1
|
Jin F, Liu W, Cheng G, Cai S, Yin T, Diao L. The function of decidua natural killer cells in physiology and pathology of pregnancy. Am J Reprod Immunol 2023; 90:e13755. [PMID: 37641369 DOI: 10.1111/aji.13755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023] Open
Abstract
The role of decidual natural killer (dNK) cells in maintaining immune tolerance at the maternal-fetal interface during pregnancy is a significant topic in reproductive health. Immune tolerance is essential for a successful pregnancy and involves a complex immune response involving various immune cells and molecules. DNK cells comprise the largest population of lymphocyte subsets found in the decidua and play important roles in maintaining immune tolerance. These cells exert multiple functions to maintain homeostasis of the decidual microenvironment, including modulation of trophoblast invasion, promotion of fetal development, regulation of endometrial decidualization and spiral artery remodeling. DNK cells can also be divided into different subsets based on their functions as NKtolerant , NKcytotoxic , and NKregulatory cells. However, the relationship between dNK cells function and pregnancy outcomes is complex and poorly understood. In this review, we will focus on the physiological role of dNK cells during pregnancy and highlight the potential role in pathological pregnancies and therapeutic approaches.
Collapse
Affiliation(s)
- Fangfang Jin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Liu
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Guan Cheng
- Department of Clinical Laboratory, Institute of translational medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Songchen Cai
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lianghui Diao
- Shenzhen Key Laboratory for Reproductive Immunology of Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Saleem HM, Ramaiah P, Gupta J, Jalil AT, Kadhim NA, Alsaikhan F, Ramírez-Coronel AA, Tayyib NA, Guo Q. Nanotechnology-empowered lung cancer therapy: From EMT role in cancer metastasis to application of nanoengineered structures for modulating growth and metastasis. ENVIRONMENTAL RESEARCH 2023:115942. [PMID: 37080268 DOI: 10.1016/j.envres.2023.115942] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Lung cancer is one of the leading causes of death in both males and females, and it is the first causes of cancer-related deaths. Chemotherapy, surgery and radiotherapy are conventional treatment of lung cancer and recently, immunotherapy has been also appeared as another therapeutic strategy for lung tumor. However, since previous treatments have not been successful in cancer therapy and improving prognosis and survival rate of lung tumor patients, new studies have focused on gene therapy and targeting underlying molecular pathways involved in lung cancer progression. Nanoparticles have been emerged in treatment of lung cancer that can mediate targeted delivery of drugs and genes. Nanoparticles protect drugs and genes against unexpected interactions in blood circulation and improve their circulation time. Nanoparticles can induce phototherapy in lung cancer ablation and mediating cell death. Nanoparticles can induce photothermal and photodynamic therapy in lung cancer. The nanostructures can impair metastasis of lung cancer and suppress EMT in improving drug sensitivity. Metastasis is one of the drawbacks observed in lung cancer that promotes migration of tumor cells and allows them to establish new colony in secondary site. EMT can occur in lung cancer and promotes tumor invasion. EMT is not certain to lung cancer and it can be observed in other human cancers, but since lung cancer has highest incidence rate, understanding EMT function in lung cancer is beneficial in improving prognosis of patients. EMT induction in lung cancer promotes tumor invasion and it can also lead to drug resistance and radio-resistance. Moreover, non-coding RNAs and pharmacological compounds can regulate EMT in lung cancer and EMT-TFs such as Twist and Slug are important modulators of lung cancer invasion that are discussed in current review.
Collapse
Affiliation(s)
- Hiba Muwafaq Saleem
- Department of Medical Laboratory Techniques, Al-Maarif University College, AL-Anbar, Iraq.
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, UP, India
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
MicroRNA-377: A therapeutic and diagnostic tumor marker. Int J Biol Macromol 2023; 226:1226-1235. [PMID: 36442575 DOI: 10.1016/j.ijbiomac.2022.11.236] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/15/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
Cancer is considered as one of the main causes of human deaths globally. Despite the recent progresses in therapeutic modalities, there is still a high rate of mortality among cancer patients. Late diagnosis in advanced tumor stages is one of the main reasons for treatment failure in cancer patients. Therefore, it is required to suggest the novel strategies for the early tumor detection. MicroRNAs (miRNAs) have critical roles in neoplastic transformation by regulation of cell proliferation, migration, and apoptosis. They are always considered as non-invasive markers due to their high stability in body fluids. Since, all of the miRNAs have tissue-specific functions in different tumors as tumor suppressor or oncogene; it is required to investigate the molecular mechanisms of every miRNA in different tumors to introduce that as a suitable non-invasive diagnostic marker in cancer patients. For the first time in the present review, we discussed the role of miR-377 during tumor progression. It has been reported that miR-377 mainly functions as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review is an important step toward introducing the miR-377 as a novel diagnostic marker as well as a therapeutic target in cancer patients.
Collapse
|
4
|
Guo R, Yi Z, Wang Y, Wang L. Network pharmacology and experimental validation to explore the potential mechanism of Sanjie Zhentong Capsule in endometriosis treatment. Front Endocrinol (Lausanne) 2023; 14:1110995. [PMID: 36817586 PMCID: PMC9935822 DOI: 10.3389/fendo.2023.1110995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Sanjie Zhentong Capsule (SZC) is gradually becoming widely used in the treatment of endometriosis (EMs) and has demonstrated an excellent curative effect in the clinic. However, the active components and mechanisms of Sanjie Zhentong Capsule (SZC) in the treatment of endometriosis (EMs) remain unclear, and further research is needed to explore the effects of Sanjie Zhentong Capsule (SZC). MATERIALS AND METHODS First, a drug target database of Sanjie Zhentong capsule (SZC) was established by consulting the TCMSP database and related literature. An endometriosis (EMs) disease target database was then established by consulting the GeneCards, OMIM and Drug Bank databases. The overlapping genes of SZC and EMs were determined, and protein-protein interactions (PPIs), gene ontology (GO) and Kyoto Gene and Genome Encyclopedia (KEGG) analyses were performed to predict the potential therapeutic mechanisms. Molecular docking was used to observe whether the key active ingredients and targets predicted by network pharmacology had good binding energy. Finally, in vitro experiments such as CCK-8, flow cytometry and RT-PCR assays were carried out to preliminarily verify the potential mechanisms. RESULTS Through the construction of a pharmacological network, we identified a total of 28 active components in SZC and 52 potential therapeutic targets. According to GO and KEGG enrichment analyses, the effects of SZC treatment may be related to oxidative stress, steroid metabolism, apoptosis and proliferation. We also experimentally confirmed that SZC can regulate the expression of steroid hormone biosynthesis-related genes, inhibit ectopic endometrial stromal cell (EESC) proliferation and oxidative stress, and promote apoptosis. CONCLUSION This study explored the potential mechanism of SZC in the treatment of EMs through network pharmacology and experiments, providing a basis for further future research on SZC in the treatment of EMs.
Collapse
|
5
|
Primary Cilia Restrain PI3K-AKT Signaling to Orchestrate Human Decidualization. Int J Mol Sci 2022; 23:ijms232415573. [PMID: 36555215 PMCID: PMC9779442 DOI: 10.3390/ijms232415573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Endometrial decidualization plays a pivotal role during early pregnancy. Compromised decidualization has been tightly associated with recurrent implantation failure (RIF). Primary cilium is an antenna-like sensory organelle and acts as a signaling nexus to mediate Hh, Wnt, TGFβ, BMP, FGF, and Notch signaling. However, whether primary cilium is involved in human decidualization is still unknown. In this study, we found that primary cilia are present in human endometrial stromal cells. The ciliogenesis and cilia length are increased by progesterone during in vitro and in vivo decidualization. Primary cilia are abnormal in the endometrium of RIF patients. Based on data from both assembly and disassembly of primary cilia, it has been determined that primary cilium is essential to human decidualization. Trichoplein (TCHP)-Aurora A signaling mediates cilia disassembly during human in vitro decidualization. Mechanistically, primary cilium modulates human decidualization through PTEN-PI3K-AKT-FOXO1 signaling. Our study highlights primary cilium as a novel decidualization-related signaling pathway.
Collapse
|
6
|
Bello SF, Xu H, Li K, Guo L, Zhang S, Ahmed RO, Bekele EJ, Zheng M, Xian M, Abdalla BA, Adeola AC, Adetula AA, Lawal RA, Zhu W, Zhang D, Zhang X, Ji C, Nie Q. Research Note: Association of Single Nucleotide Polymorphism of AKT3 with Egg Production Traits in White Muscovy Ducks (Cairina moschata). Poult Sci 2022; 101:102211. [PMID: 36272235 PMCID: PMC9589204 DOI: 10.1016/j.psj.2022.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Prior studies on transcriptomes of hypothalamus and ovary revealed that AKT3 is one of the candidate genes that might affect egg production in White Muscovy ducks. The role of AKT3 in the uterus during reproductive processes cannot be overemphasized. However, functional role of this gene in the tissues and on egg production traits of Muscovy ducks remains unknown. To identify the relationship between AKT3 and egg production traits in ducks, relative expression profile was first examined prior to identifying the variants within AKT3 that may underscore egg production traits [age at first egg (AFE), number of eggs at 300 d (N300D), and number of eggs at 59 wk (N59W)] in 549 ducks. The mRNA expression of AKT3 gene in high producing (HP) ducks was significantly higher than low producing (LP) ducks in the ovary, oviduct, and hypothalamus (P < 0.05 or 0.001). Three variants in AKT3 (C-3631A, C-3766T, and C-3953T) and high linkage block between C-3766T and C-3953T which are significantly (P < 0.05) associated with N300D and N59W were discovered. This study elucidates novel knowledge on the molecular mechanism of AKT3 that might be regulating egg production traits in Muscovy ducks.
Collapse
Affiliation(s)
- Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Kan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Siyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ridwan Olawale Ahmed
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Endashaw Jebessa Bekele
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ming Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Mingjian Xian
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Bahareldin Ali Abdalla
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Adeniyi Charles Adeola
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan, China
| | - Adeyinka Abiola Adetula
- Reproductive Biotechnology, Department of Molecular Life Sciences, TUM School of Life Sciences, Technical University Munich, 85354 Freising, Germany
| | | | - Weijian Zhu
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Congliang Ji
- Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu 527400 Guangdong, China.
| |
Collapse
|
7
|
Lavogina D, Visser N, Samuel K, Davey E, Björvang RD, Hassan J, Koponen J, Rantakokko P, Kiviranta H, Rinken A, Olovsson M, Salumets A, Damdimopoulou P. Endocrine disrupting chemicals interfere with decidualization of human primary endometrial stromal cells in vitro. Front Endocrinol (Lausanne) 2022; 13:903505. [PMID: 36060944 PMCID: PMC9437351 DOI: 10.3389/fendo.2022.903505] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/03/2022] [Indexed: 11/22/2022] Open
Abstract
Multiple studies have shown associations between exposure to endocrine disrupting chemicals (EDCs) and reduced fertility in women. However, little is known about the target organs of chemical disruption of female fertility. Here, we focus on the hormone-sensitive uterine lining, the endometrium, as a potential target. Decidualization is the morphological and functional change that endometrial stromal cells undergo to support endometrial receptivity, which is crucial for successful implantation, placentation, and pregnancy. We investigated the effect of nine selected EDCs on primary human endometrial stromal cell decidualization in vitro. The cells were exposed to a decidualization-inducing mixture in the presence or absence of 1 μM of nine different EDCs for nine days. Extent of decidualization was assessed by measuring the activity of cAMP dependent protein kinase, Rho-associated coiled-coil containing protein kinase, and protein kinase B in lysates using photoluminescent probes, and secretion of prolactin into the media by using ELISA. Decidualization-inducing mixture upregulated activity of protein kinases and prolactin secretion in cells derived from all women. Of the tested chemicals, dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzene (HCB) and perfluorooctanesulfonic acid (PFOS) significantly reduced decidualization as judged by the kinase markers and prolactin secretion. In addition, bisphenol A (BPA) reduced prolactin secretion but did not significantly affect activity of the kinases. None of the EDCs was cytotoxic, based on the assessment of total protein content or activity of the viability marker casein kinase 2 in lysates. These results indicate that EDCs commonly present in the blood circulation of reproductive-aged women can reduce decidualization of human endometrial stromal cells in vitro. Future studies should focus on detailed hazard assessment to define possible risks of EDC exposure to endometrial dysfunction and implantation failure in women.
Collapse
Affiliation(s)
- Darja Lavogina
- Institute of Chemistry, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Nadja Visser
- Department of Women´s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Külli Samuel
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Eva Davey
- Department of Women´s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Richelle D. Björvang
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jasmin Hassan
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Jani Koponen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Panu Rantakokko
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Hannu Kiviranta
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Ago Rinken
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Matts Olovsson
- Department of Women´s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Bello SF, Adeola AC, Nie Q. The study of candidate genes in the improvement of egg production in ducks – a review. Poult Sci 2022; 101:101850. [PMID: 35544958 PMCID: PMC9108513 DOI: 10.1016/j.psj.2022.101850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/01/2022] Open
Abstract
Duck is the second-largest poultry species aside from chicken. The rate of egg production is a major determinant of the economic income of poultry farmers. Among the reproductive organs, the ovary is a major part of the female reproductive system which is highly important for egg production. Based on the importance of this organ, several studies have been carried out to identify candidate genes at the transcriptome level, and also the expression level of these genes at different tissues or egg-laying conditions, and single nucleotide polymorphism (SNPs) of genes associated with egg production in duck. In this review, expression profile and association study analyses at SNPs level of different candidate genes with egg production traits of duck were highlighted. Furthermore, different studies on transcriptome analysis, Quantitative Trait Loci (QTL) mapping, and Genome Wide Association Study (GWAS) approach used to identify potential candidate genes for egg production in ducks were reported. This review would widen our knowledge on molecular markers that are associated or have a positive correlation to improving egg production in ducks, for the increasing world populace.
Collapse
|
9
|
Sirohi VK, Medrano TI, Mesa AM, Kannan A, Bagchi IC, Cooke PS. Regulation of AKT Signaling in Mouse Uterus. Endocrinology 2022; 163:bqab233. [PMID: 34791100 PMCID: PMC8667855 DOI: 10.1210/endocr/bqab233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/02/2023]
Abstract
17β-estradiol (E2) treatment of ovariectomized adult mice stimulates the uterine PI3K-AKT signaling pathway and epithelial proliferation through estrogen receptor 1 (ESR1). However, epithelial proliferation occurs independently of E2/ESR1 signaling in neonatal uteri. Similarly, estrogen-independent uterine epithelial proliferation is seen in adulthood in mice lacking Ezh2, critical for histone methylation, and in wild-type (WT) mice treated neonatally with estrogen. The role of AKT in estrogen-independent uterine epithelial proliferation was the focus of this study. Expression of the catalytically active phosphorylated form of AKT (p-AKT) and epithelial proliferation were high in estrogen receptor 1 knockout and WT mice at postnatal day 6, when E2 concentrations were low, indicating that neither ESR1 nor E2 are essential for p-AKT expression and epithelial proliferation in these mice. However, p-AKT levels and proliferation remained estrogen responsive in preweaning WT mice. Expression of p-AKT and proliferation were both high in uterine luminal epithelium of mice estrogenized neonatally and ovariectomized during adulthood. Increased expression of phosphorylated (inactive) EZH2 was also observed. Consistent with this, Ezh2 conditional knockout mice show ovary-independent uterine epithelial proliferation and high epithelial p-AKT. Thus, adult p-AKT expression is constitutive and E2/ESR1 independent in both model systems. Finally, E2-induced p-AKT expression and normal uterine proliferation did not occur in mice lacking membrane (m)ESR1, indicating a key role for membrane ESR1 in AKT activation. These findings emphasize the importance of AKT activation in promoting uterine epithelial proliferation even when that proliferation is not E2/ESR1 dependent and further indicate that p-AKT can be uncoupled from E2/ESR1 signaling in several experimental scenarios.
Collapse
Affiliation(s)
- Vijay K Sirohi
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Theresa I Medrano
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Ana M Mesa
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Athilakshmi Kannan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul S Cooke
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Arosh JA, Lee J, Banu SK. Effects of dual inhibition of AKT and ERK1/2 pathways on endometrial pro-inflammatory, hormonal, and epigenetic microenvironment in endometriosis. Mol Cell Endocrinol 2022; 539:111446. [PMID: 34478807 DOI: 10.1016/j.mce.2021.111446] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/10/2023]
Abstract
Endometriosis is an estrogen-dependent and progesterone-resistant gynecological inflammatory disease of reproductive-age women. The prevalence of endometriosis is ~5-10% in reproductive-age women, increasing to 20-30% in women with subfertility. The current anti-estrogen therapies can be prescribed only for a short time because of the undesirable side effects on menstruation, pregnancy, bone health, and failure to prevent a recurrence. The causes of endometriosis-associated infertility are multifactorial and poorly understood. The objective of the present study was to determine the inhibitory effects of AKT and/or ERK1/2 pathways on the microenvironment of the endometrium in a xenograft mouse model of endometriosis of human origin. Results indicate that dual inhibition of AKT and ERK1/2 pathways, but not inhibition of either AKT or ERK1/2 pathway, suppresses the growth of the endometriotic lesions in vivo. Dual inhibition of AKT and ERK1/2 pathways suppresses the production of proinflammatory cytokines, decreases E2 biosynthesis and signaling, and restores progesterone receptor-B signaling components in the epithelial and stromal cells of the endometrium in a cell-specific manner. These results together suggest that dual inhibition of AKT and ERK1/2 pathways suppresses the estrogen-dominant state and concomitantly increases the progesterone-responsive state of the endometrium. Therefore, dual inhibition of AKT and ERK1/2 pathways could emerge as long-term nonsteroidal therapy for endometriosis.
Collapse
Affiliation(s)
- Joe A Arosh
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA.
| | - JeHoon Lee
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA
| | - Sakhila K Banu
- Reproductive Endocrinology and Cell Signaling Laboratory, Department of Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Texas, 77843, College Station, USA
| |
Collapse
|
11
|
Bello SF, Xu H, Guo L, Li K, Zheng M, Xu Y, Zhang S, Bekele EJ, Bahareldin AA, Zhu W, Zhang D, Zhang X, Ji C, Nie Q. Hypothalamic and ovarian transcriptome profiling reveals potential candidate genes in low and high egg production of white Muscovy ducks (Cairina moschata). Poult Sci 2021; 100:101310. [PMID: 34298381 PMCID: PMC8322464 DOI: 10.1016/j.psj.2021.101310] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Accepted: 06/01/2021] [Indexed: 01/16/2023] Open
Abstract
In China, the low egg production rate is a major challenge to Muscovy duck farmers. Hypothalamus and ovary play essential role in egg production of birds. However, there are little or no reports from these tissues to identify potential candidate genes responsible for egg production in White Muscovy ducks. A total of 1,537 laying ducks were raised; the egg production traits which include age at first egg (days), number of eggs at 300 d, and number of eggs at 59 wk were recorded. Moreover, 4 lowest (LP) and 4 highest producing (HP) were selected at 59 wk of age, respectively. To understand the mechanism of egg laying regulation, we sequenced the hypothalamus and ovary transcriptome profiles in LP and HP using RNA-Seq. The results showed that the number of eggs at 300 d and number of eggs at 59 wk in the HP were significantly more (P < 0.001) than the LP ducks. In total, 106.98G clean bases were generated from 16 libraries with an average of 6.68G clean bases for each library. Further analysis showed 569 and 2,259 differentially expressed genes (DEGs) were identified in the hypothalamus and ovary between LP and HP, respectively. The KEGG pathway enrichment analysis revealed 114 and 139 pathways in the hypothalamus and ovary, respectively which includes Calcium signaling pathway, ECM-receptor interaction, Focal adhesion, MAPK signaling pathway, Apoptosis and Apelin signaling pathways that are involved in egg production. Based on the GO terms and KEGG pathways results, 10 potential candidate genes (P2RX1, LPAR2, ADORA1, FN1, AKT3, ADCY5, ADCY8, MAP3K8, PXN, and PTTG1) were identified to be responsible for egg production. Further, protein-protein interaction was analyzed to show the relationship between these candidate genes. Therefore, this study provides useful information on transcriptome of hypothalamus and ovary of LP and HP Muscovy ducks.
Collapse
Affiliation(s)
- Semiu Folaniyi Bello
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Haiping Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Lijin Guo
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Kan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ming Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Yibin Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Siyu Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Endashaw Jebessa Bekele
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Ali Abdalla Bahareldin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Weijian Zhu
- Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China
| | - Dexiang Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China
| | - Congliang Ji
- Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou 510642, Guangdong, China; Wens Foodstuff Group Co. Ltd., Yunfu, 527400 Guangdong, China.
| |
Collapse
|
12
|
Wang S, Yi M, Zhang X, Zhang T, Jiang L, Cao L, Zhou Y, Fang X. Effects of CDKN2B-AS1 on cellular proliferation, invasion and AKT3 expression are attenuated by miR-424-5p in a model of ovarian endometriosis. Reprod Biomed Online 2021; 42:1057-1066. [PMID: 33820740 DOI: 10.1016/j.rbmo.2021.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 01/17/2023]
Abstract
RESEARCH QUESTION Endometriosis is a common and complicated gynaecologic disease. Long non-coding RNA CDKN2B-AS1 plays a crucial role in the development and progression of several cancers. Whether CDKN2B-AS1 contributes to endometriosis, however, remains unknown. DESIGN Cellular proliferation, invasion and DNA synthesis abilities were assessed by CCK8, transwell and 5-ethynyle-2'-deoxyuridine assays. The expression of epithelial-mesenchymal transition markers and three isoforms of AKT was detected using Western blot. Real-time polymerase chain reaction was used to determine the relative expression levels of CDKN2B-AS1 and candidate miRNAs in ectopic, eutopic endometria and normal endometrial tissues. The relationship between CDKN2B-AS1 and miRNA was determined by luciferase reporter assays. RESULTS The relative expression level of CDKN2B-AS1 was up-regulated in eutopic and ectopic endometria. In endometrial stromal cells and Ishikawa cells, CDKN2B-AS1 overexpression promoted cellular proliferation and invasion, and increased the protein expression of vimentin but decreased the expression of E-cadherin. miR-424-5p was confirmed the target of CDKN2B-AS1 through bioinformatics tools and luciferase reporter assays. In addition, the enhanced effect of cellular phenotype of CDKN2B-AS1 overexpression was significantly attenuated by miR-424-5p overexpression. Furthermore, miR-424-5p was able to directly target AKT3 through luciferase reporter assay. Mechanistically, CDKN2B-AS1 acts as a ceRNA by sponging miR-424-5p and targets AKT3. CONCLUSIONS The cellular mechanism of CDKN2B-AS1 in endometriosis was confirmed; CDKN2B-AS1 may be a potential target for ovarian endometriosis therapy.
Collapse
Affiliation(s)
- Sixue Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Mingyu Yi
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Xinyue Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Li Jiang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Le Cao
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Yuxin Zhou
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha Hunan 410000, PR China.
| |
Collapse
|
13
|
Tao L, He X, Wang X, Di R, Chu M. Litter Size of Sheep ( Ovis aries): Inbreeding Depression and Homozygous Regions. Genes (Basel) 2021; 12:109. [PMID: 33477586 PMCID: PMC7831309 DOI: 10.3390/genes12010109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Ovine litter size (LS) is an important trait showing variability within breeds. It remains largely unknown whether inbreeding depression on LS exists based on genomic homozygous regions, and whether the homozygous regions resulted from inbreeding are significantly associated with LS in sheep. We here reanalyze a set of single nucleotide polymorphism (SNP) chip of six breeds to characterize the patterns of runs of homozygosity (ROH), to evaluate inbreeding levels and inbreeding depressions on LS, and to identify candidate homozygous regions responsible for LS. Consequently, unique ROH patterns were observed among six sheep populations. Inbreeding depression on LS was only found in Hu sheep, where a significant reduction of 0.016, 0.02, and 0.02 per 1% elevated inbreeding FROH4-8, FROH>8 and the total inbreeding measure was observed, respectively. Nine significantly homozygous regions were found for LS in Hu sheep, where some promising genes for LS possibly via regulation of the development of oocytes (NGF, AKT1, and SYCP1), fertilization (SPAG17, MORC1, TDRD9, ZFYVE21, ADGRB3, and CKB), embryo implantation (PPP1R13B, INF2, and VANGL1) and development (DPPA2, DPPA4, CDCA4, CSDE1, and ADSSL1), and reproductive health (NRG3, BAG5, CKB, and XRCC3) were identified. These results from the present study would provide insights into the genetic management and complementary understandings of LS in sheep.
Collapse
Affiliation(s)
| | | | | | | | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.T.); (X.H.); (X.W.); (R.D.)
| |
Collapse
|
14
|
Zhao J, Zeng Z. Combined effects of AKT serine/threonine kinase 1 polymorphisms and environment on congenital heart disease risk: A case-control study. Medicine (Baltimore) 2020; 99:e20400. [PMID: 32590727 PMCID: PMC7328912 DOI: 10.1097/md.0000000000020400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study aimed to explore the combined association between AKT serine/threonine kinase 1 (AKT1) polymorphisms and congenital heart disease (CHD) risk, meanwhile, the role of AKT1 single polymorphism on CHD was also analyzed.In the first, AKT1 polymorphisms were genotyped in 130 CHD patients and 145 healthy people with the way of polymerase chain reaction-direct sequencing. The clinical data and genotypes, alleles between 2 groups were compared by χ test and the genotype distributions in the control group were checked by Hardy-Weinberg equilibrium. The relative risk strength of disease based on genetic variant was revealed using odds ratio (OR) with 95% confidence interval (95%CI).In 3 polymorphisms of AKT1 (rs1130214, rs2494732, rs3803300), the GT/TT genotype of rs1130214 in cases and controls had a significant frequency difference (P = .04) and was 1.71 times risk developing CHD, compared with AA (OR = 1.71, 95%CI = 1.02-2.86), and T allele had 1.63 times risk for carriers (OR = 1.63, 95%CI = 1.05-2.54). Similarly, both rs3803300 GG genotype and G allele had obvious differences between case and control groups (P < .05) and it was closely associated with CHD susceptibility. At the same time, the combined effects of rs1130214, rs3803300 and family history, smoking were found in our study.AKT1 rs1130214, rs3803300 polymorphisms are associated with the increased susceptibility to CHD. Environmental factors are found the interaction with AKT1 polymorphisms. Further study is needed to verify this conclusion.
Collapse
Affiliation(s)
- Jianxun Zhao
- Department of Cardiology
- Department of Cardiology, Chengdu Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhi Zeng
- Department of Cardiology
- Department of Cardiology, Chengdu Shang Jin Nan Fu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
15
|
The role of semen and seminal plasma in inducing large-scale genomic changes in the female porcine peri-ovulatory tract. Sci Rep 2020; 10:5061. [PMID: 32193402 PMCID: PMC7081221 DOI: 10.1038/s41598-020-60810-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/14/2020] [Indexed: 12/15/2022] Open
Abstract
Semen modifies the expression of genes related to immune function along the porcine female internal genital tract. Whether other pathways are induced by the deposition of spermatozoa and/or seminal plasma (SP), is yet undocumented. Here, to determine their relative impact on the uterine and tubal transcriptomes, microarray analyses were performed on the endocervix, endometrium and endosalpinx collected from pre-ovulatory sows 24 h after either mating or artificial insemination (AI) with specific ejaculate fractions containing spermatozoa or sperm-free SP. After enrichment analysis, we found an overrepresentation of genes and pathways associated with sperm transport and binding, oxidative stress and cell-to-cell recognition, such as PI3K-Akt, FoxO signaling, glycosaminoglycan biosynthesis and cAMP-related transcripts, among others. Although semen (either after mating or AI) seemed to have the highest impact along the entire genital tract, our results demonstrate that the SP itself also modifies the transcriptome. The detected modifications of the molecular profiles of the pre/peri-ovulatory endometrium and endosalpinx suggest an interplay for the survival, transport and binding of spermatozoa through, for instance the up-regulation of the Estrogen signaling pathway associated with attachment and release from the oviductal reservoir.
Collapse
|
16
|
La Y, He X, Zhang L, Di R, Wang X, Gan S, Zhang X, Zhang J, Hu W, Chu M. Comprehensive Analysis of Differentially Expressed Profiles of mRNA, lncRNA, and circRNA in the Uterus of Seasonal Reproduction Sheep. Genes (Basel) 2020; 11:genes11030301. [PMID: 32178360 PMCID: PMC7140836 DOI: 10.3390/genes11030301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022] Open
Abstract
Photoperiod is one of the important factors leading to seasonal reproduction of sheep. However, the molecular mechanisms underlying the photoperiod regulation of seasonal reproduction remain poorly understood. In this study, we compared the expression profiles of mRNAs, lncRNAs, and circRNAs in uterine tissues from Sunite sheep during three different photoperiods, namely, the short photoperiod (SP), short transfer to long photoperiod (SLP), and long photoperiod (LP). The results showed that 298, 403, and 378 differentially expressed (DE) mRNAs, 171, 491, and 499 DE lncRNAs, and 124, 270, and 400 DE circRNAs were identified between SP and LP, between SP and SLP, and between LP and SLP, respectively. Furthermore, functional enrichment analysis showed that the differentially expressed RNAs were mainly involved in the GnRH signaling pathway, thyroid hormone synthesis, and thyroid hormone signaling pathway. In addition, co-expression networks of lncRNA–mRNA were constructed based on the correlation analysis between the differentially expressed RNAs. Our study provides new insights into the expression changes of RNAs in different photoperiods, which might contribute to understanding the molecular mechanisms of seasonal reproduction in sheep.
Collapse
Affiliation(s)
- Yongfu La
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
| | - Shangquan Gan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832000, China;
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.)
| | - Wenping Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-15901106848 (W.H.); +86-010-62819850 (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Y.L.); (X.H.); (R.D.); (X.W.)
- Correspondence: (W.H.); (M.C.); Tel.: +86-15901106848 (W.H.); +86-010-62819850 (M.C.)
| |
Collapse
|
17
|
Wu H, Liu HY, Liu WJ, Shi YL, Bao D. miR-377-5p inhibits lung cancer cell proliferation, invasion, and cell cycle progression by targeting AKT1 signaling. J Cell Biochem 2019; 120:8120-8128. [PMID: 30485528 DOI: 10.1002/jcb.28091] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/29/2018] [Indexed: 01/24/2023]
Abstract
Lung carcinoma is the most common type of malignant tumors globally, and its molecular mechanisms remained unclear. With the aim to investigate the effects of microRNA (miR)-377-5p on the cell development, invasion, metastasis, and cycle of lung carcinoma, this study was performed. We evaluated miR-377-5p expression levels in lung cancer tissues and cell models. Cell viability, proliferation, migration, invasion abilities, and cell cycle distribution were measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, crystal violet, transwell, and flow cytometry assay. Furthermore, expression levels of protein kinase B α subunit (AKT1) and proteins related to cell cycle and epithelial-mesenchymal transition (EMT) were assessed using Western blot analysis and quantitative real-time polymerase chain reaction. These results suggested that miR-377-5p was downregulated in vivo and in cell models, and miR-377-5p overexpression inhibited cell viability, proliferation, migration, invasion, and induced cell-cycle arrest. In addition, as a target of miR-377-5p, AKT1 alleviated the decreases of cell viability, proliferation, migration, invasion, the S-phase cells, the expression of cyclin D1, fibronectin, and vimentin, as well as the increases of the G0/G1-phase cells, the expression of Foxo1, p27 kip1 , p21 Cip1 and E-cadherin when miR-377-5p overexpressed. In conclusion, miR-377-5p inhibited cell development and regulated cell cycle distribution and EMT by targeting AKT1, which provided a theoretical basis for further study of lung carcinoma therapeutics.
Collapse
Affiliation(s)
- Han Wu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Hai Yan Liu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Wen Jie Liu
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Yong Li Shi
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Dawei Bao
- Department of Pathology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
18
|
Adams NR, Vasquez YM, Mo Q, Gibbons W, Kovanci E, DeMayo FJ. WNK lysine deficient protein kinase 1 regulates human endometrial stromal cell decidualization, proliferation, and migration in part through mitogen-activated protein kinase 7. Biol Reprod 2018; 97:400-412. [PMID: 29025069 DOI: 10.1093/biolre/iox108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
The differentiation of endometrial stromal cells into decidual cells, termed decidualization, is an integral step in the establishment of pregnancy. The mitogen-activated protein kinase homolog, WNK lysine deficient protein kinase 1 (WNK1), is activated downstream of epidermal growth factor receptor during decidualization. Primary human endometrial stromal cells (HESCs) were subjected to small interfering RNA knockdown of WNK1 followed by in vitro decidualization. This abrogated expression of the decidual marker genes, insulin like growth factor binding protein 1 (IGFBP1) and prolactin (PRL), and prevented adoption of decidual cell morphology. Analysis of the WNK1-dependent transcriptome by RNA-Seq demonstrated that WNK1 regulates the expression of 1858 genes during decidualization. Gene ontology and upstream regulator pathway analysis showed that WNK1 regulates cell migration, differentiation, and proliferation. WNK1 was required for many of the gene expression changes that drive decidualization, including the induction of the inflammatory cytokines, C-C motif chemokine ligand 8 (CCL8), interleukin 1 beta (IL1B), and interleukin 15 (IL15), and the repression of transforming growth factor-beta (TGF-beta) pathway genes, including early growth response 2 (EGR2), SMAD family member 3 (SMAD3), integrin subunit alpha 2 (ITGA2), integrin subunit alpha 4 (ITGA4), and integrin subunit beta 3 (ITGB3). In addition to abrogating decidualization, WNK1 knockdown decreased the migration and proliferation of HESCs. Furthermore, mitogen-activated protein kinase 7 (MAPK7), a known downstream target of WNK1, was activated during decidualization in a WNK1-dependent manner. Small interfering RNA knockdown of MAPK7 demonstrated that MAPK7 regulates a subset of WNK1-regulated genes and controls the migration and proliferation of HESCs. These results indicate that WNK1 and MAPK7 promote migration and proliferation during decidualization and regulate the expression of inflammatory cytokines and TGF-beta pathway genes in HESCs.
Collapse
Affiliation(s)
- Nyssa R Adams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yasmin M Vasquez
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Qianxing Mo
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - William Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Ertug Kovanci
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
19
|
Zhang Y, Wang Y, Wang XH, Zhou WJ, Jin LP, Li MQ. Crosstalk between human endometrial stromal cells and decidual NK cells promotes decidualization in vitro by upregulating IL‑25. Mol Med Rep 2018; 17:2869-2878. [PMID: 29257317 PMCID: PMC5783502 DOI: 10.3892/mmr.2017.8267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/10/2017] [Indexed: 11/24/2022] Open
Abstract
Embryo implantation is essential for a successful pregnancy, and leads to the decidualization of endometrial stromal cells (ESCs) in the secretory phase of the menstrual cycle. It has previously been demonstrated that decidual stromal cells (DSCs) co‑express interleukin (IL)‑25/IL‑17RB and that IL‑25 further promotes the proliferation of DSCs via activating c‑Jun n‑terminal kinase and protein kinase B signals, therefore the present study primarily focused on the role of IL‑25 in the process of decidualization in vitro. It was demonstrated that the expression of IL‑25/IL‑17RB in ESCs was decreased compared with DSCs. In addition, following decidualization, the expression levels of IL‑25/IL‑17RB in ESCs were significantly elevated. Recombinant human (rh) IL‑25 promoted the decidualization of ESCs in the presence of 8‑bromoadenosine 3',5'‑cyclic monophosphate sodium salt and 6α‑methyl17α‑acetoxyprogesterone, which was partially inhibited by anti‑human IL‑25 neutralizing antibody (anti‑IL‑25) or anti‑IL‑17RB. In addition, decidual natural killer (dNK) cells not only secreted IL‑25, however also further accelerated the decidualization in vitro. Therefore, these findings indicated that ESCs differentiate into DSCs in the presence of ovarian hormones, resulting in the upregulation of IL‑25/IL‑17RB expression in ESCs. Furthermore, IL‑25 secreted by ESCs and dNK cells further facilitates the decidualization of ESCs, which may form a positive feedback mechanism at the maternal‑fetal interface and thus contribute to the establishment and maintenance of normal pregnancy.
Collapse
Affiliation(s)
- Yuan Zhang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, P.R. China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiao-Hui Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Wen-Jie Zhou
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, P.R. China
| | - Li-Ping Jin
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, P.R. China
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, P.R. China
| | - Ming-Qing Li
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai Medical College, Shanghai 200011, P.R. China
| |
Collapse
|
20
|
Haapalainen AM, Karjalainen MK, Daddali R, Ohlmeier S, Anttonen J, Määttä TA, Salminen A, Mahlman M, Bergmann U, Mäkikallio K, Ojaniemi M, Hallman M, Rämet M. Expression of CPPED1 in human trophoblasts is associated with timing of term birth. J Cell Mol Med 2018; 22:968-981. [PMID: 29193784 PMCID: PMC5783879 DOI: 10.1111/jcmm.13402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 08/29/2017] [Indexed: 12/15/2022] Open
Abstract
Understanding of timing of human parturition is incomplete. Therefore, we carried out proteomic analyses of full-term placentas from uncomplicated pregnancies to identify protein signatures associated with the onset of spontaneous delivery. We found quantitative associations of 10 proteins with spontaneous term birth, evident either in the basal or in the chorionic plates or in both. Additional 18 proteins were associated according to the location within placenta indicating local variations in protein amounts. Calcineurin-like phosphoesterase domain-containing 1 (CPPED1), a phosphatase previously suggested dephosphorylating AKT1/PKB, was one of the identified proteins. qRT-PCR revealed the mRNA level of CPPED1 was higher in elective caesarean deliveries than in spontaneous births, while immunohistochemistry showed CPPED1 in cytotrophoblasts, syncytiotrophoblasts and extravillous trophoblasts. Noteworthy, phosphorylation status of AKT1 did not differ between placentas from elective caesarean and spontaneous deliveries. Additionally, analyses of samples from infants indicated that single-nucleotide polymorphisms rs11643593 and rs8048866 of CPPED1 were associated with duration of term pregnancy. Finally, post-transcriptional silencing of CPPED1 in cultured HTR8/SVneo cells by siRNAs affected gene expression in pathways associated with inflammation and blood vessel development. We postulate that functions regulated by CPPED1 in trophoblasts at choriodecidual interphase have a role in the induction of term labour, but it may be independent of AKT1.
Collapse
Affiliation(s)
- Antti M. Haapalainen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Minna K. Karjalainen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Ravindra Daddali
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Steffen Ohlmeier
- Proteomics Core FacilityBiocenter OuluFaculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Julia Anttonen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Tomi A. Määttä
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Annamari Salminen
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mari Mahlman
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Ulrich Bergmann
- Proteomics Core FacilityBiocenter OuluFaculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Kaarin Mäkikallio
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Obstetrics and GynecologyOulu University HospitalOuluFinland
- Department of Obstetrics and GynecologyTurku University Hospital and University of TurkuTurkuFinland
| | - Marja Ojaniemi
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
| | - Mika Rämet
- PEDEGO Research Unit and Medical Research Center OuluUniversity of OuluOuluFinland
- Department of Children and AdolescentsOulu University HospitalOuluFinland
- BioMediTech Institute and Faculty of Medical and Life SciencesUniversity of TampereTampereFinland
| |
Collapse
|
21
|
Jarić I, Živanović J, Miler M, Ajdžanović V, Blagojević D, Ristić N, Milošević V, Nestorović N. Genistein and daidzein treatments differently affect uterine homeostasis in the ovary-intact middle-aged rats. Toxicol Appl Pharmacol 2018; 339:73-84. [DOI: 10.1016/j.taap.2017.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/07/2017] [Accepted: 12/02/2017] [Indexed: 01/16/2023]
|
22
|
Makker A, Goel MM, Nigam D, Mahdi AA, Das V, Agarwal A, Pandey A, Gautam A. Aberrant Akt Activation During Implantation Window in Infertile Women With Intramural Uterine Fibroids. Reprod Sci 2017; 25:1243-1253. [PMID: 29113583 DOI: 10.1177/1933719117737844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The objective of the study was to examine the expression and cellular distribution of key signaling components of the phosphatidylinositol-3-kinase (PI3K)/Phosphatase and Tensin Homolog Deleted on Chromosome Ten (PTEN)/Protein Kinase B (PKB/Akt) pathway during the window of implantation in infertile women with noncavity-distorting intramural uterine fibroids (n = 21) as compared to fertile controls (n = 15). Relative gene expression analysis of PIK3CA, PTEN, Akt1, and Akt2 genes in midluteal endometrial biopsies was performed by real-time polymerase chain reaction. Immunohistochemistry was used to evaluate the expression of PIK3CA, PTEN, phospho-PTEN, Akt1, Akt2, phospho-Akt1 (serine 473), phospho-Akt1 (threonine 308), and Ki67 proteins. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling assay was performed for apoptosis detection. In comparison to fertile controls, significant upregulation of Akt1 messenger RNA levels (2.16-fold; P < .05); cell-specific upregulation of the proteins phospho-PTEN ( P < .05), Akt1 ( P < .05), Akt2 ( P < .05), and p-Akt (S473; P < .001); and downregulation of PTEN ( P < .01) were observed in endometrium of infertile women with intramural fibroids. The ratio of p-PTEN/PTEN and p-Akt1 (S473)/Akt1 was also significantly higher in infertile women. Increased Ki67 labeling index in the glandular epithelium and significantly lower apoptotic index in glandular epithelium and stroma were seen in infertile women during the window of implantation. Aberrant Akt activation and the associated imbalance in endometrial proliferation and apoptosis observed in infertile women with intramural fibroids during the midsecretory phase might contribute to impaired endometrial receptivity leading to infertility in these patients.
Collapse
Affiliation(s)
- Annu Makker
- 1 Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Madhu Mati Goel
- 1 Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Dipti Nigam
- 1 Department of Pathology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- 2 Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Vinita Das
- 3 Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Anjoo Agarwal
- 3 Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Amita Pandey
- 3 Department of Obstetrics and Gynecology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Abnish Gautam
- 4 Government Degree College, Mahona, Lucknow, Uttar Pradesh, India
| |
Collapse
|
23
|
Protein kinase B: emerging mechanisms of isoform-specific regulation of cellular signaling in cancer. Anticancer Drugs 2017; 28:569-580. [PMID: 28379898 DOI: 10.1097/cad.0000000000000496] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The serine/threonine protein kinase B (PKB), also known as Akt, is one of the multifaceted kinases in the human kinome, existing in three isoforms. PKB plays a vital role in phosphoinositide 3-kinase (PI3K)-mediated oncogenesis in various malignancies and is one of the attractive targets for cancer drug discovery. Recent studies have shown that the functional significance of an individual isoform of PKB is not redundant in cancer. It has been found that PKB isoforms play distinct roles in the regulation of cellular invasion and migration during tumorigenesis. PKB activation plays a central role during epithelial-mesenchymal transition, a cellular program required for the cancer cell invasion and migration. However, the differential behavior of each PKB isoform has been shown in the regulation of epithelial-mesenchymal transition. Recent studies have suggested that PKBα (Akt1) plays a conflicting role in tumorigenesis by acting either as a pro-oncogenic factor by suppressing the apoptotic machinery or by restricting tumor invasion. PKBβ (Akt2) promotes cell migration and invasion and similarly PKBγ (Akt3) has been reported to promote tumor migration. As PKB is known for its pro-oncogenic properties, it needs to be unraveled how three isoforms of PKB compensate during tumor progression. In this review, we attempted to sum up how different isoforms of PKB play a role in cancer progression, metastasis, and drug resistance.
Collapse
|
24
|
Fabi F, Grenier K, Parent S, Adam P, Tardif L, Leblanc V, Asselin E. Regulation of the PI3K/Akt pathway during decidualization of endometrial stromal cells. PLoS One 2017; 12:e0177387. [PMID: 28475617 PMCID: PMC5419658 DOI: 10.1371/journal.pone.0177387] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/26/2017] [Indexed: 12/13/2022] Open
Abstract
Infertility is constantly increasing in Canada, where 16% of Canadian couples are experiencing difficulty conceiving. It is thought that infertility can emanate from the dysregulated communication between the embryo and the maternal endometrium. In order to allow for this window of implantation to be open at the right moment, endometrial stromal cells proliferate and differentiate by a mechanism called decidualization. Intracellular and molecular mechanisms involved in the regulation of apoptosis and cell proliferation during decidualization of the endometrium are yet to be fully understood. It has been well demonstrated previously that Akt is importantly involved in cell survival and glycogen synthesis. Akt1, Akt2 and Akt3 isoforms have distinct physiological roles; this could also be the case during decidualization and pregnancy. The aim of this study is to investigate the regulation of PI3K/Akt pathway during the decidualization process of endometrial stromal cells. Expression of Akt isoforms, Akt activity (phospho-Akt), pIκB and substrates of Akt during decidualization were measured. To our knowledge, these results are the first to suggest a decrease in levels of Akt isoforms as well as a downregulation of Akt activity in the process of decidualization of human endometrial stromal cells. We also uncovered that decidualization induced nuclear localization of p65 through the phosphorylation of IκB, its inhibitory subunit; however, Par-4, a recently uncovered regulator of cell differentiation, was displaced from the nucleus upon decidualization. Our results also suggest that HIESC cells exhibit decreased motility during decidualization and that PI3K pathway inhibition could be involved in this process. Finally, we demonstrate that specific Akt isoforms present unique effects on the successful induction of decidualization. Further analyses will involve investigations to understand the precise signaling mechanisms by which this pathway is regulated.
Collapse
Affiliation(s)
- François Fabi
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Kathy Grenier
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Sophie Parent
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Pascal Adam
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Laurence Tardif
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Valérie Leblanc
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Eric Asselin
- Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- * E-mail:
| |
Collapse
|
25
|
Brasseur K, Gévry N, Asselin E. Chemoresistance and targeted therapies in ovarian and endometrial cancers. Oncotarget 2017; 8:4008-4042. [PMID: 28008141 PMCID: PMC5354810 DOI: 10.18632/oncotarget.14021] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/30/2016] [Indexed: 02/06/2023] Open
Abstract
Gynecological cancers are known for being very aggressive at their advanced stages. Indeed, the survival rate of both ovarian and endometrial cancers is very low when diagnosed lately and the success rate of current chemotherapy regimens is not very efficient. One of the main reasons for this low success rate is the acquired chemoresistance of these cancers during their progression. The mechanisms responsible for this acquired chemoresistance are numerous, including efflux pumps, repair mechanisms, survival pathways (PI3K/AKT, MAPK, EGFR, mTOR, estrogen signaling) and tumor suppressors (P53 and Par-4). To overcome these resistances, a new type of therapy has emerged named targeted therapy. The principle of targeted therapy is simple, taking advantage of changes acquired in malignant cancer cells (receptors, proteins, mechanisms) by using compounds specifically targeting these, thus limiting their action on healthy cells. Targeted therapies are emerging and many clinical trials targeting these pathways, frequently involved in chemoresistance, have been tested on gynecological cancers. Despite some targets being less efficient than expected as mono-therapies, the combination of compounds seems to be the promising avenue. For instance, we demonstrate using ChIP-seq analysis that estrogen downregulate tumor suppressor Par-4 in hormone-dependent cells by directly binding to its DNA regulatory elements and inhibiting estrogen signaling could reinstate Par-4 apoptosis-inducing abilities. This review will focus on the chemoresistance mechanisms and the clinical trials of targeted therapies associated with these, specifically for endometrial and ovarian cancers.
Collapse
Affiliation(s)
- Kevin Brasseur
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Nicolas Gévry
- Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Boulevard de l’Université, Sherbrooke, QC, Canada
| | - Eric Asselin
- Research Group in Cellular Signaling, Department of Medical Biology, Canada Research Chair in Molecular Gyneco-Oncology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| |
Collapse
|
26
|
Ma FF, Cao DD, Ouyang S, Tang R, Liu Z, Li Y, Wu J. Hypermethylation of AKT2 gene is associated with neural-tube defects in fetus. Placenta 2016; 48:80-86. [PMID: 27871477 DOI: 10.1016/j.placenta.2016.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/26/2016] [Accepted: 10/17/2016] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Neural-tube defects (NTDs) are common birth defects of complex etiology. Although many studies have confirmed a genetic component, the exact mechanism between DNA methylation and NTDs remains unclear. METHODS In this work, we investigated the alteration of methylation from placental tissues obtained from 152 normal infants or with NTDs in 130 children with neural-tube defects. Genome-wide changes in DNA methylation were measured using the NimbleGen microarray. The expression levels of 12 genes were also determined, and two genes (AKT2 and CDC25C) showed low expression in NTDs by quantitative real-time PCR analysis. Then, the methyhlated region of AKT2 promoter sequences were confirmed by massARRAY. RESULTS A total of 150 differentially methylated regions (81 low methylated regions and 69 high methylated regions) were selected by microarray. The expression levels of AKT2 and CDC25C showed lower expression in NTDs. And the percentage of methyhlated region of AKT2 promoter were increased in NTDs. CONCLUSIONS DNA mythelation was one of the possible epigenetic variations correlated with the occurrence of NTDs, and AKT2 may be a candidate gene for NTDs.
Collapse
Affiliation(s)
- Fei Fei Ma
- Dept. of Biochemistry, Capital Institute of Pediatrics, Beijing 100020, China
| | - Ding Ding Cao
- Dept. of Biochemistry, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Shengrong Ouyang
- Dept. of Biochemistry, Capital Institute of Pediatrics, Beijing 100020, China
| | - Renqiao Tang
- Graduate School, Chinese Academy of Medical Science, Beijing 100730, China
| | - Zhuo Liu
- Dept. of Biochemistry, Capital Institute of Pediatrics, Beijing 100020, China
| | - Yuanyuan Li
- Dept. of Biochemistry, Capital Institute of Pediatrics, Beijing 100020, China
| | - Jianxin Wu
- Dept. of Biochemistry, Capital Institute of Pediatrics, Beijing 100020, China; Dept. of Biochemistry, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China.
| |
Collapse
|
27
|
Zhang X, Fu LJ, Liu XQ, Hu ZY, Jiang Y, Gao RF, Feng Q, Lan X, Geng YQ, Chen XM, He JL, Wang YX, Ding YB. nm23 regulates decidualization through the PI3K-Akt-mTOR signaling pathways in mice and humans. Hum Reprod 2016; 31:2339-51. [PMID: 27604954 DOI: 10.1093/humrep/dew191] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/08/2016] [Indexed: 12/22/2022] Open
Abstract
STUDY QUESTION Does nm23 have functional significance in decidualization in mice and humans? SUMMARY ANSWER nm23 affects decidualization via the phosphoinositide 3 kinase/mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathways in mouse endometrial stromal cells (ESCs; mESCs) and human ESCs. WHAT IS KNOWN ALREADY The function of nm23 in suppressing metastasis has been demonstrated in a variety of cancer types. nm23 also participates in the control of DNA replication and cell proliferation and differentiation. STUDY DESIGN, SIZE AND DURATION We first analyzed the expression profile of nm23 in mice during early pregnancy (n = 6/group), pseudopregnancy (n = 6/group) and artificial decidualization (n = 6/group) and in humans during the menstrual cycle phases and the first trimester. We then used primary cultured mESCs and a human ESC line, T-HESC, to explore the hormonal regulation of nm23 and the roles of nm23 in in vitro decidualization, and as a possible mediator of downstream PI3K-Akt-mTOR signaling pathways. PARTICIPANTS/MATERIALS, SETTINGS AND METHODS We evaluated the dynamic expression of nm23 in mice and humans using immunohistochemistry, western blot and real-time quantitative RT-PCR (RT-qPCR). Regulation of nm23 by steroid hormones was investigated in isolated primary mESCs and T-HESCs by western blot. The effect of nm23 knockdown (using siRNA) on ESC proliferation was analyzed by 5-ethynyl-2'-deoxyuridine staining (EdU) and proliferating cell nuclear antigen protein (PCNA) expression. The influence of nm23 expression on the differentiation of ESCs was determined by RT-qPCR using the mouse differentiation markers decidual/trophoblast PRL-related protein (dtprp, also named prl8a2) and prolactin family 3 subfamily c member 1 (prl3c1) and the human differentiation markers insulin-like growth factor binding protein 1 (IGFBP1) and prolactin (PRL). The effects of nm23 siRNA (si-nm23) and the PI3K inhibitor LY294002 on the downstream effects of nm23 on the PI3K-Akt-mTOR signaling pathway were estimated by western blot. MAIN RESULTS AND THE ROLE OF CHANCE NM23-M1 was specifically expressed in the decidual zone during early pregnancy and in artificially induced deciduoma, and NM23-H1 was strongly expressed in human first trimester decidua. The expression of nm23 was upregulated by oestradiol and progesterone (P < 0.05 versus control) in vitro in mESCs and T-HESC, and this was inhibited by their respective receptor antagonists, ICI 182,780 and RU486. Mouse and human nm23 knockdown decreased ESC proliferation and differentiation (P < 0.05 versus control). The PI3K-Akt-mTOR signaling pathways were downstream mediators of nm23 in mESCs and T-HESCs decidualization. LIMITATIONS AND REASONS FOR CAUTION Whether the nm23 regulates decidualization via the activation of AMPK, RAS, PKA, STAT3 or other signaling molecules remains to be determined. The role of nm23 in decidualization was tested in vitro only. WIDER IMPLICATIONS OF THE FINDINGS Results demonstrate that nm23 plays a vital role in decidualization in mice and humans and that nm23 gene expression is hormonally regulated. The downregulation of nm23 in decidua during the first trimester may be associated with infertility in women. STUDY FUNDING/COMPETING INTERESTS This study was supported by the National Natural Science Foundation of China (grant nos. 81370731, 31571551 and 31571190), the Science and Technology Project of Chongqing Education Committee (KJ130309), open funding by the Chongqing Institute for Family Planning (1201) and the Excellent Young Scholars of Chongqing Medical University (CQYQ201302). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Xue Zhang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Li-Juan Fu
- School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xue-Qing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Zhuo-Ying Hu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh 15261, PA, USA
| | - Ru-Fei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Qian Feng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xi Lan
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yan-Qing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xue-Mei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Jun-Lin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Ying-Xiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yu-Bin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
28
|
Nastou KC, Tsaousis GN, Papandreou NC, Hamodrakas SJ. MBPpred: Proteome-wide detection of membrane lipid-binding proteins using profile Hidden Markov Models. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:747-54. [DOI: 10.1016/j.bbapap.2016.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/02/2016] [Accepted: 03/25/2016] [Indexed: 01/09/2023]
|
29
|
Brasseur K, Fabi F, Adam P, Parent S, Lessard L, Asselin E. Post-translational regulation of the cleaved fragment of Par-4 in ovarian and endometrial cancer cells. Oncotarget 2016; 7:36971-36987. [PMID: 27175591 PMCID: PMC5095052 DOI: 10.18632/oncotarget.9235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/24/2016] [Indexed: 11/25/2022] Open
Abstract
We recently reported the caspase3-dependent cleavage of Par-4 resulting in the accumulation of a 25kDa cleaved-Par-4 (cl-Par-4) fragment and we investigated in the present study the mechanisms regulating this fragment using cl-Par-4-expressing stable clones derived from ovarian and endometrial cancer cell lines.Cl-Par-4 protein was weakly express in all stable clones despite constitutive expression. However, upon cisplatin treatment, cl-Par-4 levels increased up to 50-fold relative to baseline conditions. Treatment of stable clones with proteasome and translation inhibitors revealed that cisplatin exposure might in fact protect cl-Par-4 from proteasome-dependent degradation. PI3K and MAPK pathways were also implicated as evidenced by an increase of cl-Par-4 in the presence of PI3K inhibitors and a decrease using MAPK inhibitors. Finally using bioinformatics resources, we found diverse datasets showing similar results to those we observed with the proteasome and cl-Par-4 further supporting our data.These new findings add to the complex mechanisms regulating Par-4 expression and activity, and justify further studies addressing the biological significance of this phenomenon in gynaecological cancer cells.
Collapse
Affiliation(s)
- Kevin Brasseur
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - François Fabi
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - Pascal Adam
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - Sophie Parent
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - Laurent Lessard
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | - Eric Asselin
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| |
Collapse
|
30
|
Painter JN, Kaufmann S, O'Mara TA, Hillman KM, Sivakumaran H, Darabi H, Cheng THT, Pearson J, Kazakoff S, Waddell N, Hoivik EA, Goode EL, Scott RJ, Tomlinson I, Dunning AM, Easton DF, French JD, Salvesen HB, Pollock PM, Thompson DJ, Spurdle AB, Edwards SL. A Common Variant at the 14q32 Endometrial Cancer Risk Locus Activates AKT1 through YY1 Binding. Am J Hum Genet 2016; 98:1159-1169. [PMID: 27259051 PMCID: PMC4908177 DOI: 10.1016/j.ajhg.2016.04.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/19/2016] [Indexed: 11/21/2022] Open
Abstract
A recent meta-analysis of multiple genome-wide association and follow-up endometrial cancer case-control datasets identified a novel genetic risk locus for this disease at chromosome 14q32.33. To prioritize the functional SNP(s) and target gene(s) at this locus, we employed an in silico fine-mapping approach using genotyped and imputed SNP data for 6,608 endometrial cancer cases and 37,925 controls of European ancestry. Association and functional analyses provide evidence that the best candidate causal SNP is rs2494737. Multiple experimental analyses show that SNP rs2494737 maps to a silencer element located within AKT1, a member of the PI3K/AKT/MTOR intracellular signaling pathway activated in endometrial tumors. The rs2494737 risk A allele creates a YY1 transcription factor-binding site and abrogates the silencer activity in luciferase assays, an effect mimicked by transfection of YY1 siRNA. Our findings suggest YY1 is a positive regulator of AKT1, mediating the stimulatory effects of rs2494737 increasing endometrial cancer risk. Identification of an endometrial cancer risk allele within a member of the PI3K/AKT signaling pathway, more commonly activated in tumors by somatic alterations, raises the possibility that well tolerated inhibitors targeting this pathway could be candidates for evaluation as chemopreventive agents in individuals at high risk of developing endometrial cancer.
Collapse
Affiliation(s)
- Jodie N Painter
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Susanne Kaufmann
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Tracy A O'Mara
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Kristine M Hillman
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Haran Sivakumaran
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Hatef Darabi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm 17177, Sweden
| | - Timothy H T Cheng
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - John Pearson
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Stephen Kazakoff
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Erling A Hoivik
- Centre for Cancer Biomarkers, Department of Clinical Science, The University of Bergen, N5020 Bergen, Norway; Department of Obstetrics and Gynecology, Haukeland University Hospital, N5021 Bergen, Norway
| | - Ellen L Goode
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Rodney J Scott
- Hunter Medical Research Institute, John Hunter Hospital, Newcastle, NSW 2305, Australia; Pathology North (Newcastle) John Hunter Hospital, Newcastle, NSW 2305, Australia; Centre for Information Based Medicine, University of Newcastle, NSW 2308, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, NSW 2308, Australia
| | - Ian Tomlinson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge CB1 8RN, UK; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Juliet D French
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Helga B Salvesen
- Centre for Cancer Biomarkers, Department of Clinical Science, The University of Bergen, N5020 Bergen, Norway; Department of Obstetrics and Gynecology, Haukeland University Hospital, N5021 Bergen, Norway
| | - Pamela M Pollock
- Institute of Health and Biomedical Innovation and School of Biomedical Science, Queensland University of Technology at the Translation Research Institute, Brisbane 4102, Australia
| | - Deborah J Thompson
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Amanda B Spurdle
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Stacey L Edwards
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| |
Collapse
|
31
|
Chen J, Lian X, Du J, Xu S, Wei J, Pang L, Song C, He L, Wang S. Inhibition of phosphorylated Ser473-Akt from translocating into the nucleus contributes to 2-cell arrest and defective zygotic genome activation in mouse preimplantation embryogenesis. Dev Growth Differ 2016; 58:280-92. [DOI: 10.1111/dgd.12273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Junming Chen
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Xiuli Lian
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Juan Du
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Songhua Xu
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Jianen Wei
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Lili Pang
- Cellular and Developmental Engineering Center; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Chanchan Song
- Cellular and Developmental Engineering Center; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Lin He
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| | - Shie Wang
- Department of Human Anatomy, Histology and Embryology; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
- Cellular and Developmental Engineering Center; School of Basic Medical Sciences; Fujian Medical University; Fuzhou Fujian 350108 China
| |
Collapse
|