1
|
Silva AMD, Pereira AG, Bezerra LGP, Brasil AV, Pereira AF, de Oliveira MF, Rodrigues APR, Ñaupas LVS, Comizzoli P, Silva AR. Synergistic effects of glial cell line-derived neurotrophic factor and base-medium on in vitro culture of testicular tissue derived from prepubertal collared peccary. Cell Biol Int 2024; 48:1364-1377. [PMID: 39007507 DOI: 10.1002/cbin.12203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024]
Abstract
We evaluated the influence of different media plus various concentrations of Glial cell line-derived neurotrophic factor (GDNF) during the in vitro culture (IVC) of testicular tissues from prepubertal collared peccary. Testes from 5 individuals were collected, fragmented and cultured for 28 days (34°C and 5% CO2). Culture media were Dulbecco's modified essential medium (DMEM) or stem cell serum free media (StemPro-34™ SFM), both supplemented with various concentrations of GDNF (0, 10, or 20 ng/mL). Fragments were cultured on the flat surface of 0.75% agarose gel and were evaluated every 7 days for fragment area, histomorphology, cellular viability, and proliferative activity. Data were expressed as mean ± standard error and analyzed by Kruskal-Wallis's and Tukey test. Fragments area decreased over the 28 days-culture, regardless of the treatment. For morphology, the StemPro-37 SFM medium plus 10 ng/mL GDNF provided higher scores at all time points in comparison to DMEM using any GDNF concentration (p < .05). After 28 days, similar cellular viability (~70%) was observed in all treatments (p > .05). For proliferating cell nuclear antigen assay, only DMEM plus 10 ng/mL GDNF improved (p < .05) cellular proliferation on Days 14 and 28. Looking at argyrophilic nucleolar organizing regions, after 28 days, there were no differences among treatments regarding cell proliferative capacity for both spermatogonia and Sertoli cells (p > .05). In summary, the DMEM and StemPro-34 SFM are adequate medium for IVC of prepubertal peccary testicular tissue. Supplementation with GDNF, especially at a 10 ng/mL concentration, appears to be essential for the maintenance of cell survival and proliferation.
Collapse
Affiliation(s)
- Andreia Maria da Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, UFERSA, Mossoro, Brazil
| | - Ana Glória Pereira
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, UFERSA, Mossoro, Brazil
| | | | - Andreza Vieira Brasil
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, UFERSA, Mossoro, Brazil
| | | | | | | | | | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, District of Columbia, USA
| | - Alexandre Rodrigues Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, UFERSA, Mossoro, Brazil
| |
Collapse
|
2
|
Chen L, Dong Z, Chen X. Fertility preservation in pediatric healthcare: a review. Front Endocrinol (Lausanne) 2023; 14:1147898. [PMID: 37206440 PMCID: PMC10189781 DOI: 10.3389/fendo.2023.1147898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Survival rates for children and adolescents diagnosed with malignancy have been steadily increasing due to advances in oncology treatments. These treatments can have a toxic effect on the gonads. Currently, oocyte and sperm cryopreservation are recognized as well-established and successful strategies for fertility preservation for pubertal patients, while the use of gonadotropin-releasing hormone agonists for ovarian protection is controversial. For prepubertal girls, ovarian tissue cryopreservation is the sole option. However, the endocrinological and reproductive outcomes after ovarian tissue transplantation are highly heterogeneous. On the other hand, immature testicular tissue cryopreservation remains the only alternative for prepubertal boys, yet it is still experimental. Although there are several published guidelines for navigating fertility preservation for pediatric and adolescent patients as well as transgender populations, it is still restricted in clinical practice. This review aims to discuss the indications and clinical outcomes of fertility preservation. We also discuss the probably effective and efficient workflow to facilitate fertility preservation.
Collapse
Affiliation(s)
- Lin Chen
- Reproductive Medical Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zirui Dong
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen University, Shenzhen, China
- The Fertility Preservation Research Center, Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Silva AR, Pereira AF, Comizzoli P. Biobanking and use of gonadal tissues - a promising strategy for conserving wildlife from the Caatinga biome. Anim Reprod 2023; 19:e20220135. [PMID: 36819484 PMCID: PMC9924771 DOI: 10.1590/1984-3143-ar2022-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/24/2023] [Indexed: 02/19/2023] Open
Abstract
Biological Resource Banks (BRB) or Genetic Resource Banks (GRB) are critical tools for the conservation of animal biodiversity. According to the International Union for Conservation of Nature, more than 38,500 species are threatened with extinction, out of a total of 138,300 surveyed species. These banks are repositories of biological samples and data recovered and preserved for the long term by zoos, universities, research centers and other conservation organizations. In recent years, BRB have increasingly included ovarian and testicular tissues as additional options to rescue and propagate wild species, especially those at risk of extinction. After in vitro culture or grafting, gonadal tissues are potential sources of matured gametes that can be used for Assisted Reproduction Technologies while informing about gametogenesis or mechanisms involved in infertility. It therefore is crucial to properly recover, cryopreserve, and culture these tissues using species-specific protocols. Developing BRBs is currently one of the strategies to preserve species from the Caatinga biome - an exclusively Brazilian biome with a rich wild fauna that suffers from anthropogenic activities. Among wild species from this biome, studies have been primarily conducted in collared peccaries, agoutis, cavies, and armadillos to preserve their ovarian and testicular tissues. Additionally, domestic species such as the domestic cat and donkeys have been proposed as models for wild species that are phylogenetically close. This review addresses the main technical aspects involved in obtaining BRB derived from gonadal tissues in some wild species of the Caatinga biome. It reports recent advances and perspectives to use these biological materials for wildlife conservation.
Collapse
Affiliation(s)
- Alexandre Rodrigues Silva
- Laboratório de Conservação de Germoplasma Animal, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil,Corresponding author:
| | | | - Pierre Comizzoli
- Smithsonian National Zoo and Conservation Biology Institute, Washington, USA
| |
Collapse
|
4
|
Nascimento BR, de Freitas DS, Nogueira JM, Souza CCE, de Paula RS, Pereira JM, Madureira AP, Barcelos LS, Jorge EC, Campos-Junior PHA. Drastic Loss of Antral Follicles Due to Gene Expression Dysregulation Occurs on the First Day After Subcutaneous Ovarian Transplantation. Reprod Sci 2023:10.1007/s43032-023-01184-1. [PMID: 36759496 DOI: 10.1007/s43032-023-01184-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
Ovarian cryopreservation is an alternative for the preservation of fertility, and the subcutaneous transplantation site is considered one of the most promising. Studies evaluating the follicular growth and its relationship with gene expression and vascular perfusion are essential for improving this technique and its clinical application. Thus, the aim of this study was to evaluate the effect of subcutaneous autotransplantation and vitrification on follicular growth and atresia and their relationship with vascular perfusion and gene expression. Therefore, female mice were ovariectomized, and the ovaries were divided in two experimental groups (1) vitrified (treatment, n = 97) and (2) not vitrified (control, n = 97) and subsequently were transplanted. Then grafts, from both groups, were recovered after 1, 12, or 23 days (D1, D12, D23) and subjected to follicular quantification, morphometry, and qPCR. Non-transplanted ovaries (D0) were also used. The estrous cycle and vascular perfusion were monitored throughout the experiment. On D9, 100% of the animals had reestablished their estrous cycles (p > 0.05). Blood perfusion at the transplant site was similar for both treatments (p > 0.05), with greater perfusion at the site of vitrified transplants only on D1 (p < 0.05). A drastic reduction in the number of antral follicles and an increased number of atretic follicles were observed on D1 (p < 0.0001), associated with upregulation of Casp3, Fshr, and Igf1r; and downregulation of Bax, Acvr1, Egfr, and Lhcgr (p < 0.05). Our findings indicate that the first day after subcutaneous transplantation is a critical period for follicular survival, with intense follicular atresia independent of Bax upregulation.
Collapse
Affiliation(s)
- Bárbara Rodrigues Nascimento
- Laboratório de Pesquisa Em Reprodução, Departamento de Ciências Naturais, Universidade Federal de São João del Rei, Praça Dom Helvécio, 74 - Dom Bosco, São João del-Rei, MG, 36301-160, Brazil
| | - Danielle Storino de Freitas
- Laboratório de Pesquisa Em Reprodução, Departamento de Ciências Naturais, Universidade Federal de São João del Rei, Praça Dom Helvécio, 74 - Dom Bosco, São João del-Rei, MG, 36301-160, Brazil
| | - Júlia Meireles Nogueira
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Clara Carvalho E Souza
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Rayan Silva de Paula
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Jousie Michel Pereira
- Departamento de Fisiologia E Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Ana Paula Madureira
- Laboratório de Pesquisa Em Reprodução, Departamento de Ciências Naturais, Universidade Federal de São João del Rei, Praça Dom Helvécio, 74 - Dom Bosco, São João del-Rei, MG, 36301-160, Brazil
| | - Luciola Silva Barcelos
- Departamento de Fisiologia E Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Erika Cristina Jorge
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Paulo Henrique Almeida Campos-Junior
- Laboratório de Pesquisa Em Reprodução, Departamento de Ciências Naturais, Universidade Federal de São João del Rei, Praça Dom Helvécio, 74 - Dom Bosco, São João del-Rei, MG, 36301-160, Brazil.
| |
Collapse
|
5
|
Farias TDO, Figueiredo AFA, Wnuk NT, Talamoni SA, Costa GMJ. Testis and brown adipose tissue xenografts from yellowish myotis (Myotis levis). REPRODUCTION AND FERTILITY 2022; 3:RAF-22-0056. [PMID: 36331914 PMCID: PMC9782442 DOI: 10.1530/raf-22-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022] Open
Abstract
Yellowish myotis present a seasonal reproduction, influenced by rainfall distribution, in which the testis mass, germ cell composition, and brown adipose tissue mass change along the reproductive stages. In the present study, tissue xenografts were performed in immunodeficient mice to investigate spermatogenesis development in a stable endocrine milieu and the possible androgenic role of brown adipose tissue. Forty-one adult male bats were captured in the Santuário do Caraça, Minas Gerais, Brazil. The gonads and brown adipose tissue were collected, weighed, and grafted under the mice's back skin. Mice biometric and hormonal data were evaluated after grafting, and the testis grafts and mice gonads were fixed for histological and immunohistochemical analyses. As a result, testis grafts from adult bats presented a continuous germ cell development in all reproductive phases, showing round spermatids in all testis tissues. Furthermore, testis fragments in the Rest stage presented elongating spermatids as the most advanced germ cell type in the seminiferous epithelium after seven months of grafting. These data indicated that yellowish myotis spermatogenesis could be continued (presenting a constant spermatogonial differentiation) in a stable endocrine milieu, as found in mice. In addition, the best spermatogenic development was achieved when testis fragments were transplanted at their lowest activity (Rest stage). Regarding the brown adipose tissue grafts, the adipose tissue consumption by mice increased seminal vesicle mass and testosterone serum levels. This data proved that the brown adipose tissue is related to testosterone synthesis, which may be critical in stimulating the differentiation of spermatogonia in yellowish myotis.
Collapse
Affiliation(s)
- Talita De Oliveira Farias
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - André Felipe Almeida Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Natalia Teixeira Wnuk
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Sônia Aparecida Talamoni
- Laboratory of Mastozoology, Department of Biological Sciences, Pontifical Catholic University of Minas Gerais - PUC Minas, Belo Horizonte, MG, Brazil
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Awang-Junaidi AH, Fayaz MA, Goldstein S, Honaramooz A. Using a testis regeneration model, FGF9, LIF, and SCF improve testis cord formation while RA enhances gonocyte survival. Cell Tissue Res 2022; 389:351-370. [PMID: 35596812 DOI: 10.1007/s00441-022-03641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Implantation of testis cell aggregates from various donors under the back skin of recipient mice results in de novo formation of testis tissue. We used this implantation model to study the putative in vivo effects of six different growth factors on testis cord development. Recipient mice (n = 7/group) were implanted with eight neonatal porcine testis cell aggregates that were first exposed to a designated growth factor: FGF2 at 1 µg/mL, FGF9 at 5 µg/mL, VEGF at 3.5 µg/mL, LIF at 5 µg/mL, SCF at 3.5 µg/mL, retinoic acid (RA) at 3.5 × 10-5 M, or no growth factors (control). The newly developed seminiferous cords (SC) were classified based on their morphology into regular, irregular, enlarged, or aberrant. Certain treatments enhanced implant weight (LIF), implant cross-sectional area (SCF) or the relative cross-sectional area covered by SC within implants (FGF2). RA promoted the formation of enlarged SC and FGF2 led to the highest ratio of regular SC and the lowest ratio of aberrant SC. Rete testis-like structures appeared earlier in implants treated with FGF2, FGF9, or LIF. These results show that even brief pre-implantation exposure of testis cells to these growth factors can have profound effects on morphogenesis of testis cords using this implantation model.
Collapse
Affiliation(s)
- Awang Hazmi Awang-Junaidi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.,Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Mohammad Amin Fayaz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Savannah Goldstein
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
7
|
Awang-Junaidi AH, Singh J, Honaramooz A. Regeneration of testis tissue after ectopic implantation of porcine testis cell aggregates in mice: improved consistency of outcomes and in situ monitoring. Reprod Fertil Dev 2021; 32:594-609. [PMID: 32051087 DOI: 10.1071/rd19043] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Ectopic implantation of donor testis cell aggregates in recipient mice results in de novo formation or regeneration of testis tissue and, as such, provides a unique invivo model for the study of testis development. However, currently the results are inconsistent and the efficiency of the model remains low. This study was designed to: (1) examine several factors that can potentially improve the consistency and efficiency of this model and (2) explore the use of ultrasound biomicroscopy (UBM) for the non-invasive invivo evaluation of implants. Testis cell aggregates, containing ~40% gonocytes, from 1-week-old donor piglets were implanted under the back skin of immunodeficient mice through skin incisions using gel matrices or through subcutaneous injection without using gel matrices. The addition of gel matrices led to inconsistent tissue development; gelatin had the greatest development, followed by collagen, whereas agarose resulted in poor development. The results also depended on the implanted cell numbers since implants with 100×106 cells were larger than those with 50×106 cells. The injection approach for cell implantation was less invasive and resulted in more consistent and efficient testis tissue development. UBM provided promising results as a means of non-invasive monitoring of implants.
Collapse
Affiliation(s)
- Awang Hazmi Awang-Junaidi
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada; and Present address: Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Jaswant Singh
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada
| | - Ali Honaramooz
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada; and Corresponding author.
| |
Collapse
|
8
|
Wyns C, Kanbar M, Giudice MG, Poels J. Fertility preservation for prepubertal boys: lessons learned from the past and update on remaining challenges towards clinical translation. Hum Reprod Update 2020; 27:433-459. [PMID: 33326572 DOI: 10.1093/humupd/dmaa050] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/25/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Childhood cancer incidence and survivorship are both on the rise. However, many lifesaving treatments threaten the prepubertal testis. Cryopreservation of immature testicular tissue (ITT), containing spermatogonial stem cells (SSCs), as a fertility preservation (FP) option for this population is increasingly proposed worldwide. Recent achievements notably the birth of non-human primate (NHP) progeny using sperm developed in frozen-thawed ITT autografts has given proof of principle of the reproductive potential of banked ITT. Outlining the current state of the art on FP for prepubertal boys is crucial as some of the boys who have cryopreserved ITT since the early 2000s are now in their reproductive age and are already seeking answers with regards to their fertility. OBJECTIVE AND RATIONALE In the light of past decade achievements and observations, this review aims to provide insight into relevant questions for clinicians involved in FP programmes. Have the indications for FP for prepubertal boys changed over time? What is key for patient counselling and ITT sampling based on the latest achievements in animals and research performed with human ITT? How far are we from clinical application of methods to restore reproductive capacity with cryostored ITT? SEARCH METHODS An extensive search for articles published in English or French since January 2010 to June 2020 using keywords relevant to the topic of FP for prepubertal boys was made in the MEDLINE database through PubMed. Original articles on fertility preservation with emphasis on those involving prepubertal testicular tissue, as well as comprehensive and systematic reviews were included. Papers with redundancy of information or with an absence of a relevant link for future clinical application were excluded. Papers on alternative sources of stem cells besides SSCs were excluded. OUTCOMES Preliminary follow-up data indicate that around 27% of boys who have undergone testicular sampling as an FP measure have proved azoospermic and must therefore solely rely on their cryostored ITT to ensure biologic parenthood. Auto-transplantation of ITT appears to be the first technique that could enter pilot clinical trials but should be restricted to tissue free of malignant cells. While in vitro spermatogenesis circumvents the risk linked to cancer cell contamination and has led to offspring in mice, complete spermatogenesis has not been achieved with human ITT. However, generation of haploid germ cells paves the way to further studies aimed at completing the final maturation of germ cells and increasing the efficiency of the processes. WIDER IMPLICATIONS Despite all the research done to date, FP for prepubertal boys remains a relatively young field and is often challenging to healthcare providers, patients and parents. As cryopreservation of ITT is now likely to expand further, it is important not only to acknowledge some of the research questions raised on the topic, e.g. the epigenetic and genetic integrity of gametes derived from strategies to restore fertility with banked ITT but also to provide healthcare professionals worldwide with updated knowledge to launch proper multicollaborative care pathways in the field and address clinical issues that will come-up when aiming for the child's best interest.
Collapse
Affiliation(s)
- Christine Wyns
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Marc Kanbar
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Maria Grazia Giudice
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jonathan Poels
- Andrology lab, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium.,Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
9
|
The study and manipulation of spermatogonial stem cells using animal models. Cell Tissue Res 2020; 380:393-414. [PMID: 32337615 DOI: 10.1007/s00441-020-03212-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Spermatogonial stem cells (SSCs) are a rare group of cells in the testis that undergo self-renewal and complex sequences of differentiation to initiate and sustain spermatogenesis, to ensure the continuity of sperm production throughout adulthood. The difficulty of unequivocal identification of SSCs and complexity of replicating their differentiation properties in vitro have prompted the introduction of novel in vivo models such as germ cell transplantation (GCT), testis tissue xenografting (TTX), and testis cell aggregate implantation (TCAI). Owing to these unique animal models, our ability to study and manipulate SSCs has dramatically increased, which complements the availability of other advanced assisted reproductive technologies and various genome editing tools. These animal models can advance our knowledge of SSCs, testis tissue morphogenesis and development, germ-somatic cell interactions, and mechanisms that control spermatogenesis. Equally important, these animal models can have a wide range of experimental and potential clinical applications in fertility preservation of prepubertal cancer patients, and genetic conservation of endangered species. Moreover, these models allow experimentations that are otherwise difficult or impossible to be performed directly in the target species. Examples include proof-of-principle manipulation of germ cells for correction of genetic disorders or investigation of potential toxicants or new drugs on human testis formation or function. The primary focus of this review is to highlight the importance, methodology, current and potential future applications, as well as limitations of using these novel animal models in the study and manipulation of male germline stem cells.
Collapse
|
10
|
Silva AMD, Pereira AF, Comizzoli P, Silva AR. Cryopreservation and Culture of Testicular Tissues: An Essential Tool for Biodiversity Preservation. Biopreserv Biobank 2020; 18:235-243. [PMID: 32282240 DOI: 10.1089/bio.2020.0010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Systematic cryo-banking of reproductive tissues could enhance reproductive management and ensure sustainability of rare mammalian genotypes. Testicular tissues contain a vast number of germ cells, including at early stages (spermatogonia and spermatocytes), that can potentially develop into viable spermatozoa after grafting or culture in vitro, and the resulting sperm cells then can be used for assisted reproductive techniques. The objective of this review was to describe current advances, limitations, and perspectives related to the use of testicular tissue preservation as a strategy for the conservation of male fertility. Testes can be obtained from mature or prepubertal individuals, immediately postmortem or by orchiectomy, but testicular biopsies could also be an alternative to collect samples from living individuals. Testicular fragments can be then cryopreserved by using slow or ultra-rapid freezing, or even vitrification methods. The composition of cryopreservation media can vary according to species-specific characteristics, especially regarding the cryoprotectant type and concentration. Finally, spermatozoa have been usually obtained after xenografting of testicular fragments into severely immunodeficient mice, while this method still has to be optimized after in vitro culture conditions.
Collapse
Affiliation(s)
- Andréia Maria da Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoró, Brazil
| | | | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Veterinary Hospital, Washington, District of Columbia, USA
| | | |
Collapse
|
11
|
Vitrification leads to transcriptomic modifications of mice ovaries that do not affect folliculogenesis progression. Reprod Biol 2020; 20:264-272. [PMID: 32044207 DOI: 10.1016/j.repbio.2020.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/20/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Ovarian tissue cryopreservation is emerging as a promising alternative for fertility preservation of cancer survivors. To date, more than a hundred couples have successfully had babies using this procedure, although it is still considered experimental and demands further investigation. In this work, we evaluated the effects of vitrification, warming and autotransplantation procedures on the morphology and gene expression of murine ovaries. Ovaries were removed from adult female C57BL6 mice (n = 15), vitrified, warmed and autotransplanted (vitrified group), additionally, ovaries were autotransplanted without vitrification (control group, n = 15). After twenty days, grafted ovaries were harvested and used for histological and ultrastructural analysis, germinal vesicle (GV) oocyte collection, RNA sequencing, and Transmission Electron Microscopy (TEM). All classes of follicles and GV were observed in both control and vitrified/warmed transplanted ovaries, and the numbers of primordial, antral and atretic follicles were not different (p > 0.05). Using RNA-seq, we detected 16,602 vs 13,527 expressed genes in vitrified and control ovaries, respectively; and 623 significantly dysregulated genes (fold change >1.5; 332 up-regulated and 291 down-regulated). Cellular membranes, cytoskeletons, and extracellular matrices were found as the main functions of the differentially expressed genes. Moreover, vitrified samples also presented ultrastructural alterations in the cytoskeleton, cell junctions, and endoplasmic reticulum. Taken together, this work showed for the first time that ovarian cells might trigger a compensatory gene regulation mechanism to maintain cellular structure and folliculogenesis progression after vitrification and autotransplantation.
Collapse
|
12
|
Borges AA, Santos MVDO, Nascimento LE, Lira GPDO, Praxedes ÉA, Oliveira MFD, Silva AR, Pereira AF. Production of collared peccary (Pecari tajacu Linnaeus, 1758) parthenogenic embryos following different oocyte chemical activation and in vitro maturation conditions. Theriogenology 2019; 142:320-327. [PMID: 31711691 DOI: 10.1016/j.theriogenology.2019.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Accepted: 10/13/2019] [Indexed: 02/09/2023]
Abstract
To optimize the protocols for assisted reproductive techniques (ARTs) in collared peccary (Pecari tajacu Linnaeus, 1758), we evaluated various conditions for oocyte in vitro maturation (IVM) and chemical activation. Initially, we assessed the IVM rates, cumulus-oocyte complex (COC) quality, and oocyte morphometry in the absence or presence of epidermal growth factor (EGF). There was no difference between the COCs matured in absence or presence of EGF for the expansion of cumulus cells (97.6% ± 1.2 vs. 100% ± 0.0), presence of first polar body (65.9% ± 1.2 vs. 70.5% ± 1.8), nuclear status in second metaphase (62.5% ± 11.6 vs. 68.4% ± 4.9), cytoplasmic maturation (100.0% ± 0.7 vs. 75.0% ± 0.7), reactive oxygen species levels (0.5 ± 0.2 vs. 0.3 ± 0.1), and mitochondrial membrane potential (1.1 ± 0.2 vs. 1.1 ± 0.1). However, the zona pellucida thickness of matured COCs was reduced in the presence of EGF. Thus, the EGF group was used for further experiments. The oocytes were artificially activated with ionomycin and four secondary activator combinations [6-dimethylaminopurine (6D), 6D and cytochalasin B (6D + CB), cycloheximide (CHX), and CHX and CB (CHX + CB)]. The effect of immature COCs based on cumulus cell layers and cytoplasm homogeneity (GI and GII or GIII COCs) on embryonic development and quality was evaluated. There was no difference in the cleavage rates among the groups of secondary activators. The cleavage rates of embryos derived from GI/GII and GIII COCs were greater than 72.2% and 25.0%, respectively. Moreover, treatment with CHX showed a reduction in the cleavage rate of embryos derived from GIII COCs when compared to the cleavage rate of embryos derived from GI/GII COCs (P < 0.05). Nevertheless, higher rates of blastocyst/total GI and GII COCs were observed in the 6D group (27.6% ± 0.3) compared to CHX group (6.9% ± 0.3). Additionally, only 6D treatment resulted in the production of embryos derived from GIII COCs (25.0% ± 0.2). The percentage of the ICM/total cell ratio was also greater in blastocysts derived from 6D (42.5% ± 19.0), 6D + CB (37.9% ± 21.9), and CHX + CB (43.8% ± 19.6) groups when compared to CHX (3.6% ± 0.1) group. Thus, the combination of ionomycin and 6D could produce collared peccary embryos by activation of both GI/GII COCs and GIII COCs. These optimized IVM conditions using EGF and chemical activation using ionomycin and 6D in collared peccaries form the first steps for establishing ARTs to conserve this species.
Collapse
Affiliation(s)
- Alana Azevedo Borges
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoro, RN, Brazil
| | | | | | | | - Érika Almeida Praxedes
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoro, RN, Brazil
| | - Moacir Franco de Oliveira
- Laboratory of Applied Animal Morphophysiology, Federal Rural University of Semi-Arid, Mossoro, RN, Brazil
| | - Alexandre Rodrigues Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid, Mossoro, RN, Brazil
| | | |
Collapse
|
13
|
Costa GMJ, Sousa AL, Figueiredo AFA, Lacerda SMSN, França LR. Characterization of spermatogonial cells and niche in the scorpion mud turtle (Kinosternon scorpioides). Gen Comp Endocrinol 2019; 273:163-171. [PMID: 29966660 DOI: 10.1016/j.ygcen.2018.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/21/2018] [Accepted: 06/29/2018] [Indexed: 01/15/2023]
Abstract
Undifferentiated spermatogonia (Aund) or spermatogonial stem cells (SSCs) are committed to the establishment and maintenance of spermatogenesis and fertility throughout a male's life and are located in a highly specialized microenvironment called niche that regulates their fate. Although several studies have been developed on SSCs in mammalian testis, little is known about other vertebrate classes. The present study is the first to perform a more detailed investigation on the spermatogonial cells and their niche in a reptilian species. Thus, we characterized Aund/SSCs and evaluated the existence of SSCs niche in the Kinosternon scorpioides, a freshwater turtle found from Mexico to northern and central South America. Our results showed that, in this species, Aund/SSCs exhibited a nuclear morphological pattern similar to those described for other mammalian species already investigated. However, in comparison to other spermatogonial cell types, Aund/SSCs presented the largest nuclear volume in this turtle. Similar to some mammalian and fish species investigated, both GFRA1 and CSF1 receptors were expressed in Aund/SSCs in K. scorpioides. Also, as K. scorpioides Aund/SSCs were preferentially located near blood vessels, it can be suggested that this niche characteristic is a well conserved feature during evolution. Besides being valuable for comparative reproductive biology, our findings represent an important step towards the understanding of SSCs biology and the development of valuable systems/tools for SSCs culture and cryopreservation in turtles. Moreover, we expect that the above-mentioned results will be useful for reproductive biotechnologies as well as for governmental programs aiming at reptilian species conservation.
Collapse
Affiliation(s)
- G M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A L Sousa
- Department of Veterinary Clinics, State University of Maranhão, São Luís, MA, Brazil
| | - A F A Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - S M S N Lacerda
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - L R França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; National Institute for Amazonian Research (INPA), Manaus, AM, Brazil.
| |
Collapse
|
14
|
Lara NDLEM, Costa GMJ, Avelar GF, Guimarães DA, França LR. Postnatal testis development in the collared peccary (Tayassu tajacu), with emphasis on spermatogonial stem cells markers and niche. Gen Comp Endocrinol 2019; 273:98-107. [PMID: 29763586 DOI: 10.1016/j.ygcen.2018.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/06/2018] [Accepted: 05/11/2018] [Indexed: 11/21/2022]
Abstract
Collared peccaries (Tayassu tajacu) present a unique testis cytoarchitecture, where Leydig cells (LC) are mainly located in cords around the seminiferous tubules (ST) lobes. This peculiar arrangement is very useful to better investigate and understand the role of LC in spermatogonial stem cells (SSCs) biology and niche. Recent studies from our laboratory using adult peccaries have shown that the undifferentiated type A spermatogonia (Aund or SSCs) are preferentially located in ST regions adjacent to the intertubular compartment without LC. Following these studies, our aims were to investigate the collared peccary postnatal testis development, from birth to adulthood, with emphasis on the establishment of LC cytoarchitecture and the SSCs niche. Our findings demonstrated that the unique LC cytoarchitecture is already present in the neonate peccary's testis, indicating that this arrangement is established during fetal development. Based on the most advanced germ cell type present at each time period evaluated, puberty (the first sperm release in the ST lumen) in this species was reached at around one year of age, being preceded by high levels of estradiol and testosterone and the end of Sertoli cell proliferation. Almost all gonocytes and SSCs expressed Nanos1, Nanos2 and GFRA1. The analysis of SSCs preferential location indicated that the establishment of SSCs niche is coincident with the occurrence of puberty. Taken together, our findings reinforced and extended the importance of the collared peccary as an animal model to investigate testis function in mammals, particularly the aspects related to testis organogenesis and the SSCs biology and niche.
Collapse
Affiliation(s)
| | - Guilherme Mattos Jardim Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gleide Fernandes Avelar
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Diva Anelie Guimarães
- Laboratory of Animal Reproduction, Biological Sciences Institute, Federal University of Pará, Belém, PA, Brazil
| | - Luiz Renato França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; National Institute for Amazonian Research, Manaus, AM, Brazil.
| |
Collapse
|
15
|
Alves-Lopes JP, Stukenborg JB. Testicular organoids: a new model to study the testicular microenvironment in vitro? Hum Reprod Update 2017; 24:176-191. [PMID: 29281008 DOI: 10.1093/humupd/dmx036] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In recent decades, a broad range of strategies have been applied to model the testicular microenvironment in vitro. These models have been utilized to study testicular physiology and development. However, a system that allows investigations into testicular organogenesis and its impact in the spermatogonial stem-cell (SSC) niche in vitro has not been developed yet. Recently, the creation of tissue-specific organ-like structures called organoids has resurged, helping researchers to answer scientific questions that previous in vitro models could not help to elucidate. So far, a small number of publications have concerned the generation of testicular organoids and their application in the field of reproductive medicine and biology. OBJECTIVE AND RATIONALE Here, we aim to elucidate whether testicular organoids might be useful in answering current scientific questions about the regulation and function of the SSC niche as well as germ cell proliferation and differentiation, and whether or not the existing in vitro models are already sufficient to address them. Moreover, we would like to discuss how an organoid system can be a better solution to address these prominent scientific problems in our field, by the creation of a rationale parallel to those in other areas where organoid systems have been successfully utilized. SEARCH METHODS We comprehensively reviewed publications regarding testicular organoids and the methods that most closely led to the formation of these organ-like structures in vitro by searching for the following terms in both PubMed and the Web of Science database: testicular organoid, seminiferous tubule 3D culture, Sertoli cell 3D culture, testicular cord formation in vitro, testicular morphogenesis in vitro, germ cell 3D culture, in vitro spermatogenesis, testicular de novo morphogenesis, seminiferous tubule de novo morphogenesis, seminiferous tubule-like structures, testicular in vitro model and male germ cell niche in vitro, with no restrictions to any publishing year. The inclusion criteria were based on the relation with the main topic (i.e. testicular organoids, testicular- and seminiferous-like structures as in vitro models), methodology applied (i.e. in vitro culture, culture dimensions (2D, 3D), testicular cell suspension or fragments) and outcome of interest (i.e. organization in vitro). Publications about grafting of testicular tissue, germ-cell transplantation and female germ-cell culture were excluded. OUTCOMES The application of organoid systems is making its first steps in the field of reproductive medicine and biology. A restricted number of publications have reported and characterized testicular organoids and even fewer have denominated such structures by this method. However, we detected that a clear improvement in testicular cell reorganization is recognized when 3D culture conditions are utilized instead of 2D conditions. Depending on the scientific question, testicular organoids might offer a more appropriate in vitro model to investigate testicular development and physiology because of the easy manipulation of cell suspensions (inclusion or exclusion of a specific cell population), the fast reorganization of these structures and the controlled in vitro conditions, to the same extent as with other organoid strategies reported in other fields. WIDER IMPLICATIONS By way of appropriate research questions, we might use testicular organoids to deepen our basic understanding of testicular development and the SSC niche, leading to new methodologies for male infertility treatment.
Collapse
Affiliation(s)
- João Pedro Alves-Lopes
- Department of Women's and Children's Health, NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Q2:08, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health, NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Q2:08, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
16
|
Tibary A. Grand Challenge Animal Reproduction-Theriogenology: From the Bench to Application to Animal Production and Reproductive Medicine. Front Vet Sci 2017; 4:114. [PMID: 28770218 PMCID: PMC5511824 DOI: 10.3389/fvets.2017.00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ahmed Tibary
- Department of Veterinary Clinical Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
17
|
Pinto NDCC, Cassini-Vieira P, Souza-Fagundes EMD, Barcelos LS, Castañon MCMN, Scio E. Pereskia aculeata Miller leaves accelerate excisional wound healing in mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:131-136. [PMID: 27599609 DOI: 10.1016/j.jep.2016.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The leaves of Pereskia aculeata Miller (Cactaceae), known as Barbados gooseberry, are used as emollients and to treat skin wounds and inflammatory process in Brazilian traditional medicine. AIM OF THE STUDY This study investigated the topical wound healing activity of gels containing the methanol extract (ME) and hexane fraction (HF) of the leaves of this plant in a model of excisional wound healing in mice. MATERIAL AND METHODS Mice were anesthetized and excisional skin wounds were performed using a circular metal punch of 5mm diameter. Next, the animals were treated with 30µL of topical gel formulations containing the gel base (vehicle), HF 5% or ME 5%. The treatments were applied immediately after the injury and every 48h during 14 days. To verify the wound closure kinetics, a digital caliper was used throughout this period. Laser Doppler perfusion image (LDPI) was applied to evaluate the blood flow rate at the injury site. Microscopic examination of the skin tissues was performed by histopathological analysis with hematoxylin and eosin and Gomori trichrome staining. Picrosirius-red staining was also used for morphometric analysis for collagen quantification. RESULTS Both HF and ME markedly accelerated the closeness of the skin wounds; however the HF activity was more evident, as this fraction induced the increase of blood flow rate and collagen deposition when statistically compared to the vehicle. The mice skin treated with HF and ME also showed less fibroplasia, blood vessels and inflammatory cells on the last day of experiment, which indicated a more advanced wound healing process. CONCLUSIONS As the wound healing process was considerably accelerated, especially by HF gel formulation, the results of this study not only contributed to better understand the ethnopharmacological application of P. acuelata leaves, but also encouraged further investigations on how to explore the potential uses of this plant in skin therapies.
Collapse
Affiliation(s)
- Nícolas de Castro Campos Pinto
- Laboratory of Bioactive Natural Products. Department of Biochemistry, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036 900, MG, Brazil
| | - Puebla Cassini-Vieira
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Elaine Maria de Souza-Fagundes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Elita Scio
- Laboratory of Bioactive Natural Products. Department of Biochemistry, Institute of Biological Science, Federal University of Juiz de Fora, Juiz de Fora 36036 900, MG, Brazil.
| |
Collapse
|
18
|
Campos-Junior PHA, Alves TJM, Dias MT, Assunçao CM, Munk M, Mattos MS, Kraemer LR, Almeida BG, Russo RC, Barcelos L, Camargo LSA, Viana JHM. Ovarian Grafts 10 Days after Xenotransplantation: Folliculogenesis and Recovery of Viable Oocytes. PLoS One 2016; 11:e0158109. [PMID: 27362486 PMCID: PMC4928796 DOI: 10.1371/journal.pone.0158109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/12/2016] [Indexed: 11/30/2022] Open
Abstract
Ovarian xenotransplantation is a promising alternative to preserve fertility of oncologic patients. However, several functional aspects of this procedure remained to be addressed. The aim of this study was evaluate the feasibility of xenotransplantation as a strategy to maintain bovine ovarian grafts and produce oocytes. Adult ovarian cortical pieces were xenotransplanted to the dorsal subcutaneous of female NOD-SCID mice (n = 62). Grafts were recovered ten days after xenotransplantation. Host and graft weights; folliculogenesis progression; blood perfusion, relative gene expression and number of macrophage and neutrophil of xenografts; in vitro developmental competence of graft-derived oocytes were evaluated. Folliculogenesis was supported in the grafts, as indicated by the presence of primordial, primary, secondary, antral, and atretic follicles. The xenografts showed a greater volumetric density of atretic follicles and higher hyperemia and number of host-derived macrophage and neutrophil (P<0.05), when compared to non-grafted fragments. There was a higher blood perfusion under the back skin in the transplantation sites of host animals than in control and non-grafted (P<0.01). BAX and PRDX1 genes were up-regulated, while BCL2, FSHR, IGF1R and IGF2R were down-regulated, when compared to the control (P<0.01). Twenty seven oocytes were successfully harvested from grafts, and some of these oocytes were able to give rise to blastocysts after in vitro fertilization. However, cleavage and blastocyst rates of xenograft derived oocytes were lower than in control (P<0.01). Despite showing some functional modifications, the ovarian xenografts were able to support folliculogenesis and produce functional oocytes.
Collapse
Affiliation(s)
- Paulo Henrique Almeida Campos-Junior
- Fertility Preservation Research Group, Department of Natural Sciences, Federal University of Sao Joao Del Rei, Sao Joao Del Rei, Minas Gerais, Brazil, 36301–160
- * E-mail:
| | - Thalys Jair Melo Alves
- Fertility Preservation Research Group, Department of Natural Sciences, Federal University of Sao Joao Del Rei, Sao Joao Del Rei, Minas Gerais, Brazil, 36301–160
| | - Marco Tulio Dias
- Fertility Preservation Research Group, Department of Natural Sciences, Federal University of Sao Joao Del Rei, Sao Joao Del Rei, Minas Gerais, Brazil, 36301–160
| | - Carolina Marinho Assunçao
- Laboratory of Genetics and Biotechnology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil, 36036–900
| | - Michele Munk
- Laboratory of Genetics and Biotechnology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil, 36036–900
| | - Matheus Silvério Mattos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | - Lucas Rocha Kraemer
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | - Brígida Gomes Almeida
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | - Remo Castro Russo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | - Lucíola Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | | | | |
Collapse
|
19
|
Vitrified canine testicular cells allow the formation of spermatogonial stem cells and seminiferous tubules following their xenotransplantation into nude mice. Sci Rep 2016; 6:21919. [PMID: 26907750 PMCID: PMC4764824 DOI: 10.1038/srep21919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/02/2016] [Indexed: 12/17/2022] Open
Abstract
Belgian Malinois (BM), one of the excellent military dog breeds in South Korea, is usually castrated before sexual maturation. Therefore, the transfer of their genetic features to the next generation is difficult. To overcome this, testicular cells from 4-month-old BMs were frozen. Testicular cells were thawed after 3 months and cultured in StemPro-34 medium. Spermatogonial stem cell (SSC) characteristics were determined by the transplantation of the cultured germ cell-derived colonies (GDCs) into empty testes, containing only several endogenous SSCs and Sertoli cells, of immunodeficient mice, 4 weeks after busulfan treatment. Following the implantation, the transplanted cells localized in the basement membrane of the seminiferous tubules, and ultimately colonized the recipient testes. Xenotransplantation of GDCs together with testicular somatic cells conjugated with extracellular matrix (ECM), led to the formation of de novo seminiferous tubules. These seminiferous tubules were mostly composed of Sertoli cells. Some germ cells were localized in the basement membrane of seminiferous tubules. This study revealed that BM-derived SSCs, obtained from the castrated testes, might be a valuable tool for the transfer of BM genetic features to the next generation.
Collapse
|
20
|
Nóbrega RH, Morais RDVDS, Crespo D, de Waal PP, de França LR, Schulz RW, Bogerd J. Fsh Stimulates Spermatogonial Proliferation and Differentiation in Zebrafish via Igf3. Endocrinology 2015. [PMID: 26207345 DOI: 10.1210/en.2015-1157] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Growth factors modulate germ line stem cell self-renewal and differentiation behavior. We investigate the effects of Igf3, a fish-specific member of the igf family. Fsh increased in a steroid-independent manner the number and mitotic index of single type A undifferentiated spermatogonia and of clones of type A differentiating spermatogonia in adult zebrafish testis. All 4 igf gene family members in zebrafish are expressed in the testis but in tissue culture only igf3 transcript levels increased in response to recombinant zebrafish Fsh. This occurred in a cAMP/protein kinase A-dependent manner, in line with the results of studies on the igf3 gene promoter. Igf3 protein was detected in Sertoli cells. Recombinant zebrafish Igf3 increased the mitotic index of type A undifferentiated and type A differentiating spermatogonia and up-regulated the expression of genes related to spermatogonial differentiation and entry into meiosis, but Igf3 did not modulate testicular androgen release. An Igf receptor inhibitor blocked these effects of Igf3. Importantly, the Igf receptor inhibitor also blocked Fsh-induced spermatogonial proliferation. We conclude that Fsh stimulated Sertoli cell production of Igf3, which promoted via Igf receptor signaling spermatogonial proliferation and differentiation and their entry into meiosis. Because previous work showed that Fsh also released spermatogonia from an inhibitory signal by down-regulating anti-Müllerian hormone and by stimulating androgen production, we can now present a model, in which Fsh orchestrates the activity of stimulatory (Igf3, androgens) and inhibitory (anti-Müllerian hormone) signals to promote spermatogenesis.
Collapse
Affiliation(s)
- Rafael Henrique Nóbrega
- Department of Morphology (R.H.N.), Institute of Bioscience, São Paulo State University, 18618-970 Botucatu, Brazil; Reproductive Biology Group (R.H.N., R.D.V.d.S.M., D.C., P.P.d.W., R.W.S., J.B.), Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; and Laboratory of Cellular Biology (L.R.d.F.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Roberto Daltro Vidal de Souza Morais
- Department of Morphology (R.H.N.), Institute of Bioscience, São Paulo State University, 18618-970 Botucatu, Brazil; Reproductive Biology Group (R.H.N., R.D.V.d.S.M., D.C., P.P.d.W., R.W.S., J.B.), Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; and Laboratory of Cellular Biology (L.R.d.F.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Diego Crespo
- Department of Morphology (R.H.N.), Institute of Bioscience, São Paulo State University, 18618-970 Botucatu, Brazil; Reproductive Biology Group (R.H.N., R.D.V.d.S.M., D.C., P.P.d.W., R.W.S., J.B.), Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; and Laboratory of Cellular Biology (L.R.d.F.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Paul P de Waal
- Department of Morphology (R.H.N.), Institute of Bioscience, São Paulo State University, 18618-970 Botucatu, Brazil; Reproductive Biology Group (R.H.N., R.D.V.d.S.M., D.C., P.P.d.W., R.W.S., J.B.), Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; and Laboratory of Cellular Biology (L.R.d.F.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Luiz Renato de França
- Department of Morphology (R.H.N.), Institute of Bioscience, São Paulo State University, 18618-970 Botucatu, Brazil; Reproductive Biology Group (R.H.N., R.D.V.d.S.M., D.C., P.P.d.W., R.W.S., J.B.), Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; and Laboratory of Cellular Biology (L.R.d.F.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Rüdiger W Schulz
- Department of Morphology (R.H.N.), Institute of Bioscience, São Paulo State University, 18618-970 Botucatu, Brazil; Reproductive Biology Group (R.H.N., R.D.V.d.S.M., D.C., P.P.d.W., R.W.S., J.B.), Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; and Laboratory of Cellular Biology (L.R.d.F.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Jan Bogerd
- Department of Morphology (R.H.N.), Institute of Bioscience, São Paulo State University, 18618-970 Botucatu, Brazil; Reproductive Biology Group (R.H.N., R.D.V.d.S.M., D.C., P.P.d.W., R.W.S., J.B.), Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands; and Laboratory of Cellular Biology (L.R.d.F.), Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| |
Collapse
|
21
|
Aponte PM. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine. World J Stem Cells 2015; 7:669-680. [PMID: 26029339 PMCID: PMC4444608 DOI: 10.4252/wjsc.v7.i4.669] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/13/2015] [Accepted: 04/14/2015] [Indexed: 02/06/2023] Open
Abstract
Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications.
Collapse
|
22
|
Pukazhenthi BS, Nagashima J, Travis AJ, Costa GM, Escobar EN, França LR, Wildt DE. Slow freezing, but not vitrification supports complete spermatogenesis in cryopreserved, neonatal sheep testicular xenografts. PLoS One 2015; 10:e0123957. [PMID: 25923660 PMCID: PMC4414479 DOI: 10.1371/journal.pone.0123957] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
The ability to spur growth of early stage gametic cells recovered from neonates could lead to significant advances in rescuing the genomes of rare genotypes or endangered species that die unexpectedly. The purpose of this study was to determine, for the first time, the ability of two substantially different cryopreservation approaches, slow freezing versus vitrification, to preserve testicular tissue of the neonatal sheep and subsequently allow initiation of spermatogenesis post-xenografting. Testis tissue from four lambs (3-5 wk old) was processed and then untreated or subjected to slow freezing or vitrification. Tissue pieces (fresh, n = 214; slow freezing, then thawing, n = 196; vitrification, then warming, n = 139) were placed subcutaneously under the dorsal skin of SCID mice and then grafts recovered and evaluated 17 wk later. Grafts from fresh and slow frozen tissue contained the most advanced stages of spermatogenesis, including normal tubule architecture with elongating spermatids in ~1% (fresh) and ~10% (slow frozen) of tubules. Fewer than 2% of seminiferous tubules advanced to the primary spermatocyte stage in xenografts derived from vitrified tissue. Results demonstrate that slow freezing of neonatal lamb testes was far superior to vitrification in preserving cellular integrity and function after xenografting, including allowing ~10% of tubules to retain the capacity to resume spermatogenesis and yield mature spermatozoa. Although a first for any ruminant species, findings also illustrate the importance of preemptive studies that examine cryo-sensitivity of testicular tissue before attempting this type of male fertility preservation on a large scale.
Collapse
Affiliation(s)
- Budhan S. Pukazhenthi
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| | - Jennifer Nagashima
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alexander J. Travis
- The Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- Atkinson Center for a Sustainable Future, Cornell University, Ithaca, New York, United States of America
| | - Guilherme M. Costa
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Enrique N. Escobar
- Department of Agriculture, Food and Resource Sciences School of Agriculture and Natural Sciences, University of Maryland-Eastern Shore, Princess Anne, Maryland, United States of America
| | - Luiz R. França
- Laboratory of Cellular Biology, Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - David E. Wildt
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, Virginia, United States of America
| |
Collapse
|
23
|
Pothana L, Makala H, Devi L, Varma VP, Goel S. Germ cell differentiation in cryopreserved, immature, Indian spotted mouse deer (Moschiola indica) testes xenografted onto mice. Theriogenology 2014; 83:625-33. [PMID: 25467768 DOI: 10.1016/j.theriogenology.2014.10.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 11/29/2022]
Abstract
Death of immature animals is one of the reasons for the loss of genetic diversity of rare and endangered species. Because sperm cannot be collected from immature males, cryobanking of testicular tissue combined with testis xenografting is a potential option for conservation. The objective of this study was to evaluate the establishment of spermatogenesis in cryopreserved immature testicular tissues from Indian spotted mouse deer (Moschiola indica) after ectopic xenografting onto immunodeficient nude mice. Results showed that testis tissues that were frozen in cryomedia containing either 10% DMSO with 80% fetal bovine serum (D10S80) or 20% DMSO with 20% fetal bovine serum (D20S20) had significantly more (P < 0.01) terminal deoxynucleotidyl transferase-mediated dUTP nick end labeled positive interstitial cells when compared with fresh testis tissues (46.3 ± 3.4 and 51.9 ± 4.0 vs. 22.8 ± 2.0). Xenografted testicular tissues showed degenerated seminiferous tubules 24 weeks after grafting in testes that had been cryopreserved in D20S20; alternatively, pachytene spermatocytes were the most advanced germ cells in testes that were cryopreserved in D10S80. Proliferating cell nuclear antigen staining confirmed the proliferative status of spermatocytes, and the increases in tubular and lumen diameters indicated testicular maturation in xenografts. However, persistent anti-Müllerian hormone staining in Sertoli cells of xenografts revealed incomplete testicular maturation. This study reports that cryopreserved testis tissue that had been xenografted from endangered animals onto mice resulted in the establishment of spermatogenesis with initiation of meiosis. These findings are encouraging for cryobanking of testicular tissues from immature endangered animals to conserve their germplasm.
Collapse
Affiliation(s)
- Lavanya Pothana
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Himesh Makala
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Lalitha Devi
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Vivek Phani Varma
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Sandeep Goel
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India.
| |
Collapse
|
24
|
Arregui L, Dobrinski I. Xenografting of testicular tissue pieces: 12 years of an in vivo spermatogenesis system. Reproduction 2014; 148:R71-84. [PMID: 25150043 DOI: 10.1530/rep-14-0249] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Spermatogenesis is a dynamic and complex process that involves endocrine and testicular factors. During xenotransplantation of testicular tissue fragments into immunodecifient mice, a functional communication between host brain and donor testis is established. This interaction allows for the progression of spermatogenesis and recovery of fertilisation-competent spermatozoa from a broad range of mammalian species. In the last few years, significant progress has been achieved in testis tissue xenografting that improves our knowledge about the factors determining the success of grafting. The goal of this review is to provide up to date information about the role of factors such as donor age, donor species, testis tissue preservation or type of recipient mouse on the efficiency of this technique. Applications are described and compared with other techniques with similar purposes. Recent work has demonstrated that testicular tissue xenografting is used as a model to study gonadotoxicity of drugs and to obtain sperm from valuable young males.
Collapse
Affiliation(s)
- Lucía Arregui
- Department of BiologyFaculty of Science, Universidad Autónoma de Madrid, C/Darwin 2, Madrid 28049, SpainDepartment of Comparative Biology and Experimental MedicineFaculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Ina Dobrinski
- Department of BiologyFaculty of Science, Universidad Autónoma de Madrid, C/Darwin 2, Madrid 28049, SpainDepartment of Comparative Biology and Experimental MedicineFaculty of Veterinary Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|