of these have taught us about testis development and function.
Collapse
Affiliation(s)
- L B Smith
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| | - P J O'Shaughnessy
- College of Medical, Veterinary and Life Sciences, Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Garscube Campus, Glasgow, UK
| | - D Rebourcet
- MRC Centre for Reproductive Health, University of Edinburgh, The Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
48
|
Agoulnik IU, Agoulnik AI. Long-Lasting Consequences of Testosterone Exposure. Endocrinology 2015; 156:3488-9. [PMID: 26380936 PMCID: PMC5398639 DOI: 10.1210/en.2015-1719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Irina U Agoulnik
- Departments of Cellular Biology and Pharmacology (I.U.A.) and Human and Molecular Genetics (A.I.A.), Herbert Wertheim College of Medicine, and Biomolecular Sciences Institute (I.U.A., A.I.A.), Florida International University, Miami, Florida 33199
| | - Alexander I Agoulnik
- Departments of Cellular Biology and Pharmacology (I.U.A.) and Human and Molecular Genetics (A.I.A.), Herbert Wertheim College of Medicine, and Biomolecular Sciences Institute (I.U.A., A.I.A.), Florida International University, Miami, Florida 33199
| |
Collapse
|
49
|
Jørgensen A, Lindhardt Johansen M, Juul A, Skakkebaek NE, Main KM, Rajpert-De Meyts E. Pathogenesis of germ cell neoplasia in testicular dysgenesis and disorders of sex development. Semin Cell Dev Biol 2015; 45:124-37. [PMID: 26410164 DOI: 10.1016/j.semcdb.2015.09.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 09/21/2015] [Indexed: 12/29/2022]
Abstract
Development of human gonads is a sex-dimorphic process which evolved to produce sex-specific types of germ cells. The process of gonadal sex differentiation is directed by the action of the somatic cells and ultimately results in germ cells differentiating to become functional gametes through spermatogenesis or oogenesis. This tightly controlled process depends on the proper sequential expression of many genes and signalling pathways. Disturbances of this process can be manifested as a large spectrum of disorders, ranging from severe disorders of sex development (DSD) to - in the genetic male - mild reproductive problems within the testicular dysgenesis syndrome (TDS), with large overlap between the syndromes. These disorders carry an increased but variable risk of germ cell neoplasia. In this review, we discuss the pathogenesis of germ cell neoplasia associated with gonadal dysgenesis, especially in individuals with 46,XY DSD. We summarise knowledge concerning development and sex differentiation of human gonads, with focus on sex-dimorphic steps of germ cell maturation, including meiosis. We also briefly outline the histopathology of germ cell neoplasia in situ (GCNIS) and gonadoblastoma (GDB), which are essentially the same precursor lesion but with different morphological structure dependent upon the masculinisation of the somatic niche. To assess the risk of germ cell neoplasia in different types of DSD, we have performed a PubMed search and provide here a synthesis of the evidence from studies published since 2006. We present a model for pathogenesis of GCNIS/GDB in TDS/DSD, with the risk of malignancy determined by the presence of the testis-inducing Y chromosome and the degree of masculinisation. The associations between phenotype and the risk of neoplasia are likely further modulated in each individual by the constellation of the gene polymorphisms and environmental factors.
Collapse
Affiliation(s)
- Anne Jørgensen
- Department of Growth & Reproduction and International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| | - Marie Lindhardt Johansen
- Department of Growth & Reproduction and International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| | - Anders Juul
- Department of Growth & Reproduction and International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| | - Niels E Skakkebaek
- Department of Growth & Reproduction and International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| | - Katharina M Main
- Department of Growth & Reproduction and International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| | - Ewa Rajpert-De Meyts
- Department of Growth & Reproduction and International Center for Research and Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Denmark.
| |
Collapse
|
50
|
Shima Y, Matsuzaki S, Miyabayashi K, Otake H, Baba T, Kato S, Huhtaniemi I, Morohashi KI. Fetal Leydig Cells Persist as an Androgen-Independent Subpopulation in the Postnatal Testis. Mol Endocrinol 2015; 29:1581-93. [PMID: 26402718 DOI: 10.1210/me.2015-1200] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Two distinct types of Leydig cells emerge during the development of eutherian mammals. Fetal Leydig cells (FLCs) appear shortly after gonadal sex differentiation, and play a crucial role in masculinization of male fetuses. Meanwhile, adult Leydig cells (ALCs) emerge after birth and induce the secondary male-specific sexual maturation by producing testosterone. Previous histological studies suggested that FLCs regress completely soon after birth. Furthermore, gene disruption studies indicated that androgen signaling is dispensable for FLC differentiation but indispensable for postnatal ALC differentiation. Here, we performed lineage tracing of FLCs using a FLC enhancer of the Ad4BP/SF-1 (Nr5a1) gene and found that FLCs persist in the adult testis. Given that postnatal FLCs expressed androgen receptor (AR) as well as LH receptor (LuR), the effects of AR disruption on FLCs and ALCs were analyzed by crossing AR knockout (KO) mice with FLC-specific enhanced green fluorescent protein (EGFP) mice. Moreover, to eliminate the influence of elevated LH levels in ARKO mice, LuRKO mice and AR/LuR double-KO mice were analyzed. The proportion of ALCs to postnatal FLCs was decreased in ARKO mice, and the effect was augmented in the double-KO mice, suggesting that androgen signaling plays important roles in ALCs, but not in FLCs. Finally, ARKO was achieved in an FLC-specific manner (FLCARKO mice), but the FLC number and gene expression pattern appeared unaffected. These findings support the conclusion that FLCs persist as an androgen-independent Leydig subpopulation in the postnatal testis.
Collapse
Affiliation(s)
- Yuichi Shima
- Department of Molecular Biology (Y.S., S.M., K.M., H.O., T.B., K.-i.M.), Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Soma Central Hospital (S.K.), Soma, Fukushima 976-0016, Japan; Institute of Reproductive and Developmental Biology (I.H.), Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom; and Department of Physiology (I.H.), University of Turku, 20520 Turku, Finland
| | - Sawako Matsuzaki
- Department of Molecular Biology (Y.S., S.M., K.M., H.O., T.B., K.-i.M.), Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Soma Central Hospital (S.K.), Soma, Fukushima 976-0016, Japan; Institute of Reproductive and Developmental Biology (I.H.), Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom; and Department of Physiology (I.H.), University of Turku, 20520 Turku, Finland
| | - Kanako Miyabayashi
- Department of Molecular Biology (Y.S., S.M., K.M., H.O., T.B., K.-i.M.), Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Soma Central Hospital (S.K.), Soma, Fukushima 976-0016, Japan; Institute of Reproductive and Developmental Biology (I.H.), Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom; and Department of Physiology (I.H.), University of Turku, 20520 Turku, Finland
| | - Hiroyuki Otake
- Department of Molecular Biology (Y.S., S.M., K.M., H.O., T.B., K.-i.M.), Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Soma Central Hospital (S.K.), Soma, Fukushima 976-0016, Japan; Institute of Reproductive and Developmental Biology (I.H.), Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom; and Department of Physiology (I.H.), University of Turku, 20520 Turku, Finland
| | - Takashi Baba
- Department of Molecular Biology (Y.S., S.M., K.M., H.O., T.B., K.-i.M.), Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Soma Central Hospital (S.K.), Soma, Fukushima 976-0016, Japan; Institute of Reproductive and Developmental Biology (I.H.), Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom; and Department of Physiology (I.H.), University of Turku, 20520 Turku, Finland
| | - Shigeaki Kato
- Department of Molecular Biology (Y.S., S.M., K.M., H.O., T.B., K.-i.M.), Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Soma Central Hospital (S.K.), Soma, Fukushima 976-0016, Japan; Institute of Reproductive and Developmental Biology (I.H.), Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom; and Department of Physiology (I.H.), University of Turku, 20520 Turku, Finland
| | - Ilpo Huhtaniemi
- Department of Molecular Biology (Y.S., S.M., K.M., H.O., T.B., K.-i.M.), Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Soma Central Hospital (S.K.), Soma, Fukushima 976-0016, Japan; Institute of Reproductive and Developmental Biology (I.H.), Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom; and Department of Physiology (I.H.), University of Turku, 20520 Turku, Finland
| | - Ken-ichirou Morohashi
- Department of Molecular Biology (Y.S., S.M., K.M., H.O., T.B., K.-i.M.), Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Soma Central Hospital (S.K.), Soma, Fukushima 976-0016, Japan; Institute of Reproductive and Developmental Biology (I.H.), Department of Surgery and Cancer, Imperial College London, London W12 0NN, United Kingdom; and Department of Physiology (I.H.), University of Turku, 20520 Turku, Finland
| |
Collapse
|