1
|
Castagnola L, Gallino L, Schafir A, Vota D, Grasso E, Gori S, Waschek J, Parborell F, Pérez Leirós C, Hauk V, Ramhorst R. Ovarian premature aging: VIP as key regulator of fibro-inflammation and foamy macrophages generation. Mol Cell Endocrinol 2025; 599:112486. [PMID: 39894337 DOI: 10.1016/j.mce.2025.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/27/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Ovarian aging is associated with fibro-inflammation, contributing to the decline in oocyte count and quality. Given the immunomodulatory properties of the vasoactive intestinal peptide (VIP) in the reproductive tract, we investigated its role in maintaining ovarian immune homeostasis and preventing premature aging. We evaluated young VIP knockout (KO) mice, comparing them to young wild type (WT) females, for signs of premature aging. Histological staining revealed aberrant ovarian morphology in VIP KO mice, characterized by increased atretic follicles and decreased ovarian reserve compared to WT controls. Moreover, VIP KO ovaries showed reduced vascularization, increased collagen deposition and elevated ROS and IL-1β levels. Foamy macrophages were significantly predominant, indicating premature aging in young VIP KO ovaries. To determine potential mechanisms behind these pathogenic changes, we conditioned peritoneal macrophages from young WT or VIP KO mice in vitro with ovarian-conditioned media from young WT or VIP KO mice to mimic the respective ovarian microenvironment. When WT or VIP KO peritoneal macrophages were conditioned with ovarian media from their respective genotypes, lipid droplet accumulation increased compared to control medium. In cross-genotype experiments, WT macrophages conditioned with media from VIP KO ovaries selectively accumulated higher levels of lipid droplets, whereas no differences were observed in VIP KO macrophages conditioned with WT ovarian media. This suggests that VIP KO macrophages are uniquely sensitized to the inflammatory environment of VIP KO ovaries, implicating both ovarian factors and macrophage status. These findings highlight the role of VIP in preventing fibro-inflammation, thereby preserving ovarian health and preventing premature aging.
Collapse
Affiliation(s)
- Lara Castagnola
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lucila Gallino
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Ana Schafir
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Daiana Vota
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Esteban Grasso
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Soledad Gori
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - James Waschek
- The David Geffen School of Medicine, University of California, Los Angeles, USA
| | | | - Claudia Pérez Leirós
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Vanesa Hauk
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| | - Rosanna Ramhorst
- Universidad de Buenos Aires - CONICET, Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Zhang J, Jia S, Zheng Z, Cao L, Zhou J, Fu X. A multi-omic single-cell landscape of the aging mouse ovary. GeroScience 2025:10.1007/s11357-025-01556-2. [PMID: 39934558 DOI: 10.1007/s11357-025-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
The ovary is one of the first organs in humans to exhibit age-related functional impairments. As an organ composed of diverse heterogeneous cell types, the ovary exhibits cell-type-specific changes during the aging process, ultimately leading to a decline in female fertility. Investigating the molecular mechanisms of ovarian aging is crucial for understanding age-related fertility dysfunction in females. In this study, we combine scRNA-seq and scATAC-seq from mouse young/aged ovaries to characterize molecular features during ovarian aging. Using the single-cell multi-omic data, we revealed the cell-type-specific transcriptional changes during the aging process in seven major ovarian cell types and identified the cis/trans-regulatory elements governing these transcriptional changes. Specifically, we uncovered the transcriptional alterations of TGF-beta signaling in mesenchymal cells and endoplasmic reticulum stress in granulosa cells of aged mouse ovaries and further identified the potential corresponding cis/trans-regulatory elements. These molecular alterations may contribute to aging-induced functional impairments in mouse ovaries. In summary, this work provides transcriptome and chromatin accessibility landscape of ovarian aging in mice, which serve as a resource for identifying the cell-type-specific molecular mechanisms underlying ovarian aging, aiding in the identification of potential diagnostic biomarkers and treatment strategies.
Collapse
Affiliation(s)
- Jian Zhang
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shunze Jia
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zehua Zheng
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
| | - Lanrui Cao
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyi Zhou
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xudong Fu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
3
|
Wang NF, Mamsen LS, Cadenas J, Saritas G, Macklon KT, Fedder J, Ernst E, Johannsen ML, Kristensen SG, Kelsey T, Kumar A, Kalra B, Løssl K, Andersen CY. Impact of female age on concentrations of reproductive hormones and oocyte-specific growth factors in follicular fluid from human small antral follicles. Hum Reprod 2025:deaf017. [PMID: 39922201 DOI: 10.1093/humrep/deaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Indexed: 02/10/2025] Open
Abstract
STUDY QUESTION Does maternal age impact hormonal secretions from granulosa cells, theca cells, and the oocyte in human small antral follicles? SUMMARY ANSWER Major hormones secreted by granulosa and theca cells, as well as the oocyte-specific TGF-β members-GDF9, BMP15, and the GDF9/BMP15 heterodimer cumulin-maintain a consistent concentration within the follicular fluid of human small antral follicles, regardless of maternal age. WHAT IS KNOWN ALREADY It is well established that female fertility declines with increasing age. However, it is not known whether this decline is exclusively due to a reduction in oocyte quality and quantity or also involves a decline in the hormone-secreting capabilities of granulosa cells, theca cells, and the oocyte itself. STUDY DESIGN, SIZE, DURATION This is a retrospective study of follicular fluid obtained from human small antral follicles collected in connection with cryopreservation of ovarian tissue at the Laboratory of Reproductive Biology, University Hospital Copenhagen, Rigshospitalet, Denmark, between 2010 and 2020 as part of the hospital's fertility preservation program. PARTICIPANTS/MATERIALS, SETTING, METHODS Follicular fluid samples from human small antral follicles measuring 3-13 mm in diameter from macroscopically normal ovaries of 381 patients aged 5-43 years were included in the study, provided that at least one of the following parameters was measured: AMH, Inhibin A, Inhibin B, oestradiol (E2), progesterone (P4), androstenedione, testosterone, and/or the oocyte-specific TGF-β members GDF9, BMP15, or cumulin. MAIN RESULTS AND THE ROLE OF CHANCE In a linear regression analysis adjusted for follicular volume, female age did not predict the follicular fluid concentrations of AMH, Inhibin B, Inhibin A, E2, androstenedione, testosterone, GDF9, BMP15, or cumulin. Although a significant association was observed between female age and follicular fluid P4 levels, the predictive value of age was poor, accounting for at most 5% of the variation in P4. LIMITATIONS, REASONS FOR CAUTION Hormonal levels may vary with the degree of atresia in each follicle; however, the health status of the small antral follicles in this study was not characterized. Additionally, we cannot exclude possible age-related differences in human follicles larger than 10 mm, as very few of these were included. Furthermore, we did not include women above the age of 43, despite the potential for more pronounced age-related effects in these patients. WIDER IMPLICATIONS OF THE FINDINGS Our results support the idea that the age-related decline in female fertility is primarily due to a reduction in oocyte quality and quantity, but further research is needed to confirm this. STUDY FUNDING/COMPETING INTEREST(S) No specific funding was obtained, and the authors have no conflicts of interest to declare in relation to this work. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- N Friis Wang
- The Fertility Clinic, Department of Gynaecology, Fertility and Obstetrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - L S Mamsen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - J Cadenas
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - G Saritas
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - K T Macklon
- The Fertility Clinic, Department of Gynaecology, Fertility and Obstetrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - J Fedder
- The Fertility Clinic, University Hospital of Odense, Odense, Denmark
| | - E Ernst
- University Clinic for Fertility, Regional Hospital Horsens, Horsens, Denmark
| | - M L Johannsen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - S G Kristensen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - T Kelsey
- School of Computer Science, University of St. Andrews, St. Andrews, UK
| | - A Kumar
- Ansh Labs LLC, Webster, TX, USA
| | - B Kalra
- Ansh Labs LLC, Webster, TX, USA
| | - K Løssl
- The Fertility Clinic, Department of Gynaecology, Fertility and Obstetrics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C Yding Andersen
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- The Fertility Clinic, Copenhagen University Hospital Herlev, Herlev, Denmark
| |
Collapse
|
4
|
An S, Ren S, Ma J, Zhang Y. Association of Depression with Age at Natural Menopause: A Cross-Sectional Analysis with NHANES Data. Int J Womens Health 2025; 17:211-220. [PMID: 39911359 PMCID: PMC11794376 DOI: 10.2147/ijwh.s504748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
Purpose To evaluate the association between depression and age of natural menopause in American women. Patients and Methods This cross-sectional study utilized eight cycles of the National Health and Nutrition Examination Survey (NHANES) conducted from 2005 to 2023. We assessed depression using the Patient Health Questionnaire-9 (PHQ-9). We obtained ANM information from the Reproductive Health questionnaire. We screened menopausal women between the ages of 40 and 70 years, excluding those with surgical menopause. We used multivariable logistic regression models to investigate the association between depression and ANM. Additionally, we conducted subgroup analyses and interaction tests. Results A total of 4732 women were included, and the mean age of natural menopause was 47.9 ± 6.8 years. Of these, 1123 (23.7%) were classified as early menopause, 2971 (62.8%) as normal menopause, and 638 (13.5%) as late menopause. Preliminary analysis showed a positive association between PHQ-9 score and the risk of early menopause (OR = 1.11, 95% CI = 1.06-1.16). After full adjustment in multivariate logistic regression, it was estimated that each one-unit increase in the PHQ-9 score was associated with a 7% increased risk of early menopause (OR = 1.07, 95% CI = 1.02-1.12). After classifying depression into three grades: no, mild, and severe, it was found that, compared with American women without depression, the risk of early menopause increased significantly. American women with major depression had an increased risk of early menopause (OR = 2.49, 95% CI = 1.10-5.63). In College or above (OR = 1.10, 95% CI = 1.02-1.19), PIR≤1 (OR = 1.10, 95% CI = 1.04-1.16), Current smoker (OR = 1.12, 95% CI = 1.00-1.24), the positive association between depression and early menopause was more significant. Conclusion In this cross-sectional study, the severity of depression in American women was positively correlated with the risk of early menopause. This suggests that women should pay more attention to their mental health and actively manage depression. For women with depression, early intervention and treatment may help improve their reproductive health and delay menopause.
Collapse
Affiliation(s)
- Shuaiqi An
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Shiyan Ren
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiawen Ma
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yizhou Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
- Zhejiang Famous Chinese Medicine Clinic, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
5
|
Tomonari Y, Ohba H, Tsukada H. [ 18F]BCPP-EF positron emission tomography of rat ovaries for evaluation of mitochondrial function. Nucl Med Biol 2025; 142-143:108996. [PMID: 39862603 DOI: 10.1016/j.nucmedbio.2025.108996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND The ovary is an important female organ not only for pregnancy but also for the regulation of life activities via hormone release. Ovarian function is measured by blood hormone levels, but the hormone level reflects only the ovarian reserve and no other essential ovarian functions, such as nurturing and expelling follicles. Ovarian fibrosis is related to essential ovarian function; however, the existing methods for evaluating fibrosis are invasive. Ovarian fibrosis has been reported to be associated with mitochondrial function. We hypothesized that positron emission tomography (PET) imaging of mitochondria could be a new, non-invasive method for evaluating essential ovarian function. In this study, we investigated the age-related changes in ovarian fibrosis using the mitochondrial complex-I (MC-I) PET probe, 2-tert-butyl-4-chloro-5-{6-[2-(2-18F-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF). RESULTS Aged rats, whose ovary function decline, exhibited a higher uptake of [18F]BCPP-EF in the ovary than young rats, and this high uptake in aged rats was suppressed by mitoquinone, a superoxide scavenger. Increased [18F]BCPP-EF uptake in the ovary was associated with ovarian fibrosis, but not with AMH level which reflects the ovarian reserve. Furthermore, the measurement of MC protein levels showed that the protein levels of MC-I increased with age, whereas those of MC-V decreased. CONCLUSIONS This study demonstrated that [18F]BCPP-EF can detect age-related changes in essential ovarian function evaluated by ovarian fibrosis. Therefore, [18F]BCPP-EF-PET is a useful non-invasive method for evaluating essential ovarian functions and will contribute to basic research on ovarian aging as well as drug discovery targeting ovarian dysfunction.
Collapse
Affiliation(s)
- Yuki Tomonari
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamana, Hamamatsu, Shizuoka 434-8601, Japan.
| | - Hiroyuki Ohba
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamana, Hamamatsu, Shizuoka 434-8601, Japan
| | - Hideo Tsukada
- Central Research Laboratory, Hamamatsu Photonics K.K., Hamana, Hamamatsu, Shizuoka 434-8601, Japan
| |
Collapse
|
6
|
Zhu Z, Lei M, Guo R, Xu Y, Zhao Y, Wei C, Yang Q, Sun Y. Nicotinamide riboside supplementation ameliorates ovarian dysfunction in a PCOS mouse model. J Ovarian Res 2025; 18:9. [PMID: 39833950 PMCID: PMC11749135 DOI: 10.1186/s13048-025-01596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) is the leading cause of anovulatory infertility among women of reproductive age, yet the range of effective treatment options remains limited. Our previous study revealed that reduced levels of nicotinamide adenine dinucleotide (NAD+) in ovarian granulosa cells (GCs) of women with PCOS resulted in the accumulation of reactive oxygen species (ROS) and mitochondrial dysfunction. However, it is still uncertain whether increasing NAD+ levels in the ovaries could improve ovarian function in PCOS. In this study, we demonstrated that supplementation with the NAD+ precursor nicotinamide riboside (NR) prevented the decrease in ovarian NAD+ levels, normalized estrous cycle irregularities, and enhanced ovulation potential in dehydroepiandrosterone (DHEA)-induced PCOS mice. Moreover, NR supplementation alleviated ovarian fibrosis and enhanced mitochondrial function in ovarian stromal cells of PCOS mice. Furthermore, NR supplementation improved oocyte quality in PCOS mice, as evidenced by reduced abnormal mitochondrial clustering, enhanced mitochondrial membrane potential, decreased ROS levels, reduced spindle abnormality rates, and increased early embryonic development potential in fertilized oocytes. These findings suggest that supplementing with NAD+ precursors could be a promising therapeutic strategy for addressing ovarian infertility associated with PCOS.
Collapse
Affiliation(s)
- Zhenye Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Min Lei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruizhi Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yining Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanqing Zhao
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenlu Wei
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingling Yang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yingpu Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Provincial Obstetrical and Gynecological Diseases (Reproductive Medicine) Clinical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
7
|
Sarkar P, Moore M, Ozmen A, Cetinkaya-Un B, Julie V, Imudia AN, Lockwood CJ, Kayisli UA, Guzeloglu-Kayisli O. Enhanced ovarian FKBP51 expression is associated with ovarian aging: a molecular insight for age-related fertility in women. F&S SCIENCE 2025:S2666-335X(25)00004-7. [PMID: 39837475 DOI: 10.1016/j.xfss.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/16/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
OBJECTIVE To study the relationship between FK506-binding protein 51 (FKBP51) and ovarian aging and/or diminished ovarian reserve (DOR) in human ovaries by comparing FKBP51 levels in granulosa cells (GCs) and cumulus cells (CCs), collected during controlled ovarian stimulation (COS) from women of advanced reproductive age and/or with a diagnosis of DOR with that of young women with normal ovarian reserve. To explore the association between increased FKBP51 expression and human ovarian aging further, expression of FKBP51 was compared in ovarian stroma of postmenopausal vs. premenopausal women. Lastly, this relation was further queried by comparing ovarian expression of several collagen genes as markers of ovarian fibrosis in 14-month-old wild-type (Fkbp5+/+) and Fkbp5 knockout (Fkbp5-/-) mice. DESIGN Laboratory-based experimental study. SUBJECTS Samples collected included follicular fluid, CCs, GCs, and serum from group 1: young women with normal ovarian reserve (<35 years; n = 12); group 2: DOR (antimüllerian hormone <1 ng/mL; n = 10); and group 3: women of advanced age with normal ovarian reserve (>37 years; n = 8). Ovarian stromal tissues obtained from surgical specimen of post-menopausal (50-65 years; n = 6) and pre-menopausal (18-30 years; n = 6). Ovarian tissues from 14-month-old Fkbp5+/+and Fkbp5-/- mice. All the experiments were performed at an academic-affiliated assisted reproductive technology unit/laboratory. EXPOSURE Comparison of FKBP51 expression in GCs and CCs from women undergoing COS, ovarian stromal tissue from pre- and post-menopausal women, and ovarian tissue from aged Fkbp5+/+and Fkbp5-/- mice. MAIN OUTCOME MEASURES (1) Level of FKBP51 in human GCs and CCs, collected during COS by performing real-time quantitative polymerase chain reaction (qPCR). (2) Immunohistochemistry to detect FKBP51 levels and Picrosirius Red staining to detect collagen deposition in human ovarian stromal tissue. (3) Real-time qPCR to compare expression levels of several collagen genes in Fkbp5+/+ and Fkbp5-/- old mice ovaries. Serum and follicular fluid levels of transforming growth factor β1, and soluble endoglin measured by enzyme-linked immunosorbent assay. RESULTS Immunohistochemistry revealed that FKBP51 histologic score levels in ovarian stromal tissue were significantly higher in postmenopausal vs. premenopausal women (mean ± SEM, 160.52 ± 17.75 vs. 120.67 ± 14.33; P=.002). Stronger Picrosirius Red staining, suggestive of fibrosis, was seen in ovarian stromal tissue of postmenopausal vs. premenopausal women (54.06 ± 6.94 vs. 37.50 ± 14.29; P=.02). Analysis of qPCR revealed that (1) Col1a1, Col1a2, Col3a1 levels were significantly lower in ovaries obtained from 14-month-old Fkbp5-/- vs. Fkbp5+/+ mice; (2) FKBP5 levels significantly increased in CCs of advanced age women vs. younger women (1.71 ± 0.22 vs. 1.11 ± 0.15; P=.03); and (3) FKBP5 levels were approximately threefold higher in GCs of women with DOR vs. age-matched control (3.22 ± 1.11 vs. 1.30 ± 0.54; P=.03). CONCLUSION This study for the first time demonstrates expression profile of FKBP51 in human ovary and its potential role in ovarian aging. Our results indicate that the up-regulation of FKBP51 is associated with ovarian aging. Moreover, in women undergoing in vitro fertilization treatment, enhanced FKBP51 expression is seen in those with DOR or women of advanced maternal reproductive age, who have poor prognosis. Therefore, drugs targeting inhibition of FKBP51 expression and/or activity may delay ovarian aging or treat premature ovarian aging.
Collapse
Affiliation(s)
- Papri Sarkar
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida; Shady Grove Fertility, Tampa, Florida
| | - Monica Moore
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Asli Ozmen
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Busra Cetinkaya-Un
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Vitko Julie
- Department of Pathology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Anthony N Imudia
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida; Shady Grove Fertility, Tampa, Florida
| | - Charles J Lockwood
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Umit A Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University of South Florida, Tampa, Florida.
| |
Collapse
|
8
|
Santacruz-Márquez R, Safar AM, Laws MJ, Fletcher EJ, Meling DD, Nowak RA, Raetzman LT, Flaws JA. Dietary exposure to di(2-ethylhexyl) phthalate for 6 months alters markers of female reproductive aging in mice†. Biol Reprod 2025; 112:191-202. [PMID: 39520286 DOI: 10.1093/biolre/ioae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
The female reproductive system ages before any other physiological system, making it a sensitive indicator of aging. Early reproductive aging is associated with the early onset of infertility and an increased risk of several diseases. During aging, systemic and reproductive oxidative stress and inflammation levels increase through inflammasome activation, leading to ovarian follicle loss. Other markers of reproductive aging include increased fibrosis and shortening of telomeres in ovarian cells. The factors that accelerate reproductive aging are unclear, but likely involve exposure to endocrine-disrupting chemicals such as phthalates. Di(2-ethylhexyl) phthalate (DEHP) is a widely used phthalate and humans are exposed to it daily. Several studies show that DEHP induces reproductive toxicity by affecting estrous cyclicity, follicle numbers, and hormone levels. However, little is known about the mechanisms underlying DEHP-induced early onset of reproductive aging. Thus, this study tested the hypothesis that dietary exposure to DEHP induces early reproductive aging by affecting inflammation, fibrosis, and the expression of telomere regulators and antioxidant enzymes. Adult CD-1 female mice were exposed to vehicle (corn oil) or DEHP (0.5, 1.5, or 1500 ppm) via the chow for 6 months. Exposure to DEHP increased the expression of antioxidant enzymes and Caspase 3, increased expression of telomere-associated genes, and increased fibrosis levels in the ovary. In addition, DEHP exposure for 6 months altered ovarian and systemic inflammatory status. Collectively, our novel data suggest that 6-month dietary exposure to DEHP may accelerate reproductive aging by affecting several reproductive aging markers in female mice.
Collapse
Affiliation(s)
- Ramsés Santacruz-Márquez
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Adira M Safar
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Mary J Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Endia J Fletcher
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Romana A Nowak
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Lori T Raetzman
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
9
|
Ishikawa-Yamauchi Y, Emori C, Mori H, Endo T, Kobayashi K, Watanabe Y, Sagara H, Nagata T, Motooka D, Ninomiya A, Ozawa M, Ikawa M. Age-associated aberrations of the cumulus-oocyte interaction and in the zona pellucida structure reduce fertility in female mice. Commun Biol 2024; 7:1692. [PMID: 39719529 DOI: 10.1038/s42003-024-07305-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/08/2024] [Accepted: 11/22/2024] [Indexed: 12/26/2024] Open
Abstract
One of the major age-related declines in female reproductive function is the reduced quantity and quality of oocytes. Here we demonstrate that structural changes in the zona pellucida (ZP) were associated with decreased fertilization rates from 34- to 38-week-old female mice, equivalent to the mid-reproductive of human females. In middle-aged mouse ovaries, the decline in the number of transzonal projections was accompanied by a decrease in cumulus cell-oocyte interactions, resulting in a deterioration of the oocyte quality. Scanning electron microscopy showed the ZP surface microfilament structure transitioning from rugged to smooth with aging, leading to decreased fertilization rates due to impaired sperm binding to the ZP. Moreover, the fertilization rate of middle-aged mice was restored to a comparable level to that of young mice by destabilizing the ZP in the presence of glutathione. These results suggest that the age-related structural changes in the ZP are key for successful fertilization at reproductive age.
Collapse
Affiliation(s)
- Yu Ishikawa-Yamauchi
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 1088639, Japan
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, Kanagawa, 2360004, Japan
| | - Chihiro Emori
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871, Japan
| | - Hideto Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 9970035, Japan
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 2520882, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka, 5650871, Japan
| | - Tsutomu Endo
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 1138657, Japan
| | - Kiyonori Kobayashi
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871, Japan
| | - Yuji Watanabe
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 1088639, Japan
| | - Hiroshi Sagara
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 1088639, Japan
| | - Takeshi Nagata
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, 3058577, Japan
- Information and Communication Research Division, Mizuho Research and Technologies, Ltd., Inc., Tokyo, 1018443, Japan
| | - Daisuke Motooka
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871, Japan
| | - Akinori Ninomiya
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871, Japan
| | - Manabu Ozawa
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 1088639, Japan
| | - Masahito Ikawa
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 1088639, Japan.
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, 5650871, Japan.
| |
Collapse
|
10
|
Isola JVV, Biswas S, Jayarathne H, Hubbart CR, Hense JD, Matsuzaki S, Kinter MT, Humphries KM, Ocañas SR, Sadagurski M, Stout MB. Canagliflozin treatment prevents follicular exhaustion and attenuates hallmarks of ovarian aging in genetically heterogenous mice. GeroScience 2024:10.1007/s11357-024-01465-w. [PMID: 39672978 DOI: 10.1007/s11357-024-01465-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024] Open
Abstract
Ovarian aging is characterized by declines in follicular reserve and the emergence of mitochondrial dysfunction, reactive oxygen species production, inflammation, and fibrosis, which eventually results in menopause. Menopause is associated with increased systemic aging and the development of numerous comorbidities; therefore, the attenuation of ovarian aging could also delay systemic aging processes in women. Recent work has established that the anti-diabetic drug Canagliflozin (Cana), a sodium-glucose transporter 2 inhibitor, elicits benefits on aging-related outcomes, likely through the modulation of nutrient-sensing pathways and metabolic homeostasis. Given that nutrient-sensing pathways play a critical role in controlling primordial follicle activation, we sought to determine if chronic Cana administration would delay ovarian aging and curtail the emergence of pathological hallmarks associated with reproductive senescence. We found that mice receiving Cana maintained their ovarian reserve through 12 months of age, which was associated with declines in primordial follicles FoxO3a phosphorylation, a marker of activation, when compared to the age-matched controls. Furthermore, Cana treatment led to decreased collagen, lipofuscin, and T cell accumulation at 12 months of age. Whole ovary transcriptomic and proteomic analyses revealed subtle improvements, predominantly in mitochondrial function and the regulation of cellular proliferation. Pathway analyses of the transcriptomic data revealed a downregulation in cell proliferation and mitochondrial dysfunction signatures, with an upregulation of oxidative phosphorylation. Pathway analyses of the proteomic data revealed declines in signatures associated with PI3K/AKT activity and lymphocyte accumulation. Collectively, we demonstrate that Cana treatment can delay ovarian aging in mice and could potentially have efficacy for delaying ovarian aging in women.
Collapse
Affiliation(s)
- José V V Isola
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Subhasri Biswas
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Hashan Jayarathne
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
| | - Chase R Hubbart
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Jessica D Hense
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Michael T Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA
| | - Sarah R Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, Institute of Environmental Health Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, 48202, USA
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13 Street, Chapman E306, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
11
|
Converse A, Perry MJ, Dipali SS, Isola JVV, Kelly EB, Varberg JM, Zelinski MB, Gerton JL, Stout MB, Pritchard MT, Duncan FE. Multinucleated giant cells are hallmarks of ovarian aging with unique immune and degradation-associated molecular signatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626649. [PMID: 39677686 PMCID: PMC11642869 DOI: 10.1101/2024.12.03.626649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2024]
Abstract
The ovary is one of the first organs to exhibit signs of aging, characterized by reduced tissue function, chronic inflammation, and fibrosis. Multinucleated giant cells (MNGCs), formed by macrophage fusion, typically occur in chronic immune pathologies, including infectious and non-infectious granulomas and the foreign body response 1 , but are also observed in the aging ovary 2-4 . The function and consequence of ovarian MNGCs remain unknown as their biological activity is highly context-dependent, and their large size has limited their isolation and analysis through technologies such as single-cell RNA sequencing. In this study, we define ovarian MNGCs through a deep analysis of their presence across age and species using advanced imaging technologies as well as their unique transcriptome using laser capture microdissection. MNGCs form complex interconnected networks that increase with age in both mouse and nonhuman primate ovaries. MNGCs are characterized by high Gpnmb expression, a putative marker of ovarian and non-ovarian MNGCs 5,6 . Pathway analysis highlighted functions in apoptotic cell clearance, lipid metabolism, proteolysis, immune processes, and increased oxidative phosphorylation and antioxidant activity. Thus, MNGCs have signatures related to degradative processes, immune function, and high metabolic activity. These processes were enriched in MNGCs compared to primary ovarian macrophages, suggesting discrete functionality. MNGCs express CD4 and colocalize with T-cells, which were enriched in regions of MNGCs, indicative of a close interaction between these immune cell types. These findings implicate MNGCs in modulation of the ovarian immune landscape during aging given their high penetrance and unique molecular signature that supports degradative and immune functions.
Collapse
|
12
|
Jiang W, Sun W, Peng Y, Xu H, Fan H, Jin X, Xiao Y, Wang Y, Yang P, Shu W, Li J. Single-cell RNA sequencing reveals the intercellular crosstalk and the regulatory landscape of stromal cells during the whole life of the mouse ovary. LIFE MEDICINE 2024; 3:lnae041. [PMID: 39872151 PMCID: PMC11748273 DOI: 10.1093/lifemedi/lnae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/05/2024] [Accepted: 12/25/2024] [Indexed: 01/29/2025]
Abstract
The heterogeneity of ovarian mesenchymal/stromal cells has just been revealed in both mice and humans. However, it remains unclear about the cellular development trace and the intercellular communication network in the whole life of the ovary. In the study, we integrated ours and published single-cell RNA sequencing data from E11.5 (embryonic day 11.5) until M12 (12-month-old) ovaries to show the dynamics of somatic cells along the developmental timeline. The intercellular crosstalk among somatic cell types was depicted with collagen signaling pathway as the most outgoing signals from stromal cells. We identified mesenchymal progenitor cells (CD24+) as the origin of stromal cells. Although their numbers decreased significantly in adults, the cells served as the major signal sender until ovarian senescence. Moreover, the ovarian injury could activate these stem cells and induce stroma remodeling in the aged ovary. Thus, mesenchymal progenitor cells may represent a new strategy to delay ovarian aging in the future.
Collapse
Affiliation(s)
- Wan Jiang
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Wenya Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210029, China
| | - Yue Peng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210029, China
| | - Hao Xu
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Haonan Fan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210029, China
| | - Xin Jin
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women’s Hospital of Jiangnan University, Wuxi 214000, China
| | - Yue Xiao
- The First Affiliated Hospital of Zhejiang University School of Medicine, Center of Reproductive Medicine, Hangzhou 310009, China
| | - Yuxiang Wang
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Pin Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Wenjie Shu
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
13
|
Balough JL, Dipali SS, Velez K, Kumar TR, Duncan FE. Hallmarks of female reproductive aging in physiologic aging mice. NATURE AGING 2024; 4:1711-1730. [PMID: 39672896 DOI: 10.1038/s43587-024-00769-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/22/2023] [Accepted: 10/28/2024] [Indexed: 12/15/2024]
Abstract
The female reproductive axis is one of the first organ systems to age, which has consequences for fertility and overall health. Here, we provide a comprehensive overview of the biological process of female reproductive aging across reproductive organs, tissues and cells based on research with widely used physiologic aging mouse models, and describe the mechanisms that underpin these phenotypes. Overall, aging is associated with dysregulation of the hypothalamic-pituitary-ovarian axis, perturbations of the ovarian stroma, reduced egg quantity and quality, and altered uterine morphology and function that contributes to reduced capacity for fertilization and impaired embryo development. Ultimately, these age-related phenotypes contribute to altered pregnancy outcomes and adverse consequences in offspring. Conserved mechanisms of aging, as well as those unique to the reproductive system, underlie these phenotypes. The knowledge of such mechanisms will lead to development of therapeutics to extend female reproductive longevity and support endocrine function and overall health.
Collapse
Affiliation(s)
- Julia L Balough
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| | - Shweta S Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karen Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Francesca E Duncan
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA.
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Suryadevara V, Hudgins AD, Rajesh A, Pappalardo A, Karpova A, Dey AK, Hertzel A, Agudelo A, Rocha A, Soygur B, Schilling B, Carver CM, Aguayo-Mazzucato C, Baker DJ, Bernlohr DA, Jurk D, Mangarova DB, Quardokus EM, Enninga EAL, Schmidt EL, Chen F, Duncan FE, Cambuli F, Kaur G, Kuchel GA, Lee G, Daldrup-Link HE, Martini H, Phatnani H, Al-Naggar IM, Rahman I, Nie J, Passos JF, Silverstein JC, Campisi J, Wang J, Iwasaki K, Barbosa K, Metis K, Nernekli K, Niedernhofer LJ, Ding L, Wang L, Adams LC, Ruiyang L, Doolittle ML, Teneche MG, Schafer MJ, Xu M, Hajipour M, Boroumand M, Basisty N, Sloan N, Slavov N, Kuksenko O, Robson P, Gomez PT, Vasilikos P, Adams PD, Carapeto P, Zhu Q, Ramasamy R, Perez-Lorenzo R, Fan R, Dong R, Montgomery RR, Shaikh S, Vickovic S, Yin S, Kang S, Suvakov S, Khosla S, Garovic VD, Menon V, Xu Y, Song Y, Suh Y, Dou Z, Neretti N. SenNet recommendations for detecting senescent cells in different tissues. Nat Rev Mol Cell Biol 2024; 25:1001-1023. [PMID: 38831121 PMCID: PMC11578798 DOI: 10.1038/s41580-024-00738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Adam D Hudgins
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Adarsh Rajesh
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | | | - Alla Karpova
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Amit K Dey
- National Institute on Aging, NIH, Baltimore, MD, USA
| | - Ann Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Anthony Agudelo
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Azucena Rocha
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
- Center on the Biology of Aging, Brown University, Providence, RI, USA
| | - Bikem Soygur
- The Buck Institute for Research on Aging, Novato, CA, USA
| | | | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Cristina Aguayo-Mazzucato
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Darren J Baker
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Dilyana B Mangarova
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Ellen M Quardokus
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | | | - Elizabeth L Schmidt
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Feng Chen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca E Duncan
- The Buck Institute for Research on Aging, Novato, CA, USA
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - George A Kuchel
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Gung Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Helene Martini
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Hemali Phatnani
- New York Genome Center, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Iman M Al-Naggar
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jia Nie
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Jonathan C Silverstein
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Campisi
- The Buck Institute for Research on Aging, Novato, CA, USA
| | - Julia Wang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kanako Iwasaki
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Karina Barbosa
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Kay Metis
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kerem Nernekli
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Li Ding
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Lichao Wang
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | - Liu Ruiyang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Madison L Doolittle
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Marcos G Teneche
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ming Xu
- UConn Center on Aging, University of Connecticut Health Center, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Mohammadjavad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, School of Medicine, Stanford, CA, USA
| | | | | | - Nicholas Sloan
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Nikolai Slavov
- Center on the Biology of Aging, Brown University, Providence, RI, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, MA, USA
| | - Olena Kuksenko
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Paul Robson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Paul T Gomez
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - Periklis Vasilikos
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Peter D Adams
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Priscila Carapeto
- Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Harvard Medical School, Boston, USA
| | - Quan Zhu
- Center for Epigenomics, University of California, San Diego, CA, USA
| | | | | | - Rong Fan
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Runze Dong
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA, USA
| | - Ruth R Montgomery
- Yale-Center for Research on Aging, Yale School of Medicine, New Haven, CT, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Sanja Vickovic
- New York Genome Center, New York, NY, USA
- Herbert Irving Institute for Cancer Dynamics, Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Beijer Laboratory for Gene and Neuro Research, Uppsala University, Uppsala, Sweden
| | - Shanshan Yin
- Sanford Burnham Prebys Medical Discovery Institute, Cancer Genome and Epigenetics Program, La Jolla, CA, USA
| | - Shoukai Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Sonja Suvakov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
- Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Vesna D Garovic
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, USA
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Vilas Menon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Translational and Computational Neuroimmunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yizhe Song
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yousin Suh
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
- Department of Genetics and Development, Columbia University, New York, NY, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
15
|
Wang S, Ren J, Jing Y, Qu J, Liu GH. Perspectives on biomarkers of reproductive aging for fertility and beyond. NATURE AGING 2024; 4:1697-1710. [PMID: 39672897 DOI: 10.1038/s43587-024-00770-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/01/2024] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
Reproductive aging, spanning an age-related functional decline in the female and male reproductive systems, compromises fertility and leads to a range of health complications. In this Perspective, we first introduce a comprehensive framework for biomarkers applicable in clinical settings and discuss the existing repertoire of biomarkers used in practice. These encompass functional, imaging-based and biofluid-based biomarkers, all of which reflect the physiological characteristics of reproductive aging and help to determine the reproductive biological age. Next, we delve into the molecular alterations associated with aging in the reproductive system, highlighting the gap between these changes and their potential as biomarkers. Finally, to enhance the precision and practicality of assessing reproductive aging, we suggest adopting cutting-edge technologies for identifying new biomarkers and conducting thorough validations in population studies before clinical applications. These advancements will foster improved comprehension, prognosis and treatment of subfertility, thereby increasing chances of preserving reproductive health and resilience in populations of advanced age.
Collapse
Affiliation(s)
- Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jie Ren
- Aging Biomarker Consortium, Beijing, China
- Key Laboratory of RNA Science and Engineering, China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
- Aging Translational Medicine Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jing Qu
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, CAS, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
16
|
Winstanley YE, Stables JS, Gonzalez MB, Umehara T, Norman RJ, Robker RL. Emerging therapeutic strategies to mitigate female and male reproductive aging. NATURE AGING 2024; 4:1682-1696. [PMID: 39672895 DOI: 10.1038/s43587-024-00771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/22/2024] [Accepted: 10/29/2024] [Indexed: 12/15/2024]
Abstract
People today are choosing to have children later in life, often in their thirties and forties, when their fertility is in decline. We sought to identify and compile effective methods for improving either male or female fertility in this context of advanced reproductive age. We found few clinical studies with strong evidence for therapeutics that mitigate reproductive aging or extend fertility; however, this Perspective summarizes the range of emerging experimental strategies under development. Preclinical studies, in mouse models of aging, have identified pharmaceutical candidates that improve egg and sperm quality. Further, a diverse array of medically assisted reproduction methodologies, including those that stimulate rare ovarian follicles and rejuvenate egg quality using mitochondria, may have future utility for older patients. Finally, we highlight the many knowledge gaps and possible future directions in the field of therapeutics to extend the age of healthy human reproduction.
Collapse
Affiliation(s)
- Yasmyn E Winstanley
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Jennifer S Stables
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Macarena B Gonzalez
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia
| | - Takashi Umehara
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Robert J Norman
- Robinson Research Institute, Adelaide Medical School; The University of Adelaide, Adelaide, South Australia, Australia
| | - Rebecca L Robker
- Robinson Research Institute, School of Biomedicine; The University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
17
|
Gao H, Ying Y, Sun J, Huang Y, Li X, Zhang D. Genetically Determined Plasma Docosahexaenoic Acid Showed a Causal Association with Female Reproductive Longevity-Related Phenotype: A Mendelian Randomization Study. Nutrients 2024; 16:4103. [PMID: 39683497 DOI: 10.3390/nu16234103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Female reproductive aging remains irreversible. More evidence is needed on how polyunsaturated fatty acids (PUFAs) affect the female reproductive lifespan. OBJECTIVES To identify and validate specific PUFAs that can influence the timing of menarche and menopause in women. METHODS We utilized a two-sample Mendelian randomization (MR) framework to evaluate the causal relationships between various PUFAs and female reproductive longevity, defined by age at menarche (AAM) and age at natural menopause (ANM). Our analyses leveraged summary statistics from four genome-wide association studies (GWASs) on the plasma concentrations of 10 plasma PUFAs, including 8866 to 121,633 European individuals and 1361 East Asian individuals. Large-scale GWASs for reproductive traits provided the genetic data of AAM and ANM from over 202,323 European females and 43,861 East Asian females. Causal effects were estimated by beta coefficients, representing, for each increase in the standard deviation (SD) of plasma PUFA concentration, the yearly increase in AAM or ANM. Replications, meta-analyses, and cross-ancestry effects were assessed to validate the inference. CONCLUSIONS Higher plasma DHA was identified to be associated with delayed natural menopause without affecting menarche, offering a potential intervention target for extending reproductive longevity.
Collapse
Affiliation(s)
- Huajing Gao
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yuewen Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jing Sun
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yun Huang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xue Li
- Department of Big Data in Health Science, School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang Provincial Birth Defect Control and Prevention Research Center, Hangzhou 310006, China
| |
Collapse
|
18
|
Guo H, Xiao C, Li X, Li J, Chen X, Bin Liu, Hu R. PAI-1 siRNA-loaded biomimetic nanoparticles for ameliorating diminished ovarian reserve and inhibiting ovarian fibrosis. Eur J Pharmacol 2024; 983:176948. [PMID: 39216744 DOI: 10.1016/j.ejphar.2024.176948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
With specific and inherent mRNA cleaving activity, small interfering RNA against pro-fibrosis factor (PAI-1 siRNA, siPAI-1) has demonstrated the fucntion for preventing diminished ovarian reserve (DOR). Moreover, safe nanomaterials have provided ideal tools for delivering siRNA to the targeted cells to obtain high therapeutic efficacy. In order to improve the preventing capability of siPAI-1 for DOR, we synthesized one kind of biomimetic Poly (lactic-co-glycolic acid) copolymer (PLGA)-based nanoparticles (siPAI-1@PLGA@M-FSHL, abbreviated as SPMF). siPAI-1 was assembled into cationic PLGA nanoparticles, following with macrophage membrane coating (M) and FSHL81-95 peptide modification. SPMF NPs significantly enhanced cellular uptake and gene silencing efficiency in KGN cells in vitro. In vivo assay demonstrated that SPMF NPs can targetedly accumulate in the ovarian of DOR mice with Cyclophosphamide treatment (80 mg/kg/week, 2 weeks) and remarkably downregulate the levels of PAI-1 in ovarian, which finally resulted in the effective suppression of ovary fibrosis and improved the chemotherapy-induced follicle loss to increase the number of primordial, secondary, antral follicles by 62.05 %, 54.92 % and 64.37 %, respectively, compared with DOR group. In summary, this study demonstrates that siPAI-1-loaded SPMF with high safety and efficacy can potentially alleviate DOR by inhibiting the overexpression of PAI-1 in the ovarian.
Collapse
Affiliation(s)
- Hua Guo
- Department of Gynecology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Chang Xiao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xinshu Li
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jialing Li
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xue Chen
- Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Rong Hu
- Reproductive Medicine Center, General Hosptial of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
19
|
Ávila BM, Zanini BM, Luduvico KP, Oliveira TL, Hense JD, Garcia DN, Prosczek J, Stefanello FM, da Cruz PH, Giongo JL, Vaucher RA, Mason JB, Masternak MM, Schneider A. Effect of senolytic drugs in young female mice chemically induced to estropause. Life Sci 2024; 357:123073. [PMID: 39307182 DOI: 10.1016/j.lfs.2024.123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/27/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
AIMS This study aimed to assess metabolic responses and senescent cell burden in young female mice induced to estropause and treated with senolytic drugs. MAIN METHODS Estropause was induced by 4-vinylcyclohexene diepoxide (VCD) injection in two-month-old mice. The senolytics dasatinib and quercetin (D + Q) or fisetin were given by oral gavage once a month from five to 11 months of age. KEY FINDINGS VCD-induced estropause led to increased body mass and reduced albumin concentrations compared to untreated cyclic mice, without affecting insulin sensitivity, lipid profile, liver enzymes, or total proteins. Estropause decreased catalase activity in adipose tissue but had no significant effect on other redox parameters in adipose and hepatic tissues. Fisetin treatment reduced ROS levels in the hepatic tissue of estropause mice. Estropause did not influence senescence-associated beta-galactosidase activity in adipose and hepatic tissues but increased senescent cell markers and fibrosis in ovaries. Senolytic treatment did not decrease ovarian cellular senescence induced by estropause. SIGNIFICANCE Overall, the findings suggest that estropause leads to minor metabolic changes in young females, and the senolytics D + Q and fisetin had no protective effects despite increased ovarian senescence.
Collapse
Affiliation(s)
- Bianca M Ávila
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bianka M Zanini
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Karina P Luduvico
- Center of Chemical, Pharmaceutical, and Food Sciences, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Thais L Oliveira
- Biotechnology Center, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jéssica D Hense
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliane Prosczek
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Francieli M Stefanello
- Center of Chemical, Pharmaceutical, and Food Sciences, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Pedro H da Cruz
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Janice L Giongo
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Rodrigo A Vaucher
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeffrey B Mason
- Center of Chemical, Pharmaceutical, and Food Sciences, Microorganism Biochemistry and Molecular Biology Research Laboratory, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA; Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
20
|
Yan L, Tu W, Zhao X, Wan H, Wu J, Zhao Y, Wu J, Sun Y, Zhu L, Qin Y, Hu L, Yang H, Ke Q, Zhang W, Luo W, Xiao Z, Chen X, Wu Q, He B, Teng M, Dai S, Zhai J, Wu H, Yang X, Guo F, Wang H. Stem cell transplantation extends the reproductive life span of naturally aging cynomolgus monkeys. Cell Discov 2024; 10:111. [PMID: 39496598 PMCID: PMC11535534 DOI: 10.1038/s41421-024-00726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/18/2023] [Accepted: 08/03/2024] [Indexed: 11/06/2024] Open
Abstract
The ovary is crucial for female reproduction and health, as it generates oocytes and secretes sex hormones. Transplantation of mesenchymal stem cells (MSCs) has been shown to alleviate pathological ovarian aging. However, it is unclear whether MSCs could benefit the naturally aging ovary. In this study, we first examined the dynamics of ovarian reserve of Chinese women during perimenopause. Using a naturally aging cynomolgus monkey (Macaca fascicularis) model, we found that transplanting human embryonic stem cells-derived MSC-like cells, which we called M cells, into the aging ovaries significantly decreased ovarian fibrosis and DNA damage, enhanced secretion of sex hormones and improved fertility. Encouragingly, a healthy baby monkey was born after M-cell transplantation. Moreover, single-cell RNA sequencing analysis and in vitro functional validation suggested that apoptosis, oxidative damage, inflammation, and fibrosis were mitigated in granulosa cells and stromal cells following M-cell transplantation. Altogether, these findings demonstrate the beneficial effects of M-cell transplantation on aging ovaries and expand our understanding of the molecular mechanisms underlying ovarian aging and stem cell-based alleviation of this process.
Collapse
Affiliation(s)
- Long Yan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wan Tu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xuehan Zhao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Haifeng Wan
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jiaqi Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yan Zhao
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jun Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Linli Hu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hua Yang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiong Ke
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenzhe Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Luo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, China
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zhenyu Xiao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xueyu Chen
- Laboratory of Neonatology, Department of Neonatology, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Qiqian Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Beijia He
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Man Teng
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Shanjun Dai
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jinglei Zhai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Fan Guo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
21
|
Chan-Sui R, Kruger RE, Cho E, Padmanabhan V, Moravek M, Shikanov A. Reproductive Health in Trans and Gender Diverse Patients: Effects of transmasculine gender-affirming hormone therapy on future reproductive capacity: clinical data, animal models, and gaps in knowledge. Reproduction 2024; 168:e240163. [PMID: 39190001 PMCID: PMC11449632 DOI: 10.1530/rep-24-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
In brief Animal studies are needed to inform clinical guidance on the effects of testosterone gender-affirming hormone therapy (T-GAHT) on fertility. This review summarizes current animal models of T-GAHT and identifies gaps in knowledge for future study. Abstract Testosterone gender affirming hormone therapy (T-GAHT) is frequently used by transgender and gender-diverse individuals assigned female at birth to establish masculinizing characteristics. Although many seek parenthood, particularly as a gestational parent or through surrogacy, the current standard guidance of fertility counseling for individuals on testosterone (T) lacks clarity. At this time, individuals are typically recommended to undergo fertility preservation or stop treatment, associating T-therapy with a loss of fertility; however, there is an absence of consistent information regarding the true fertility potential for transgender and gender-diverse adults and adolescents. This review evaluates recent studies that utilize animal models of T-GAHT to relate to findings from clinical studies, with a more specific focus on fertility. Relevant literature based on murine models in post- and pre-pubertal populations has suggested reversibility of the impacts of T-GAHT, alone or following gonadotropin-releasing hormone agonist (GnRHa), on reproduction. These studies reported changes in clitoral area and ovarian morphology, including corpora lutea, follicle counts, and ovarian weights from T-treated mice. Future studies should aim to determine the impact of the duration of T-treatment and cessation on fertility outcomes, as well as establish animal models that are clinically representative of these outcomes with respect to gender diverse populations.
Collapse
Affiliation(s)
- Ruth Chan-Sui
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robin E. Kruger
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evelyn Cho
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vasantha Padmanabhan
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor
| | - Molly Moravek
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
He Y, Ye R, Peng Y, Pei Q, Wu L, Wang C, Ni W, Li M, Zhang Y, Yao M. Photobiomodulation ameliorates ovarian aging by alleviating oxidative stress and inflammation damage and improving mitochondrial function. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113024. [PMID: 39276447 DOI: 10.1016/j.jphotobiol.2024.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Ovarian aging is a serious clinical concern. Few safe and effective methods are currently available to improve ovarian functions. Photobiomodulation (PBM) is a safe and noninvasive physical therapy that can modulate a series of biological processes. Recently, several studies have noted its potential to improve the function of ovary and reproductive cells. However, the effects of PBM treatment on natural ovarian aging remain unclear. In this study, we used a naturally reproductive aging mouse model to observe the effect of PBM on ovarian function. Young and aged female ICR mice were treated with or without PBM for 2 months. PBM was performed using a semiconductor InGaAlP laser emitting at 650 nm (80 mW, 6.7 mW/cm2 for 5 or 10 min, resulting in a dose of 2 or 4 J/cm2, respectively). After treatment, the effects of PBM and its role in oxidative stress, inflammation, and mitochondrial function were investigated. We found that PBM (4 J/cm2) effectively recovered the levels of sex hormones, increased the number of primordial and growing follicles, improved angiogenesis, and decreased cell apoptosis in naturally aged mice. Moreover, PBM reduced oxidative stress, inhibited chronic ovarian inflammation, and improved mitochondrial function in aged ovaries. Similar protective effects of PBM were observed in a hydrogen peroxide-induced oxidative stress model of human granulosa cell line (KGN) in vitro. Increased cell viability, cell proliferation, hormone secretion, mitochondrial membrane potential, and adenosine triphosphate levels and decreased apoptosis and oxidative stress were detected in KGN cells after PBM treatment. Collectively, this study suggest that PBM treatment is beneficial for restoring ovarian function in naturally reproductive aging mice and has a significant protective effect against oxidative stress damage in KGN cells. The mechanisms underlying the benefits of PBM in ovarian aging include antioxidant stress, reduction of inflammation, and preservation of mitochondrial function. Therefore, this study emphasizes the potential of PBM as a therapeutic intervention to ameliorate ovarian aging.
Collapse
Affiliation(s)
- Yu He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rongan Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yinbo Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qing Pei
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Wu
- Shanghai Institute of Laser Technology, Shanghai 200233, China
| | - Caixia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wei Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiqiu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
23
|
Yang YF, Cheng SY, Wang YL, Yue ZP, Yu YX, Chen YZ, Wang WK, Xu ZR, Qi ZQ, Liu Y. Accumulated inflammation and fibrosis participate in atrazine induced ovary toxicity in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124672. [PMID: 39103034 DOI: 10.1016/j.envpol.2024.124672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 08/07/2024]
Abstract
Atrazine is a widely used herbicide in agricultural production. Previous studies have shown that atrazine affects hormone secretion and oocyte maturation in female reproduction. However, the specific mechanism by which atrazine affects ovarian function remains unclear. In this study, using a mouse gastric lavage model, we report that four weeks of atrazine exposure affects body growth, interferes with the estrous cycle, and increases the number of atretic follicles in mice. The expression levels of follicle development related factors StAR, BMP15, and AMH decreased. Metabolomic analysis revealed that atrazine activates an inflammatory response in ovarian tissue. Further studies confirmed that the expression levels of TNF-α, IL-6, and NF-κB increased in the ovaries of mice exposed to atrazine. Additionally, α-smooth muscle actin (α-SMA) accumulated in ovarian tissue, and transforming growth factor-β (TGF-β) signaling was activated, indicating the occurrence of tissue fibrosis. Moreover, mice exposed to atrazine produced fewer oocytes and exhibited reduced embryonic development. Furthermore, mice exposed to atrazine exhibited altered gut microbiota abundance and a disrupted colon barrier. Collectively, these findings suggest that atrazine exposure induces ovarian inflammation and fibrosis, disrupts ovarian homeostasis, and impairs follicle maturation, ultimately reducing oocyte quality.
Collapse
Affiliation(s)
- Yi-Fan Yang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Si-Yao Cheng
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Ya-Long Wang
- Center for Reproductive Medicine, Maternity and Child Health Care Hospital in Xiangtan, Xiangtan, Hunan, 411100, China
| | - Zhao-Ping Yue
- Center for Reproductive Medicine, Maternity and Child Health Care Hospital in Xiangtan, Xiangtan, Hunan, 411100, China
| | - Yu-Xi Yu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yan-Zhu Chen
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wen-Ke Wang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhi-Ran Xu
- Translational Medicine Research Center, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, Guangxi, 530011, China
| | - Zhong-Quan Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
24
|
Clark KL, George JW, Davis JS. Adolescent exposure to a mixture of per- and polyfluoroalkyl substances (PFAS) depletes the ovarian reserve, increases ovarian fibrosis, and alters the Hippo pathway in adult female mice. Toxicol Sci 2024; 202:36-49. [PMID: 39141488 PMCID: PMC11514835 DOI: 10.1093/toxsci/kfae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 08/16/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals known for their environmental persistence and resistance to biodegradation. This study investigated the impact of adolescent exposure to a PFAS mixture on adult ovarian function. Female CD-1 mice were orally exposed to vehicle control or a PFAS mixture (comprised of perfluorooctanoic acid, perfluorooctanesulfonic acid, undecafluoro-2-methyl-3-oxahexanoic acid, and perfluorobutanesulfonic acid) for 15 d. After a 42-d recovery period, reproductive hormones, ovarian fibrosis, and ovarian gene and protein expression were analyzed using ELISA, Picrosirius red staining, qPCR, and immunoblotting, respectively. Results revealed that PFAS exposure did not affect adult body or organ weight, although ovarian weight slightly decreased. PFAS-exposed mice exhibited a disturbed estrous cycle, with less time spent in proestrus than control mice. Follicle counting indicated a reduction in primordial and primary follicles. Serum analysis revealed no changes in steroid hormones, follicle-stimulating hormone, or anti-Müllerian hormone, but a significant increase in luteinizing hormone was observed in PFAS-treated mice. Ovaries collected from PFAS-treated mice had increased mRNA transcripts for steroidogenic enzymes and fatty acid synthesis-related genes. PFAS exposure also increased collagen content in the ovary. Additionally, serum tumor necrosis factor-α levels were higher in PFAS-treated mice. Finally, transcripts and protein abundance for Hippo pathway components were upregulated in the ovaries of the PFAS-treated mice. Overall, these findings suggest that adolescent exposure to PFAS can disrupt ovarian function in adulthood.
Collapse
Affiliation(s)
- Kendra L Clark
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Environmental, Agricultural, and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Jitu W George
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - John S Davis
- Department of Obstetrics and Gynecology, Olson Center for Women’s Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| |
Collapse
|
25
|
Bomba-Warczak EK, Velez KM, Zhou LT, Guillermier C, Edassery S, Steinhauser ML, Savas JN, Duncan FE. Exceptional longevity of mammalian ovarian and oocyte macromolecules throughout the reproductive lifespan. eLife 2024; 13:RP93172. [PMID: 39480006 PMCID: PMC11527430 DOI: 10.7554/elife.93172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/02/2024] Open
Abstract
The mechanisms contributing to age-related deterioration of the female reproductive system are complex, however aberrant protein homeostasis is a major contributor. We elucidated exceptionally stable proteins, structures, and macromolecules that persist in mammalian ovaries and gametes across the reproductive lifespan. Ovaries exhibit localized structural and cell-type-specific enrichment of stable macromolecules in both the follicular and extrafollicular environments. Moreover, ovaries and oocytes both harbor a panel of exceptionally long-lived proteins, including cytoskeletal, mitochondrial, and oocyte-derived proteins. The exceptional persistence of these long-lived molecules suggest a critical role in lifelong maintenance and age-dependent deterioration of reproductive tissues.
Collapse
Affiliation(s)
- Ewa K Bomba-Warczak
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Karen M Velez
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| | - Christelle Guillermier
- Department of Medicine, Aging Institute, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Medicine, Division of Genetics, Brigham and Women’s HospitalBostonUnited States
| | - Seby Edassery
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Matthew L Steinhauser
- Department of Medicine, Aging Institute, University of Pittsburgh School of MedicinePittsburghUnited States
- Department of Medicine, Division of Genetics, Brigham and Women’s HospitalBostonUnited States
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern UniversityChicagoUnited States
| |
Collapse
|
26
|
Xia X, Yang Y, Liu P, Chen L, Dai X, Xue P, Wang Y. The senolytic drug ABT-263 accelerates ovarian aging in older female mice. Sci Rep 2024; 14:23178. [PMID: 39369073 PMCID: PMC11457520 DOI: 10.1038/s41598-024-73828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024] Open
Abstract
Previous studies have reported that senolytic drugs can reverse obesity-mediated accumulation of senescent cells in the ovary and protect against cisplatin-induced ovarian injury by removing senescent cells. Early intervention with ABT-263 has been shown to mitigate ovarian aging. However, it remains unknown whether treatment with ABT-263 could rejuvenate the aged ovary in reproductively old females. Therefore, the current study was aimed to investigate whether advanced age intervention with ABT-263 could ameliorate age-related decline in ovarian function. Fourteen 16-month-old mice with a C57/BL6 background were treated with ABT-263 (N = 7) or vehicle (N = 7) for two weeks. Mice were initially treated with ABT-263 (60 mg/kg/d) or vehicle for 7 consecutive days. After a 7-day break, the treatment was repeated for another 7 consecutive days. Six 2-month-old mice with C57BL/6 were used as a young control. The hormonal levels, estrus cycles, ovarian reserve, ovarian cell proliferation and apoptosis, ovarian fibrosis, and steroidogenic gene expression of ovarian stromal cells were evaluated. ABT-263 treatment did not rescue abnormal estrus cycles and sex hormonal levels, or inhibit the formation of multinucleated giant cells and ovarian stromal cell apoptosis in aged ovaries. However, it reduced ovarian fibrosis and preserved the steroidogenic gene expression of ovarian stromal cells in aged ovaries. Importantly, ABT-263 treatment further depleted ovarian follicles in aged mice. In conclusion, ABT-263 treatment accelerated the depletion of ovarian follicles in aged mice, suggesting that senolytic drugs for reproductively old female may adversely affect female fertility.
Collapse
Affiliation(s)
- Xiyang Xia
- The Center for Reproductive Medicine, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yingying Yang
- The Center for Reproductive Medicine, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Pengfei Liu
- The Department of Animal Center, Kebiao Medical Testing Center, Changzhou, Jiangsu, China
| | - Li Chen
- The Center for Reproductive Medicine, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China
| | - Xiuliang Dai
- The Center for Reproductive Medicine, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
| | - Pingping Xue
- The Center for Reproductive Medicine, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
| | - Yufeng Wang
- The Center for Reproductive Medicine, Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
| |
Collapse
|
27
|
Ma J, Wang L, Yang D, Luo J, Gao J, Wang J, Guo H, Li J, Wang F, Wu J, Hu R. Chronic stress causes ovarian fibrosis to impair female fertility in mice. Cell Signal 2024; 122:111334. [PMID: 39102927 DOI: 10.1016/j.cellsig.2024.111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
OBJECTIVE Chronic psychological stress is associated with impaired follicular development and ovarian dysfunction. Many aspects of this dysfunction and the underlying mechanisms remain unclear. Using a chronic unpredictable mild stress (CUMS) mouse model, we investigate the influence of chronic stress on ovarian function and explore potential mechanisms. METHODS A CUMS mouse model was constructed over eight months, covering the period from sexual maturity to the onset of declining fertility in mice. At the end of the 2nd, 4th, 6th, and 8th months of exposure to CUMS, behavioral and physiological assays, including the sucrose preference test, tail suspension test, and serum corticosterone levels, were conducted to validate the effectiveness of the stress model. Fertility and ovarian function were assessed by analyzing the estrous cycle, number of offspring, sex hormone levels, follicle counts, granulosa cell proliferation and apoptosis, and the expression levels of fibrosis markers. Furthermore, proteomic analyses were performed on the ovaries to investigate the molecular mechanisms of ovarian fibrosis induced by CUMS. RESULTS With continued CUMS exposure, there was a gradual decline in both the ovary-to-body weight ratio and the number of offspring. Moreover, the percentage of atretic follicles was notably higher in the CUMS-exposed groups compared to the control groups. It is noticeable that CUMS triggered granulosa cell apoptosis and halted proliferation. Additionally, increased expression of α-SMA and Collagen I in the ovaries of CUMS-exposed mice indicated that CUMS could induce ovarian fibrosis. Proteomic analysis provided insights into the activation of specific biological processes and molecules associated with fibrosis induced by chronic stress. CONCLUSIONS Our results strongly suggest that exposure to CUMS induces ovarian fibrosis, which influences follicular development and ultimately contributes to fertility decline. These findings offer novel perspectives on the impact of chronic stress on ovarian dysfunction.
Collapse
Affiliation(s)
- Jie Ma
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lu Wang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Danyu Yang
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jia Luo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jinmei Gao
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jinfang Wang
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hua Guo
- General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jialing Li
- Reproductive Medicine Center, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Feimiao Wang
- Reproductive Medicine Center, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ji Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rong Hu
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Reproductive Medicine Center, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, Ningxia 750004, China; General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
28
|
Guo Y, Xue L, Tang W, Xiong J, Chen D, Dai Y, Wu C, Wei S, Dai J, Wu M, Wang S. Ovarian microenvironment: challenges and opportunities in protecting against chemotherapy-associated ovarian damage. Hum Reprod Update 2024; 30:614-647. [PMID: 38942605 PMCID: PMC11369228 DOI: 10.1093/humupd/dmae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2023] [Revised: 04/27/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Chemotherapy-associated ovarian damage (CAOD) is one of the most feared short- and long-term side effects of anticancer treatment in premenopausal women. Accumulating detailed data show that different chemotherapy regimens can lead to disturbance of ovarian hormone levels, reduced or lost fertility, and an increased risk of early menopause. Previous studies have often focused on the direct effects of chemotherapeutic drugs on ovarian follicles, such as direct DNA damage-mediated apoptotic death and primordial follicle burnout. Emerging evidence has revealed an imbalance in the ovarian microenvironment during chemotherapy. The ovarian microenvironment provides nutritional support and transportation of signals that stimulate the growth and development of follicles, ovulation, and corpus luteum formation. The close interaction between the ovarian microenvironment and follicles can determine ovarian function. Therefore, designing novel and precise strategies to manipulate the ovarian microenvironment may be a new strategy to protect ovarian function during chemotherapy. OBJECTIVE AND RATIONALE This review details the changes that occur in the ovarian microenvironment during chemotherapy and emphasizes the importance of developing new therapeutics that protect ovarian function by targeting the ovarian microenvironment during chemotherapy. SEARCH METHODS A comprehensive review of the literature was performed by searching PubMed up to April 2024. Search terms included 'ovarian microenvironment' (ovarian extracellular matrix, ovarian stromal cells, ovarian interstitial, ovarian blood vessels, ovarian lymphatic vessels, ovarian macrophages, ovarian lymphocytes, ovarian immune cytokines, ovarian oxidative stress, ovarian reactive oxygen species, ovarian senescence cells, ovarian senescence-associated secretory phenotypes, ovarian oogonial stem cells, ovarian stem cells), terms related to ovarian function (reproductive health, fertility, infertility, fecundity, ovarian reserve, ovarian function, menopause, decreased ovarian reserve, premature ovarian insufficiency/failure), and terms related to chemotherapy (cyclophosphamide, lfosfamide, chlormethine, chlorambucil, busulfan, melphalan, procarbazine, cisplatin, doxorubicin, carboplatin, taxane, paclitaxel, docetaxel, 5-fluorouraci, vincristine, methotrexate, dactinomycin, bleomycin, mercaptopurine). OUTCOMES The ovarian microenvironment shows great changes during chemotherapy, inducing extracellular matrix deposition and stromal fibrosis, angiogenesis disorders, immune microenvironment disturbance, oxidative stress imbalances, ovarian stem cell exhaustion, and cell senescence, thereby lowering the quantity and quality of ovarian follicles. Several methods targeting the ovarian microenvironment have been adopted to prevent and treat CAOD, such as stem cell therapy and the use of free radical scavengers, senolytherapies, immunomodulators, and proangiogenic factors. WIDER IMPLICATIONS Ovarian function is determined by its 'seeds' (follicles) and 'soil' (ovarian microenvironment). The ovarian microenvironment has been reported to play a vital role in CAOD and targeting the ovarian microenvironment may present potential therapeutic approaches for CAOD. However, the relation between the ovarian microenvironment, its regulatory networks, and CAOD needs to be further studied. A better understanding of these issues could be helpful in explaining the pathogenesis of CAOD and creating innovative strategies for counteracting the effects exerted on ovarian function. Our aim is that this narrative review of CAOD will stimulate more research in this important field. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
29
|
Sharma A, Becker F, Tao X, Baddela VS, Koczan D, Ludwig C, Vanselow J. Hyperplastic ovarian stromal cells express genes associated to tumor progression: a case study. BMC Vet Res 2024; 20:439. [PMID: 39342193 PMCID: PMC11438404 DOI: 10.1186/s12917-024-04275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2023] [Accepted: 09/10/2024] [Indexed: 10/01/2024] Open
Abstract
The current study presents the analysis of stromal cells obtained from an hyperplastic left-ovary of a Holstein cow. Cultured hyperplastic stromal cells displayed a fibroblast-like morphology and ceased proliferation after the 8th passage. The non-cancerous nature of stromal cells was confirmed by in vitro cell proliferation and migration assays. Negligible amounts of E2 were detected in the spent media of cultured stromal cells, which suggests that stromal cells were non-estradiol synthesizing cells. As revealed in immunofluorescence and gene expression analysis, the hyperplastic stromal cells explicitly expressed vimentin in their cytoskeleton. Upon hematoxylin staining, a highly dense population of stromal cells was observed in the stromal tissue of the hyperplastic ovary. To explore genome-wide alterations, mRNA microarray analysis was performed using Affymetrix Bovine Gene 1.0ST Arrays compared to normal ovarian derived stromal cells. The microarray identified 1396 differentially expressed genes, of which 733 were up- and 663 down-regulated in hyperplastic stromal cells. Importantly, asporin (ASPN) and vascular cell adhesion molecule 1 (VCAM1) were among the highly up-regulated genes. Higher expression of ASPN was also confirmed by immunohistochemistry and RT-qPCR analysis. Ingenuity pathway analysis (IPA) identified about 98 significantly enriched (-log (p value ≥ 1.3) canonical pathways, importantly of which the "Sirutin Signaling Pathway" and "Mitochondrial Dysfunction" were highly activated while "Oxidative phosphorylation" was inhibited. Additionally, higher proportion of hyperplastic stromal cells in the S-phase of cell cycle, could be attributed to higher expression levels of cell proliferation genes such as CCND2 and CDK6.
Collapse
Affiliation(s)
- Arpna Sharma
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, USA.
| | - Frank Becker
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Xuelian Tao
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Vijay Simha Baddela
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Dirk Koczan
- Institut für Immunologie, Universität Rostock, 18055, Rostock, Germany
| | - Carolin Ludwig
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Jens Vanselow
- Forschungsinstitut für Nutztierbiologie (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| |
Collapse
|
30
|
Amargant F, Magalhaes C, Pritchard MT, Duncan FE. Systemic low-dose anti-fibrotic treatment attenuates ovarian aging in the mouse. GeroScience 2024:10.1007/s11357-024-01322-w. [PMID: 39285140 DOI: 10.1007/s11357-024-01322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
The female reproductive system is one of the first to age in humans, resulting in infertility and endocrine disruptions. The aging ovary assumes a fibro-inflammatory milieu which negatively impacts gamete quantity and quality as well as ovulation. Here, we tested whether the systemic delivery of anti-inflammatory (Etanercept) or anti-fibrotic (Pirfenidone) drugs attenuates ovarian aging in mice. We first evaluated the ability of these drugs to decrease the expression of fibro-inflammatory genes in primary ovarian stromal cells treated with a pro-fibrotic or a pro-inflammatory stimulus. Whereas Etanercept did not block Tnf expression in ovarian stromal cells, Pirfenidone significantly reduced Col1a1 expression. We then tested Pirfenidone in vivo where the drug was delivered systemically via mini-osmotic pumps for 6 weeks. Pirfenidone mitigated the age-dependent increase in ovarian fibrosis without impacting overall health parameters. Ovarian function was improved in Pirfenidone-treated mice as evidenced by increased follicle and corpora lutea number, AMH levels, and improved estrous cyclicity. Transcriptomic analysis revealed that Pirfenidone treatment resulted in an upregulation of reproductive function-related genes at 8.5 months and a downregulation of inflammatory genes at 12 months of age. These findings demonstrate that reducing the fibroinflammatory ovarian microenvironment improves ovarian function, thereby supporting modulating the ovarian environment as a therapeutic avenue to extend reproductive longevity.
Collapse
Affiliation(s)
- Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Carol Magalhaes
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics and Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
31
|
Díaz-Hernández V, Marmolejo-Valencia A, Montiel-De la Cruz C, Piñón-Zárate G, Montaño LM, Mora-Herrera SI, Caldelas I. The Interstitial Gland as a Source of Pro- or Anti-Senescent Cells during Chinchilla Rabbit Ovarian Aging. Int J Mol Sci 2024; 25:9906. [PMID: 39337394 PMCID: PMC11432340 DOI: 10.3390/ijms25189906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The aging ovary in mammals leads to the reduced production of sex hormones and a deterioration in follicle quality. The interstitial gland originates from the hypertrophy of the theca cells of atretic follicles and represents an accumulative structure of the ovary that may contribute to its aging. Here, reproductive and mature rabbit ovaries are used to determine whether the interstitial gland plays a crucial role in ovarian aging. We demonstrate that, in the mature ovary, interstitial gland cells accumulate lipid droplets and show ultrastructural characteristics of lipophagy. Furthermore, they undergo modifications and present a foamy appearance, do not express the pan-leukocyte CD-45 marker, and express CYP11A1. These cells are the first to present an increase in lipofuscin accumulation. In foamy cells, the expression of p21 remains low, PCNA expression is maintained at mature ages, and their nuclei do not show positivity for H2AX. The interstitial gland shows a significant increase in lipofuscin accumulation compared with the ovaries of younger rabbits, but lipofuscin accumulation remains constant at mature ages. Surprisingly, no accumulation of cells with DNA damage is evident, and an increase in proliferative cells is observed at the age of 36 months. We suggest that the interstitial gland initially uses lipophagy to maintain steroidogenic homeostasis and prevent cellular senescence.
Collapse
Affiliation(s)
- Verónica Díaz-Hernández
- Departamento de Embriología y Genética, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alejandro Marmolejo-Valencia
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.M.-V.); (I.C.)
| | | | - Gabriela Piñón-Zárate
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Luis M. Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Silvia Ivonne Mora-Herrera
- Unidad de Metabolómica y Proteómica, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Ivette Caldelas
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (A.M.-V.); (I.C.)
| |
Collapse
|
32
|
Dipali SS, Gowett MQ, Kamat P, Converse A, Zaniker EJ, Fennell A, Chou T, Pritchard MT, Zelinski M, Phillip JM, Duncan FE. Self-organizing ovarian somatic organoids preserve cellular heterogeneity and reveal cellular contributions to ovarian aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.10.607456. [PMID: 39211064 PMCID: PMC11360955 DOI: 10.1101/2024.08.10.607456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/04/2024]
Abstract
Ovarian somatic cells are essential for reproductive function, but no existing ex vivo models recapitulate the cellular heterogeneity or interactions within this compartment. We engineered a novel ovarian somatic organoid model by culturing a stroma-enriched fraction of mouse ovaries in scaffold-free agarose micromolds. Ovarian somatic organoids self-organized, maintained diverse cell populations, produced extracellular matrix, and secreted hormones. Organoids generated from reproductively old mice exhibited reduced aggregation and growth compared to young counterparts, as well as differences in cellular composition. Interestingly, matrix fibroblasts from old mice demonstrated upregulation of pathways associated with the actin cytoskeleton and downregulation of cell adhesion pathways, indicative of increased cellular stiffness which may impair organoid aggregation. Cellular morphology, which is regulated by the cytoskeleton, significantly changed with age and in response to actin depolymerization. Moreover, actin depolymerization rescued age-associated organoid aggregation deficiency. Overall, ovarian somatic organoids have advanced fundamental knowledge of cellular contributions to ovarian aging.
Collapse
|
33
|
Gokyer D, Akinboro S, Zhou LT, Kleinhans A, Laronda MM, Duncan FE, Riley JK, Goldman KN, Babayev E. The oocyte microenvironment is altered in adolescents compared to oocyte donors. Hum Reprod Open 2024; 2024:hoae047. [PMID: 39211054 PMCID: PMC11361810 DOI: 10.1093/hropen/hoae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
STUDY QUESTION Do the molecular signatures of cumulus cells (CCs) and follicular fluid (FF) of adolescents undergoing fertility preservation differ from that of oocyte donors? SUMMARY ANSWER The microenvironment immediately surrounding the oocyte, including the CCs and FF, is altered in adolescents undergoing fertility preservation compared to oocyte donors. WHAT IS KNOWN ALREADY Adolescents experience a period of subfecundity following menarche. Recent evidence suggests that this may be at least partially due to increased oocyte aneuploidy. Reproductive juvenescence in mammals is associated with suboptimal oocyte quality. STUDY DESIGN SIZE DURATION This was a prospective cohort study. Adolescents (10-19 years old, n = 23) and oocyte donors (22-30 years old, n = 31) undergoing ovarian stimulation and oocyte retrieval at a single center between 1 November 2020 and 1 May 2023 were enrolled in this study. PARTICIPANTS/MATERIALS SETTING METHODS Patient demographics, ovarian stimulation, and oocyte retrieval outcomes were collected for all participants. The transcriptome of CCs associated with mature oocytes was compared between adolescents (10-19 years old, n = 19) and oocyte donors (22-30 years old, n = 19) using bulk RNA-sequencing. FF cytokine profiles (10-19 years old, n = 18 vs 25-30 years old, n = 16) were compared using cytokine arrays. MAIN RESULTS AND THE ROLE OF CHANCE RNA-seq analysis revealed 581 differentially expressed genes in CCs of adolescents relative to oocyte donors, with 361 genes downregulated and 220 upregulated. Genes enriched in pathways involved in cell cycle and cell division (e.g. GO: 1903047, P = 3.5 × 10-43; GO: 0051983, P = 4.1 × 10-30; GO: 0000281, P = 7.7 × 10-15; GO: 0044839, P = 5.3 × 10-13) were significantly downregulated, while genes enriched in several pathways involved in cellular and vesicle organization (e.g. GO: 0010256, P = 1.2 × 10-8; GO: 0051129, P = 6.8 × 10-7; GO: 0016050, P = 7.4 × 10-7; GO: 0051640, P = 8.1 × 10-7) were upregulated in CCs of adolescents compared to oocyte donors. The levels of nine cytokines were significantly increased in FF of adolescents compared to oocyte donors: IL-1 alpha (2-fold), IL-1 beta (1.7-fold), I-309 (2-fold), IL-15 (1.6-fold), TARC (1.9-fold), TPO (2.1-fold), IGFBP-4 (2-fold), IL-12-p40 (1.7-fold), and ENA-78 (1.4-fold). Interestingly, seven of these cytokines have known pro-inflammatory roles. Importantly, neither the CC transcriptomes nor FF cytokine profiles were different in adolescents with or without cancer. LARGE SCALE DATA Original high-throughput sequencing data have been deposited in Gene Expression Omnibus (GEO) database with the accession number GSE265995. LIMITATIONS REASONS FOR CAUTION This study aims to gain insights into the associated gamete quality by studying the immediate oocyte microenvironment. The direct study of oocytes is more challenging due to sample scarcity, as they are cryopreserved for future use, but would provide a more accurate assessment of oocyte reproductive potential. WIDER IMPLICATIONS OF THE FINDINGS Our findings have implications for the adolescent fertility preservation cycles. Understanding the expected quality of cryopreserved eggs in this age group will lead to better counseling of these patients about their reproductive potential and may help to determine the number of eggs that is recommended to be banked to achieve a reasonable chance of future live birth(s). STUDY FUNDING/COMPETING INTERESTS This project was supported by Friends of Prentice organization SP0061324 (M.M.L. and E.B.), Gesualdo Family Foundation (Research Scholar: M.M.L.), and NIH/NICHD K12 HD050121 (E.B.). The authors have declared that no conflict of interest exists.
Collapse
Affiliation(s)
- Dilan Gokyer
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sophia Akinboro
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neuroscience, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Luhan T Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Anna Kleinhans
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Monica M Laronda
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Basic and Preclinical Science, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joan K Riley
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Kara N Goldman
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern Medicine Center for Fertility and Reproductive Medicine, Chicago, IL, USA
| |
Collapse
|
34
|
Wu H, Nguyen H, Hashim PH, Fogelgren B, Duncan FE, Ward WS. Oocyte-specific EXOC5 expression is required for mouse oogenesis and folliculogenesis. Mol Hum Reprod 2024; 30:gaae026. [PMID: 39037927 PMCID: PMC11299862 DOI: 10.1093/molehr/gaae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2024] [Revised: 07/11/2024] [Indexed: 07/24/2024] Open
Abstract
EXOC5 is a crucial component of a large multi-subunit tethering complex, the exocyst complex, that is required for fusion of secretory vesicles with the plasma membrane. Exoc5 deleted mice die as early embryos. Therefore, to determine the role of EXOC5 in follicular and oocyte development, it was necessary to produce a conditional knockout (cKO), Zp3-Exoc5-cKO, in which Exoc5 was deleted only in oocytes. The first wave of folliculogenesis appeared histologically normal and progressed to the antral stage. However, after IVF with normal sperm, oocytes collected from the first wave (superovulated 21-day-old cKO mice) were shown to be developmentally incompetent. Adult follicular waves did not progress beyond the secondary follicle stage where they underwent apoptosis. Female cKO mice were infertile. Overall, these data suggest that the first wave of folliculogenesis is less sensitive to oocyte-specific loss of Exoc5, but the resulting gametes have reduced developmental competence. In contrast, subsequent waves of folliculogenesis require oocyte-specific Exoc5 for development past the preantral follicle stage. The Zp3-Exoc5-cKO mouse provides a model for disrupting folliculogenesis that also enables the separation between the first and subsequent waves of folliculogenesis.
Collapse
Affiliation(s)
- Hongwen Wu
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Hieu Nguyen
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Prianka H Hashim
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - W Steven Ward
- Department of Anatomy, Biochemistry & Physiology, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
- Department of Obstetrics, Gynecology & Women’s Health, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
35
|
Mihalas BP, Marston AL, Wu LE, Gilchrist RB. Reproductive Ageing: Metabolic contribution to age-related chromosome missegregation in mammalian oocytes. Reproduction 2024; 168:e230510. [PMID: 38718822 PMCID: PMC11301428 DOI: 10.1530/rep-23-0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2023] [Accepted: 05/07/2024] [Indexed: 06/29/2024]
Abstract
In brief Chromosome missegregation and declining energy metabolism are considered to be unrelated features of oocyte ageing that contribute to poor reproductive outcomes. Given the bioenergetic cost of chromosome segregation, we propose here that altered energy metabolism during ageing may be an underlying cause of age-related chromosome missegregation and aneuploidy. Abstract Advanced reproductive age in women is a major cause of infertility, miscarriage and congenital abnormalities. This is principally caused by a decrease in oocyte quality and developmental competence with age. Oocyte ageing is characterised by an increase in chromosome missegregation and aneuploidy. However, the underlying mechanisms of age-related aneuploidy have not been fully elucidated and are still under active investigation. In addition to chromosome missegregation, oocyte ageing is also accompanied by metabolic dysfunction. In this review, we integrate old and new perspectives on oocyte ageing, chromosome segregation and metabolism in mammalian oocytes and make direct links between these processes. We consider age-related alterations to chromosome segregation machinery, including the loss of cohesion, microtubule stability and the integrity of the spindle assembly checkpoint. We focus on how metabolic dysfunction in the ageing oocyte disrupts chromosome segregation machinery to contribute to and exacerbate age-related aneuploidy. More specifically, we discuss how mitochondrial function, ATP production and the generation of free radicals are altered during ageing. We also explore recent developments in oocyte metabolic ageing, including altered redox reactions (NAD+ metabolism) and the interactions between oocytes and their somatic nurse cells. Throughout the review, we integrate the mechanisms by which changes in oocyte metabolism influence age-related chromosome missegregation.
Collapse
Affiliation(s)
- Bettina P Mihalas
- Oocyte Biology Research Unit, Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| | - Adele L Marston
- Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lindsay E Wu
- School of Biomedical Sciences, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| | - Robert B Gilchrist
- Oocyte Biology Research Unit, Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Kensington, Australia
| |
Collapse
|
36
|
Zeng Y, Wang C, Yang C, Shan X, Meng XQ, Zhang M. Unveiling the role of chronic inflammation in ovarian aging: insights into mechanisms and clinical implications. Hum Reprod 2024; 39:1599-1607. [PMID: 38906835 DOI: 10.1093/humrep/deae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2023] [Revised: 05/14/2024] [Indexed: 06/23/2024] Open
Abstract
Ovarian aging, a natural process in women and various other female mammals as they age, is characterized by a decline in ovarian function and fertility due to a reduction in oocyte reserve and quality. This phenomenon is believed to result from a combination of genetic, hormonal, and environmental factors. While these factors collectively contribute to the shaping of ovarian aging, the substantial impact and intricate interplay of chronic inflammation in this process have been somewhat overlooked in discussions. Chronic inflammation, a prolonged and sustained inflammatory response persisting over an extended period, can exert detrimental effects on tissues and organs. This review delves into the novel hallmark of aging-chronic inflammation-to further emphasize the primary characteristics of ovarian aging. It endeavors to explore not only the clinical symptoms but also the underlying mechanisms associated with this complex process. By shining a spotlight on chronic inflammation, the aim is to broaden our understanding of the multifaceted aspects of ovarian aging and its potential clinical implications.
Collapse
Affiliation(s)
- Yutian Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Chun Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Cuiting Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
| | - Xudong Shan
- Genital Medicine Center, The Third People's Hospital of Cheng, Sichuan, China
| | - Xiang-Qian Meng
- Department of Reproductive Medicine, Sichuan Jinxin Xinan Woman & Children Hospital, Chengdu, China
| | - Ming Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu Campus, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
37
|
Timme K, González-Alvarez ME, Keating AF. Pre-pubertal obesity compromises ovarian oxidative stress, DNA repair and chemical biotransformation. Toxicol Appl Pharmacol 2024; 489:116981. [PMID: 38838792 DOI: 10.1016/j.taap.2024.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 06/07/2024]
Abstract
Obesity in adult females impairs fertility by altering oxidative stress, DNA repair and chemical biotransformation. Whether prepubertal obesity results in similar ovarian impacts is under-explored. The objective of this study was to induce obesity in prepubertal female mice and assess puberty onset, follicle number, and abundance of oxidative stress, DNA repair and chemical biotransformation proteins basally and in response to 7,12-dimethylbenz(a)anthracene (DMBA) exposure. DMBA is a polycyclic aromatic hydrocarbon that has been shown to be ovotoxic. Lactating dams (C57BL6J) were fed either a normal rodent containing 3.5% kCal from fat (lean), or a high fat diet comprised of 60% kCal from fat, and 9% kCal from sucrose. The offspring were weaned onto the diet of their dam and exposed at postnatal day 35 to either corn oil or DMBA (1 mg/kg) for 7 d via intraperitoneal injection. Mice on the HFD had reduced (P < 0.05) age at puberty onset as measured by vaginal opening but DMBA did not impact puberty onset. Heart, spleen, kidney, uterus and ovary weight were increased (P < 0.05) by obesity and liver weight was increased (P < 0.05) by DMBA exposure in obese mice. Follicle number was largely unaffected by obesity or DMBA exposure, with the exception of primary follicle number, which were higher (P < 0.05) in lean DMBA exposed and obese control relative to lean control mice. There were also greater numbers (P < 0.05) of corpora lutea in obese relative to lean mice. In lean mice, DMBA exposure reduced (P < 0.05) the level of CYP2E1, EPHX1, GSTP1, BRCA1, and CAT but this DMBA-induced reduction was absent in obese mice. Basally, obesity reduced (P < 0.05) the abundance of CYP2E1, EPHX1, GSTP1, BRCA1, SOD1 and CAT. There was greater (P < 0.05) fibrotic staining in obese DMBA-exposed ovaries and PPP2CA was decreased (P < 0.05) in growing follicles by both obesity and DMBA exposure. Thus, prepubertal obesity alters the capacity of the ovary to respond to DNA damage, ovotoxicant exposure and oxidative stress.
Collapse
Affiliation(s)
- Kelsey Timme
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Aileen F Keating
- Department of Animal Science, Iowa State University, Ames, IA, USA.
| |
Collapse
|
38
|
Yu M, Fan R, Wang D, Han Y, Dai X, Yang SM. Tannic acid alleviates 3-nitropropionic acid-induced ovarian damage in Brandt's vole (Lasiopodomys brandtii). Reprod Sci 2024; 31:2261-2272. [PMID: 38630174 DOI: 10.1007/s43032-024-01543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2024] [Accepted: 04/02/2024] [Indexed: 07/31/2024]
Abstract
Tannic acid (TA) is a polyphenol with antioxidant properties present in various plants. In this study, we explored the protective effect of TA against ovarian oxidative stress in Brandt's voles and its underlying mechanism. At various doses, 3-nitropropionic acid (3-NPA) was intraperitoneally injected into Brandt's voles to simulate ovarian oxidative stress. Thereafter, various doses of TA were intragastrically administered to examine the protective effect of TA against 3-NPA-induced ovarian damage. Changes in inflammation, autophagy, apoptosis, and oxidative stress-related factors were investigated through various biochemical and histological techniques. Ovarian oxidative stress was successfully induced by the intraperitoneal administration of 12.5 mg/kg 3-NPA for 18 days. As a result, the ovarian coefficient decreased and ovarian tissue fibrosis was induced. TA treatment effectively alleviated the increase in luteinizing hormone and follicle-stimulating hormone levels; the decrease in estradiol, progesterone, and anti-Müllerian hormone levels; and the decline in fertility induced by 3-NPA. Compared to that in the 3-NPA group, TA decreased the expression of autophagy-related proteins beclin-1 and LC3, as well as the level of apoptosis. It also activated the AKT/mTOR signaling pathway, downregulated PTEN and p-NF-κB expression, and upregulated Nrf2 expression. In conclusion, our findings indicate that TA could inhibit autophagy via the regulation of AKT/mTOR signaling, suppressing oxidative damage and inflammatory responses through Nrf2 to alleviate 3-NPA-induced ovarian damage. Collectively, the current findings highlight the protective effects of TA in Brandt's vole, where it promotes the maintenance of normal ovarian function.
Collapse
Affiliation(s)
- Minghao Yu
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, 264003, China.
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| | - Ruiyang Fan
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Daochen Wang
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yuxuan Han
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Xin Dai
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Sheng-Mei Yang
- Department of College of Biological Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
39
|
Hense JD, Garcia DN, Zanini BM, Barreto MM, Perreira GC, Isola JVV, de Brito C, Fornalik M, Mondal SA, Ávila BM, Oliveira TL, Rice HC, Lacy CI, Vaucher RA, Mason JB, Masternak MM, Stout MB, Schneider A. MASLD does not affect fertility and senolytics fail to prevent MASLD progression in male mice. Sci Rep 2024; 14:17332. [PMID: 39068167 PMCID: PMC11283523 DOI: 10.1038/s41598-024-67697-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/20/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
Senescent cells have been linked to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the effectiveness of senolytic drugs in reducing liver damage in mice with MASLD is not clear. Additionally, MASLD has been reported to adversely affect male reproductive function. Therefore, this study aimed to evaluate the protective effect of senolytic drugs on liver damage and fertility in male mice with MASLD. Three-month-old male mice were fed a standard diet (SD) or a choline-deficient western diet (WD) until 9 months of age. At 6 months of age mice were randomized within dietary treatment groups into senolytic (dasatinib + quercetin [D + Q]; fisetin [FIS]) or vehicle control treatment groups. We found that mice fed choline-deficient WD had liver damage characteristic of MASLD, with increased liver size, triglycerides accumulation, fibrosis, along increased liver cellular senescence and liver and systemic inflammation. Senolytics were not able to reduce liver damage, senescence and systemic inflammation, suggesting limited efficacy in controlling WD-induced liver damage. Sperm quality and fertility remained unchanged in mice developing MASLD or receiving senolytics. Our data suggest that liver damage and senescence in mice developing MASLD is not reversible by the use of senolytics. Additionally, neither MASLD nor senolytics affected fertility in male mice.
Collapse
Affiliation(s)
- Jessica D Hense
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Bianka M Zanini
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Mariana M Barreto
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Giulia C Perreira
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Camila de Brito
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Michal Fornalik
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Samim A Mondal
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
- Department of Endocrinology, JIPMER, Puducherry, 605006, India
| | - Bianca M Ávila
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil
| | - Thais L Oliveira
- Biotechnology Center, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Heather C Rice
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Charles I Lacy
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Rodrigo A Vaucher
- Center for Chemical, Pharmaceutical and Food Sciences, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeffrey B Mason
- Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, College of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma, OK, USA
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 Sala 228, Pelotas, RS, CEP 9601-610, Brazil.
| |
Collapse
|
40
|
Hense JD, Isola JVV, Garcia DN, Magalhães LS, Masternak MM, Stout MB, Schneider A. The role of cellular senescence in ovarian aging. NPJ AGING 2024; 10:35. [PMID: 39033161 PMCID: PMC11271274 DOI: 10.1038/s41514-024-00157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 07/23/2024]
Abstract
This review explores the relationship between ovarian aging and senescent cell accumulation, as well as the efficacy of senolytics to improve reproductive longevity. Reproductive longevity is determined by the age-associated decline in ovarian reserve, resulting in reduced fertility and eventually menopause. Cellular senescence is a state of permanent cell cycle arrest and resistance to apoptosis. Senescent cells accumulate in several tissues with advancing age, thereby promoting chronic inflammation and age-related diseases. Ovaries also appear to accumulate senescent cells with age, which might contribute to aging of the reproductive system and whole organism through SASP production. Importantly, senolytic drugs can eliminate senescent cells and may present a potential intervention to mitigate ovarian aging. Herein, we review the current literature related to the efficacy of senolytic drugs for extending the reproductive window in mice.
Collapse
Affiliation(s)
- Jéssica D Hense
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
41
|
Bomba-Warczak EK, Velez KM, Zhou LT, Guillermier C, Edassery S, Steinhauser ML, Savas JN, Elizabeth Duncan F. Exceptional longevity of mammalian ovarian and oocyte macromolecules throughout the reproductive lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.18.562852. [PMID: 37905022 PMCID: PMC10614913 DOI: 10.1101/2023.10.18.562852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/02/2023]
Abstract
The mechanisms contributing to age-related deterioration of the female reproductive system are complex, but aberrant protein homeostasis is a major contributor. We elucidated the exceptionally stable proteins, structures, and macromolecules that persist in mammalian ovaries and gametes across the reproductive lifespan. Ovaries exhibit localized structural and cell-type specific enrichment of stable macromolecules in both the follicular and extrafollicular environments. Moreover, both ovaries and oocytes harbor a panel of exceptionally long-lived proteins, including cytoskeletal components, mitochondrial, and oocyte-derived proteins. The exceptional persistence of these long-lived molecules might play a critical role in both lifelong maintenance and age-dependent deterioration of reproductive tissues.
Collapse
|
42
|
Xiao B, Dai Z, Li Z, Xu D, Yin H, Yang F, Sun N. Single-cell transcriptomic profiling unveils insights into ovarian fibrosis in obese mice. Biol Direct 2024; 19:52. [PMID: 38956667 PMCID: PMC11218254 DOI: 10.1186/s13062-024-00496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Adiposity profoundly impacts reproductive health in both humans and animals. However, the precise subpopulations contributing to infertility under obese conditions remain elusive. RESULTS In this study, we established an obese mouse model through an eighteen-week high-fat diet regimen in adult female mice. Employing single-cell RNA sequencing (scRNA-seq), we constructed a comprehensive single-cell atlas of ovarian tissues from these mice to scrutinize the impact of obesity on the ovarian microenvironment. ScRNA-seq revealed notable alterations in the microenvironment of ovarian tissues in obese mice. Granulosa cells, stromal cells, T cells, and macrophages exhibited functional imbalances compared to the control group. We observed heightened interaction strength in the SPP1-CD44 pairing within lgfbp7+ granulosa cell subtypes and Il1bhigh monocyte subtypes in the ovarian tissues of obese mice. Moreover, the interaction strength between Il1bhigh monocyte subtypes and Pdgfrb+ stromal cell subtypes in the form of TNF - TNFrsf1α interaction was also enhanced subsequently to obesity, potentially contributing to ovarian fibrosis pathogenesis. CONCLUSIONS We propose a model wherein granulosa cells secrete SPP1 to activate monocytes, subsequently triggering TNF-α secretion by monocytes, thereby activating stromal cells and ultimately leading to the development of ovarian fibrosis. Intervening in this process may represent a promising avenue for improving clinical outcomes in fertility treatments for obese women.
Collapse
Affiliation(s)
- Bang Xiao
- Department of Medical Genetics, Naval Medical University, 800 Xiang yin Road, Shanghai, 200433, China
| | - Zhihui Dai
- Department of Medical Genetics, Naval Medical University, 800 Xiang yin Road, Shanghai, 200433, China
| | - Zhixuan Li
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, 51 Fu cheng Road, Beijing, 100853, China
| | - Dabing Xu
- Department of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, 415 Feng yang Road, Shanghai, 200003, China
| | - Haozan Yin
- Department of Medical Genetics, Naval Medical University, 800 Xiang yin Road, Shanghai, 200433, China
| | - Fu Yang
- Department of Medical Genetics, Naval Medical University, 800 Xiang yin Road, Shanghai, 200433, China.
- Department of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, 415 Feng yang Road, Shanghai, 200003, China.
| | - Ningxia Sun
- Department of Reproductive Medicine, Second Affiliated Hospital of Naval Medical University, 415 Feng yang Road, Shanghai, 200003, China.
| |
Collapse
|
43
|
Harasimov K, Gorry RL, Welp LM, Penir SM, Horokhovskyi Y, Cheng S, Takaoka K, Stützer A, Frombach AS, Taylor Tavares AL, Raabe M, Haag S, Saha D, Grewe K, Schipper V, Rizzoli SO, Urlaub H, Liepe J, Schuh M. The maintenance of oocytes in the mammalian ovary involves extreme protein longevity. Nat Cell Biol 2024; 26:1124-1138. [PMID: 38902423 PMCID: PMC11252011 DOI: 10.1038/s41556-024-01442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024]
Abstract
Women are born with all of their oocytes. The oocyte proteome must be maintained with minimal damage throughout the woman's reproductive life, and hence for decades. Here we report that oocyte and ovarian proteostasis involves extreme protein longevity. Mouse ovaries had more extremely long-lived proteins than other tissues, including brain. These long-lived proteins had diverse functions, including in mitochondria, the cytoskeleton, chromatin and proteostasis. The stable proteins resided not only in oocytes but also in long-lived ovarian somatic cells. Our data suggest that mammals increase protein longevity and enhance proteostasis by chaperones and cellular antioxidants to maintain the female germline for long periods. Indeed, protein aggregation in oocytes did not increase with age and proteasome activity did not decay. However, increasing protein longevity cannot fully block female germline senescence. Large-scale proteome profiling of ~8,890 proteins revealed a decline in many long-lived proteins of the proteostasis network in the aging ovary, accompanied by massive proteome remodeling, which eventually leads to female fertility decline.
Collapse
Affiliation(s)
- Katarina Harasimov
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rebecca L Gorry
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luisa M Welp
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Mae Penir
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yehor Horokhovskyi
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katsuyoshi Takaoka
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Laboratory of Embryology, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Alexandra Stützer
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ann-Sophie Frombach
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ana Lisa Taylor Tavares
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- East Anglian Medical Genetics Service, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Monika Raabe
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sara Haag
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translation Alliance Lower Saxony, Hannover, Braunschweig, Göttingen, Germany
| | - Debojit Saha
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katharina Grewe
- Department for Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Vera Schipper
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Silvio O Rizzoli
- Department for Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Göttingen, Göttingen, Germany.
| | - Juliane Liepe
- Quantitative and Systems Biology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
44
|
Amargant F, Vieira C, Pritchard MT, Duncan FE. Systemic low-dose anti-fibrotic treatment attenuates ovarian aging in the mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600035. [PMID: 38979191 PMCID: PMC11230292 DOI: 10.1101/2024.06.21.600035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 07/10/2024]
Abstract
The female reproductive system is one of the first to age in humans, resulting in infertility and endocrine disruptions. The aging ovary assumes a fibro-inflammatory milieu which negatively impacts gamete quantity and quality as well as ovulation. Here we tested whether the systemic delivery of anti-inflammatory (Etanercept) or anti-fibrotic (Pirfenidone) drugs attenuates ovarian aging in mice. We first evaluated the ability of these drugs to decrease the expression of fibro-inflammatory genes in primary ovarian stromal cells. Whereas Etanercept did not block Tnf expression in ovarian stromal cells, Pirfenidone significantly reduced Col1a1 expression. We then tested Pirfenidone in vivo where the drug was delivered systemically via mini-osmotic pumps for 6-weeks. Pirfenidone mitigated the age-dependent increase in ovarian fibrosis without impacting overall health parameters. Ovarian function was improved in Pirfenidone-treated mice as evidenced by increased follicle and corpora lutea number, AMH levels, and improved estrous cyclicity. Transcriptomic analysis revealed that Pirfenidone treatment resulted in an upregulation of reproductive function-related genes at 8.5 months and a downregulation of inflammatory genes at 12 months of age. These findings demonstrate that reducing the fibroinflammatory ovarian microenvironment improves ovarian function, thereby supporting modulating the ovarian environment as a therapeutic avenue to extend reproductive longevity.
Collapse
Affiliation(s)
- Farners Amargant
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Carol Vieira
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michele T Pritchard
- Department of Pharmacology, Toxicology and Therapeutics and Institute for Reproductive and Developmental Sciences University of Kansas Medical Center, Kansas City, KS, USA
| | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
45
|
Zhang Z, Huang L, Brayboy L, Birrer M. Single-cell analysis of ovarian myeloid cells identifies aging associated changes in macrophages and signaling dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598667. [PMID: 38915572 PMCID: PMC11195259 DOI: 10.1101/2024.06.13.598667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/26/2024]
Abstract
The aging of mammalian ovary is accompanied by an increase in tissue fibrosis and heightened inflammation. Myeloid cells, including macrophages, monocytes, dendritic cells, and neutrophils, play pivotal roles in shaping the ovarian tissue microenvironment and regulating inflammatory responses. However, a comprehensive understanding of the roles of these cells in the ovarian aging process is lacking. To bridge this knowledge gap, we utilized single-cell RNA sequencing (scRNAseq) and flow cytometry analysis to functionally characterize CD45+ CD11b+ myeloid cell populations in young (3 months old) and aged (14-17 months old) murine ovaries. Our dataset unveiled the presence of five ovarian macrophage subsets, including a Cx3cr1 low Cd81 hi subset unique to the aged murine ovary. Most notably, our data revealed significant alterations in ANNEXIN and TGFβ signaling within aged ovarian myeloid cells, which suggest a novel mechanism contributing to the onset and progression of aging-associated inflammation and fibrosis in the ovarian tissue.
Collapse
Affiliation(s)
- Zijing Zhang
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
- Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Lu Huang
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Lynae Brayboy
- Department of Neuropediatrics Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Birrer
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
- Winthrop P Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
46
|
Zaniker EJ, Zhang M, Hughes L, La Follette L, Atazhanova T, Trofimchuk A, Babayev E, Duncan FE. Shear wave elastography to assess stiffness of the human ovary and other reproductive tissues across the reproductive lifespan in health and disease†. Biol Reprod 2024; 110:1100-1114. [PMID: 38609185 PMCID: PMC11180622 DOI: 10.1093/biolre/ioae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The ovary is one of the first organs to show overt signs of aging in the human body, and ovarian aging is associated with a loss of gamete quality and quantity. The age-dependent decline in ovarian function contributes to infertility and an altered endocrine milieu, which has ramifications for overall health. The aging ovarian microenvironment becomes fibro-inflammatory and stiff with age, and this has implications for ovarian physiology and pathology, including follicle growth, gamete quality, ovulation dynamics, and ovarian cancer. Thus, developing a non-invasive tool to measure and monitor the stiffness of the human ovary would represent a major advance for female reproductive health and longevity. Shear wave elastography is a quantitative ultrasound imaging method for evaluation of soft tissue stiffness. Shear wave elastography has been used clinically in assessment of liver fibrosis and characterization of tendinopathies and various neoplasms in thyroid, breast, prostate, and lymph nodes as a non-invasive diagnostic and prognostic tool. In this study, we review the underlying principles of shear wave elastography and its current clinical uses outside the reproductive tract as well as its successful application of shear wave elastography to reproductive tissues, including the uterus and cervix. We also describe an emerging use of this technology in evaluation of human ovarian stiffness via transvaginal ultrasound. Establishing ovarian stiffness as a clinical biomarker of ovarian aging may have implications for predicting the ovarian reserve and outcomes of Assisted Reproductive Technologies as well as for the assessment of the efficacy of emerging therapeutics to extend reproductive longevity. This parameter may also have broad relevance in other conditions where ovarian stiffness and fibrosis may be implicated, such as polycystic ovarian syndrome, late off target effects of chemotherapy and radiation, premature ovarian insufficiency, conditions of differences of sexual development, and ovarian cancer. Summary sentence: Shear Wave Elastography is a non-invasive technique to study human tissue stiffness, and here we review its clinical applications and implications for reproductive health and disease.
Collapse
Affiliation(s)
- Emily J Zaniker
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Man Zhang
- Department of Radiology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lydia Hughes
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Tomiris Atazhanova
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alexis Trofimchuk
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, USA
| |
Collapse
|
47
|
Pietroforte S, Plough M, Amargant F. Age-associated increased stiffness of the ovarian microenvironment impairs follicle development and oocyte quality and rapidly alters follicle gene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598134. [PMID: 38915651 PMCID: PMC11195110 DOI: 10.1101/2024.06.09.598134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/26/2024]
Abstract
In humans, aging triggers cellular and tissue deterioration, and the female reproductive system is the first to show signs of decline. Reproductive aging is associated with decreased ovarian reserve, decreased quality of the remaining oocytes, and decreased production of the ovarian hormones estrogen and progesterone. With aging, both mouse and human ovaries become pro-fibrotic and stiff. However, whether stiffness directly impairs ovarian function, folliculogenesis, and oocyte quality is unknown. To answer this question, we cultured mouse follicles in alginate gels that mimicked the stiffness of reproductively young and old ovaries. Follicles cultured in stiff hydrogels exhibited decreased survival and growth, decreased granulosa cell viability and estradiol synthesis, and decreased oocyte quality. We also observed a reduction in the number of granulosa cell-oocyte transzonal projections. RNA sequencing revealed early changes in the follicle transcriptome in response to stiffness. Follicles cultured in a stiff environment had lower expression of genes related to follicle development and greater expression of genes related to inflammation and extracellular matrix remodeling than follicles cultured in a soft environment. Altogether, our findings suggest that ovarian stiffness directly modulates folliculogenesis and contributes to the progressive decline in oocyte quantity and quality observed in women of advanced maternal age.
Collapse
Affiliation(s)
- Sara Pietroforte
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Makenzie Plough
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| | - Farners Amargant
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
48
|
Garcia DN, Hense JD, Zanini BM, Isola JVV, Prosczek JB, Ashiqueali S, Oliveira TL, Mason JB, Schadock IC, Barros CC, Stout MB, Masternak MM, Schneider A. Senolytic treatment fails to improve ovarian reserve or fertility in female mice. GeroScience 2024; 46:3445-3455. [PMID: 38358579 PMCID: PMC11009191 DOI: 10.1007/s11357-024-01089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024] Open
Abstract
Senescent cell number increases with age in different tissues, leading to greater senescent cell load, proinflammatory stress, and tissue dysfunction. In the current study, we tested the efficacy of senolytic drugs to reduce ovarian senescence and improve fertility in reproductive age female mice. In the first experiment, 1-month-old C57BL/6 female mice were treated every other week with D + Q (n = 24) or placebo (n = 24). At 3 and 6 months of age, female mice were mated with untreated males to evaluate pregnancy rate and litter size. In the second experiment, 6-month-old C57BL/6 female mice were treated monthly with D + Q (n = 30), fisetin (n = 30), or placebo (n = 30). Females were treated once a month until 11 months of age, then they were mated with untreated males for 30 days to evaluate pregnancy rate and litter size. In the first experiment, D + Q treatment did not affect pregnancy rate (P = 0.68), litter size (P = 0.58), or ovarian reserve (P > 0.05). Lipofuscin staining was lower in females treated with D + Q (P = 0.04), but expression of senescence genes in ovaries was similar. In the second experiment, D + Q or fisetin treatment also did not affect pregnancy rate (P = 0.37), litter size (P = 0.20), or ovarian reserve (P > 0.05). Lipofuscin staining (P = 0.008) and macrophage infiltration (P = 0.002) was lower in fisetin treated females. Overall, treatment with D + Q or fisetin did not affect ovarian reserve or fertility but did decrease some senescence markers in the ovary.
Collapse
Affiliation(s)
- Driele N Garcia
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 - Sala 239, Pelotas, RS, CEP 96010-610, Brazil
| | - Jessica D Hense
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 - Sala 239, Pelotas, RS, CEP 96010-610, Brazil
| | - Bianka M Zanini
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 - Sala 239, Pelotas, RS, CEP 96010-610, Brazil
| | - Jose V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Juliane B Prosczek
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 - Sala 239, Pelotas, RS, CEP 96010-610, Brazil
| | - Sarah Ashiqueali
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Thais L Oliveira
- Centro de Biotecnologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Jeffrey B Mason
- College of Veterinary Medicine, Department of Veterinary Clinical and Life Sciences, Center for Integrated BioSystems, Utah State University, Logan, UT, USA
| | - Ines C Schadock
- Experimental Toxicology Department, German Institute for Risk Assessment, Berlin, Germany
| | - Carlos C Barros
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 - Sala 239, Pelotas, RS, CEP 96010-610, Brazil
| | - Michael B Stout
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1 - Sala 239, Pelotas, RS, CEP 96010-610, Brazil.
| |
Collapse
|
49
|
Umehara T, Ogasahara M, Premarathne DMVS, Sasakawa Y, Sumida Y, Shimada M. Effect of globin peptide on female fertility in aging granulosa cell-specific Nrg1 knockout mice. J Reprod Dev 2024; 70:202-206. [PMID: 38479855 PMCID: PMC11153118 DOI: 10.1262/jrd.2023-076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2023] [Accepted: 02/02/2024] [Indexed: 06/04/2024] Open
Abstract
Ovarian fibrosis contributes to age-related ovarian dysfunction. In our previous study, we observed ovarian fibrosis in both obese and aging mice with intracellular lipid droplets in the fibrotic ovaries. Although the importance of mitochondria in ovarian fibrosis has been recognized in pharmacological studies, their role in lipid metabolism remains unclear. Globin peptide (GP), derived from hemoglobin, enhances lipid metabolism in obese mice. This study aimed to elucidate the importance of lipid metabolism in ovarian fibrosis by using GP. Treatment of ovarian stromal cells with GP increased mitochondrial oxygen consumption during β-oxidation. Lipid accumulation was also observed in the ovaries of granulosa cell-specific Nrg1 knockout mice (gcNrg1KO), and the administration of GP to gcNrg1KO mice for two months reduced ovarian lipid accumulation and fibrosis in addition to restoring the estrous cycle. GP holds promise for mitigating lipid-related ovarian issues and provides a novel approach to safeguarding ovarian health by regulating fibrosis via lipid pathways.
Collapse
Affiliation(s)
- Takashi Umehara
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Marino Ogasahara
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - D M V Supun Premarathne
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | | | - Yasuo Sumida
- MG Pharma, Inc., Osaka 567-0085, Japan
- Rohto Pharmaceutical Co., Ltd., Osaka 530-0011, Japan
| | - Masayuki Shimada
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
50
|
Guerra LHA, Campos SGP, Taboga SR, Vilamaior PSL. Prostatic morphological changes throughout life: Cytochemistry as a tool to reveal tissue aging markers. Microsc Res Tech 2024; 87:1020-1030. [PMID: 38186358 DOI: 10.1002/jemt.24489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/24/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
The prostate undergoes normal or pathological morphological changes throughout life. An understanding of these changes is fundamental for the comprehension of aging-related pathological processes such as benign prostatic hyperplasia (BPH) and cancer. In the present study, we show some of these morphological changes, as well as histochemical techniques like Weigert's resorcin-fuchsin method, Picrosirius Red, and Gömöri's reticulin for use as tools in the study of prostate tissue under light microscopy. For this purpose, prostates of the Mongolian gerbil (n = 9), an experimental model that develops BPH spontaneously, were analyzed at three life stages: young (1 month old), adult (3 months old), and old (15 months old). The results showed that fibrillar components such as collagen, and reticular and elastic fibers, change throughout life. In young animals, the prostate has cuboidal epithelium surrounded by thin layers of smooth muscle, continuous collagen fibers, winding reticular fibers, and sporadic elastic fibers. With adulthood, the epithelium becomes columnar, encircled by compacted muscle cells among slender collagen fibers, elongated reticular fibers, and linear elastic fibers. In aging individuals, the prostate's epithelium stratifies, surrounded by thick muscle layers among dense collagen fibers, disordered reticular fibers, and elastic fibers in different planes. We also identified a few accumulations of lipid droplets and lipofuscin granules in adult animals and high accumulation in old animals evidenced by Oil red O and Gömöri-Halmi techniques, respectively. The histochemical techniques presented here have been demonstrated to be useful and accessible tools in prostate studies. RESEARCH HIGHLIGHTS: Cytochemical techniques to study prostate morphology. The prostate changes with age.
Collapse
Affiliation(s)
- Luiz Henrique Alves Guerra
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
- Department of Functional and Structural Biology, Institute of Biology, University of Campinas - UNICAMP, Campinas, São Paulo, Brazil
| | - Patricia Simone Leite Vilamaior
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University - UNESP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|