1
|
Gao K, Chen Y, Wang P, Chang W, Cao B, Luo L. GATA4: Regulation of expression and functions in goat granulosa cells. Domest Anim Endocrinol 2024; 89:106859. [PMID: 38810369 DOI: 10.1016/j.domaniend.2024.106859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
GATA4 plays a pivotal role in the reproductive processes of mammals. However, the research on GATA4 in goat ovary is limited. This study aimed to study the expression and function of GATA4 in goat ovary. Utilizing real-time PCR and western blot analysis, we studied the expression and regulatory mechanisms of GATA4 in goat ovary and granulosa cells (GCs). We found that GATA4 was expressed in all follicle types in the goat ovary, with significantly higher levels in GCs of larger follicles (>3 mm) compared to those in smaller follicles (<3 mm). Additionally, we demonstrated that human chorionic gonadotrophin (hCG) induced GATA4 mRNA expression via the activation of PKA, MEK, p38 MAPK, PKC, and PI3K pathways in vitro. Our study also showed that hCG suppressed the levels of miR-200b and miR-429, which in turn directly target GATA4, thereby modulating the basal and hCG-induced expression of GATA4. Functionally, we examined the effect of siRNA-mediated GATA4 knockdown on cell proliferation and hormone secretion in goat GCs. Our results revealed that knockdown of GATA4, miR-200b, and miR-429 suppressed cell proliferation. Moreover, knockdown of GATA4 decreased estradiol and progesterone production by inhibiting the promoter activities of CYP11A1, CYP19A1, HSD3B, and StAR. Collectively, our findings suggest a critical involvement of GATA4 in regulating goat GC survival and steroidogenesis.
Collapse
Affiliation(s)
- Kexin Gao
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Yeda Chen
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Peijie Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Wenlin Chang
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Liqiong Luo
- Department of Obstetrics, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital), Shenzhen, Guangdong 518109, PR China.
| |
Collapse
|
2
|
Li X, Wang Z, Wang Q, Akhmet N, Zhu H, Guo Z, Pan C, Lan X, Zhang S. Relationships between the mutations of the goat GATA binding protein 4 gene and growth traits. Gene 2024; 898:148095. [PMID: 38128793 DOI: 10.1016/j.gene.2023.148095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Osteogenesis is a complex multilevel process regulated by multiple genes. The GATA binding protein 4 (GATA4) gene has been extensively studied for its pivotal role in bone genesis and bone differentiation. However, its relationship with the growth traits of Shaanbei white cashmere (SBWC) and Guizhou black (GB) goats remains unclear. This work aims to investigate the potential influence of genetic mutations in the GATA4 gene on the growth traits goats. Thus, two Insertion/deletion (InDel) polymorphisms (8-bp-InDel and 9-bp-InDel) were screened and detected in a total of 1161 goats (including 980 SBWC goats and 181 GB goats) using PCR and agarose gel electrophoresis. The analyses revealed that there were two genotypes (ID and DD) for these two loci. In SBWC goats, 8-bp-InDel and 9-bp-InDel loci were significantly associated with heart girth (HG) and hip width (HW). Notably, individuals with DD genotype of 8-bp-InDel locus were superior while those with DD genotype of 9-bp-InDel locus were inferior. Correlation analyses of the four combined genotypes revealed significant associations with cannon circumference (CC), body height (BH), HG and HW. This work provides a foundation for the application of molecular marker-assisted selection (MAS) in goat breeding programs. Furthermore, the findings highlight the potential of the GATA4 gene and its genetic variations as valuable indicators for selecting goats with desirable growth traits.
Collapse
Affiliation(s)
- Xin Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhiying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Qian Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Nazar Akhmet
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Haijing Zhu
- Life Science Research Center, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China
| | - Zhengang Guo
- Bijie Institute of Animal Husbandry and Veterinary Science, Guizhou Province,Bijie 551700, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| | - Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
3
|
Matoba H, Fujii C, Maruyama K, Kawakubo M, Momose M, Sano K, Imamura H, Kurihara H, Nakayama J. Sirt3 Regulates Proliferation and Progesterone Production in Leydig Cells via Suppression of Reactive Oxygen Species. Endocrinology 2024; 165:bqae017. [PMID: 38354290 DOI: 10.1210/endocr/bqae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Sirt3 is a mitochondrial protein deacetylase functioning in energy metabolism, regulation of intracellular reactive oxygen species (ROS) levels, and aging. Although Sirt3 loss has negative effects on fertility of oocytes during in vitro fertilization and on progesterone production in granulosa cells, Sirt3's function in Leydig cells remains unclear. Therefore, we investigated Sirt3 activity in Leydig cells, focusing on androgen production. To do so, we performed immunohistochemistry to confirm Sirt3 localization in gonads and observed strong Sirt3 immunostaining in Leydig cells of human testes and of Sirt3+/+ and Sirt3+/- mouse testes, while Sirt3-/- mouse testis tissue was negative. In human ovary, hilus cells were strongly Sirt3-positive, theca cells showed weak positivity, and granulosa cells showed very weak or almost no immunostaining. Next, we used the murine Leydig tumor cell line MA-10 as a model. We overexpressed Sirt3 but observed no changes in proliferation, expression of Star, Cyp11a1 (p450scc gene), and Hsd3b, or progesterone production in MA-10 cells. Sirt3 knockdown significantly reduced proliferation, suppressed expressions of steroidogenic enzymes and of transcription factors Ad4bp (Sf-1 gene) and Gata4, and decreased progesterone production. Sirt3 knockdown in MA-10 cells also increased intracellular ROS levels based on CM-H2DCFDA fluorescence dye analysis and increased the proportion of both early and late apoptotic (necrotic) cells based on Annexin V/7AAD assays. These results indicate that Sirt3 has a potential function in androgen production in Leydig cells by regulating intracellular ROS levels.
Collapse
Affiliation(s)
- Hisanori Matoba
- Department of Infection and Host Defense, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Chifumi Fujii
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of Biotechnology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
- Center for Medical Education and Clinical Training, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Kazuaki Maruyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku 113-8654, Tokyo, Japan
- Department of Pathology and Matrix Biology, Graduate School of Medicine, Mie University, Tsu 514-0001, Japan
| | - Masatomo Kawakubo
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Masanobu Momose
- Department of Laboratory Medicine and Pathology, Shinshu University Hospital, Matsumoto 390-8621, Japan
| | - Kenji Sano
- Department of Laboratory Medicine and Pathology, Shinshu University Hospital, Matsumoto 390-8621, Japan
| | - Hitomi Imamura
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of Laboratory Medicine and Pathology, Shinshu University Hospital, Matsumoto 390-8621, Japan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku 113-8654, Tokyo, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
- Department of Pathology, North Alps Medical Center Azumi Hospital, Ikeda-machi, Kitaazumi-gun 399-8695, Japan
| |
Collapse
|
4
|
Su Z, Liu Z, Lei W, Xia K, Xiao A, Hu Z, Zhou M, Zhu F, Tian J, Yang M, Wang D, Xiang AP, Nie J. Hyperhomocysteinemia lowers serum testosterone concentration via impairing testosterone production in Leydig cells. Cell Biol Toxicol 2023; 39:3077-3100. [PMID: 37495868 DOI: 10.1007/s10565-023-09819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
Hyperhomocysteinemia (HHcy) plays a salient role in male infertility. However, whether HHcy interferes with testosterone production remains inconclusive. Here, we reported a lower serum testosterone level in HHcy mice. Single-cell RNA sequencing revealed that genes related to testosterone biosynthesis, together with nuclear receptor subfamily 5 group A member 1 (Nr5a1), a key transcription factor for steroidogenic genes, were downregulated in the Leydig cells (LCs) of HHcy mice. Mechanistically, Hcy lowered trimethylation of histone H3 on lysine 4 (H3K4me3), which was bound on the promoter region of Nr5a1, resulting in downregulation of Nr5a1. Intriguingly, we identified an unknown cell cluster annotated as Macrophage-like Leydig cells (McLCs), expressing both LCs and macrophages markers. In HHcy mice, McLCs were shifted toward pro-inflammatory phenotype and thus promoted inflammatory response in LC. Betaine supplementation rescued the downregulation of NR5A1 and restored the serum testosterone level in HHcy mice. Overall, our study highlights an etiological role of HHcy in LCs dysfunction.
Collapse
Affiliation(s)
- Zhiyuan Su
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zhuoliang Liu
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wenjing Lei
- Department of Nephrology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Kai Xia
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - An Xiao
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Zheng Hu
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Miaomiao Zhou
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Fengxin Zhu
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jianwei Tian
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Manqiu Yang
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dong Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
5
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Bideyan L, López Rodríguez M, Priest C, Kennelly JP, Gao Y, Ferrari A, Rajbhandari P, Feng AC, Tevosian SG, Smale ST, Tontonoz P. Hepatic GATA4 regulates cholesterol and triglyceride homeostasis in collaboration with LXRs. Genes Dev 2022; 36:1129-1144. [PMID: 36522129 PMCID: PMC9851399 DOI: 10.1101/gad.350145.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022]
Abstract
GATA4 is a transcription factor known for its crucial role in the development of many tissues, including the liver; however, its role in adult liver metabolism is unknown. Here, using high-throughput sequencing technologies, we identified GATA4 as a transcriptional regulator of metabolism in the liver. GATA4 expression is elevated in response to refeeding, and its occupancy is increased at enhancers of genes linked to fatty acid and lipoprotein metabolism. Knocking out GATA4 in the adult liver (Gata4LKO) decreased transcriptional activity at GATA4 binding sites, especially during feeding. Gata4LKO mice have reduced plasma HDL cholesterol and increased liver triglyceride levels. The expression of a panel of GATA4 binding genes involved in hepatic cholesterol export and triglyceride hydrolysis was down-regulated in Gata4LKO mice. We further demonstrate that GATA4 collaborates with LXR nuclear receptors in the liver. GATA4 and LXRs share a number of binding sites, and GATA4 was required for the full transcriptional response to LXR activation. Collectively, these results show that hepatic GATA4 contributes to the transcriptional control of hepatic and systemic lipid homeostasis.
Collapse
Affiliation(s)
- Lara Bideyan
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Maykel López Rodríguez
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Christina Priest
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - John P Kennelly
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Yajing Gao
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Alessandra Ferrari
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| | - An-Chieh Feng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, USA
| | - Sergei G Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, Florida 32610, USA
| | - Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, USA
| |
Collapse
|
7
|
A Short Promoter Region Containing Conserved Regulatory Motifs Is Required for Steroidogenic Acute Regulatory Protein ( Star) Gene Expression in the Mouse Testis. Int J Mol Sci 2022; 23:ijms231912009. [PMID: 36233310 PMCID: PMC9569709 DOI: 10.3390/ijms231912009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
In the testis, Leydig cells produce steroid hormones that are needed to masculinize typical genetic males during fetal development and to initiate and maintain spermatogenesis at puberty and adulthood, respectively. Steroidogenesis is initiated by the transfer of cholesterol from the outer to the inner mitochondrial membrane through the action of steroidogenic acute regulatory protein (STAR). Given its importance for the steroidogenic process, the regulation of STAR gene expression has been the subject of numerous studies. These studies have involved the characterization of key promoter sequences through the identification of relevant transcription factors and the nucleotide motifs (regulatory elements) that they bind. This work has traditionally relied on in vitro studies carried out in cell cultures along with reconstructed promoter sequences. While this approach has been useful for developing models of how a gene might be transcriptionally regulated, one must ultimately validate that these modes of regulation occur in an endogenous context. We have used CRISPR/Cas9 genome editing to modify a short region of the mouse Star promoter (containing a subset of regulatory elements, including conserved CRE, C/EBP, AP1, and GATA motifs) that has been proposed to be critical for Star transcription. Analysis of the resultant mutant mice showed that this short promoter region is indeed required for maximal STAR mRNA and protein levels in the testis. Analysis also showed that both basal and hormone-activated testosterone production in mature mice was unaffected despite significant changes in Star expression. Our results therefore provide the first in vivo validation of regulatory sequences required for Star gene expression.
Collapse
|
8
|
Mehanovic S, Pierre KJ, Viger RS, Tremblay JJ. COUP-TFII interacts and functionally cooperates with GATA4 to regulate Amhr2 transcription in mouse MA-10 Leydig cells. Andrology 2022; 10:1411-1425. [PMID: 35973717 DOI: 10.1111/andr.13266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Leydig cells produce testosterone and insulin-like 3, two hormones essential for male sex differentiation and reproductive function. The orphan nuclear receptor COUP-TFII and the zinc finger factor GATA4 are two transcription factors involved in Leydig cell differentiation, gene expression and function. OBJECTIVES Several Leydig cell gene promoters contain binding motifs for both GATA factors and nuclear receptors. The goal of present study is to determine whether GATA4 and COUP-TFII cooperate to regulate gene expression in Leydig cells. MATERIALS AND METHODS The transcriptomes from GATA4- and COUP-TFII-depleted MA-10 Leydig cells were analyzed using bioinformatic tools. Functional cooperation between GATA4 and COUP-TFII, and other related family members, was assessed by transient transfections in Leydig (MA-10 and MLTC-1) and fibroblast (CV-1) cell lines on several gene promoters. Recruitment of GATA4 and COUP-TFII to gene promoters was investigated by chromatin immunoprecipitation. Co-immunoprecipitation was used to determine whether GATA4 and COUP-TFII interact in MA-10 Leydig cells. RESULTS Transcriptomic analyses of GATA4- and COUP-TFII-depleted MA-10 Leydig cells revealed 44 commonly regulated genes including the anti-Müllerian hormone receptor (Amhr2) gene. GATA4 and COUP-TFII independently activated the Amhr2 promoter, and their combination led to a stronger activation. A GC-rich element, located in the proximal Amhr2 promoter was found to be essential for GATA4- and COUP-TFII-dependent activation as well as for the COUP-TFII/GATA4 cooperation. COUP-TFII and GATA4 directly interacted in MA-10 Leydig cell extracts. Chromatin immunoprecipitation revealed that GATA4 and COUP-TFII are recruited to the proximal Amhr2 promoter, which contains binding sites for both factors in addition to the GC-rich element. Cooperation between COUP-TFII and GATA6, but not GATA1 and GATA3, was also observed. DISCUSSION AND CONCLUSION Our results establish the importance of a physical and functional cooperation between COUP-TFII/GATA4 in the regulation of gene expression in MA-10 Leydig cells, and more specifically the Amhr2 gene. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada
| | - Kenley Joule Pierre
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| |
Collapse
|
9
|
Viger RS, de Mattos K, Tremblay JJ. Insights Into the Roles of GATA Factors in Mammalian Testis Development and the Control of Fetal Testis Gene Expression. Front Endocrinol (Lausanne) 2022; 13:902198. [PMID: 35692407 PMCID: PMC9178088 DOI: 10.3389/fendo.2022.902198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
Defining how genes get turned on and off in a correct spatiotemporal manner is integral to our understanding of the development, differentiation, and function of different cell types in both health and disease. Testis development and subsequent male sex differentiation of the XY fetus are well-orchestrated processes that require an intricate network of cell-cell communication and hormonal signals that must be properly interpreted at the genomic level. Transcription factors are at the forefront for translating these signals into a coordinated genomic response. The GATA family of transcriptional regulators were first described as essential regulators of hematopoietic cell differentiation and heart morphogenesis but are now known to impact the development and function of a multitude of tissues and cell types. The mammalian testis is no exception where GATA factors play essential roles in directing the expression of genes crucial not only for testis differentiation but also testis function in the developing male fetus and later in adulthood. This minireview provides an overview of the current state of knowledge of GATA factors in the male gonad with a particular emphasis on their mechanisms of action in the control of testis development, gene expression in the fetal testis, testicular disease, and XY sex differentiation in humans.
Collapse
Affiliation(s)
- Robert S. Viger
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| | - Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| | - Jacques J. Tremblay
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| |
Collapse
|
10
|
de Mattos K, Viger RS, Tremblay JJ. Transcription Factors in the Regulation of Leydig Cell Gene Expression and Function. Front Endocrinol (Lausanne) 2022; 13:881309. [PMID: 35464056 PMCID: PMC9022205 DOI: 10.3389/fendo.2022.881309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
Cell differentiation and acquisition of specialized functions are inherent steps in events that lead to normal tissue development and function. These processes require accurate temporal, tissue, and cell-specific activation or repression of gene transcription. This is achieved by complex interactions between transcription factors that form a unique combinatorial code in each specialized cell type and in response to different physiological signals. Transcription factors typically act by binding to short, nucleotide-specific DNA sequences located in the promoter region of target genes. In males, Leydig cells play a crucial role in sex differentiation, health, and reproductive function from embryonic life to adulthood. To better understand the molecular mechanisms regulating Leydig cell differentiation and function, several transcription factors important to Leydig cells have been identified, including some previously unknown to this specialized cell type. This mini review summarizes the current knowledge on transcription factors in fetal and adult Leydig cells, describing their roles and mechanisms of action.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
| | - Robert S. Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- *Correspondence: Jacques J. Tremblay,
| |
Collapse
|
11
|
Abstract
Anti-Müllerian hormone (AMH) is a member of the TGF-β family produced essentially by the supporting somatic cells of the testis. Initially known for its inhibiting role upon the development of female internal organs, AMH has been shown to exert many other effects namely upon germ cells. Circulating AMH reflects the ovarian reserve of young developing follicles and is used to evaluate the fertility potential in assisted reproduction. The signaling pathway of AMH is both similar and different from that of other members of the TGF-β family. Like these, it signals through two distinct serine/threonine receptors, type 1 and type 2, that phosphorylate cytoplasmic effectors, the Smads. It also shares type 1 receptors and Smads with other members of the family. However, AMH is the only family member with its own, dedicated, ligand-specific type 2 receptor, AMHR2. The monogamic relationship between AMH and AMHR2 is supported by molecular studies of the Persistent Müllerian Duct Syndrome, characterized by the presence of Müllerian derivatives in otherwise normally virilized males: mutations of AMH or AMHR2 are clinically indistinguishable.
Collapse
Affiliation(s)
- Nathalie Josso
- Lipodystrophies, Adaptations Métaboliques et Hormonales, et Vieillissement, Sorbonne Université, INSERM, Centre de Recherches Saint-Antoine, 27 rue de Chaligny, 75012 Paris, France.
| | - Jean-Yves Picard
- Lipodystrophies, Adaptations Métaboliques et Hormonales, et Vieillissement, Sorbonne Université, INSERM, Centre de Recherches Saint-Antoine, 27 rue de Chaligny, 75012 Paris, France.
| |
Collapse
|
12
|
Mehanovic S, Mendoza-Villarroel RE, Mattos K, Talbot P, Viger RS, Tremblay JJ. Identification of novel genes and pathways regulated by the orphan nuclear receptor COUP-TFII in mouse MA-10 Leydig cells†. Biol Reprod 2021; 105:1283-1306. [PMID: 34225363 DOI: 10.1093/biolre/ioab131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/31/2021] [Accepted: 07/02/2021] [Indexed: 01/07/2023] Open
Abstract
In males, Leydig cells are the main producers of testosterone and insulin-like 3 (INSL3), two hormones essential for sex differentiation and reproductive functions. Chicken ovalbumin upstream promoter-transcription factors I (COUP-TFI/NR2F1) and COUP-TFII (NR2F2) belong to the steroid/thyroid hormone nuclear receptor superfamily of transcription factors. In the testis, COUP-TFII is expressed and plays a role in the differentiation of cells committed to give rise to fully functional steroidogenic adult Leydig cells. Steroid production has also been shown to be diminished in COUP-TFII-depleted Leydig cells, indicating an important functional role in steroidogenesis. Until now, only a handful of target genes have been identified for COUP-TFII in Leydig cells. To provide new information into the mechanism of action of COUP-TFII in Leydig cells, we performed microarray analyses of COUP-TFII-depleted MA-10 Leydig cells. We identified 262 differentially expressed genes in COUP-TFII-depleted MA-10 cells. Many of the differentially expressed genes are known to be involved in lipid biosynthesis, lipid metabolism, male gonad development, and steroidogenesis. We validated the microarray data for a subset of the modulated genes by RT-qPCR. Downregulated genes included Hsd3b1, Cyp11a1, Prlr, Shp/Nr0b2, Fdx1, Scarb1, Inha and Gsta3. Finally, analysis of the Gsta3 and Inha gene promoters showed that at least two of the downregulated genes are potentially new direct targets for COUP-TFII. These data provide new evidence that further strengthens the important nature of COUP-TFII in steroidogenesis, androgen homeostasis, cellular defense, and differentiation in mouse Leydig cells.
Collapse
Affiliation(s)
- Samir Mehanovic
- Recipient of a doctoral studentship from the Fondation du CHU de Québec-Université Laval.,Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, Québec, Canada, G1V 4G2
| | - Raifish E Mendoza-Villarroel
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, Québec, Canada, G1V 4G2
| | - Karine Mattos
- Recipient of a doctoral studentship from the Fondation du CHU de Québec-Université Laval.,Recipient of a doctoral studentship from the Fonds de recherche du Québec-Santé.,Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, Québec, Canada, G1V 4G2
| | - Philippe Talbot
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, Québec, Canada, G1V 4G2
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, Québec, Canada, G1V 4G2.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada, G1V 0A6
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, Québec, Canada, G1V 4G2.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada, G1V 0A6
| |
Collapse
|
13
|
Triptolide impairs glycolysis by suppressing GATA4/Sp1/PFKP signaling axis in mouse Sertoli cells. Toxicol Appl Pharmacol 2021; 425:115606. [PMID: 34087332 DOI: 10.1016/j.taap.2021.115606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 11/23/2022]
Abstract
Triptolide (TP), a primary bioactive ingredient isolated from the traditional Chinese herbal medicine Tripterygium wilfordii Hook. F. (TWHF), has attracted great interest for its therapeutic biological activities in inflammation and autoimmune disease. However, its clinical use is limited by severe testicular toxicity, and the underlying mechanism has not been elucidated. Our preliminary evidence demonstrated that TP disrupted glucose metabolism and caused testicular toxicity. During spermatogenesis, Sertoli cells (SCs) provide lactate as an energy source to germ cells by glycolysis. The transcription factors GATA-binding protein 4 (GATA4) and specificity protein 1 (Sp1) can regulate glycolysis. Based on this evidence, we speculate that TP causes abnormal glycolysis in SCs by influencing the expression of the transcription factors GATA4 and Sp1. The mechanism of TP-induced testicular toxicity was investigated in vitro and in vivo. The data indicated that TP decreased glucose consumption, lactate production, and the mRNA levels of glycolysis-related transporters and enzymes. TP also downregulated the protein expression of the transcription factors GATA4 and Sp1, as well as the glycolytic enzyme phosphofructokinase platelet (PFKP). Phosphorylated GATA4 and nuclear GATA4 protein levels were reduced in a dose- and time-dependent manner after TP incubation. Similar effects were observed in shGata4-treated TM4 cells and BALB/c mice administered 0.4 mg/kg TP for 28 days, and glycolysis was also inhibited. Gata4 knockdown downregulated Sp1 and PFKP expression. Furthermore, the Sp1 inhibitor plicamycin inhibited PFKP protein levels in TM4 cells. In conclusion, TP inhibited GATA4-mediated glycolysis by suppressing Sp1-dependent PFKP expression in SCs and caused testicular toxicity.
Collapse
|
14
|
Xiao Y, Zhao L, Li W, Wang X, Ma T, Yang L, Gao L, Li C, Zhang M, Yang D, Zhang J, Jiang H, Zhao H, Wang Y, Chao HW, Wang A, Jin Y, Chen H. Circadian clock gene BMAL1 controls testosterone production by regulating steroidogenesis-related gene transcription in goat Leydig cells. J Cell Physiol 2021; 236:6706-6725. [PMID: 33598947 DOI: 10.1002/jcp.30334] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Testosterone is produced by Leydig cells (LCs) and undergoes diurnal changes in serum levels in rats, mice, and humans, but little is known in goats. The present study revealed that goat serum testosterone levels displayed diurnal rhythmic changes (peak time at ZT11.2). Immunohistochemical staining showed that BMAL1, a circadian clock protein, is highly expressed in goat LCs. ELISA revealed that both hCG (0-5 IU/ml) and 22R-OH-cholesterol (0-30 μM) addition stimulated testosterone synthesis in primary goat LCs in a dose-dependent manner. Treating goat LCs with hCG (5 IU/ml) significantly increased intracellular cAMP levels. Additionally, real-time quantitative polymerase chain reaction (PCR) analysis revealed that the circadian clock (BMAL1, PER1, PER2, DBP, and NR1D1) and steroidogenesis-related genes (SF1, NUR77, StAR, HSD3B2, CYP17A1, CYP11A1, and HSD17B3) showed rhythmic expression patterns in goat LCs following dexamethasone synchronization. Several Bmal1-Luc circadian oscillations were clearly observed in dexamethasone-treated goat LCs transfected with the pLV6-Bmal1-Luc plasmid. BMAL1 knockdown significantly downregulated mRNA levels of PER2, NR1D1, DBP, StAR, HSD3B2, SF1, NUR77, and GATA4, and dramatically decreased StAR and HSD3B2 protein levels and testosterone production. In contrast, BMAL1 overexpression significantly increased the mRNA and protein expression levels of StAR and HSD17B3 and enhanced testosterone production. Reporter assays revealed that goat BMAL1, or in combination with mouse CLOCK, activated goat HSD17B3 transcription in vitro. These data indicate that BMAL1 contributes to testosterone production by regulating transcription of steroidogenesis-related genes in goat LCs, providing a basis for further exploring the underlying mechanism by which the circadian clock regulates ruminant reproductive capability.
Collapse
Affiliation(s)
- Yaoyao Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijia Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Weidong Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xiaoyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Cuimei Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Manhui Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dan Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Haizhen Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hongcong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yiqun Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Hsu-Wen Chao
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
15
|
Zhang X, Zhang TJ, Liu W, Ning YN, Bian YH, Cao YZ, Liu HB, Ma JL, Zhang HB. Mutational analysis of the GATA4 gene in Chinese men with nonobstructive azoospermia. Asian J Androl 2021; 23:205-210. [PMID: 32859868 PMCID: PMC7991814 DOI: 10.4103/aja.aja_33_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
As a crucial transcription factor for spermatogenesis, GATA-binding protein 4 (GATA4) plays important roles in the functioning of Sertoli and Leydig cells. Conditional knockout of GATA4 in mice results in age-dependent testicular atrophy and loss of fertility. However, whether GATA4 is associated with human azoospermia has not been reported. Herein, we analyzed the GATA4 gene by direct sequencing of samples obtained from 184 Chinese men with idiopathic nonobstructive azoospermia (NOA). We identified a missense mutation (c.191G>A, p.G64E), nine single-nucleotide polymorphisms (SNPs), and one rare variant (c.*84C>T) in the 3´ untranslated region (UTR). Functional studies demonstrated that the p.G64E mutation did not affect transactivation ability of GATA4 for spermatogenesis-related genes (claudin-11 and steroidogenic acute regulatory protein, Star), and the 3´ UTR rare variant c.*84C>T did not generate microRNA-binding sites to repress GATA4 expression. To our knowledge, this is thefirst report to investigate the association between GATA4 and azoospermia; our results indicate that mutations in GATA4 may not be pathogenic for NOA in Chinese men.
Collapse
Affiliation(s)
- Xu Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China.,Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Tai-Jian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Wen Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Yun-Na Ning
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Yue-Hong Bian
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Yong-Zhi Cao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Hong-Bin Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Jin-Long Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| | - Hao-Bo Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,National Research Centre for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, China
| |
Collapse
|
16
|
Mehanovic S, Mendoza-Villarroel RE, Viger RS, Tremblay JJ. The Nuclear Receptor COUP-TFII Regulates Amhr2 Gene Transcription via a GC-Rich Promoter Element in Mouse Leydig Cells. J Endocr Soc 2019; 3:2236-2257. [PMID: 31723721 PMCID: PMC6839530 DOI: 10.1210/js.2019-00266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/24/2019] [Indexed: 01/28/2023] Open
Abstract
The nuclear receptor chicken ovalbumin upstream promoter–transcription factor type II (COUP-TFII)/NR2F2 is expressed in adult Leydig cells, and conditional deletion of the Coup-tfii/Nr2f2 gene impedes their differentiation. Steroid production is also reduced in COUP-TFII–depleted Leydig cells, supporting an additional role in steroidogenesis for this transcription factor. COUP-TFII action in Leydig cells remains to be fully characterized. In the present work, we report that COUP-TFII is an essential regulator of the gene encoding the anti-Müllerian hormone receptor type 2 (Amhr2), which participates in Leydig cell differentiation and steroidogenesis. We found that Amhr2 mRNA levels are reduced in COUP-TFII–depleted MA-10 Leydig cells. Consistent with this, COUP-TFII directly activates a −1486 bp fragment of the mouse Amhr2 promoter in transient transfection assays. The COUP-TFII responsive region was localized between −67 and −34 bp. Chromatin immunoprecipitation assay confirmed COUP-TFII recruitment to the proximal Amhr2 promoter whereas DNA precipitation assay revealed that COUP-TFII associates with the −67/−34 bp region in vitro. Even though the −67/−34 bp region contains an imperfect nuclear receptor element, COUP-TFII–mediated activation of the Amhr2 promoter requires a GC-rich sequence at −39 bp known to bind the specificity protein (SP)1 transcription factor. COUP-TFII transcriptionally cooperates with SP1 on the Amhr2 promoter. Mutations that altered the GCGGGGCGG sequence at −39 bp abolished COUP-TFII–mediated activation, COUP-TFII/SP1 cooperation, and reduced COUP-TFII binding to the proximal Amhr2 promoter. Our data provide a better understanding of the mechanism of COUP-TFII action in Leydig cells through the identification and regulation of the Amhr2 promoter as a novel target.
Collapse
Affiliation(s)
- Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Raifish E Mendoza-Villarroel
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
17
|
Bergeron F, Boulende Sab A, Bouchard MF, Taniguchi H, Souchkova O, Brousseau C, Tremblay JJ, Pilon N, Viger RS. Phosphorylation of GATA4 serine 105 but not serine 261 is required for testosterone production in the male mouse. Andrology 2019; 7:357-372. [PMID: 30793514 DOI: 10.1111/andr.12601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND GATA4 is a transcription factor essential for male sex determination, testicular differentiation during fetal development, and male fertility in the adult. GATA4 exerts part of its function by regulating multiple genes in the steroidogenic enzyme pathway. In spite of these crucial roles, how the activity of this factor is regulated remains unclear. OBJECTIVES Studies in gonadal cell lines have shown that GATA4 is phosphorylated on at least two serine residues-serine 105 (S105) and serine 261 (S261)-and that this phosphorylation is important for GATA4 activity. The objective of the present study is to characterize the endogenous role of GATA4 S105 and S261 phosphorylation in the mouse testis. MATERIALS AND METHODS We examined both previously described GATA4 S105A mice and a novel GATA4 S261A knock-in mouse that we generated by CRISPR/Cas9 gene editing. The male phenotype of the mutants was characterized by assessing androgen-dependent organ weights, hormonal profiles, and expression of multiple testicular target genes using standard biochemical and molecular biology techniques. RESULTS The fecundity of crosses between GATA4 S105A mice was reduced but without a change in sex ratio. The weight of androgen-dependent organs was smaller when compared to wild-type controls. Plasma testosterone levels showed a 70% decrease in adult GATA4 S105A males. This decrease was associated with a reduction in Cyp11a1, Cyp17a1, and Hsd17b3 expression. GATA4 S261A mice were viable and testis morphology appeared normal. Testosterone production and steroidogenic enzyme expression were not altered in GATA4 S261A males. DISCUSSION AND CONCLUSION Our analysis showed that blocking GATA4 S105 phosphorylation is associated with decreased androgen production in males. In contrast, S261 phosphorylation by itself is dispensable for GATA4 function. These results confirm that endogenous GATA4 action is essential for normal steroid production in males and that this activity requires phosphorylation on at least one serine residue.
Collapse
Affiliation(s)
- F Bergeron
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada
| | - A Boulende Sab
- Département des Sciences Biologiques and Centre d'excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - M F Bouchard
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada
| | - H Taniguchi
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - O Souchkova
- Département des Sciences Biologiques and Centre d'excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - C Brousseau
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada
| | - J J Tremblay
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada.,Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC, Canada
| | - N Pilon
- Département des Sciences Biologiques and Centre d'excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montreal, QC, Canada
| | - R S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Quebec, QC, Canada.,Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, QC, Canada
| |
Collapse
|
18
|
Lan HC, Wu KY, Lin IW, Yang ZJ, Chang AA, Hu MC. Bisphenol A disrupts steroidogenesis and induces a sex hormone imbalance through c-Jun phosphorylation in Leydig cells. CHEMOSPHERE 2017; 185:237-246. [PMID: 28697429 DOI: 10.1016/j.chemosphere.2017.07.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/11/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine disrupting chemical (EDC) that is used to manufacture plastic consumer products. It is well known that exposure to BPA can induce defects in gonad development and negatively influences reproductive function in both males and females. In this study, we assessed the effects of BPA on hormone production in Leydig cells, which secrete hormones in the testes and support male fertility. We examined two steroidogenic enzymes, CYP11A1 and CYP19 that involved in sex hormone synthesis in mouse MA-10 Leydig cells. We found that BPA activated CYP gene in both mRNA and protein levels then resulted in alteration of the normal sex hormone ratio. Furthermore, we found that BPA induced c-Jun phosphorylation and contributed to CYP gene expression. Similar results were observed in an animal study. In conclusion, BPA disrupts the hormone environment in testis via steroidogenic gene activation through the JNK/c-Jun signaling pathway.
Collapse
Affiliation(s)
- Hsin-Chieh Lan
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan.
| | - Kai-Yu Wu
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - I-Wen Lin
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Zhi-Jie Yang
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Ai-An Chang
- Institute of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Meng-Chun Hu
- Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
19
|
Penny GM, Cochran RB, Pihlajoki M, Kyrönlahti A, Schrade A, Häkkinen M, Toppari J, Heikinheimo M, Wilson DB. Probing GATA factor function in mouse Leydig cells via testicular injection of adenoviral vectors. Reproduction 2017; 154:455-467. [PMID: 28710293 PMCID: PMC5589507 DOI: 10.1530/rep-17-0311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/09/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022]
Abstract
Testicular Leydig cells produce androgens essential for proper male reproductive development and fertility. Here, we describe a new Leydig cell ablation model based on Cre/Lox recombination of mouse Gata4 and Gata6, two genes implicated in the transcriptional regulation of steroidogenesis. The testicular interstitium of adult Gata4flox/flox ; Gata6flox/flox mice was injected with adenoviral vectors encoding Cre + GFP (Ad-Cre-IRES-GFP) or GFP alone (Ad-GFP). The vectors efficiently and selectively transduced Leydig cells, as evidenced by GFP reporter expression. Three days after Ad-Cre-IRES-GFP injection, expression of androgen biosynthetic genes (Hsd3b1, Cyp17a1 and Hsd17b3) was reduced, whereas expression of another Leydig cell marker, Insl3, was unchanged. Six days after Ad-Cre-IRES-GFP treatment, the testicular interstitium was devoid of Leydig cells, and there was a concomitant loss of all Leydig cell markers. Chromatin condensation, nuclear fragmentation, mitochondrial swelling, and other ultrastructural changes were evident in the degenerating Leydig cells. Liquid chromatography-tandem mass spectrometry demonstrated reduced levels of androstenedione and testosterone in testes from mice injected with Ad-Cre-IRES-GFP. Late effects of treatment included testicular atrophy, infertility and the accumulation of lymphoid cells in the testicular interstitium. We conclude that adenoviral-mediated gene delivery is an expeditious way to probe Leydig cell function in vivo Our findings reinforce the notion that GATA factors are key regulators of steroidogenesis and testicular somatic cell survival.Free Finnish abstract: A Finnish translation of this abstract is freely available at http://www.reproduction-online.org/content/154/4/455/suppl/DC2.
Collapse
Affiliation(s)
- Gervette M Penny
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Rebecca B Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Marjut Pihlajoki
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kyrönlahti
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anja Schrade
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Merja Häkkinen
- University of Eastern FinlandSchool of Pharmacy, Kuopio, Finland
| | - Jorma Toppari
- Department of PhysiologyInstitute of Biomedicine, University of Turku and Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
- Department of Developmental BiologyWashington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Strand-specific RNA sequencing in pig testes identifies developmentally regulated genes and circular RNAs. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0576-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
21
|
Bashamboo A, McElreavey K. Mechanism of Sex Determination in Humans: Insights from Disorders of Sex Development. Sex Dev 2016; 10:313-325. [DOI: 10.1159/000452637] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2016] [Indexed: 12/13/2022] Open
|
22
|
SCAP/SREBP pathway is required for the full steroidogenic response to cyclic AMP. Proc Natl Acad Sci U S A 2016; 113:E5685-93. [PMID: 27601673 DOI: 10.1073/pnas.1611424113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Luteinizing hormone (LH) stimulates steroidogenesis largely through a surge in cyclic AMP (cAMP). Steroidogenic rates are also critically dependent on the availability of cholesterol at mitochondrial sites of synthesis. This cholesterol is provided by cellular uptake of lipoproteins, mobilization of intracellular lipid, and de novo synthesis. Whether and how these pathways are coordinated by cAMP are poorly understood. Recent phosphoproteomic analyses of cAMP-dependent phosphorylation sites in MA10 Leydig cells suggested that cAMP regulates multiple steps in these processes, including activation of the SCAP/SREBP pathway. SCAP [sterol-regulatory element-binding protein (SREBP) cleavage-activating protein] acts as a cholesterol sensor responsible for regulating intracellular cholesterol balance. Its role in cAMP-mediated control of steroidogenesis has not been explored. We used two CRISPR (clustered regularly interspaced short palindromic repeat)-Cas9 (CRISPR associated protein 9) knockout approaches to test the role of SCAP in steroidogenesis. Our results demonstrate that SCAP is required for progesterone production induced by concurrent inhibition of the cAMP phosphodiesterases PDE4 and PDE8. These inhibitors increased SCAP phosphorylation, SREBP2 activation, and subsequent expression of cholesterol biosynthetic genes, whereas SCAP deficiency largely prevented these effects. Reexpression of SCAP in SCAP-deficient cells restored SREBP2 protein expression and partially restored steroidogenic responses, confirming the requirement of SCAP-SREBP2 in steroidogenesis. Inhibitors of 3-hydroxy-3-methylglutaryl-Coenzyme A reductase and isoprenylation attenuated, whereas exogenously provided cholesterol augmented, PDE inhibitor-induced steroidogenesis, suggesting that the cholesterol substrate needed for steroidogenesis is provided by both de novo synthesis and isoprenylation-dependent mechanisms. Overall, these results demonstrate a novel role for LH/cAMP in SCAP/SREBP activation and subsequent regulation of steroidogenesis.
Collapse
|
23
|
Schrade A, Kyrönlahti A, Akinrinade O, Pihlajoki M, Fischer S, Rodriguez VM, Otte K, Velagapudi V, Toppari J, Wilson DB, Heikinheimo M. GATA4 Regulates Blood-Testis Barrier Function and Lactate Metabolism in Mouse Sertoli Cells. Endocrinology 2016; 157:2416-31. [PMID: 26974005 PMCID: PMC4891789 DOI: 10.1210/en.2015-1927] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conditional deletion of Gata4 in Sertoli cells (SCs) of adult mice has been shown to increase permeability of the blood-testis barrier (BTB) and disrupt spermatogenesis. To gain insight into the molecular underpinnings of these phenotypic abnormalities, we assessed the impact of Gata4 gene silencing in cell culture models. Microarray hybridization identified genes dysregulated by siRNA-mediated inhibition of Gata4 in TM4 cells, an immortalized mouse SC line. Differentially expressed genes were validated by quantitative RT-PCR analysis of primary cultures of Gata4(flox/flox) mouse SCs that had been subjected to cre-mediated recombination in vitro. Depletion of GATA4 in TM4 cells and primary SCs was associated with altered expression of genes involved in key facets of BTB maintenance, including tight/adherens junction formation (Tjp1, Cldn12, Vcl, Tnc, Csk) and extracellular matrix reorganization (Lamc1, Col4a1, Col4a5, Mmp10, Mmp23, Timp2). Western blotting and immunocytochemistry demonstrated reduced levels of tight junction protein-1, a prototypical tight junction protein, in GATA4-depleted cells. These changes were accompanied by a loss of morphologically recognizable junctional complexes and a decline in epithelial membrane resistance. Furthermore, Gata4 gene silencing was associated with altered expression of Hk1, Gpi1, Pfkp, Pgam1, Gls2, Pdk3, Pkd4, and Ldhb, genes regulating the production of lactate, a key nutrient that SCs provide to developing germ cells. Comprehensive metabolomic profiling demonstrated impaired lactate production in GATA4-deficient SCs. We conclude that GATA4 plays a pivotal role in the regulation of BTB function and lactate metabolism in mouse SCs.
Collapse
Affiliation(s)
- Anja Schrade
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Antti Kyrönlahti
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Oyediran Akinrinade
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Marjut Pihlajoki
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Simon Fischer
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Verena Martinez Rodriguez
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Kerstin Otte
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Vidya Velagapudi
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Jorma Toppari
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - David B Wilson
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Markku Heikinheimo
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| |
Collapse
|
24
|
Pihlajoki M, Färkkilä A, Soini T, Heikinheimo M, Wilson DB. GATA factors in endocrine neoplasia. Mol Cell Endocrinol 2016; 421:2-17. [PMID: 26027919 PMCID: PMC4662929 DOI: 10.1016/j.mce.2015.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/26/2015] [Accepted: 05/09/2015] [Indexed: 02/07/2023]
Abstract
GATA transcription factors are structurally-related zinc finger proteins that recognize the consensus DNA sequence WGATAA (the GATA motif), an essential cis-acting element in the promoters and enhancers of many genes. These transcription factors regulate cell fate specification and differentiation in a wide array of tissues. As demonstrated by genetic analyses of mice and humans, GATA factors play pivotal roles in the development, homeostasis, and function of several endocrine organs including the adrenal cortex, ovary, pancreas, parathyroid, pituitary, and testis. Additionally, GATA factors have been shown to be mutated, overexpressed, or underexpressed in a variety of endocrine tumors (e.g., adrenocortical neoplasms, parathyroid tumors, pituitary adenomas, and sex cord stromal tumors). Emerging evidence suggests that GATA factors play a direct role in the initiation, proliferation, or propagation of certain endocrine tumors via modulation of key developmental signaling pathways implicated in oncogenesis, such as the WNT/β-catenin and TGFβ pathways. Altered expression or function of GATA factors can also affect the metabolism, ploidy, and invasiveness of tumor cells. This article provides an overview of the role of GATA factors in endocrine neoplasms. Relevant animal models are highlighted.
Collapse
Affiliation(s)
- Marjut Pihlajoki
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Anniina Färkkilä
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Tea Soini
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Markku Heikinheimo
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland; Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David B Wilson
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
25
|
Convissar SM, Bennett J, Baumgarten SC, Lydon JP, DeMayo FJ, Stocco C. GATA4 and GATA6 Knockdown During Luteinization Inhibits Progesterone Production and Gonadotropin Responsiveness in the Corpus Luteum of Female Mice. Biol Reprod 2015; 93:133. [PMID: 26510866 DOI: 10.1095/biolreprod.115.132969] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/20/2015] [Indexed: 11/01/2022] Open
Abstract
The surge of luteinizing hormone triggers the genomic reprogramming, cell differentiation, and tissue remodeling of the ovulated follicle, leading to the formation of the corpus luteum. During this process, called luteinization, follicular granulosa cells begin expressing a new set of genes that allow the resulting luteal cells to survive in a vastly different hormonal environment and to produce the extremely high amounts of progesterone (P4) needed to sustain pregnancy. To better understand the molecular mechanisms involved in the regulation of luteal P4 production in vivo, the transcription factors GATA4 and GATA6 were knocked down in the corpus luteum by crossing mice carrying Gata4 and Gata6 floxed genes with mice carrying Cre recombinase fused to the progesterone receptor. This receptor is expressed exclusively in granulosa cells after the luteinizing hormone surge, leading to recombination of floxed genes during follicle luteinization. The findings demonstrated that GATA4 and GATA6 are essential for female fertility, whereas targeting either factor alone causes subfertility. When compared to control mice, serum P4 levels and luteal expression of key steroidogenic genes were significantly lower in conditional knockdown mice. The results also showed that GATA4 and GATA6 are required for the expression of the receptors for prolactin and luteinizing hormone, the main luteotropic hormones in mice. The findings demonstrate that GATA4 and GATA6 are crucial regulators of luteal steroidogenesis and are required for the normal response of luteal cells to luteotropins.
Collapse
Affiliation(s)
- Scott M Convissar
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jill Bennett
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Sarah C Baumgarten
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Carlos Stocco
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
26
|
George RM, Hahn KL, Rawls A, Viger RS, Wilson-Rawls J. Notch signaling represses GATA4-induced expression of genes involved in steroid biosynthesis. Reproduction 2015; 150:383-94. [PMID: 26183893 DOI: 10.1530/rep-15-0226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/16/2015] [Indexed: 12/18/2022]
Abstract
Notch2 and Notch3 and genes of the Notch signaling network are dynamically expressed in developing follicles, where they are essential for granulosa cell proliferation and meiotic maturation. Notch receptors, ligands, and downstream effector genes are also expressed in testicular Leydig cells, predicting a potential role in regulating steroidogenesis. In this study, we sought to determine if Notch signaling in small follicles regulates the proliferation response of granulosa cells to FSH and represses the up-regulation steroidogenic gene expression that occurs in response to FSH as the follicle grows. Inhibition of Notch signaling in small preantral follicles led to the up-regulation of the expression of genes in the steroid biosynthetic pathway. Similarly, progesterone secretion by MA-10 Leydig cells was significantly inhibited by constitutively active Notch. Together, these data indicated that Notch signaling inhibits steroidogenesis. GATA4 has been shown to be a positive regulator of steroidogenic genes, including STAR protein, P450 aromatase, and 3B-hydroxysteroid dehydrogenase. We observed that Notch downstream effectors HEY1, HEY2, and HEYL are able to differentially regulate these GATA4-dependent promoters. These data are supported by the presence of HEY/HES binding sites in these promoters. These studies indicate that Notch signaling has a role in the complex regulation of the steroidogenic pathway.
Collapse
Affiliation(s)
- Rajani M George
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Katherine L Hahn
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Alan Rawls
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Robert S Viger
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4 School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Jeanne Wilson-Rawls
- School of Life SciencesArizona State University, PO Box 874501, Tempe, Arizona 85827-45012, USAReproductionMother and Child Health, Centre de Recherche du CHU de Québec and Centre de Recherche en Biologie de la Reproduction (CRBR), Quebec City, Quebec, CanadaDepartment of ObstetricsGynecology, and Reproduction, Laval University, Quebec City, Quebec, Canada G1K 7P4
| |
Collapse
|
27
|
Heikinheimo M, Pihlajoki M, Schrade A, Kyrönlahti A, Wilson DB. Testicular steroidogenic cells to the rescue. Endocrinology 2015; 156:1616-9. [PMID: 25886071 DOI: 10.1210/en.2015-1222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Markku Heikinheimo
- Departments of Pediatrics and Developmental Biology (M.H., D.B.W.), Washington University School of Medicine and St Louis Children's Hospital, St Louis, Missouri 63110; and Children's Hospital (M.H., M.P., A.S., A.K.), University of Helsinki and Helsinki Central Hospital, 00290 Helsinki, Finland
| | | | | | | | | |
Collapse
|
28
|
Schrade A, Kyrönlahti A, Akinrinade O, Pihlajoki M, Häkkinen M, Fischer S, Alastalo TP, Velagapudi V, Toppari J, Wilson DB, Heikinheimo M. GATA4 is a key regulator of steroidogenesis and glycolysis in mouse Leydig cells. Endocrinology 2015; 156:1860-72. [PMID: 25668067 PMCID: PMC4398762 DOI: 10.1210/en.2014-1931] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transcription factor GATA4 is expressed in somatic cells of the mammalian testis. Gene targeting studies in mice have shown that GATA4 is essential for proper differentiation and function of Sertoli cells. The role of GATA4 in Leydig cell development, however, remains controversial, because targeted mutagenesis experiments in mice have not shown a consistent phenotype, possibly due to context-dependent effects or compensatory responses. We therefore undertook a reductionist approach to study the function of GATA4 in Leydig cells. Using microarray analysis and quantitative RT-PCR, we identified a set of genes that are down-regulated or up-regulated after small interfering RNA (siRNA)-mediated silencing of Gata4 in the murine Leydig tumor cell line mLTC-1. These same genes were dysregulated when primary cultures of Gata4(flox/flox) adult Leydig cells were subjected to adenovirus-mediated cre-lox recombination in vitro. Among the down-regulated genes were enzymes of the androgen biosynthetic pathway (Cyp11a1, Hsd3b1, Cyp17a1, and Srd5a). Silencing of Gata4 expression in mLTC-1 cells was accompanied by reduced production of sex steroid precursors, as documented by mass spectrometric analysis. Comprehensive metabolomic analysis of GATA4-deficient mLTC-1 cells showed alteration of other metabolic pathways, notably glycolysis. GATA4-depleted mLTC-1 cells had reduced expression of glycolytic genes (Hk1, Gpi1, Pfkp, and Pgam1), lower intracellular levels of ATP, and increased extracellular levels of glucose. Our findings suggest that GATA4 plays a pivotal role in Leydig cell function and provide novel insights into metabolic regulation in this cell type.
Collapse
Affiliation(s)
- Anja Schrade
- Children's Hospital (A.S., A.K., O.A., M.P., T.-P.A., M.H.), University of Helsinki, Helsinki 00014, Finland; Institute of Biomedicine (O.A.), University of Helsinki, Helsinki 00014, Finland; School of Pharmacy (M.H.), University of Eastern Finland, Kuopio 70211, Finland; Institute of Applied Biotechnology (S.F.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku, Turku 20520, Finland; and Departments of Pediatrics (A.S., M.P., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University in St. Louis, St. Louis, Missouri 63110
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|