1
|
Dai J, Pang M, Cai J, Liu Y, Qin Y. Integrated transcriptomic and metabolomic investigation of the genes and metabolites involved in swine follicular cyst formation. Front Vet Sci 2024; 10:1298132. [PMID: 38274662 PMCID: PMC10808629 DOI: 10.3389/fvets.2023.1298132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Follicular cysts are a common reproductive disorder in mammals that is usually caused by stress. However, the pathogenesis of follicular cysts in sows remains unclear. To provide new insights into the mechanisms of follicular cyst formation in pigs, we conducted a combined transcriptomic and metabolomic analysis on theca interna and mural granulosa cells of follicular cysts and mature follicles. We identified 2,533 up-regulated and 1,355 down-regulated genes in follicular cysts, compared with mature follicles. These differentially expressed genes were mainly found in signaling pathways related to tumor formation and cortisol synthesis and secretion as shown by Ingenuity Pathway Analysis, which predicted 4,362 upstream regulatory factors. The combined gene expression and pathway analysis identified the following genes as potential biomarkers for porcine follicular cysts: cytochrome P450 family 2 subfamily C polypeptide 18, L-lactate dehydrogenase, carbamoyl-phosphate synthase, fibroblast growth factor 7, integrin binding sialoprotein, interleukin 23 receptor, prolactin receptor, epiregulin, interleukin 1 receptor type II, arginine vasopressin receptor 1A, fibroblast growth factor 10, claudin 7, G Protein Subunit Gamma 3, cholecystokinin B receptor and cytosolic phospholipase A2. Metabolomics analysis found significant differences in 87 metabolites, which were enriched in unsaturated fatty acid biosynthesis, and sphingolipid signaling pathways. These results provide valuable information on the molecular mechanisms of follicular cyst formation, which may facilitate the development of new therapeutics to prevent and treat follicular cysts.
Collapse
Affiliation(s)
- Jiage Dai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Mingyue Pang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jiabao Cai
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yusheng Qin
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
2
|
Cojkic A, Morrell JM. Animal Welfare Assessment Protocols for Bulls in Artificial Insemination Centers: Requirements, Principles, and Criteria. Animals (Basel) 2023; 13:ani13050942. [PMID: 36899799 PMCID: PMC10000089 DOI: 10.3390/ani13050942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Animal welfare is a complex subject; as such, it requires a multidimensional approach with the main aim of providing the animals with the "five freedoms". The violations of any one of these freedoms could have an influence on animal wellbeing on different levels. Over the years, many welfare quality protocols were developed in the EU thanks to the Welfare Quality® project. Unfortunately, there is a lack of such summarized information about bull welfare assessment in artificial insemination stations or about how disturbed welfare can be reflected in their productivity. Animal reproduction is the basis for the production of meat and milk; therefore, factors contributing to reduced fertility in bulls are not only indicators of animal welfare but also have implications for human health and the environment. Optimizing the reproductive efficiency of bulls at an early age can help to reduce greenhouse gas emissions. In this review, welfare quality assessment will be evaluated for these production animals using reproduction efficiency as a key area, focusing on stress as a main effect of poor animal welfare and, thereby, reduced fertility. We will address various welfare aspects and possible changes in resources or management to improve outcomes.
Collapse
|
3
|
Kumar P, Ahmed MA, Abubakar AA, Hayat MN, Kaka U, Ajat M, Goh YM, Sazili AQ. Improving animal welfare status and meat quality through assessment of stress biomarkers: A critical review. Meat Sci 2023; 197:109048. [PMID: 36469986 DOI: 10.1016/j.meatsci.2022.109048] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022]
Abstract
Stress induces various physiological and biochemical alterations in the animal body, which are used to assess the stress status of animals. Blood profiles, serum hormones, enzymes, and physiological conditions such as body temperature, heart, and breathing rate of animals are the most commonly used stress biomarkers in the livestock sector. Previous exposure, genetics, stress adaptation, intensity, duration, and rearing practices result in wide intra- and inter-animal variations in the expression of various stress biomarkers. The use of meat proteomics by adequately analyzing the expression of various muscle proteins such as heat shock proteins (HSPs), acute phase proteins (APPs), texture, and tenderness biomarkers help predict meat quality and stress in animals before slaughter. Thus, there is a need to identify non-invasive, rapid, and accurate stress biomarkers that can objectively assess stress in animals. The present manuscript critically reviews various aspects of stress biomarkers in animals and their application in mitigating preslaughter stress in meat production.
Collapse
Affiliation(s)
- Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Muideen Adewale Ahmed
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abubakar Ahmed Abubakar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Muhammad Nizam Hayat
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yong Meng Goh
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Halal Products Research Institute, Universiti Putra Malaysia, Putra Infoport, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
4
|
Kamgang VW, Bennett NC, van der Goot AC, Majelantle TL, Ganswindt A. Patterns of faecal glucocorticoid metabolite levels in captive roan antelope (Hippotragus equinus) in relation to reproductive status and season. Gen Comp Endocrinol 2022; 325:114052. [PMID: 35568230 DOI: 10.1016/j.ygcen.2022.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 02/19/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022]
Abstract
Populations of roan antelope (Hippotragus equinus) in southern Africa have experienced a drastic decline over the past few decades and this situation has led to the development of intensive breeding programmes to support conservation efforts. However, little is known about related welfare aspects, including stress-related physiological biomarkers. The present study set out to establish a non-invasive method to monitor faecal glucocorticoid metabolite (fGCM) concentrations as a measure of stress and determine fGCM concentrations in relation to male reproductive activity and female reproductive status in the roan antelope. An adrenocorticotrophic hormone challenge was performed using two adult roan antelope (one male and one female) at Lapalala Wilderness Nature Reserve, South Africa, to determine the suitability of five enzyme immunoassays (EIA) for monitoring adrenocortical function in roan antelope. An 11-oxoaetiocholanolone I EIA detecting 11,17 dioxoandrostanes performed best showing 17-20 folds increases in fGCM concentrations after 12 h-17 h post-injection. The identified EIA was then used to monitor fGCM concentrations during active and non-active reproductive periods in males (n = 3), and during periods of cyclicity, gestation, and postpartum in females (n = 10). Males showed an overall 80% increase in fGCM concentrations when reproductively active and females showed a progressively significant increase in fGCM levels throughout pregnancy, with overall fGCM concentrations being 1.5 to 2.6-fold higher than the respective fGCM concentrations during periods of postpartum and cyclicity, respectively. Furthermore, fGCM concentrations remained above baseline for up to 21 days post-partum. A correlation between ecological parameters (rainfall and temperature) and fGCM concentrations revealed elevated fGCM concentrations during the dry season for males, but not females. The non-invasive method validated in this study provides a valuable tool to quantify stress-related biomarkers in roan antelope, and findings can be used to support management decisions in conservation breeding facilities.
Collapse
Affiliation(s)
- Vanessa W Kamgang
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa.
| | - Nigel C Bennett
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| | - Annemieke C van der Goot
- Lapalala Wilderness Nature Reserve, Vaalwater 0530, South Africa; Melkrivier Wildlife Veterinary Services, Melkrivier, Vaalwater 0530, South Africa
| | - Tshepiso L Majelantle
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| | - Andre Ganswindt
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
5
|
Izzi-Engbeaya C, Dhillo WS. Gut hormones and reproduction (Hormones intestinalis et reproduction). ANNALES D'ENDOCRINOLOGIE 2022; 83:254-257. [PMID: 35750201 DOI: 10.1016/j.ando.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Reproduction and metabolism are intricately linked. Gut hormones play key roles in the regulation of body weight and glucose homeostasis, factors that influence the functioning of the hypothalamic-pituitary-gonadal axis and reproductive outcomes. Data from rodent models suggest gut hormones may have direct stimulatory effects on reproductive hormone release. However, the effects of gut hormones on reproductive function in humans is more complex, with possible involvement of direct (e.g. via gut hormone receptor agonism) as well as indirect (e.g. via weight reduction in people with obesity) mechanisms. The use of gut hormone receptor agonists has become an integral part of the management of metabolic diseases (including obesity and type 2 diabetes), with additional indications for their use on the horizon. Future work may identify specific roles for gut hormones receptor agonists in the treatment of reproductive co-morbidities that are increasingly being recognised in people with metabolic diseases.
Collapse
Affiliation(s)
- Chioma Izzi-Engbeaya
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Department of Metabolism, Digestion and Reproduction, Imperial College London, UK; Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK.
| |
Collapse
|
6
|
Hantzopoulou GC, Sawyer G, Tilbrook A, Narayan E. Intra- and Inter-sample Variation in Wool Cortisol Concentrations of Australian Merino Lambs Between Twice or Single Shorn Ewes. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.890914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stress in Merino sheep can cause a reduction in the quantity and quality of fine wool production. Furthermore, it has been found that environmental stress during pregnancy can negatively affect the wool follicles of the developing fetus. This study was part of a larger field investigation on the effects maternal shearing frequency on sheep reproductive and productivity outcomes. For this study, we investigated the intra- and inter- sample variation in wool cortisol levels of weaner lambs. We conducted two experiments, the first was to determine the intra- and inter- sample variation in wool samples taken from the topknot of weaned lambs, and the other aim was to determine any difference between maternal shearing treatment (single or twice shearing) on absolute wool cortisol levels of weaned lambs. In the first experiment, topknot wool was collected from 10 lambs, and each sample was further divided into four subsamples, leading to a total of 40 wool subsamples. For the second experiment, we collected the topknot from the 23 lambs produced by the shearing frequency treatment ewes (once or twice shorn). The samples were then extracted and analyzed using a commercially available cortisol enzyme-immunoassay in order to determine the concentration of cortisol in each of the samples. Statistical analysis for the first experiment showed that there was no significant difference between the subsamples of each topknot wool sample taken from each lamb (p = 0.39), but there was a statistical difference between samples (p < 0.001), which was to be expected. In the second experiment, there was a significant difference between the lambs born to the one shearing and two shearing treatments (p = 0.033), with the lambs of the twice sheared ewes having higher average wool cortisol levels [2.304 ± 0.497 ng/g (SE); n = 14] than the ones born to once shorn ewes [1.188 ± 0.114 ng/g (SE), n = 8]. This study confirms that the topknot wool sampling can be a reliable method adapted by researchers for wool hormonal studies in lambs. Second, ewes shorn mid-pregnancy gave birth to lambs with higher cortisol concentrations than ewes that remained unshorn during pregnancy. This result warrants further investigation in a controlled study to determine if maternal access to nutrition (feed and water) may impact on the HPA-axis of lambs.
Collapse
|
7
|
Maitham Abd Ali Mnati, Bahir Abdul Razzaq Mshimesh, Nadia Hamid Mohammed. The Testicular Protection Effect of Thiamine Pyrophosphate Against Cisplatin-treated Male Rats. AL MUSTANSIRIYAH JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 20:147-155. [DOI: 10.32947/ajps.v20i4.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Infertility is a worldwide problem affecting both genders, it can be defined as the inability of the adult males to make a fertile woman pregnant after one year of regular intercourse. Cisplatin considers one of the most potent antineoplastic drugs that is extensively
used, alone or in combination with other antitumor agents, to manage solid and germ cell cancer. The major drawback in cisplatin treatment is its damaging consequence on various body tissue, including the testis, liver, renal and others. One of its pronounced adverse effects is testicular injury, which may proceed to end with infertility. Thiamine pyrophosphate is the active form of thiamine which has an important role in the oxidative phosphorylation pathway. It acts as a co-factor and energy source for many cellular enzymes, also it utilizes by pentose-phosphate shut that elevates NADPH and improves antioxidants level. This study aimed to evaluate the effect of thiamine pyrophosphate on sperm parameters and gonadotropic hormones (luteal and follicle-stimulating hormone) of male rats exposed to a single dose of cisplatin.
Twenty-eight albino male rats were randomly grouped into four groups. Control group: received normal saline, Cisplatin group: received normal saline and cisplatin, TPP50 group: received thiamine pyrophosphate (50mg/kg) with cisplatin, and TPP100 group: as third group (TPP50) but thiamine pyrophosphate dose was 100 mg/kg. Semen samples used to measure the sperms viability and morphology, while serum samples were gathered to measure the levels of gonadotropic hormones (FSH and LH).
This study revealed that rat’s testicular function was notably deteriorated by cisplatin administration, represented by a reduction in sperm parameters (viability and normal morphology), and serum gonadotropic hormones (FSH and LH). In this work, thiamine pyrophosphate was act as a protective agent that ameliorates rat’s testicular damage induced by cisplatin in a dose-dependent manner. The suggested mechanism may attribute to its antioxidant and anti-apoptotic action
Collapse
|
8
|
Pereira P, Fandos Esteruelas N, Nakamura M, Rio-Maior H, Krofel M, Di Blasio A, Zoppi S, Robetto S, Llaneza L, García E, Oleaga Á, López-Bao JV, Fayos Martinez M, Stavenow J, Ågren EO, Álvares F, Santos N. Hair cortisol concentration reflects the life cycle and management of grey wolves across four European populations. Sci Rep 2022; 12:5697. [PMID: 35383239 PMCID: PMC8982655 DOI: 10.1038/s41598-022-09711-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
The grey wolf (Canis lupus) persists in a variety of human-dominated landscapes and is subjected to various legal management regimes throughout Europe. Our aim was to assess the effects of intrinsic and methodological determinants on the hair cortisol concentration (HCC) of wolves from four European populations under different legal management. We determined HCC by an enzyme-linked immune assay in 259 hair samples of 133 wolves from the Iberian, Alpine, Dinaric-Balkan, and Scandinavian populations. The HCC showed significant differences between body regions. Mean HCC in lumbar guard hair was 11.6 ± 9.7 pg/mg (range 1.6-108.8 pg/mg). Wolves from the Dinaric-Balkan and Scandinavian populations showed significantly higher HCC than Iberian wolves, suggesting that harvest policies could reflected in the level of chronic stress. A significant negative relationship with body size was found. The seasonal, sex and age patterns are consistent with other studies, supporting HCC as a biomarker of chronic stress in wolves for a retrospective time frame of several weeks. Our results highlight the need for standardization of sampling and analytical techniques to ensure the value of HCC in informing management at a continental scale.
Collapse
Affiliation(s)
- Patrícia Pereira
- CIBIO/InBIO-Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Núria Fandos Esteruelas
- CIBIO/InBIO-Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Mónia Nakamura
- CIBIO/InBIO-Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Helena Rio-Maior
- CIBIO/InBIO-Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Miha Krofel
- Department of Forestry, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Alessia Di Blasio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
- A.S.L. TO3, Azienda Sanitaria Locale di Collegno e Pinerolo, Turin, Italy
| | - Simona Zoppi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
| | - Serena Robetto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Turin, Italy
- CeRMAS, National Reference Centre for Wild Animal Disease, Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Quart, Aosta, Italy
| | - Luis Llaneza
- A.RE.NA, Asesores en Recursos Naturales, S.L, Lugo, Spain
| | - Emilio García
- Research Unit of Biodiversity (UO/CSIC/PA), Oviedo University, Mieres, Spain
| | - Álvaro Oleaga
- SERPA, Sociedad de Servicios del Principado de Asturias S.A., Gijón, Asturias, Spain
| | | | | | - Jasmine Stavenow
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden
| | - Erik O Ågren
- Department of Pathology and Wildlife Diseases, National Veterinary Institute, Uppsala, Sweden
| | - Francisco Álvares
- CIBIO/InBIO-Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Nuno Santos
- CIBIO/InBIO-Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal.
| |
Collapse
|
9
|
Engel JM, Hemsworth PH, Butler KL, Tilbrook AJ. Measurement of corticosterone in the plasma, eggs and faeces of laying hens. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Bu SY, Zhang YY, Zhang X, Li TX, Zheng DC, Huang ZX, Wang Q. Regulation of the kiss2 promoter in yellowtail clownfish ( Amphiprion clarkii) by cortisol via GRE-dependent GR pathway. Front Endocrinol (Lausanne) 2022; 13:902737. [PMID: 35992144 PMCID: PMC9382246 DOI: 10.3389/fendo.2022.902737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Kisspeptin plays a vital role in mediating the stress-induced reproductive regulation. Cortisol, known as a stress-related hormone, is involved in gonadal development and sexual differentiation by binding with glucocorticoid receptor (GR) to regulate the expression of kiss gene. In the present study, cortisol treatment in yellowtail clownfish (Amphiprion clarkii) showed that the expression of kiss (kiss1 and kiss2) and gr (gr1 and gr2) genes were increased significantly. We demonstrated that the yellowtail clownfish Kiss neurons co-express the glucocorticoid receptors in the telencephalon, mesencephalon, cerebellum, and hypothalamus. We further cloned the promoter of kiss2 gene in yellowtail clownfish and identified the presence of putative binding sites for glucocorticoid receptors, estrogen receptors, androgen receptors, progesterone receptors, AP1, and C/EBP. Applying transient transfection in HEK293T cells of the yellowtail clownfish kiss2 promoter, cortisol (dexamethasone) treatment was shown to enhance the promoter activities of the yellowtail clownfish kiss2 gene in the presence of GRs. Deletion analysis of kiss2 promoter indicated that cortisol-induced promoter activities were located between position -660 and -433 with GR1, and -912 and -775 with GR2, respectively. Finally, point mutation studies on the kiss2 promoter showed that cortisol-stimulated promoter activity was mediated by one GRE site located at position -573 in the presence of GR1 and by each GRE site located at position -883, -860, -851, and -843 in the presence of GR2. Results of the present study provide novel evidence that cortisol could regulate the transcription of kiss2 gene in the yellowtail clownfish via GRE-dependent GR pathway.
Collapse
|
11
|
Bogdanova N. Evaluation of the gonadotropic preparation effect on the hormonal status of the infertile cows. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225200013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To study of the effect of the gonadotropic preparation on the hormonal status of the infer-tile cows, 47 red-and-white cows belonging to the breeding farm (Voronezh Region, Russian Federation), having an ovarian hypofunction, at the age from 3 to 8 years old and with the live weight of 480-600 kg, were included in the experiment. The animals in the experimental group (n=27) received a single dose of placental gonadotropin, i.e. Follimag at the 1000 I.U. dose. The animals not injected with the preparation (n=20) formed the negative control group. Cows’ blood samples were taken before injection, 4, 8 and 14 days after it. The hormone concentration (progesterone, es-tradiol-17β) was determined in blood serum by the immunoenzymometric analysis. Introducing the preparation led to the increase of the progesterone level in the blood of the experimental group cows on average of 2.85 times and estradiol-17β increased by 23.2% as compared with the background, progesterone increased 1.95 times and estradiol-17β by 9.0 % compared with the control on the 14th day of the experiment. It was established that the degree of the ovarian hormonepoietic reaction manifestation and its direction in prescribing the exogenous gonadotropins depends on the time of the preparation injection relative to natural waves of the follicles growth. Using the gonadotropic preparation provided a 21.6-time increase in the blood content of progesterone on the 14th day of the experiment and that of estradiol-17β of 1.29 times, when injected at the beginning of the follicles growth wave. When administered at the follicular atresia stage, it led to an increase in the progesterone level of 2.1 times and that of estradiol-17β of 1.29 times.
Collapse
|
12
|
Guerson YB, Couto SR, Morais RDCL, Grillo GF, Jacob JC, Barbero RP, Mello MR. Vascular perfusion and the volume of the preovulatory follicle are affected by the temperament of Nellore cows. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Dunbar RIM, Shultz S. The Infertility Trap: The Fertility Costs of Group-Living in Mammalian Social Evolution. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.634664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mammal social groups vary considerably in size from single individuals to very large herds. In some taxa, these groups are extremely stable, with at least some individuals being members of the same group throughout their lives; in other taxa, groups are unstable, with membership changing by the day. We argue that this variability in grouping patterns reflects a tradeoff between group size as a solution to environmental demands and the costs created by stress-induced infertility (creating an infertility trap). These costs are so steep that, all else equal, they will limit group size in mammals to ∼15 individuals. A species will only be able to live in larger groups if it evolves strategies that mitigate these costs. We suggest that mammals have opted for one of two solutions. One option (fission-fusion herding) is low cost but high risk; the other (bonded social groups) is risk-averse, but costly in terms of cognitive requirements.
Collapse
|
14
|
Phumsatitpong C, Wagenmaker ER, Moenter SM. Neuroendocrine interactions of the stress and reproductive axes. Front Neuroendocrinol 2021; 63:100928. [PMID: 34171353 PMCID: PMC8605987 DOI: 10.1016/j.yfrne.2021.100928] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 01/27/2023]
Abstract
Reproduction is controlled by a sequential regulation of the hypothalamo-pituitary-gonadal (HPG) axis. The HPG axis integrates multiple inputs to maintain proper reproductive functions. It has long been demonstrated that stress alters fertility. Nonetheless, the central mechanisms of how stress interacts with the reproductive system are not fully understood. One of the major pathways that is activated during the stress response is the hypothalamo-pituitary-adrenal (HPA) axis. In this review, we discuss several aspects of the interactions between these two neuroendocrine systems to offer insights to mechanisms of how the HPA and HPG axes interact. We have also included discussions of other systems, for example GABA-producing neurons, where they are informative to the overall picture of stress effects on reproduction.
Collapse
Affiliation(s)
- Chayarndorn Phumsatitpong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Elizabeth R Wagenmaker
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Suzanne M Moenter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
15
|
Freeman AR. Female-female reproductive suppression: impacts on signals and behavior. Integr Comp Biol 2021; 61:1827-1840. [PMID: 33871603 DOI: 10.1093/icb/icab027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Female-female reproductive suppression is evident in an array of mammals, including rodents, primates, and carnivores. By suppressing others, breeding females can benefit by reducing competition from other females and their offspring. There are neuroendocrinological changes during suppression which result in altered behavior, reproductive cycling, and communication. This review, which focuses on species in Rodentia, explores the current theoretical frameworks of female-female reproductive suppression, how female presence and rank impacts reproductive suppression, and some of the proposed mechanisms of suppression. Finally, the understudied role of olfactory communication in female-female reproductive suppression is discussed to identify current gaps in our understanding of this topic.
Collapse
Affiliation(s)
- Angela R Freeman
- Department of Psychology, Cornell University, 211 Uris Hall, Cornell University, Ithaca, NY 14853
| |
Collapse
|
16
|
Thomas FSK, Higuchi Y, Ogawa S, Soga T, Parhar IS. Acute social defeat stress upregulates gonadotrophin inhibitory hormone and its receptor but not corticotropin-releasing hormone and ACTH in the Male Nile Tilapia (Oreochromis niloticus). Peptides 2021; 138:170504. [PMID: 33539873 DOI: 10.1016/j.peptides.2021.170504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/14/2021] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
Stress impairs the hypothalamic-pituitary-gonadal (HPG) axis, probably through its influence on the hypothalamic-pituitary-adrenal (= interrenals in the teleost, HPI) axis leading to reproductive failures. In this study, we investigated the response of hypothalamic neuropeptides, gonadotropin-inhibitory hormone (GnIH), a component of the HPG axis, and corticotropin-releasing hormone (CRH) a component of the HPI axis, to acute social defeat stress in the socially hierarchical male Nile tilapia (Oreochromis niloticus). Localization of GnIH cell bodies, GnIH neuronal processes, and numbers of GnIH cells in the brain during acute social defeat stress was studied using immunohistochemistry. Furthermore, mRNA levels of GnIH and CRH in the brain together with GnIH receptor, gpr147, and adrenocorticotropic hormone (ACTH) in the pituitary were quantified in control and socially defeated fish. Our results show, the number of GnIH-immunoreactive cell bodies and GnIH mRNA levels in the brain and the levels of gpr147 mRNA in the pituitary significantly increased in socially defeated fish. However, CRH and ACTH mRNA levels did not change during social defeat stress. Further, we found glucocorticoid type 2b receptor mRNA in laser captured immunostained GnIH cells. These results show that acute social defeat stress activates GnIH biosynthesis through glucocorticoid receptors type 2b signalling but does not change the CRH and ACTH mRNA expression in the tilapia, which could lead to temporary reproductive dysfunction.
Collapse
Affiliation(s)
- Felix Suresh Kevin Thomas
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Yuki Higuchi
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Tomoko Soga
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia.
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| |
Collapse
|
17
|
Sahin Z, Ozkurkculer A, Kalkan OF, Bulmus FG, Bulmus O, Kutlu S. Gonadotropin levels reduced in seven days immobilization stress-induced depressive-like behavior in female rats. J Basic Clin Physiol Pharmacol 2021; 33:199-206. [PMID: 33561912 DOI: 10.1515/jbcpp-2020-0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/22/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Reproduction is one of the physiological functions that are often negatively affected by chronic stress. We aimed to examine effects of two distinct 7-day chronic immobilization stress (IMO) models on gonadotropins levels and depression-like behaviors in female rats. METHODS Adult Wistar albino female rats were divided into three groups as follows (n=7 for each group): control, IMO-1 (45 min daily for 7-day) and IMO-2 (45 min twice a day for 7-day). Neuropsychiatric behaviors were determined by using forced swimming test (FST) and open field test (OFT). Gonadotropins were analyzed using ELISA tests. RESULTS In FST, swimming was lower, and immobility was higher in the IMO-1 group and IMO--2 group. Climbing score of the IMO-2 group was higher compared to the control group. In OFT, there was no significant alteration in the mean velocity, total distance, duration of time spent in the central area and duration of latency in the central area between the stress groups and the control group. Final body weight and percentage of body weight change were lower in both stress groups. The follicle-stimulating hormone level was lower only in the IMO-2 group, and the luteinizing hormone concentrations were significantly lower in the IMO-1 group and IMO-2 group. CONCLUSIONS Our results indicated that depression-like behaviors increased, and gonadotropins decreased in the female rats exposed to 7-day chronic IMO.
Collapse
Affiliation(s)
- Zafer Sahin
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Alpaslan Ozkurkculer
- Department of Physiology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Omer Faruk Kalkan
- Department of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Funda Gulcu Bulmus
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Balikesir University, Balikesir, Turkey
| | - Ozgur Bulmus
- Department of Physical Therapy and Rehabilitation, Faculty of Health Sciences, Balikesir University, Balikesir, Turkey
| | - Selim Kutlu
- Department of Physiology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
18
|
Tilbrook AJ, Fisher AD. Stress, health and the welfare of laying hens. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an19666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is essential to understand responses to stress and the impact of stress on physiological and behavioural functioning of hens, so as to assess their welfare. The current understanding of stress in laying hens is comprehensively reviewed here. Most research on stress in hens has focussed on the activity of the adrenal glands, with the most common approach being to measure corticosterone, which is the predominant glucocorticoid produced by birds in response to stress. While these measures are useful, there is a need to understand how the brain regulates stress responses in hens. A greater understanding of the sympathoadrenal system and its interaction with the hypothalamo–pituitary–adrenal axis is required. There is also a lack of knowledge about the many other peptides and regulatory systems involved in stress responses in hens. The usefulness of understanding stress in hens in terms of assessing welfare depends on appreciating that different stressors elicit different responses and that there are often differences in responses to, and impacts of, acute and chronic stress. It is also important to establish the actions and fate of stress hormones within target tissues. It is the consequences of these actions that are important to welfare. A range of other measures has been used to assess stress in hens, including a ratio of heterophils to lymphocytes and haematocrit:packed cell-volume ratio and measures of corticosterone or its metabolites in eggs, excreta, feathers and the secretions of the uropygial gland. Measures in eggs have proffered varying results while measures in feathers may be useful to assess chronic stress. There are various studies in laying hens to indicate impacts of stress on the immune system, health, metabolism, appetite, and the quality of egg production, but, generally, these are limited, variable and are influenced by the management system, environment, genetic selection, type of stressor and whether or not the birds are subjected to acute or chronic stress. Further research to understand the regulation of stress responses and the impact of stress on normal functioning of hens will provide important advances in the assessment of stress and, in turn, the assessment of welfare of laying hens.
Collapse
|
19
|
González R, Pericuesta E, Gutiérrez-Adán A, Sjunnesson YCB. Effect of an altered hormonal environment by blood plasma collected after adrenocorticotropic administration on embryo development and gene expression in porcine embryos. Theriogenology 2020; 162:15-21. [PMID: 33388725 DOI: 10.1016/j.theriogenology.2020.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/17/2023]
Abstract
Early embryonic development may be affected by adrenal hyperactivity in stressful situations which may lead to endocrine changes in the embryo environment. A sensitive period in porcine embryo development is the 4-cell stage when the embryo genome activation occurs. A mixed in vivo-in vitro system was implemented to test whether an altered milieu around this stage could affect embryo development and blastocyst quality in the porcine model. After in vitro maturation and fertilisation, presumptive zygotes were exposed for 24 h to plasma collected after ovulation from adrenocorticotropic hormone (ACTH)-treated, non-ACTH-treated sows; and, medium without plasma, supplemented with bovine serum albumin. Subsequently, embryo development and differences in gene expression were tested among treatments. Cleavage and blastocyst rates did not differ between treatments. Blastocyst quality by morphology assessment was similar when all the resulting blastocysts were included in the analysis. However, when only expanded blastocysts (and onwards) were included in the analysis, the blastocysts from the non-ACTH plasma group showed better quality score. Blastocyst quality by morphological assessment was not mirrored by the transcription levels of various important genes for embryo development whose gene expression profile did not significantly differ among groups. It is likely that the effect of the altered environment provided by plasma from ACTH-treated sows was too short to affect embryo development. Therefore, a brief exposure to an altered endocrine environment may not have harmful consequences for the embryo once fertilisation occurs.
Collapse
Affiliation(s)
- Raquel González
- Department of Clinical Sciences, Reproduction. the Centre for Reproductive Biology in Uppsala (CRU), Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences (SLU), P.O. Box 7054, SE-750 07, Uppsala, Sweden.
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de La Coruña, Km 5.9, 28040, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de La Coruña, Km 5.9, 28040, Madrid, Spain
| | - Ylva C B Sjunnesson
- Department of Clinical Sciences, Reproduction. the Centre for Reproductive Biology in Uppsala (CRU), Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences (SLU), P.O. Box 7054, SE-750 07, Uppsala, Sweden
| |
Collapse
|
20
|
Pape J, Herbison AE, Leeners B. Recovery of menses after functional hypothalamic amenorrhoea: if, when and why. Hum Reprod Update 2020; 27:130-153. [PMID: 33067637 DOI: 10.1093/humupd/dmaa032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/12/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Prolonged amenorrhoea occurs as a consequence of functional hypothalamic amenorrhoea (FHA) which is most often induced by weight loss, vigorous exercise or emotional stress. Unfortunately, removal of these triggers does not always result in the return of menses. The prevalence and conditions underlying the timing of return of menses vary strongly and some women report amenorrhoea several years after having achieved and maintained normal weight and/or energy balance. A better understanding of these factors would also allow improved counselling in the context of infertility. Although BMI, percentage body fat and hormonal parameters are known to be involved in the initiation of the menstrual cycle, their role in the physiology of return of menses is currently poorly understood. We summarise here the current knowledge on the epidemiology and physiology of return of menses. OBJECTIVE AND RATIONALE The aim of this review was to provide an overview of (i) factors determining the recovery of menses and its timing, (ii) how such factors may exert their physiological effects and (iii) whether there are useful therapeutic options to induce recovery. SEARCH METHODS We searched articles published in English, French or German language containing keywords related to return of menses after FHA published in PubMed between 1966 and February 2020. Manuscripts reporting data on either the epidemiology or the physiology of recovery of menses were included and bibliographies were reviewed for further relevant literature. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) criteria served to assess quality of observational studies. OUTCOMES Few studies investigate return of menses and most of them have serious qualitative and methodological limitations. These include (i) the lack of precise definitions for FHA or resumption of menses, (ii) the use of short observation periods with unsatisfactory descriptions and (iii) the inclusion of poorly characterised small study groups. The comparison of studies is further hampered by very inhomogeneous study designs. Consequently, the exact prevalence of resumption of menses after FHA is unknown. Also, the timepoint of return of menses varies strongly and reliable prediction models are lacking. While weight, body fat and energy availability are associated with the return of menses, psychological factors also have a strong impact on the menstrual cycle and on behaviour known to increase the risk of FHA. Drug therapies with metreleptin or naltrexone might represent further opportunities to increase the chances of return of menses, but these require further evaluation. WIDER IMPLICATIONS Although knowledge on the physiology of return of menses is presently rudimentary, the available data indicate the importance of BMI/weight (gain), energy balance and mental health. The physiological processes and genetics underlying the impact of these factors on the return of menses require further research. Larger prospective studies are necessary to identify clinical parameters for accurate prediction of return of menses as well as reliable therapeutic options.
Collapse
Affiliation(s)
- J Pape
- Department of Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - A E Herbison
- Department of Physiology, Development and Neuroscience, University of Cambridge CB2 3EG, UK
| | - B Leeners
- Department of Reproductive Endocrinology, University Hospital Zurich, 8091 Zurich, Switzerland.,University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
21
|
Silva Filho ML, Ferreira-Silva JC, Vieira JIT, Basto SRL, Chaves MS, Luz JB, Alves KS, Bartolomeu CC, Oliveira MAL. Influence of the male effect on follicular dynamics and pregnancy rate in lactating cows undergoing fixed-time artificial insemination. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Młotkowska P, Marciniak E, Roszkowicz-Ostrowska K, Misztal T. Effects of allopregnanolone on central reproductive functions in sheep under natural and stressful conditions. Theriogenology 2020; 158:138-147. [PMID: 32956862 DOI: 10.1016/j.theriogenology.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022]
Abstract
Reproductive functions may be affected by internal and external factors that are integrated in the central nervous system (CNS). Stressful stimuli induce the neuroendocrine response of the hypothalamic-pituitary-adrenal axis, as well as the synthesis of the neurosteroid allopregnanolone (AL) in the brain. This study tested the hypothesis that centrally administered AL could affect the expression of certain genes involved in reproductive functions at the hypothalamus and pituitary levels, as well as pulsatile gonadotropin secretion in sheep under both natural and stressful conditions. Luteal-phase sheep (n = 24) were subjected to a three-day (day 12-14 of the estrous cycle) series of control or AL (4 × 15 μg/60 μL/30 min, at 30 min intervals) infusions into the third ventricle. Acute stressful stimuli (isolation from other sheep and partial movement restriction) were used in the third day of infusion. Stressful stimuli reduced kisspeptin-1 mRNA levels in both the mediobasal hypothalamus (MBH) and the preoptic area (POA), while pro-dynorphin (PDYN) mRNA level only in the MBH. AL alone decreased the abundances of these transcripts in both structures. Stress increased the expression of gonadotropin-releasing hormone (GnRH) mRNA in the MBH and POA, luteinizing hormone (LH) β subunit (LHβ) mRNA in the anterior pituitary (AP) and pulsatile LH secretion. In contrast, mRNA level of follicle stimulating hormone (FSH) β subunit (FSHβ) was decreased in the AP, with no effect of stress on pulsatile FSH secretion. In stressed sheep, AL counteracted the increase in GnRH mRNA expression only in the POA, but it decreased the level of this transcript in both hypothalamic tissues when infused alone. AL prevented the stress-induced increase in LHβ mRNA expression in the AP and pulsatile LH secretion, as well as inhibited almost all aspects of FSH secretion when administered alone. The suppressive effect of AL on GnRH receptor mRNA expression was also observed in both MBH and AP. We concluded that acute stress and AL exerted multidirectional effects on hypothalamic centers that regulate reproductive functions and secretory activity of AP gonadotrophs in sheep. However, we indicated the dominant inhibitory effect of AL under natural and stressful conditions.
Collapse
Affiliation(s)
- Patrycja Młotkowska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland.
| | - Elżbieta Marciniak
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland.
| | - Katarzyna Roszkowicz-Ostrowska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland.
| | - Tomasz Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland.
| |
Collapse
|
23
|
Dobson H, Routly JE, Smith RF. Understanding the trade-off between the environment and fertility in cows and ewes. Anim Reprod 2020; 17:e20200017. [PMID: 33029210 PMCID: PMC7534569 DOI: 10.1590/1984-3143-ar2020-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The environment contributes to production diseases that in turn badly affect cow performance, fertility and culling. Oestrus intensity is lower in lame cows, and in all cows 26% potential oestrus events are not expressed (to avoid getting pregnant). To understand these trade-offs, we need to know how animals react to their environment and how the environment influences hypothalamus-pituitary-adrenal axis (HPA) interactions with the hypothalamus-pituitary-ovarian axis (HPO). Neurotransmitters control secretion of GnRH into hypophyseal portal blood. GnRH/LH pulse amplitude and frequency drive oestradiol production, culminating in oestrus behaviour and a precisely-timed GnRH/LH surge, all of which are disrupted by poor environments. Responses to peripheral neuronal agents give clues about mechanisms, but do these drugs alter perception of stimuli, or suppress consequent responses? In vitro studies confirm some neuronal interactions between the HPA and HPO; and immuno-histochemistry clarifies the location and sequence of inter-neurone activity within the brain. In both species, exogenous corticoids, ACTH and/or CRH act at the pituitary (reduce LH release by GnRH), and hypothalamus (lower GnRH pulse frequency and delay surge release). This requires inter-neurones as GnRH cells do not have receptors for HPA compounds. There are two (simultaneous, therefore fail-safe?) pathways for CRH suppression of GnRH release via CRH-Receptors: one being the regulation of kisspeptin/dynorphin and other cell types in the hypothalamus, and the other being the direct contact between CRH and GnRH cell terminals in the median eminence. When we domesticate animals, we must provide the best possible environment otherwise animals trade-off with lower production, less intense oestrus behaviour, and impaired fertility. Avoiding life-time peri-parturient problems by managing persistent lactations in cows may be a worthy trade-off on both welfare and economic terms – better than the camouflage use of drugs/hormones/feed additives/intricate technologies? In the long term, getting animals and environment in a more harmonious balance is the ultimate strategy.
Collapse
Affiliation(s)
- Hilary Dobson
- Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, England
| | - Jean Elsie Routly
- Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, England
| | - Robert Frank Smith
- Institute of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, England
| |
Collapse
|
24
|
Zhang Y, Zhang H, Wang J, Zhang X, Bu S, Liu X, Wang Q, Lin H. Molecular characterization and expression patterns of glucocorticoid receptor (GR) genes in protandrous hermaphroditic yellowtail clownfish, Amphiprion clarkii. Gene 2020; 745:144651. [PMID: 32259633 DOI: 10.1016/j.gene.2020.144651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 11/27/2022]
Abstract
Sexual differentiation and ovotestis development are closely associated with cortisol levels, the principal indicator of stress, via the glucocorticoid receptor (GR) in teleosts. Thus, GR is regarded as a mediator to expound the relationship between social stress and gonad development. In the present study, two gr genes (gr1 and gr2) were cloned and analyzed from a protandrous hermaphroditic teleost, the yellowtail clownfish (Amphiprion clarkii). GR1 was found to display a conserved nine-amino-acid insert, WRARQNTDG, between two zinc finger domains. The phylogenetic tree of GR showed that yellowtail clownfish GR1 and GR2 are clustered to teleost GR1 and teleost GR2 separately, and differ from tetrapod GR. The result of real-time PCR revealed that high-level gr1 was mainly distributed in the cerebellum, hypothalamus and heart. The gr2 gene was abundant in the pituitary and liver of females and nonbreeders, while gr2 was mainly detected in the medulla oblongata and middle kidney of males. Moreover, GRs can be expressed in cultured eukaryotic cells and functionally interact with dexamethasone (exogenous glucocorticoid), thereby triggering downstream signaling pathways of different potentials. GR1 and GR2 can be activated by 10 nM dexamethasone treatment in HEK-293T cells. Notably, real-time PCR analysis among three social status groups demonstrated that gr2 expression was the highest in the hypothalamus of nonbreeders, but gr1 was no difference. We speculate that social stress would increase the expression of gr2 gene expression in the hypothalamus to inhibit sexual development. These data provide evidence of social stress involving reproductive regulation, which may help to elucidate the underlying mechanism of sex differentiation and change.
Collapse
Affiliation(s)
- Yanyu Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China
| | - Hao Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China
| | - Jun Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China
| | - Xian Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China
| | - Shaoyang Bu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China
| | - Xiaochun Liu
- Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Qian Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China.
| | - Haoran Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Aquaculture Breeding Engineering Research Center, Hainan University, Haikou, Hainan 570228, China; Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| |
Collapse
|
25
|
Abstract
Increased animal productivity has reduced animal fitness, resulting in increased susceptibility to infectious and metabolic diseases, locomotion problems and subfertility. Future animal breeding strategies should focus on balancing high production levels with health status monitoring and improved welfare. Additionally, understanding how animals interact with their internal and external environment is essential for improving health, fitness, and welfare. In this context, the continuous validation of existing biomarkers and the discovery and field implementation of new biomarkers will enable us to understand the specific physiological process and regulatory mechanisms used by the organism to adapt to different environmental conditions. Thus, biomarkers may be used to monitor welfare and improve management and breeding strategies. In this article, we describe major achievements in the establishment of biomarkers in dairy cows and small ruminants. This review mainly focuses on the physiological biomarkers used to monitor animal responses to, and recovery from, environmental perturbations. We highlight future avenues for research in this field and present a timely positioning document to the scientific community.
Collapse
|
26
|
Lucy MC. Stress, strain, and pregnancy outcome in postpartum cows. Anim Reprod 2019; 16:455-464. [PMID: 32435289 PMCID: PMC7234163 DOI: 10.21451/1984-3143-ar2019-0063] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/25/2019] [Indexed: 12/02/2022] Open
Abstract
Stress affects the productivity and fertility of cattle. Stress causes strain and individual animals experience different amounts of strain in response to the same amount of stress. The amount of strain determines the impact of stress on fertility. Typical stresses experienced by cattle include environmental, disease, production, nutritional, and psychological. The effect of stress on the reproductive system is mediated by body temperature (heat stress), energy metabolites and metabolic hormones (production and nutritional stresses), the functionality of the hypothalamus-pituitary-gonadal (HPG) axis and (or) the activation of the hypothalamus-pituitary-adrenal (HPA) axis. The strain that occurs in response to stress affects uterine health, oocyte quality, ovarian function, and the developmental capacity of the conceptus. Cows that have less strain in response to a given stress will be more fertile. The goal for future management and genetic selection in farm animals is to reduce production stress, manage the remaining strain, and genetically select cattle with minimal strain in response to stress.
Collapse
Affiliation(s)
- Matthew C. Lucy
- Division of Animal Sciences, University of Missouri, Animal Science Research Center, Columbia, MO, USA.
| |
Collapse
|
27
|
The Chronic and Unpredictable Stress Suppressed Kisspeptin Expression during Ovarian Cycle in Mice. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2019. [DOI: 10.12750/jarb.34.1.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
28
|
Glucocorticoids stimulate hypothalamic dynorphin expression accounting for stress-induced impairment of GnRH secretion during preovulatory period. Psychoneuroendocrinology 2019; 99:47-56. [PMID: 30176377 DOI: 10.1016/j.psyneuen.2018.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 11/24/2022]
Abstract
Stress-induced reproductive dysfunction is frequently associated with increased glucocorticoid (GC) levels responsible for suppressed GnRH/LH secretion and impaired ovulation. Besides the major role of the hypothalamic kisspeptin system, other key regulators may be involved in such regulatory mechanisms. Herein, we identify dynorphin as a novel transcriptional target of GC. We demonstrate that only priming with high estrogen (E2) concentrations prevailing during the late prooestrus phase enables stress-like GC concentrations to specifically stimulate Pdyn (prodynorphin) expression both in vitro (GT1-7 mouse hypothalamic cell line) and ex vivo (ovariectomized E2-supplemented mouse brains). Our results indicate that stress-induced GC levels up-regulate dynorphin expression within a specific kisspeptin neuron-containing hypothalamic region (antero-ventral periventricular nucleus), thus lowering kisspeptin secretion and preventing preovulatory GnRH/LH surge at the end of the prooestrus phase. To further characterize the molecular mechanisms of E2 and GC crosstalk, chromatin immunoprecipitation experiments and luciferase reporter gene assays driven by the proximal promoter of Pdyn show that glucocorticoid receptors bind specific response elements located within the Pdyn promoter, exclusively in presence of E2. Altogether, our work provides novel understanding on how stress affects hypothalamic-pituitary-gonadal axis and underscores the role of dynorphin in mediating GC inhibitory actions on the preovulatory GnRH/LH surge to block ovulation.
Collapse
|
29
|
Mahmoodkhani M, Saboory E, Roshan-Milani S, Azizi N, Karimipour M, Sayyadi H, Rasmi Y. Pre-pregnancy stress suppressed the reproductive systems in parents and changed sex ratio in offspring. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
30
|
Scott CJ, Rose JL, Gunn AJ, McGrath BM. Kisspeptin and the regulation of the reproductive axis in domestic animals. J Endocrinol 2018; 240:JOE-18-0485.R1. [PMID: 30400056 DOI: 10.1530/joe-18-0485] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/09/2018] [Indexed: 11/08/2022]
Abstract
The control of reproductive processes involves the integration of a number of factors from the internal and external environment, with the final output signal of these processes being the pulsatile secretion of gonadotrophin releasing hormone (GnRH) from the hypothalamus. These factors include the feedback actions of sex steroids, feed intake and nutritional status, season/photoperiod, pheromones, age and stress. Understanding these factors and how they influence GnRH secretion and hence reproduction is important for the management of farm animals. There is evidence that the RF-amide neuropeptide, kisspeptin, may be involved in relaying the effects of these factors to the GnRH neurons. This paper will review the evidence from the common domestic animals (sheep, goats, cattle, horses and pigs), that kisspeptin neurons are i) regulated by the factors listed above, ii) contact GnRH neurons, and iii) involved in the regulation of GnRH/gonadotrophin secretion.
Collapse
Affiliation(s)
- Christopher J Scott
- C Scott, School of Biomedical Sciences, Charles Sturt University - Wagga Wagga Campus, Wagga Wagga, Australia
| | - Jessica L Rose
- J Rose, School of Biomedical Sciences, Charles Sturt University - Wagga Wagga Campus, Wagga Wagga, Australia
| | - Allan J Gunn
- A Gunn, School of Animal and Veterinary Sciences, Charles Sturt University - Wagga Wagga Campus, Wagga Wagga, Australia
| | - Briony M McGrath
- B McGrath, School of Biomedical Sciences, Charles Sturt University - Wagga Wagga Campus, Wagga Wagga, Australia
| |
Collapse
|
31
|
Gong S, Sun GY, Zhang M, Yuan HJ, Zhu S, Jiao GZ, Luo MJ, Tan JH. Mechanisms for the species difference between mouse and pig oocytes in their sensitivity to glucorticoids. Biol Reprod 2018; 96:1019-1030. [PMID: 28419184 DOI: 10.1093/biolre/iox026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
Although in vitro exposure to physiological concentrations of glucorticoids did not affect maturation of mouse oocytes, it significantly inhibited nuclear maturation of pig oocytes. Studies on this species difference in oocyte sensitivity to glucocorticoids will contribute to our understanding of how stress/glucocorticoids affect oocytes. We showed that glucorticoid receptors (NR3C1) were expressed in both oocytes and cumulus cells (CCs) of both pigs and mice; however, while cortisol inhibition of oocyte maturation was overcome by NR3C1 inhibitor RU486 in pigs, it could not be relieved by RU486 in mice. The mRNA level of 11β-hydroxysteroid dehydrogenase 1 (HSD11B1) was significantly higher than that of HSD11B2 in pig cumulus-oocyte complexes (COCs), whereas HSD11B2 was exclusively expressed in mouse COCs. Pig and mouse cumulus-denuded oocytes (DOs) expressed HSD11B2 predominantly and exclusively, respectively. In the presence of cortisol, although inhibiting HSD11B2 decreased maturation rates of COCs in both species, inhibiting HSD11B1 improved maturation of pig COCs while having no effect on mouse COCs. Cortisol-cortisone interconversion observation confirmed high HSD11B1 activities in pig oocytes but none in mouse oocytes, a higher HSD11B2 activity in mouse than in pig oocytes, and a rapid cortisol-cortisone interconversion in pig COCs catalyzed by HSD11B1 from CCs and HSD11B2 from DOs. In conclusion, the species difference in glucocorticoid sensitivity between pig and mouse oocytes is caused by their different contents/ratios of HSD11B1 and HSD11B2, which maintain different concentrations of active glucocorticoids. While cortisol inhibited pig oocytes by interacting with NR3C1, glucocorticoid suppression of mouse oocytes was apparently not mediated by NR3C1.
Collapse
Affiliation(s)
- Shuai Gong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Guang-Yi Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Min Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Hong-Jie Yuan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Shuai Zhu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Guang-Zhong Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Ming-Jiu Luo
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P. R. China
| |
Collapse
|
32
|
Nestor CC, Bedenbaugh MN, Hileman SM, Coolen LM, Lehman MN, Goodman RL. Regulation of GnRH pulsatility in ewes. Reproduction 2018; 156:R83-R99. [PMID: 29880718 DOI: 10.1530/rep-18-0127] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/07/2018] [Indexed: 01/21/2023]
Abstract
Early work in ewes provided a wealth of information on the physiological regulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion by internal and external inputs. Identification of the neural systems involved, however, was limited by the lack of information on neural mechanisms underlying generation of GnRH pulses. Over the last decade, considerable evidence supported the hypothesis that a group of neurons in the arcuate nucleus that contain kisspeptin, neurokinin B and dynorphin (KNDy neurons) are responsible for synchronizing secretion of GnRH during each pulse in ewes. In this review, we describe our current understanding of the neural systems mediating the actions of ovarian steroids and three external inputs on GnRH pulsatility in light of the hypothesis that KNDy neurons play a key role in GnRH pulse generation. In breeding season adults, estradiol (E2) and progesterone decrease GnRH pulse amplitude and frequency, respectively, by actions on KNDy neurons, with E2 decreasing kisspeptin and progesterone increasing dynorphin release onto GnRH neurons. In pre-pubertal lambs, E2 inhibits GnRH pulse frequency by decreasing kisspeptin and increasing dynorphin release, actions that wane as the lamb matures to allow increased pulsatile GnRH secretion at puberty. Less is known about mediators of undernutrition and stress, although some evidence implicates kisspeptin and dynorphin, respectively, in the inhibition of GnRH pulse frequency by these factors. During the anoestrus, inhibitory photoperiod acting via melatonin activates A15 dopaminergic neurons that innervate KNDy neurons; E2 increases dopamine release from these neurons to inhibit KNDy neurons and suppress the frequency of kisspeptin and GnRH release.
Collapse
Affiliation(s)
- Casey C Nestor
- Department of Animal Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Michelle N Bedenbaugh
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| | - Stanley M Hileman
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| | - Lique M Coolen
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Michael N Lehman
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Robert L Goodman
- Department of Physiology, Pharmacology and Neuroscience, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
33
|
Faykoo-Martinez M, Monks DA, Zovkic IB, Holmes MM. Sex- and brain region-specific patterns of gene expression associated with socially-mediated puberty in a eusocial mammal. PLoS One 2018; 13:e0193417. [PMID: 29474488 PMCID: PMC5825099 DOI: 10.1371/journal.pone.0193417] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 02/09/2018] [Indexed: 12/13/2022] Open
Abstract
The social environment can alter pubertal timing through neuroendocrine mechanisms that are not fully understood; it is thought that stress hormones (e.g., glucocorticoids or corticotropin-releasing hormone) influence the hypothalamic-pituitary-gonadal axis to inhibit puberty. Here, we use the eusocial naked mole-rat, a unique species in which social interactions in a colony (i.e. dominance of a breeding female) suppress puberty in subordinate animals. Removing subordinate naked mole-rats from this social context initiates puberty, allowing for experimental control of pubertal timing. The present study quantified gene expression for reproduction- and stress-relevant genes acting upstream of gonadotropin-releasing hormone in brain regions with reproductive and social functions in pre-pubertal, post-pubertal, and opposite sex-paired animals (which are in various stages of pubertal transition). Results indicate sex differences in patterns of neural gene expression. Known functions of genes in brain suggest stress as a key contributing factor in regulating male pubertal delay. Network analysis implicates neurokinin B (Tac3) in the arcuate nucleus of the hypothalamus as a key node in this pathway. Results also suggest an unappreciated role for the nucleus accumbens in regulating puberty.
Collapse
Affiliation(s)
| | - D. Ashley Monks
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Iva B. Zovkic
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Melissa M. Holmes
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Moore AM, Lucas KA, Goodman RL, Coolen LM, Lehman MN. Three-dimensional imaging of KNDy neurons in the mammalian brain using optical tissue clearing and multiple-label immunocytochemistry. Sci Rep 2018; 8:2242. [PMID: 29396547 PMCID: PMC5797235 DOI: 10.1038/s41598-018-20563-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/17/2018] [Indexed: 12/24/2022] Open
Abstract
Kisspeptin/Neurokinin B/Dynorphin (KNDy) neurons of the arcuate nucleus (ARC) play a key role in the regulation of fertility. The ability to detect features of KNDy neurons that are essential for fertility may require three-dimensional (3D) imaging of the complete population. Recently developed protocols for optical tissue clearing permits 3D imaging of neuronal populations in un-sectioned brains. However, these techniques have largely been described in the mouse brain. We report 3D imaging of the KNDy cell population in the whole rat brain and sheep hypothalamus using immunolabelling and modification of a solvent-based clearing protocol, iDISCO. This study expands the use of optical tissue clearing for multiple mammalian models and provides versatile analysis of KNDy neurons across species. Additionally, we detected a small population of previously unreported kisspeptin neurons in the lateral region of the ovine mediobasal hypothalamus, demonstrating the ability of this technique to detect novel features of the kisspeptin system.
Collapse
Affiliation(s)
- Aleisha M Moore
- Dept. of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kathryn A Lucas
- Dept. of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA
| | - Robert L Goodman
- Dept. of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA
| | - Lique M Coolen
- Dept. of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
- Dept. of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA.
| | - Michael N Lehman
- Dept. of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
35
|
Tilbrook AJ, Ralph CR. Hormones, stress and the welfare of animals. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an16808] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There are numerous endocrine (hormonal) responses during stress and these are often complex. This complexity makes the study of endocrine stress responses challenging and the challenges are intensified when attempts are made to use measures of hormones to assess the welfare of animals because so many endocrine systems are activated during stress and because there are countless stimuli that trigger these systems. Most research has concentrated on only a small number of these endocrine systems, particularly the hypothalamo–pituitary adrenal axis and the sympathoadrenal system, and there is a need to broaden the scope of endocrine systems that are studied. Furthermore, systematic approaches are required to establish when the actions of hormones associated with stress responses result in physiological and/or behavioural consequences that will have negative or positive effects on the welfare of animals.
Collapse
|
36
|
Ullah R, Batool A, Wazir M, Naz R, Rahman TU, Wahab F, Shahab M, Fu J. Gonadotropin inhibitory hormone and RF9 stimulate hypothalamic-pituitary-adrenal axis in adult male rhesus monkeys. Neuropeptides 2017; 66:1-7. [PMID: 28757099 DOI: 10.1016/j.npep.2017.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 12/17/2022]
Abstract
Stress activates gonadotropin inhibitory hormone (GnIH), hypothalamic-pituitary-adrenal axis (HPA-axis) and represses hypothalamic-pituitary-gonadal axis (HPG-axis) but RF9 administration relieves stress-induced repression of the HPG-axis. Importantly, it was not known whether GnIH signaling and RF9 synthetic peptide modulate the HPA axis. To assess this, mammalian orthologs of GnIH (RFRP-1 and RFRP-3) and RF9 were administered to intact adult male rhesus monkeys. RFRP-1 (125μg/animal), RFRP-3 (250μg/animal) and RF9 (0.1mg/kg BW) were intravenously (iv) injected into normal fed (n=4) monkeys. Additionally, a single bolus iv injection of RF9 (0.1mg/kg BW) was also administered to 48h fasted monkeys (n=4) to check the effects of RF9 signaling on an activated HPA-axis. Serial blood samples were collected, centrifuged and the obtained plasma was used for the analysis of cortisol by specific enzyme immunoassay. RFRP-1 treatment significantly increased cortisol levels while RFRP-3 increased the plasma cortisol, but the effect was non-significant. RF9 treatment significantly increased cortisol levels in normal fed animals. In contrast, RF9 injection did not significantly alter circulating cortisol in fasted monkeys. In conclusion, our results suggest stimulatory action of RFRPs and RF9 on the HPA axis in the adult male monkeys. However, the mechanism and site of action of RFRP-1 and RF9 along the HPA-axis is still unknown. Therefore, further studies are needed to decipher the mechanism and site of action of RFRPs and RF9 on the HPA axis in primates.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310051, China; Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aalia Batool
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; The State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Madiha Wazir
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rabia Naz
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Tanzil Ur Rahman
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pathology and Pathophysiology, Key Laboratory of Reproductive Genetics, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Fazal Wahab
- Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, D-37077 Göttingen, Germany
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310051, China.
| |
Collapse
|
37
|
Narayan E, Parisella S. Influences of the stress endocrine system on the reproductive endocrine axis in sheep (Ovis aries). ITALIAN JOURNAL OF ANIMAL SCIENCE 2017. [DOI: 10.1080/1828051x.2017.1321972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Edward Narayan
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
- School of Science and Health, Western Sydney University, Penrith, Australia
| | - Simone Parisella
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, Australia
| |
Collapse
|
38
|
Amweg AN, Rodríguez FM, Huber E, Marelli BE, Gareis NC, Belotti EM, Rey F, Salvetti NR, Ortega HH. Detection and activity of 11 beta hydroxylase (CYP11B1) in the bovine ovary. Reproduction 2017; 153:433-441. [DOI: 10.1530/rep-16-0493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 12/11/2022]
Abstract
Glucocorticoids (GCs) such as cortisol and corticosterone are important steroid hormones with different functions in intermediate metabolism, development, cell differentiation, immune response and reproduction. In response to physiological and immunological stress, adrenocorticotropic hormone (ACTH) acts on the adrenal gland by stimulating the synthesis and secretion of GCs. However, there is increasing evidence that GCs may also be synthesized by extra-adrenal tissues. Here, we examined the gene and protein expression of the enzyme 11β-hydroxylase P450c11 (CYP11B1), involved in the conversion of 11-deoxycortisol to cortisol, in the different components of the bovine ovary and determined the functionality of CYP11B1in vitro.CYP11B1mRNA was expressed in granulosa and theca cells in small, medium and large antral ovarian follicles, and CYP11B1 protein was expressed in medium and large antral follicles. After stimulation by ACTH, we observed an increased secretion of cortisol by the wall of large antral follicles. We also observed a concentration-dependent decrease in the concentration of cortisol in response to metyrapone, an inhibitor of CYP11B1. This decrease was significant at 10−5 µM metyrapone. In conclusion, this study demonstrated for the first time the presence of CYP11B1 in the bovine ovary. This confirms that there could be a local synthesis of GCs in the bovine ovary and therefore a potential endocrine responder to stress through these hormones.
Collapse
|