1
|
Seekford ZK, Tariq A, Macay GA, Jenkins KM, Dickson MJ, Melo GD, Pohler KG, Sheldon IM, Bromfield JJ. Uterine disease in dairy cows is associated with contemporaneous perturbations to ovarian function. Theriogenology 2024; 232:20-29. [PMID: 39504867 DOI: 10.1016/j.theriogenology.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Postpartum uterine disease in dairy cows affects ovarian function, but it is unclear how the type and timing of disease relates to ovarian function. To explore associations between uterine disease and contemporaneous ovarian function, postpartum uterine health was evaluated in 17 lactating primiparous Holstein cows that ovulated. Ovarian function was assessed by measuring daily hormone concentrations and the diameter of the largest follicle and subsequent corpus luteum. Metritis (≤14 d postpartum) was associated with reduced follicle diameter (P = 0.002) and tended to reduce plasma estradiol concentrations (P = 0.062) from d 7 to 16 postpartum compared to cows without metritis. Metritis was associated with reduced plasma progesterone (P = 0.026) but not corpus luteum diameter from d 17 to 26 postpartum. Endometritis (≥15 d postpartum) was associated with reduced corpus luteum diameter (P = 0.005) but did not alter plasma progesterone from d 17 to 26 postpartum compared to cows without endometritis. To explore longer term effects of uterine infection on luteal function, non-lactating primiparous Holstein cows received an intrauterine infusion of vehicle control (n = 11) or pathogenic Escherichia coli and Trueperella pyogenes to induce endometritis (n = 12) and corpora lutea were recovered on d 16 of the estrous cycle, 146 d after intrauterine infusion. Intrauterine infusion of bacteria had no effect on plasma progesterone or luteal diameter compared to control, and only altered the expression of 2 of 94 candidate genes (NCF1 and TLR9). Taken together, these studies imply that uterine diseases are principally associated with changes to ovarian function at a time contemporaneous with disease.
Collapse
Affiliation(s)
- Z K Seekford
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - A Tariq
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - G A Macay
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - K M Jenkins
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - M J Dickson
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - G D Melo
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - K G Pohler
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - I M Sheldon
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - J J Bromfield
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
2
|
López-Martínez S, Simón C, Santamaria X. Normothermic Machine Perfusion Systems: Where Do We Go From Here? Transplantation 2024; 108:22-44. [PMID: 37026713 DOI: 10.1097/tp.0000000000004573] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Normothermic machine perfusion (NMP) aims to preserve organs ex vivo by simulating physiological conditions such as body temperature. Recent advancements in NMP system design have prompted the development of clinically effective devices for liver, heart, lung, and kidney transplantation that preserve organs for several hours/up to 1 d. In preclinical studies, adjustments to circuit structure, perfusate composition, and automatic supervision have extended perfusion times up to 1 wk of preservation. Emerging NMP platforms for ex vivo preservation of the pancreas, intestine, uterus, ovary, and vascularized composite allografts represent exciting prospects. Thus, NMP may become a valuable tool in transplantation and provide significant advantages to biomedical research. This review recaps recent NMP research, including discussions of devices in clinical trials, innovative preclinical systems for extended preservation, and platforms developed for other organs. We will also discuss NMP strategies using a global approach while focusing on technical specifications and preservation times.
Collapse
Affiliation(s)
- Sara López-Martínez
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Department of Obstetrics and Gynecology, Universidad de Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Xavier Santamaria
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
3
|
Häussler S, Ghaffari MH, Seibt K, Sadri H, Alaedin M, Huber K, Frahm J, Dänicke S, Sauerwein H. Blood and liver telomere length, mitochondrial DNA copy number, and hepatic gene expression of mitochondrial dynamics in mid-lactation cows supplemented with l-carnitine under systemic inflammation. J Dairy Sci 2023; 106:9822-9842. [PMID: 37641324 DOI: 10.3168/jds.2023-23556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
The current study was conducted to examine the effect of l-carnitine (LC) supplementation on telomere length and mitochondrial DNA copy number (mtDNAcn) per cell in mid-lactation cows challenged by lipopolysaccharide (LPS) in blood and liver. The mRNA abundance of 31 genes related to inflammation, oxidative stress, and the corresponding stress response mechanisms, the mitochondrial quality control and the protein import system, as well as the phosphatidylinositol 3-kinase/protein kinase B pathway, were assessed using microfluidics integrated fluidic circuit chips (96.96 dynamic arrays). In addition to comparing the responses in cows with or without LC, our objectives were to characterize the oxidative and inflammatory status by assessing the circulating concentration of lactoferrin (Lf), haptoglobin (Hp), fibrinogen, derivates of reactive oxygen metabolites (dROM), and arylesterase activity (AEA), and to extend the measurement of Lf and Hp to milk. Pluriparous Holstein cows were assigned to either a control group (CON, n = 26) or an LC-supplemented group (CAR; 25 g LC/cow per day; d 42 ante partum to d 126 postpartum (PP), n = 27). On d 111 PP, each cow was injected intravenously with LPS (Escherichia coli O111:B4, 0.5 µg/kg). The mRNA abundance was examined in liver biopsies of d -11 and +1 relative to LPS administration. Plasma and milk samples were frequently collected before and after the challenge. After LPS administration, circulating plasma fibrinogen and serum dROM concentrations increased, whereas AEA decreased. Moreover, serum P4 initially increased by 3 h after LPS administration and declined thereafter irrespective of grouping. The Lf concentrations increased in both groups after LPS administration, with the CAR group showing greater concentrations in serum and milk than the CON group. After LPS administration, telomere length in blood increased, whereas mtDNAcn per cell decreased; however, both remained unaffected in liver. For mitochondrial protein import genes, the hepatic mRNA abundance of the translocase of the mitochondrial inner membrane (TIM)-17B was increased in CAR cows. Moreover, TIM23 increased in both groups after LPS administration. Regarding the mRNA abundance of genes related to stress response mechanisms, 7 out of 14 genes showed group × time interactions, indicating a (local) protective effect due to the dietary LC supplementation against oxidative stress in mid-lactating dairy cows. For mtDNAcn and telomere length, the effects of the LPS-induced inflammation were more pronounced than the dietary supplementation of LC. Dietary LC supplementation affected the response to LPS primarily by altering mitochondrial dynamics. Regarding mRNA abundance of genes related to the mitochondrial protein import system, the inner mitochondrial membrane translocase (TIM complex) seemed to be more sensitive to dietary LC than the outer mitochondrial membrane translocase (TOM complex).
Collapse
Affiliation(s)
- S Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - M H Ghaffari
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| | - K Seibt
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - H Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - M Alaedin
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - K Huber
- Institute of Animal Science, Functional Anatomy of Livestock, University of Hohenheim, 70599 Stuttgart, Germany
| | - J Frahm
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - S Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 38116 Braunschweig, Germany
| | - H Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
4
|
El-Beltagy AEFBM, Bakr SM, Mekhaimer SSG, Ghanem NF, Attaallah A. Zinc-nanoparticles alleviate the ovarian damage induced by bacterial lipopolysaccharide (LPS) in pregnant rats and their fetuses. Histochem Cell Biol 2023; 160:453-475. [PMID: 37495867 PMCID: PMC10624724 DOI: 10.1007/s00418-023-02222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
Lipopolysaccharide (LPS) is an endotoxin derived from the cell wall of Gram-negative bacteria. LPS exposure during early gestation is associated with adverse effects on the placenta as well as on developmental outcomes, including embryonic resorption, fetal death, congenital teratogenesis, and fetal growth retardation. This work aimed to explore the adverse effects of LPS injected at an early stage of gestation on the gonads of pregnant rats and the ovaries of their pups and the role of zinc nanoparticles (Zn-NPs) against these adverse effects. Twenty-four pregnant rats were used in this study. They were divided at gestation day 4 into four groups (n = 6): control, Zn-NPs (20 mg/kg orally from gestation day E14 till the end of weaning), LPS (50 µg/kg at gestation days E7 and E9), and LPS + Zn-NPs group. The body weight and placenta weight were recorded at gestational day 16. At postnatal day 21 (weaning), the mothers rats and their offspring were sacrificed and immediately dissected to remove the ovaries and uteri from the mothers and the ovaries from their offspring for subsequent biochemical, histological, and immunohistochemical investigations. The obtained results revealed that LPS exposure during early gestation caused severe histopathological alterations in the placenta, uterus, and ovaries of mothers, as well as in the ovaries of their pups. Also, the uterine and ovarian sections displayed a positive reaction for caspase-3 antibody and a negative reaction for Bcl-2 antibody, which reflects the apoptotic effect of LPS. Additionally, remarkable reductions in the levels of antioxidants (superoxide dismutase and catalase) and significant increases in malondialdehyde (MDA) levels were recorded in the serum of LPS-treated mothers and in the ovarian tissues of their offspring. Further biochemical analysis of the ovarian tissues from LPS-maternally treated offspring showed a significant increase in the levels of caspase-3, TNF-α, and TGF-β1, but a significant decrease in the level of IGF-1. On the other hand, treatment of mothers with Zn-NPs from day 14 of gestation until the weaning day (21st day postnatal) successfully ameliorated most of the deleterious histopathological, immunohistochemical, and biochemical changes induced by LPS.
Collapse
Affiliation(s)
| | - Samaa M Bakr
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Samah S G Mekhaimer
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Noura F Ghanem
- Zoology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Amany Attaallah
- Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
5
|
Gram A, Kowalewski MP. Molecular Mechanisms of Lipopolysaccharide (LPS) Induced Inflammation in an Immortalized Ovine Luteal Endothelial Cell Line (OLENDO). Vet Sci 2022; 9:vetsci9030099. [PMID: 35324827 PMCID: PMC8950530 DOI: 10.3390/vetsci9030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Escherichia coli (E. coli) is the most common Gram-negative bacterium causing infection of the uterus or mammary gland and is one of the major causes of infertility in livestock. In those animals affected by E. coli driven LPS-mediated infections, fertility problems occur in part due to disrupted follicular and luteal functionality. However, the molecular mechanisms by which LPS induces inflammation, and specifically, the role of LPS in the disruption of capillary morphogenesis and endothelial barrier function remain unclear. Here, we hypothesized that LPS may lead to alterations in luteal angiogenesis and vascular function by inducing inflammatory reactions in endothelial cells. Accordingly, OLENDO cells were treated with LPS followed by evaluation of the expression of selected representative proinflammatory cytokines: NF-kB, IL6, IL8, TNFα, and ICAM 1. While TNFα was not affected by treatment with LPS, transcripts of NF-kB, IL6, and IL8 were affected in a dosage-dependent manner. Additionally, the activity of TLR2 and TLR4 was blocked, resulting in suppression of the LPS-induced expression of ICAM 1, NF-kB, IL6, and IL8. Inhibition of the PKA or MAPK/ERK pathways suppressed the LPS-stimulated expression of NF-kB, IL6, and IL8, whereas blocking the PKC pathway had the opposite effect. Furthermore, LPS-induced phosphorylation of Erk1 and Erk2 was inhibited when the TLR4 or MAPK/ERK pathways were blocked. Finally, LPS seems to induce inflammatory processes in OLENDO cells via TLR2 and TLR4, utilizing different signaling pathways.
Collapse
Affiliation(s)
- Aykut Gram
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri 38280, Turkey
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
- Correspondence: ; Tel.: +90-(352)-339-94-84
| | - Mariusz P. Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland;
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich (UZH), CH-8057 Zurich, Switzerland
| |
Collapse
|
6
|
Storni E, Bollwein H, Hankele AK, Wellnitz O, Bruckmaier RM, Ulbrich SE, Lüttgenau J. Inhibition of lipopolysaccharide-induced suppression of luteal function in isolated perfused bovine ovaries. J Reprod Dev 2021; 68:45-52. [PMID: 34732602 PMCID: PMC8872752 DOI: 10.1262/jrd.2020-131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, we observed that lipopolysaccharide (LPS) suppresses corpus luteum (CL) function in isolated perfused ovaries. It remained unclear if this suppression was due to increased luteal PGF2α secretion or LPS-induced apoptosis. Therefore, possible impacts of PGF2α and LPS were inhibited by a non-steroidal anti-inflammatory drug (flunixin) and an endotoxin-binding agent (polymyxin B), respectively. Bovine ovaries with a mid-cycle CL were collected immediately after slaughter and perfused for 240 min. After 50 min of equilibration, either flunixin or polymyxin B (5 μg/ml of each) were added to the perfusion medium of six ovaries, respectively. All ovaries (n = 12) were treated with E.coli LPS (0.5 μg/ml) 60 min after the onset of perfusion, and received 500 I.U. of hCG after 210 min of perfusion. Progesterone and PGF2α were measured in the effluent perfusate every 10 and 30 min, respectively. Biopsies of the CL were collected every 60 min to determine the mRNA expression of the cytokine TNFA and factors of apoptosis (CASP3, -8). Flunixin-treatment inhibited the increase of PGF2α after LPS-challenge that was observed in the polymyxin B-treated (PX-LPS) ovaries. After hCG-stimulation, progesterone secretion increased (P< 0.05) in group PX-LPS but not in the flunixin-treated (F-LPS) ovaries. Compared to initial values before LPS-challenge, luteal mRNA expression of TNFA and CASP3 was increased (P< 0.05) in group F-LPS at 120 and 180 min, respectively, and those of CASP8 was decreased (P< 0.05) in PX-LPS at 60 and 120 min after LPS-treatment. In conclusion, although flunixin managed to inhibit PGF2α, it did not suffice to successfully prevent LPS-induced apoptosis. However, endotoxin-binding polymyxin B resulted in luteal responsiveness to hCG after LPS-challenge.
Collapse
Affiliation(s)
- Elena Storni
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Heinrich Bollwein
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| | - Anna-Katharina Hankele
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, CH-8092 Zurich, Switzerland
| | - Olga Wellnitz
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3001 Bern, Switzerland
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, CH-8092 Zurich, Switzerland
| | - Johannes Lüttgenau
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
7
|
Santos ACA, Sartori T, Borelli P, Fock RA. Prostaglandin F2α in vitro can affect basic inflammatory parameters of mesenchymal stem cells and slight modulating some of their immunomodulatory properties. Prostaglandins Leukot Essent Fatty Acids 2020; 163:102210. [PMID: 33242781 DOI: 10.1016/j.plefa.2020.102210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 10/16/2020] [Accepted: 11/07/2020] [Indexed: 01/02/2023]
Abstract
In the last decade, mesenchymal stem cells (MSCs) have been gaining attention due their ability to influence the function of other cells as well as modulate the inflammatory response. This occurs via their immunomodulatory functions, acting through direct cell-cell interaction or by releasing a broad spectrum of bioactive factors such as cytokines and growth factors. In addition, prostaglandins are arachidonic acid metabolites that play a key role in the generation and modulation of the inflammatory response. Among the bioactive prostaglandins, PGF2α is able to stimulate cell proliferation as well as act to inhibit progenitor cell differentiation, but no information about this prostaglandin's action on the immunoregulatory function of MSCs has been reported. In this study we evaluate important aspects of the influence of PGF2α analog (17-phenyl-trinor PGF2α), which is a potent prostaglandin FP receptor agonist, on some mechanisms that control the main functions of MSCs. C3H10T1/2, a mesenchymal stem cell linage, was stimulated with PGF2α under inflammatory conditions trigged by LPS in order to investigate PGF2α inflammatory parameters as well as its ability to immunoregulate macrophages and lymphocytes. PGF2α has the ability to increase proliferation tax without altering the cell viability of LPS-stimulated MSCs, while also diminishing the phosphorylation of NFκB transcription factor leading to attenuation of IL-1β and GM-CSF production. Additionally, MSC-s conditioned media from cells stimulated with PGF2α was able to increase the lymphocytes' IL-10 production. Overall, this study implied that PGF2α are able to modify some properties of MSCs.
Collapse
Affiliation(s)
- Andressa Cristina Antunes Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Talita Sartori
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Primavera Borelli
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ambrosio Fock
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
Wen X, Liu L, Li S, Lin P, Chen H, Zhou D, Tang K, Wang A, Jin Y. Prostaglandin F2α Induces Goat Corpus Luteum Regression via Endoplasmic Reticulum Stress and Autophagy. Front Physiol 2020; 11:868. [PMID: 33013430 PMCID: PMC7516216 DOI: 10.3389/fphys.2020.00868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Corpus luteum (CL) is a transient endocrine tissue that produces progesterone for maintaining pregnancy in mammals. In addition, the regression of CL is necessary for the initiation of the estrous cycle. Extensive research has shown that the prostaglandin F2α (PGF2α) induces the regression of CL in ruminants. However, the mechanisms of endoplasmic reticulum (ER) stress and autophagy in the regression of goat CL induced by PGF2α are still unclear. In this study, ovaries of dioestrus goats and goats that were 3 months pregnant were collected to detect the location of the ER stress-related protein GRP78. The relationship between the different stages of the luteal phase of goat CL during the estrous cycle and changes in the expression of ER stress-related proteins and autophagy-related proteins was confirmed by western blot analysis. The results showed that both ER stress and autophagy were activated in the late luteal phase of the goat CL. To reveal the function of ER stress and autophagy in the CL regression process induced by PGF2α, we used 4-phenyl butyric acid (4-PBA) and chloroquine (CQ) for inhibiting ER stress and autophagy, respectively. Through the apoptotic rate detected by the flow cytometry and the expression of ER stress- and autophagy-related proteins detected by western blotting, we demonstrated that ER stress promoted goat luteal cell apoptosis and autophagy, and that apoptosis can be enhanced by the inhibition of autophagy. In addition, knockdown of EIF2S1, which blocked the PERK pathway activation, promoted apoptosis by reducing autophagy in goat luteal cells treated with PGF2α. In conclusion, our study indicates that ER stress promotes goat luteal cell apoptosis to regulate the regression of CL and activates autophagy to inhibit the goat luteal cell apoptosis via PERK signaling pathway.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lu Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shanshan Li
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Huatao Chen
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Keqiong Tang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| |
Collapse
|
9
|
Bidne KL, Romoser MR, Ross JW, Baumgard LH, Keating AF. Heat stress during the luteal phase decreases luteal size but does not affect circulating progesterone in gilts1. J Anim Sci 2020; 97:4314-4322. [PMID: 31372640 DOI: 10.1093/jas/skz251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/31/2019] [Indexed: 01/06/2023] Open
Abstract
Heat stress (HS) occurs when heat dissipation mechanisms are insufficient to maintain euthermia, and it is associated with seasonal infertility (SI), which manifests as smaller litters, longer wean-to-estrus interval, increased abortions, and reduced conception rates. To understand HS-induced mechanisms underlying SI, crossbred post-pubertal gilts (167 ± 10 kg; n = 14) experienced either thermal neutral (TN, 20 ± 1 °C, n = 7) or cyclical HS (35 ± 1 °C for 12 h and 31.6 °C for 12 h, n = 7) conditions from 2 to 12 d post-estrus (dpe). Estrous cycles were synchronized via altrenogest administration for 14 d, phenotypic manifestation of estrus was observed and gilts were assigned to experimental treatment. Gilts were limit fed 2.7 kg daily with ad libitum water access. Blood was collected at 0, 4, 8, and 12 dpe via jugular venipuncture and animals were humanely euthanized at 12 dpe. The corpora lutea (CL) width were measured via digital calipers on both ovaries, and CL from one ovary were excised, weighed, and protein and steroid abundance analyzed via western blotting and ELISA, respectively. Relative to TN, HS increased (P < 0.01) rectal temperature and respiration rates and reduced (P < 0.01) feed intake. The CL from HS ovaries were reduced in diameter (P < 0.05) and weight (P < 0.01) relative to those from TN animals. No difference (P = 0.38) in CL or serum progesterone concentrations between groups was observed at any time point, though at 12 dpe the serum progesterone:CL weight was increased (P < 0.10) by HS. No treatment differences (P = 0.84) in circulating insulin were observed. Luteal protein abundance of steroid acute regulatory protein, 3 beta-hydroxysteroid, or prostaglandin F2α receptor were not different between treatments (P = 0.73). Taken together, these data demonstrate that the CL mass is HS sensitive, but this phenotype does not appear to be explained by the metrics evaluated herein. Regardless, HS-induced decreased CL size may have important implications to pig SI and warrants additional attention.
Collapse
Affiliation(s)
- Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA
| | | | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | |
Collapse
|
10
|
Gram A, Grazul-Bilska AT, Boos A, Rahman NA, Kowalewski MP. Lipopolysaccharide disrupts gap junctional intercellular communication in an immortalized ovine luteal endothelial cell line. Toxicol In Vitro 2019; 60:437-449. [PMID: 31154062 DOI: 10.1016/j.tiv.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/13/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Gram-negative bacteria, in particular Escherichia coli with its cell wall lipopolysaccharide (LPS), often cause metritis and mastitis in domestic animals. Ovarian LPS accumulation may initiate local inflammatory reactions mediated through cell surface Toll-like receptors (TLRs). This may disrupt ovarian functionality leading to infertility. Possible adverse effects of LPS on luteal activity are not yet well explored. We hypothesized that LPS could lead to alterations in luteal vascular functionality. Therefore, we established an in vitro cell line model (OLENDO) by immortalizing microvascular endothelial cells isolated from ovine corpus luteum (CL) with a potent Simian Virus 40 T-antigen (SV40-Tag). OLENDO exhibit endothelial cell characteristics, like low-density lipoprotein (LDL) uptake, express BSL-I, and VEGFR2, as well as TLR2 and TLR4 receptors. LPS-treatment of OLENDO altered in vitro tube formation, had no effects on cell viability and decreased gap junctional intercellular communication (GJIC). LPS did not impair GJA1/Cx43 protein expression, but altered its cellular localization showing signs of internalization. Taken together, we demonstrated the mechanisms underlying LPS induced impairment of luteal GJIC and immune processes in a novel and well-characterized OLENDO cell line.
Collapse
Affiliation(s)
- Aykut Gram
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.
| | | | - Alois Boos
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nafis A Rahman
- Institute of Biomedicine, University of Turku, Turku, Finland; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Ying S, Guo J, Dai Z, Zhu H, Yu J, Ma W, Li J, Akhtar MF, Shi Z. Time course effect of lipopolysaccharide on Toll-like receptors expression and steroidogenesis in the Chinese goose ovary. Reproduction 2017; 153:509-518. [DOI: 10.1530/rep-17-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 01/06/2017] [Accepted: 02/07/2017] [Indexed: 01/18/2023]
Abstract
The ovary of Chinese goose is easily infected by microorganisms because of the mating behaviour in water, which causes decreased laying performance. This study investigated the time course effect of lipopolysaccharide (LPS) on the steroidogenesis and mRNA expression of Toll-like receptors (TLRs), a class of key pattern recognition receptor, in the breeding goose ovary. The laying geese were treated intravenously with LPS for 0, 6, 12, 24 and 36 h, and all birds were slaughtered approximately 8 h after oviposition. The expression levels of TLRs in the white and yellowish follicles, and granulosa and theca layers of hierarchical follicles were examined by real-time PCR. All 10 members of avian TLR family were differentially expressed among the different follicular tissues. Moreover, at 24 and 36 h after LPS treatment, the hierarchical follicle morphological structure was altered, but the expression levels of TLRs were still higher than the control. Furthermore, during LPS treatment period, the expression pattern of TLRs 2A and 4 genes was similar to that of TLR15 in the white follicles, TLRs 1B, 5 and 15 in the yellowish follicles, TLRs 7 and 15 in the granulosa layer, and TLRs 1A, 2B, 3, 7 and 15 in the theca layer, which had a negative correlation with the kinetics of plasma P4 and E2 concentrations. In conclusion, the mechanism by which pathogen infection inhibited goose follicular growth and further decreased egg production may involve a gradually enhanced inflammatory response and reduced endocrine function. This may be due to stimulated TLRs in the ovary.
Collapse
|
12
|
Zhang L, Huang Y, Wang Z, Luo X, Zhang H, Du Q, Chang L, Zhao X, Tong D. Establishment and characterization of a telomerase immortalized porcine luteal cells. Theriogenology 2017; 94:105-113. [PMID: 28407852 DOI: 10.1016/j.theriogenology.2017.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/11/2017] [Accepted: 02/11/2017] [Indexed: 01/05/2023]
Abstract
Luteal cells play a crucial role in pregnancy through secreting progesterone to maintain pregnancy and support of fetus. However, low cellular yields and inability to passage primary porcine luteal cells (PLCs) in vitro limit the luteal cell study. Therefore, developing an immortalized porcine luteal cell line is necessary for studying luteal cells activity and function in different diseases. In this study, primary PLCs were obtained from gilts at day 30 to day 50 of gestation and immortalized by human telomerase reverse transcriptase (hTERT). The porcine corpus luteal cell line (hTERT-PLCs) expressed hTERT gene steady, maintained high hTERT activity and normal karyotype. The phase contrast microscope and transmission electron microscope observation showed primary PLCs and hTERT-PLCs were polygonal and exhibited abundant mitochondria, smooth endoplasmic reticulum and lipid droplets. 3β hydroxysteroid dehydrogenase (3βHSD) and Oil-Red-O staining showed that hTERT-PLCs at passage 30 and 50 were similar to primary PLCs. The hTERT-PLCs expressed steroidogenesis-related proteins, enzymes and receptors, such as steroidogenic acute regulatory protein, P450 cholesterol side-chain cleavage, 3βHSD, 20αHSD, luteinizing hormone receptor, progesterone receptor, prolactin receptor, estrogen receptorα/β, as well as primary PLCs. Consequently, hTERT-PLCs could secret progesterone and exhibited similar responses to luteinizing hormone and prostaglandin F2α as primary PLCs. In addition, the hTERT-PLCs did not show neoplastic transformation or anchorage independent growth. In summary, we developed an immortalized porcine luteal cell line which maintained its originally morphological, biological and functional characteristics.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Huang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhenyu Wang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaomao Luo
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongling Zhang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qian Du
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingling Chang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiaomin Zhao
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dewen Tong
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
13
|
Lüttgenau J, Herzog K, Strüve K, Latter S, Boos A, Bruckmaier RM, Bollwein H, Kowalewski MP. LPS-mediated effects and spatio-temporal expression of TLR2 and TLR4 in the bovine corpus luteum. Reproduction 2016; 151:391-9. [PMID: 26762400 DOI: 10.1530/rep-15-0520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/13/2016] [Indexed: 01/14/2023]
Abstract
When given intravenously (iv), lipopolysaccharide (LPS) transiently suppresses the structure and function of the bovine corpus luteum (CL). This is associated with increased release of prostaglandin (PG) F2α metabolite. The underlying regulatory mechanisms of this process remain, however, obscure. Therefore, the aims of this study were: i) to investigate the expression of the LPS receptor toll-like receptor 4 (TLR4) and 2 (TLR2) in the bovine CL during early, mid- and late luteal phases; and ii) to further dissect the mechanisms of LPS-mediated suppression of luteal function. As revealed by semi-quantitative qPCR and immunohistochemistry, both receptors were detectable throughout the luteal lifespan. Their mRNA levels increased from the early toward the mid-luteal phase; no further changes were observed thereafter. The TLR4 protein seemed more highly represented than TLR2. The cellular localization of TLRs was in blood vessels; weaker signals were observed in luteal cells. Additionally, cows were treated either with LPS (iv, 0.5 μg/kg BW) or with saline on Day 10 after ovulation. Samples were collected 1200 h after treatment and on Day 10 of the respective subsequent (untreated) cycle. The mRNA expression of several possible regulatory factors was investigated, revealing the suppression of PGF2α receptor (PTGFR), STAR protein and 3β-hydroxysteroid dehydrogenase, compared with controls and subsequent cycles. The expression of TLR2 and TLR4, interleukin 1α (IL1A) and 1β (IL1B) and of PGF2α and PGE2 synthases (HSD20A and mPTGES respectively) was increased. The results demonstrate the presence of TLR2 and TLR4 in the bovine CL, and implicate their possible involvement in the deleterious effects of LPS on its function.
Collapse
Affiliation(s)
| | - K Herzog
- Vetsuisse FacultyClinic of Reproductive Medicine, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, SwitzerlandClinic for CattleUniversity of Veterinary Medicine Hannover, Hannover, GermanyVetsuisse FacultyInstitute of Veterinary Anatomy, University of Zurich, Zurich, SwitzerlandVetsuisse FacultyVeterinary Physiology, University of Bern, Bern, Switzerland
| | - K Strüve
- Vetsuisse FacultyClinic of Reproductive Medicine, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, SwitzerlandClinic for CattleUniversity of Veterinary Medicine Hannover, Hannover, GermanyVetsuisse FacultyInstitute of Veterinary Anatomy, University of Zurich, Zurich, SwitzerlandVetsuisse FacultyVeterinary Physiology, University of Bern, Bern, Switzerland
| | - S Latter
- Vetsuisse FacultyClinic of Reproductive Medicine, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, SwitzerlandClinic for CattleUniversity of Veterinary Medicine Hannover, Hannover, GermanyVetsuisse FacultyInstitute of Veterinary Anatomy, University of Zurich, Zurich, SwitzerlandVetsuisse FacultyVeterinary Physiology, University of Bern, Bern, Switzerland
| | - A Boos
- Vetsuisse FacultyClinic of Reproductive Medicine, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, SwitzerlandClinic for CattleUniversity of Veterinary Medicine Hannover, Hannover, GermanyVetsuisse FacultyInstitute of Veterinary Anatomy, University of Zurich, Zurich, SwitzerlandVetsuisse FacultyVeterinary Physiology, University of Bern, Bern, Switzerland
| | - R M Bruckmaier
- Vetsuisse FacultyClinic of Reproductive Medicine, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, SwitzerlandClinic for CattleUniversity of Veterinary Medicine Hannover, Hannover, GermanyVetsuisse FacultyInstitute of Veterinary Anatomy, University of Zurich, Zurich, SwitzerlandVetsuisse FacultyVeterinary Physiology, University of Bern, Bern, Switzerland
| | | | - M P Kowalewski
- Vetsuisse FacultyClinic of Reproductive Medicine, University of Zurich, Winterthurerstrasse 260, CH-8057 Zurich, SwitzerlandClinic for CattleUniversity of Veterinary Medicine Hannover, Hannover, GermanyVetsuisse FacultyInstitute of Veterinary Anatomy, University of Zurich, Zurich, SwitzerlandVetsuisse FacultyVeterinary Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|