1
|
Crosby-Galvan MM, Mendoza GD, Hernández-García PA, Martínez-García JA, Vázquez-Valladolid A, Cifuentes-López RO, Lee-Rangel HA. Influence of supplemental choline on milk yield, fatty acid profile, and weight changes in postpartum ewes and their offspring. Vet World 2024; 17:1265-1270. [PMID: 39077444 PMCID: PMC11283600 DOI: 10.14202/vetworld.2024.1265-1270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 07/31/2024] Open
Abstract
Background and Aim The most intensive nutritional requirements occur during milk production's peak. Ewe milk contains more protein and fat than cow milk. The nutritional factors significantly determine the composition. The liver undergoes high stress during lactation but is relieved by essential nutrients. Choline acts metabolically as a lipotrope. This compound functions in cell structure construction, maintenance, and acetylcholine synthesis. The animal nutrition industry provides choline from various sources, such as synthetic and natural kinds. This study evaluated the influence of two distinct choline sources on dairy ewes' peripartum and postpartum milk production, composition, and offspring growth. Materials and Methods Twenty-four Rambouillet ewes, each weighing around 63.7 ± 1.7 kg, aged three with two previous births, spent 30-day pre-partum and post-partum in individual pens (2 × 2 m). They were given different experimental treatments 30 days before and after birth according to a randomized design; no choline (a), 4 g/day rumen-protected choline (RPC) (b), or 4 g/day thiocholine (c). Milk samples for milk composition and long-chain fatty acid (FA) analysis were taken every 30 days during milk collection. Results Significant differences (p < 0.05) in ewe body weight, lamb birth weight, and 30-day-old lamb body weight were observed at lambing and on day 30 of lactation due to choline treatment. Milk yield was significantly higher (1.57 kg/day) compared to the control (1.02 kg/day) and RPC (1.39 kg/day), due to the herbal choline source. There was no significant difference in the milk's protein, lactose, fat, non-fat solids, and total milk solids content between the treatments. Herbal choline lowers (p < 0.05) the concentrations of caproic, caprylic, capric, lauric, and myristic acids while boosting (p < 0.05) those of oleic and cis-11-eicosenoic acid, the changes influencing long-chain FA levels (p < 0.05). Conclusion Providing choline from both sources to ewes enhanced milk production and body weight at lambing and on 30-day post-lambing. The herbal choline supplement altered short-chain milk FAs, while representative concentration pathways affected medium-chain ones.
Collapse
Affiliation(s)
| | - German D. Mendoza
- Agriculture and Animal Science Department, Xochimilco Campus, Metropolitan Autonomous University, Mexico City, México
| | | | - José Antonio Martínez-García
- Agriculture and Animal Science Department, Xochimilco Campus, Metropolitan Autonomous University, Mexico City, México
| | | | | | - Héctor A. Lee-Rangel
- Agronomy and Veterinary Faculty, Bioscience Centre, San Luis Potosí Autonomous University, México
| |
Collapse
|
2
|
Haug LM, Wilson RC, Alm-Kristiansen AH. Epigenetic-related transcriptional reprogramming elucidated by identification and validation of a novel reference gene combination for RT-qPCR studies in porcine oocytes of contrasting quality. Mol Biol Rep 2024; 51:368. [PMID: 38411699 PMCID: PMC10899281 DOI: 10.1007/s11033-024-09319-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Reliable RT-qPCR results are dependent on appropriate normalisation. Oocyte maturation studies can be challenging in this respect, as the stage of development can distinctively affect reference gene transcript abundance. The aim of this study was to validate the use of reference genes in oocyte in vitro maturation RT-qPCR studies, and thereafter, examine the abundance of transcripts supporting histone modification during oocyte and early embryo development in oocytes of contrasting quality. METHODS AND RESULTS Total RNA from oocytes from prepubertal gilts and sows was extracted either directly succeeding follicle aspiration or after 44 h in vitro maturation, followed by RT-qPCR. The stability of YWHAG, HPRT1, ACTB, GAPDH, HMBS and PFKP, was analysed by NormFinder and further cross-validated by assessing results generated following application of different combinations of potential reference genes for normalisation of the RT-qPCR data. Combining ACTB and PFKP generated high stability according to NormFinder and concordant results. Applying this normalisation, gilt derived oocytes displayed significantly higher abundance than oocytes from sows of almost all the epigenetic-related transcripts studied (HDAC2, SIRT1, SALL4, KDM1A, KDM1B, KDM5A), both before and after maturation. CONCLUSIONS This study identified the combined use of ACTB and PFKP as the optimal normalisation for porcine oocyte RT-qPCR data. In oocytes collected from prepubertal gilts, transcription did not appear to be silenced at the time of aspiration, and accumulation of transcripts supporting histone modification facilitating proper fertilization and further embryo development seemed delayed. The results imply the epigenetic-related transcripts may have potential as markers of oocyte quality.
Collapse
Affiliation(s)
- Linda Marijke Haug
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Robert C Wilson
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway
| | - Anne Hege Alm-Kristiansen
- CRESCO, Centre for Embryology and Healthy Development, Department of Biotechnology, Inland Norway University of Applied Sciences, Hamar, Norway.
| |
Collapse
|
3
|
Haug LM, Wilson RC, Gaustad AH, Jochems R, Kommisrud E, Grindflek E, Alm-Kristiansen AH. Cumulus Cell and Oocyte Gene Expression in Prepubertal Gilts and Sows Identifies Cumulus Cells as a Prime Informative Parameter of Oocyte Quality. BIOLOGY 2023; 12:1484. [PMID: 38132310 PMCID: PMC10740982 DOI: 10.3390/biology12121484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Cumulus cells (CCs) are pivotal during oocyte development. This study aimed to identify novel marker genes for porcine oocyte quality by examining the expression of selected genes in CCs and oocytes, employing the model of oocytes from prepubertal animals being of reduced quality compared to those from adult animals. Total RNA was extracted either directly after follicle aspiration or after in vitro maturation, followed by RT-qPCR. Immature gilt CCs accumulated BBOX1 transcripts, involved in L-carnitine biosynthesis, to a 14.8-fold higher level (p < 0.05) relative to sows, while for CPT2, participating in fatty acid oxidation, the level was 0.48 (p < 0.05). While showing no differences between gilt and sow CCs after maturation, CPT2 and BBOX1 levels in oocytes were higher in gilts at both time points. The apparent delayed lipid metabolism and reduced accumulation of ALDOA and G6PD transcripts in gilt CCs after maturation, implying downregulation of glycolysis and the pentose phosphate pathway, suggest gilt cumulus-oocyte complexes have inadequate ATP stores and oxidative stress balance compared to sows at the end of maturation. Reduced expression of BBOX1 and higher expression of CPT2 in CCs before maturation and higher expression of G6PD and ALDOA after maturation are new potential markers of oocyte quality.
Collapse
Affiliation(s)
- Linda Marijke Haug
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| | - Robert C. Wilson
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| | | | - Reina Jochems
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
- Norsvin SA, 2317 Hamar, Norway; (A.H.G.); (E.G.)
| | - Elisabeth Kommisrud
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| | | | - Anne Hege Alm-Kristiansen
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2318 Hamar, Norway; (L.M.H.); (R.C.W.); (R.J.); (E.K.)
| |
Collapse
|
4
|
Klutstein M, Gonen N. Epigenetic aging of mammalian gametes. Mol Reprod Dev 2023; 90:785-803. [PMID: 37997675 DOI: 10.1002/mrd.23717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
The process of aging refers to physiological changes that occur to an organism as time progresses and involves changes to DNA, proteins, metabolism, cells, and organs. Like the rest of the cells in the body, gametes age, and it is well established that there is a decline in reproductive capabilities in females and males with aging. One of the major pathways known to be involved in aging is epigenetic changes. The epigenome is the multitude of chemical modifications performed on DNA and chromatin that affect the ability of chromatin to be transcribed. In this review, we explore the effects of aging on female and male gametes with a focus on the epigenetic changes that occur in gametes throughout aging. Quality decline in oocytes occurs at a relatively early age. Epigenetic changes constitute an important part of oocyte aging. DNA methylation is reduced with age, along with reduced expression of DNA methyltransferases (DNMTs). Histone deacetylases (HDAC) expression is also reduced, and a loss of heterochromatin marks occurs with age. As a consequence of heterochromatin loss, retrotransposon expression is elevated, and aged oocytes suffer from DNA damage. In sperm, aging affects sperm number, motility and fecundity, and epigenetic changes may constitute a part of this process. 5 methyl-cytosine (5mC) methylation is elevated in sperm from aged men, but methylation on Long interspersed nuclear elements (LINE) elements is reduced. Di and trimethylation of histone 3 lysine 9 (H3K9me2/3) is reduced in sperm from aged men and trimethylation of histone 3 lysine 27 (H3K27me3) is elevated. The protamine makeup of sperm from aged men is also changed, with reduced protamine expression and a misbalanced ratio between protamine proteins protamine P1 and protamine P2. The study of epigenetic reproductive aging is recently gaining interest. The current status of the field suggests that many aspects of gamete epigenetic aging are still open for investigation. The clinical applications of these investigations have far-reaching consequences for fertility and sociological human behavior.
Collapse
Affiliation(s)
- Michael Klutstein
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitzan Gonen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
- Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
5
|
Cao R, Xie J, Zhang L. Abnormal methylation caused by folic acid deficiency in neural tube defects. Open Life Sci 2022; 17:1679-1688. [PMID: 36589786 PMCID: PMC9784971 DOI: 10.1515/biol-2022-0504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022] Open
Abstract
Neural tube closure disorders, including anencephaly, spina bifida, and encephalocele, cause neural tube defects (NTDs). This congenital disability remained not only a major contributor to the prevalence of stillbirths and neonatal deaths but also a significant cause of lifelong physical disability in surviving infants. NTDs are complex diseases caused by multiple etiologies, levels, and mechanisms. Currently, the pathogenesis of NTDs is considered to be associated with both genetic and environmental factors. Here, we aimed to review the research progress on the etiology and mechanism of NTDs induced by methylation modification caused by folic acid deficiency. Folic acid supplementation in the diet is reported to be beneficial in preventing NTDs. Methylation modification is one of the most important epigenetic modifications crucial for brain neurodevelopment. Disturbances in folic acid metabolism and decreased S-adenosylmethionine levels lead to reduced methyl donors and methylation modification disorders. In this review, we summarized the relationship between NTDs, folic acid metabolism, and related methylation of DNA, imprinted genes, cytoskeletal protein, histone, RNA, and non-coding RNA, so as to clarify the role of folic acid and methylation in NTDs and to better understand the various pathogenesis mechanisms of NTDs and the effective prevention.
Collapse
Affiliation(s)
- Rui Cao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi Province, China,Shanxi Key Laboratory of Pharmaceutical Biotechnology, Shanxi Biological Research Institute Co., Ltd, Taiyuan, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi Province, China
| | - Li Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory for Cellular Physiology of Ministry of Education, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi Province, China,Department of Hepatobiliary and Pancreatic Surgery and Liver Transplant Center, The First Hospital of Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan, Shanxi Province, China
| |
Collapse
|
6
|
Daigneault BW. Insights to maternal regulation of the paternal genome in mammalian livestock embryos: A mini-review. Front Genet 2022; 13:909804. [PMID: 36061209 PMCID: PMC9437210 DOI: 10.3389/fgene.2022.909804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022] Open
Abstract
This mini-review focuses on current knowledge regarding maternal regulation of the paternal genome in early embryos of mammalian livestock species. Emphasis has been placed on regulatory events described for maternally imprinted genes and further highlights transcriptional regulation of the post-fertilization paternal genome by maternal factors. Specifically, the included content aims to summarize genomic and epigenomic contributions of paternally expressed genes, their regulation by the maternal embryo environment, and chromatin structure that are indispensable for early embryo development. The accumulation of current knowledge will summarize conserved allelic function among species to include molecular and genomic studies across large domestic animals and humans with reference to founding experimental animal models.
Collapse
|
7
|
Sagvekar P, Shinde G, Mangoli V, Desai SK, Mukherjee S. Evidence for TET-mediated DNA demethylation as an epigenetic alteration in cumulus granulosa cells of women with polycystic ovary syndrome. Mol Hum Reprod 2022; 28:6595033. [PMID: 35640568 DOI: 10.1093/molehr/gaac019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/09/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral and tissue-specific alterations in global DNA methylation (5mC) and hydroxymethylation (5hmC) profiles have been charted as biomarkers for disease prediction and as hallmarks of dysregulated localized gene networks. Global and gene-specific epigenetic alterations in the 5mC profiles have shown widespread implications in etiology of polycystic ovary syndrome (PCOS). However, there has been no study in PCOS that integrates the quantification of 5mC and 5hmC signatures alongside the expression levels of DNA methylating and demethylating enzymes as respective indicators of methylation and demethylation pathways. Having previously shown that the 5mC signatures are not greatly altered in PCOS, we assessed the global 5hmC levels in peripheral blood leukocytes (PBLs) and cumulus granulosa cells (CGCs) of 40 controls and 40 women with PCOS. This analysis revealed higher 5hmC levels in CGCs of PCOS women, indicating a more dominant demethylation pathway. Further, we assessed the transcript and protein expression levels of DNA demethylating and methylating enzymes, i.e. ten-eleven translocation methylcytosine dioxygenases (TET1, TET2, TET3) and DNA methyltransferases (DNMT1, DNMT3A and DNMT3B), respectively, in CGCs. The relative transcript and protein expression levels of all three TETs were found to be higher in women with PCOS; and the TET mRNA expression profiles were positively correlated with 5hmC levels in CGCs. Also, all three DNMT genes showed altered transcript expression in PCOS, although only the downregulated DNMT3A transcript was correlated with decreasing 5mC levels. At the protein level, the expression of DNMT1 (maintenance methylation enzyme) was higher, while that of DNMT3A (denovo methylation enzyme) was found to be lower in PCOS compared to controls. Overall, these results indicate that DNA methylation changes in CGCs of PCOS women may arise partly due to intrinsic alterations in the transcriptional regulation of TETs and DNMT3A.
Collapse
Affiliation(s)
- Pooja Sagvekar
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health (ICMR-NIRRH), J.M. Street, Parel, Mumbai, 400012, India
| | - Gayatri Shinde
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health (ICMR-NIRRH), J.M. Street, Parel, Mumbai, 400012, India
| | - Vijay Mangoli
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai-, 400007, Maharashtra, India
| | - Sadhana K Desai
- Fertility Clinic and IVF Center, 12-Springfield, 19-Vachha Gandhi Road, Gamdevi, Mumbai-, 400007, Maharashtra, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, National Institute for Research in Reproductive Health (ICMR-NIRRH), J.M. Street, Parel, Mumbai, 400012, India
| |
Collapse
|
8
|
Bebbere D, Coticchio G, Borini A, Ledda S. Oocyte aging: looking beyond chromosome segregation errors. J Assist Reprod Genet 2022; 39:793-800. [PMID: 35212880 PMCID: PMC9051005 DOI: 10.1007/s10815-022-02441-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
The age-associated decline in female fertility is largely ascribable to a decrease in oocyte quality. This phenomenon is multifaceted and influenced by numerous interconnected maternal and environmental factors. An increase in the rate of meiotic errors is the major cause of the decline in oocyte developmental competence. However, abnormalities in the ooplasm accumulating with age - including altered metabolism, organelle dysfunction, and aberrant gene regulation - progressively undermine oocyte quality. Stockpiling of maternal macromolecules during folliculogenesis is crucial, as oocyte competence to achieve maturation, fertilization, and the earliest phases of embryo development occur in absence of transcription. At the same time, crucial remodeling of oocyte epigenetics during oogenesis is potentially exposed to interfering factors, such as assisted reproduction technologies (ARTs) or environmental changes, whose impact may be enhanced by reproductive aging. As the effects of maternal aging on molecular mechanisms governing the function of the human oocyte remain poorly understood, studies in animal models are essential to deepen current understanding, with translational implications for human ARTs. The present mini review aims at offering an updated and consistent view of cytoplasmic alterations occurring in oocytes during aging, focusing particularly on gene and epigenetic regulation. Appreciation of these mechanisms could inspire solutions to mitigate/control the phenomenon, and thus benefit modern ARTs.
Collapse
Affiliation(s)
- Daniela Bebbere
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy.
| | | | | | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
9
|
Hajarizadeh A, Eidi A, Arefian E, Tvrda E, Mohammadi-Sangcheshmeh A. Aflatoxin B1 impairs in vitro early developmental competence of ovine oocytes. Theriogenology 2022; 183:53-60. [DOI: 10.1016/j.theriogenology.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
|
10
|
Mastrorocco A, Cacopardo L, Lamanna D, Temerario L, Brunetti G, Carluccio A, Robbe D, Dell’Aquila ME. Bioengineering Approaches to Improve In Vitro Performance of Prepubertal Lamb Oocytes. Cells 2021; 10:cells10061458. [PMID: 34200771 PMCID: PMC8230371 DOI: 10.3390/cells10061458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/15/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022] Open
Abstract
Juvenile in vitro embryo technology (JIVET) provides exciting opportunities in animal reproduction by reducing the generation intervals. Prepubertal oocytes are also relevant models for studies on oncofertility. However, current JIVET efficiency is still unpredictable, and further improvements are needed in order for it to be used on a large-scale level. This study applied bioengineering approaches to recreate: (1) the three-dimensional (3D) structure of the cumulus–oocyte complex (COC), by constructing—via bioprinting technologies—alginate-based microbeads (COC-microbeads) for 3D in vitro maturation (3D-IVM); (2) dynamic IVM conditions, by culturing the COC in a millifluidic bioreactor; and (3) an artificial follicular wall with basal membrane, by adding granulosa cells (GCs) and type I collagen (CI) during bioprinting. The results show that oocyte nuclear and cytoplasmic maturation, as well as blastocyst quality, were improved after 3D-IVM compared to 2D controls. The dynamic 3D-IVM did not enhance oocyte maturation, but it improved oocyte bioenergetics compared with static 3D-IVM. The computational model showed higher oxygen levels in the bioreactor with respect to the static well. Microbead enrichment with GCs and CI improved oocyte maturation and bioenergetics. In conclusion, this study demonstrated that bioengineering approaches that mimic the physiological follicle structure could be valuable tools to improve IVM and JIVET.
Collapse
Affiliation(s)
- Antonella Mastrorocco
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
- Correspondence:
| | - Ludovica Cacopardo
- Research Centre E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| | - Daniela Lamanna
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Letizia Temerario
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
| | - Domenico Robbe
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| |
Collapse
|
11
|
Abazarikia A, Ariu F, Rasekhi M, Zhandi M, Ledda S. Distribution and size of lipid droplets in oocytes recovered from young lamb and adult ovine ovaries. Reprod Fertil Dev 2021; 32:1022-1026. [PMID: 32693914 DOI: 10.1071/rd20035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/02/2020] [Indexed: 02/04/2023] Open
Abstract
This study evaluated the distribution and size of lipid droplets (LDs) in oocytes recovered from young and adult ovine ovaries. Collected oocytes were categorised on the basis of their major diameter (small (SO), 70-90 µm; medium (MO), >90-110 µm; large (LO), >110-130µm) and were stained with Nile red to detect LDs. In adult and young oocytes, a diffuse pattern distribution of LDs was dominant in all classes except adult LO and young SO and LO. Larger LDs (i.e. >3µm) were mostly present in young SO and LO, whereas smaller LDs (1-3µm) were detected in the other adult and young oocyte categories.
Collapse
Affiliation(s)
- Amirhossein Abazarikia
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran; and Department of Veterinary Medicine, Section of Obstetrics and Gynecology, University of Sassari, Sassari, Italy; and Corresponding author.
| | - Federica Ariu
- Department of Veterinary Medicine, Section of Obstetrics and Gynecology, University of Sassari, Sassari, Italy
| | - Mahsa Rasekhi
- Department of Animal and Marine Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran
| | - Mahdi Zhandi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
| | - Sergio Ledda
- Department of Veterinary Medicine, Section of Obstetrics and Gynecology, University of Sassari, Sassari, Italy
| |
Collapse
|
12
|
Roque-Jiménez JA, Mendoza-Martínez GD, Vázquez-Valladolid A, Guerrero-González MDLL, Flores-Ramírez R, Pinos-Rodriguez JM, Loor JJ, Relling AE, Lee-Rangel HA. Supplemental Herbal Choline Increases 5-hmC DNA on Whole Blood from Pregnant Ewes and Offspring. Animals (Basel) 2020; 10:ani10081277. [PMID: 32727060 PMCID: PMC7460248 DOI: 10.3390/ani10081277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 11/24/2022] Open
Abstract
Simple Summary DNA hydroxymethylation (5-hmC) is an epigenetic mechanism that modifies the five positions of cytosine through the addition of a hydroxymethyl group to DNA. In the last decade, the use of herbal products, marketed as dietary supplements or “nutraceuticals” in some countries, has increased rapidly; however, there is a lack of evidence on the extent to which formulas used during pregnancy cause epigenetic changes in the fetus. The aim of this study was to characterize the effects of supplementing an herbal choline source (BCho) on 5-hmC DNA in whole blood from gestating ewes and their offspring. Such data would provide evidence of nutritional programming effects. Abstract Herbal formulas during pregnancy have been used in developing countries. Despite that, the potential effects on the mother and offspring and whether those supplements elicit epigenetic modifications is still unknown. Therefore, our objectives were to determine the effects of supplemental herbal choline source (BCho) on the percentage of 5-hmC in whole blood from gestating ewes and their offspring, as well as determining the milk quality and growth of the offspring. Thirty-five gestating Rambouillet ewes were randomly assigned to five treatments: T1, supplementation of 4 g per day (gd−1) of BCho during the first third of gestation; T2, supplementation of 4 gd−1 of BCho during the second third of gestation; T3, supplementation of 4 gd−1 of BCho during the last third of gestation; T4, supplementation of 4 gd−1 of BCho throughout gestation; and T5, no BCho supplementation (control). For the 5-hmC DNA analysis, whole blood from ewes was sampled before pregnancy and at each third of gestation (50 days). Whole blood from lambs was sampled five weeks after birth. The evaluation of the nutritional programming effects was conducted through the percentages of 5-hmC in the lambs. Compared with other treatments, the whole blood from ewes supplemented during T1 and T4 had the greatest 5-hmC percentages (p < 0.05). However, only ewes fed BCho throughout gestation (T4) maintained the greatest percentages of 5-hmC (p < 0.05). The lamb growth performance indicated that the BCho maternal supplementation did not affect the nutritional programming. However, the lambs born from ewes supplemented during T2 had the greatest 5-hmC percentages (p < 0.05). Our data suggest that ewes supplemented during T4 with BCho increase and maintain the percentages of 5-hmC in whole blood, and the offspring born from ewes supplemented with BCho during T2 maintained the greatest percentages of 5-hmC 35 d after they were born.
Collapse
Affiliation(s)
- José Alejandro Roque-Jiménez
- Facultad de Agronomía y Veterinaria, Universidad Autonoma de San Luis Potosí, Carretera Federal 57 Km 14.5, Ejido Palma de la Cruz, Soledad de Graciano Sánchez, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (A.V.-V.); (M.d.l.L.G.-G.)
| | | | - Anayeli Vázquez-Valladolid
- Facultad de Agronomía y Veterinaria, Universidad Autonoma de San Luis Potosí, Carretera Federal 57 Km 14.5, Ejido Palma de la Cruz, Soledad de Graciano Sánchez, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (A.V.-V.); (M.d.l.L.G.-G.)
| | - María de la Luz Guerrero-González
- Facultad de Agronomía y Veterinaria, Universidad Autonoma de San Luis Potosí, Carretera Federal 57 Km 14.5, Ejido Palma de la Cruz, Soledad de Graciano Sánchez, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (A.V.-V.); (M.d.l.L.G.-G.)
| | - Rogelio Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT—Medicina, Universidad Autonoma de San Luis Potosí, Lomas de San Luis 78210, Mexico;
| | | | - Juan J. Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, 262 Animal Sciences Laboratory, Urbana, IL 61801, USA;
| | - Alejandro Enrique Relling
- Department of Animal Science, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691, USA;
| | - Héctor Aarón Lee-Rangel
- Facultad de Agronomía y Veterinaria, Universidad Autonoma de San Luis Potosí, Carretera Federal 57 Km 14.5, Ejido Palma de la Cruz, Soledad de Graciano Sánchez, San Luis Potosí 78321, Mexico; (J.A.R.-J.); (A.V.-V.); (M.d.l.L.G.-G.)
- Correspondence: ; Tel.: +52-444-852-4056
| |
Collapse
|
13
|
Subcortical maternal complex (SCMC) expression during folliculogenesis is affected by oocyte donor age in sheep. J Assist Reprod Genet 2020; 37:2259-2271. [PMID: 32613414 DOI: 10.1007/s10815-020-01871-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The age-associated decline in female fertility is largely ascribable to the decrease in oocyte quality. The subcortical maternal complex (SCMC) is a multiprotein complex essential for early embryogenesis and female fertility and functionally conserved across mammals. The present work evaluated expression dynamics of its components during folliculogenesis in relation to maternal age in sheep. METHODS The expression of the SCMC components (KHDC3/FILIA, NLRP2, NLRP5/MATER, OOEP/FLOPED, PADI6, TLE6 and ZBED3) was analyzed by real-time PCR in pools of growing oocytes (GO) of different diameters (70-90 μm (S), 90-110 μm (M), or 110-130 μm (L)) derived from non-hormonally treated adult (Ad; age < 4 years), prepubertal (Pr; age 40 days), or aged ewes (age > 6 years). RESULTS Specific expression patterns associated with donor age were observed during folliculogenesis for all genes, except ZBED3. In oocytes of adult donors, the synthesis of NLRP2, NLRP5, PADI6, and ZBED3 mRNAs was complete in S GO, while FILIA, TLE6, and OOEP were actively transcribed at this stage. Conversely, Pr GO showed active transcription of all mRNAs, except for ZBED3, during the entire window of oocyte growth. Notably, aged GO showed a completely inverse pattern, with a decrease of NLRP2, TLE6, FILIA, and PADI6 mRNA abundance during the latest stage of oocyte growth (L GO). Interestingly, MATER showed high expression variability, suggesting large inter-oocyte differences. CONCLUSION Our study describes the SCMC expression dynamics during sheep oogenesis and reports age-specific patterns that are likely involved in the age-related decline of oocyte quality.
Collapse
|
14
|
DNA methylation in the vertebrate germline: balancing memory and erasure. Essays Biochem 2020; 63:649-661. [PMID: 31755927 DOI: 10.1042/ebc20190038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cytosine methylation is a DNA modification that is critical for vertebrate development and provides a plastic yet stable information module in addition to the DNA code. DNA methylation memory establishment, maintenance and erasure is carefully balanced by molecular machinery highly conserved among vertebrates. In mammals, extensive erasure of epigenetic marks, including 5-methylcytosine (5mC), is a hallmark of early embryo and germline development. Conversely, global cytosine methylation patterns are preserved in at least some non-mammalian vertebrates over comparable developmental windows. The evolutionary mechanisms which drove this divergence are unknown, nevertheless a direct consequence of retaining epigenetic memory in the form of 5mC is the enhanced potential for transgenerational epigenetic inheritance (TEI). Given that DNA methylation dynamics remains underexplored in most vertebrate lineages, the extent of information transferred to offspring by epigenetic modification might be underestimated.
Collapse
|
15
|
Liu J, Hu H, Panserat S, Marandel L. Evolutionary history of DNA methylation related genes in chordates: new insights from multiple whole genome duplications. Sci Rep 2020; 10:970. [PMID: 31969623 PMCID: PMC6976628 DOI: 10.1038/s41598-020-57753-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/20/2019] [Indexed: 01/11/2023] Open
Abstract
DNA methylation is an important epigenetic mechanism involved in many biological processes, i.e. gametogenesis and embryonic development. However, increased copy numbers of DNA methylation related genes (dnmt, tet and tdg) have been found during chordate evolution due to successive whole genome duplication (WGD) events. Their evolutionary history and phylogenetic relationships remain unclear. The present study is the first to clarify the evolutionary history of DNA methylation genes in chordates. In particular, our results highlight the fixation of several dnmt3-related genes following successive WGD throughout evolution. The rainbow trout genome offered a unique opportunity to study the early evolutionary fates of duplicated genes due to a recent round of WGD at the radiation of salmonids. Differences highlighted in transcriptional patterns of these genes during gametogenesis and ontogenesis in trout indicated that they might be subjected to sub- or neo-functionalisation after WDG. The fixation of multiple dnmt3 genes in genomes after WGD could contribute to the diversification and plastic adaptation of the teleost.
Collapse
Affiliation(s)
- Jingwei Liu
- INRAE, Univ Pau & Pays de l'Adour, E2S-UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Huihua Hu
- INRAE, Univ Pau & Pays de l'Adour, E2S-UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Stéphane Panserat
- INRAE, Univ Pau & Pays de l'Adour, E2S-UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, Univ Pau & Pays de l'Adour, E2S-UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France.
| |
Collapse
|
16
|
Cocero MJ, Marigorta P, Novillo F, Folch J, Sánchez P, Alabart JL, Lahoz B. Ovine oocytes display a similar germinal vesicle configuration and global DNA methylation at prepubertal and adult ages. Theriogenology 2019; 138:154-163. [PMID: 31357118 DOI: 10.1016/j.theriogenology.2019.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/20/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic mechanisms are thought to be involved in the reduced developmental capacity of early prepubertal ewe oocytes compared to their adult counterparts. In this study, we have analyzed the global DNA methylation pattern and in vitro meiotic and developmental competence of oocytes at the germinal vesicle (GV) stage obtained from adult and 3-month-old donors. All oocytes were aspirated from antral follicles with a diameter ≥3 mm, and DNA methylation on 5-methylcytosine was detected by immunofluorescence using an anti-methyl cytosine antibody. The main global chromatin configuration pattern shown by both prepubertal and adult ovine oocytes corresponded to condensed chromatin localized close to the nuclear envelope (the SNE pattern). Immunofluorescence showed that a global bright nuclear staining of 5-methylcytosine (5-mC) occurred in all germinal vesicle stage oocytes and matched the propidium iodide staining pattern. The total fluorescence intensity values of lamb GVs were not lower than those observed in adult GVs. The meiotic competence and cleavage rates were similar in adult and prepubertal oocytes, however, the developmental competence of embryos to reach blastocysts was higher for adult oocytes than lamb oocytes (p<0.0001). In conclusion, our results indicate that adult-size oocytes derived from 3 to 4 month old prepubertal ewes show similar GV morphology and DNA methylation staining patterns to those obtained from adult animals, despite exhibiting a lower developmental competence.
Collapse
Affiliation(s)
- María J Cocero
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avenida Puerta de Hierro 12 local 10, 28040, Madrid, Spain.
| | - Pilar Marigorta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avenida Puerta de Hierro 12 local 10, 28040, Madrid, Spain
| | - Fernando Novillo
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Avenida Puerta de Hierro 12 local 10, 28040, Madrid, Spain
| | - José Folch
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Gobierno de Aragón, Av. Montañana 930, 50059, Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Spain
| | - Pilar Sánchez
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Gobierno de Aragón, Av. Montañana 930, 50059, Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Spain
| | - José L Alabart
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Gobierno de Aragón, Av. Montañana 930, 50059, Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Spain
| | - Belén Lahoz
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Gobierno de Aragón, Av. Montañana 930, 50059, Zaragoza, Spain; Instituto Agroalimentario de Aragón - IA2 (CITA-Universidad de Zaragoza), Spain
| |
Collapse
|
17
|
Yuan X, Ye S, Chen Z, Pan X, Huang S, Li Z, Zhong Y, Gao N, Zhang H, Li J, Zhang Z. Dynamic DNA methylation of ovaries during pubertal transition in gilts. BMC Genomics 2019; 20:510. [PMID: 31221102 PMCID: PMC6585006 DOI: 10.1186/s12864-019-5884-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
Background In female mammals, the initiation of puberty, coupling with the dramatically morphological changes in ovaries, indicates the sexual and follicular maturation. Previous studies have suggested that the disrupted DNA methylation results in the delayed puberty. However, to date, the changes in ovarian methylomes during pubertal transition have not been investigated. In this study, using gilts as a pubertal model, the genome-wide DNA methylation were profiled to explore their dynamics during pubertal transition across Pre-, In- and Post-puberty. Results During pubertal transition, the follicles underwent maturation and luteinization, coupled with the significant changes in the mRNA expression of DNMT1 and DNMT3a. DNA methylation levels of In-puberty were higher than that of Pre- and Post-puberty at the locations of genes and CpG islands (CGIs). Analysis of the DNA methylation changes identified 12,313, 20,960 and 17,694 differentially methylated CpGs (DMCs) for the comparisons of Pre- vs. In-, In vs. Post-, and Pre- vs. Post-puberty, respectively. Moreover, the CGIs, upstream and exonic regions showed a significant underrepresentation of DMCs, but the CGI shores, CGI shelves, intronic, downstream and intergenic regions showed a significant overrepresentation of DMCs. Furthermore, biological functions of these methylation changes enriched in PI3K-Akt signaling pathway, GnRH signaling pathway, and Insulin secretion, and the mRNA expressions of several genes of these signaling pathway, including MMP2, ESR1, GSK3B, FGF21, IGF1R, and TAC3, were significantly changed across Pre-, In- and Post-puberty in ovaries. Conclusions During pubertal transition in gilts, the DNA methylation changes of ovaries were likely to affect the transcription of genes related to PI3K-Akt signaling pathway, GnRH signaling pathway, and Insulin secretion. These observations can provide new insight into the epigenetic mechanism of follicular and sexual maturation during pubertal transition in mammals. Electronic supplementary material The online version of this article (10.1186/s12864-019-5884-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaolong Yuan
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaopan Ye
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zitao Chen
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiangchun Pan
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shuwen Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhonghui Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuyi Zhong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ning Gao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, North Third Road, Guangzhou Higher Education Mega Center, Guangzhou, 510006, Guangdong, China
| | - Hao Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqi Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Zhe Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Marshall KL, Wang J, Ji T, Rivera RM. The effects of biological aging on global DNA methylation, histone modification, and epigenetic modifiers in the mouse germinal vesicle stage oocyte. Anim Reprod 2018; 15:1253-1267. [PMID: 34221140 PMCID: PMC8203117 DOI: 10.21451/1984-3143-ar2018-0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A cultural trend in developed countries is favoring a delay in maternal age at first childbirth.
In mammals fertility and chronological age show an inverse correlation. Oocyte quality is
a contributing factor to this multifactorial phenomenon that may be influenced by age-related
changes in the oocyte epigenome. Based on previous reports, we hypothesized that advanced
maternal age would lead to alterations in the oocyte’s epigenome. We tested our hypothesis
by determining protein levels of various epigenetic modifications and modifiers in fully-grown
(≥70 µm), germinal vesicle (GV) stage oocytes of young (10-13 weeks) and aged
(69-70 weeks) mice. Our results demonstrate a significant increase in protein amounts of
the maintenance DNA methyltransferase DNMT1 (P = 0.003) and a trend toward increased global
DNA methylation (P = 0.09) with advanced age. MeCP2, a methyl DNA binding domain protein, recognizes
methylated DNA and induces chromatin compaction and silencing. We hypothesized that chromatin
associated MeCP2 would be increased similarly to DNA methylation in oocytes of aged female
mice. However, we detected a significant decrease (P = 0.0013) in protein abundance of MeCP2
between GV stage oocytes from young and aged females. Histone posttranslational modifications
can also alter chromatin conformation. Di-methylation of H3K9 (H3K9me2) is associated with
permissive heterochromatin while acetylation of H4K5 (H4K5ac) is associated with euchromatin.
Our results indicate a trend toward decreasing H3K9me2 (P = 0.077) with advanced female age
and no significant differences in levels of H4K5ac. These data demonstrate that physiologic
aging affects the mouse oocyte epigenome and provide a better understanding of the mechanisms
underlying the decrease in oocyte quality and reproductive potential of aged females.
Collapse
Affiliation(s)
- Kira Lynn Marshall
- Division of Animal Sciences.,Reproductive Sciences, San Diego Zoo Global Institute for Conservation Research, San Pasqual Valley Rd
| | | | | | | |
Collapse
|
19
|
Can Reprogramming of Overall Epigenetic Memory and Specific Parental Genomic Imprinting Memory within Donor Cell-Inherited Nuclear Genome be a Major Hindrance for the Somatic Cell Cloning of Mammals? – A Review. ANNALS OF ANIMAL SCIENCE 2018. [DOI: 10.2478/aoas-2018-0015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Abstract
Successful cloning of animals by somatic cell nuclear transfer (SCNT) requires epigenetic transcriptional reprogramming of the differentiated state of the donor cell nucleus to a totipotent embryonic ground state. It means that the donor nuclei must cease its own program of gene expression and restore a particular program of the embryonic genome expression regulation that is necessary for normal development. Transcriptional activity of somatic cell-derived nuclear genome during embryo pre- and postimplantation development as well as foetogenesis is correlated with the frequencies for spatial remodeling of chromatin architecture and reprogramming of cellular epigenetic memory. This former and this latter process include such covalent modifications as demethylation/re-methylation of DNA cytosine residues and acetylation/deacetylation as well as demethylation/re-methylation of lysine residues of nucleosomal core-derived histones H3 and H4. The main cause of low SCNT efficiency in mammals turns out to be an incomplete reprogramming of transcriptional activity for donor cell-descended genes. It has been ascertained that somatic cell nuclei should undergo the wide DNA cytosine residue demethylation changes throughout the early development of cloned embryos to reset their own overall epigenetic and parental genomic imprinting memories that have been established by re-methylation of the nuclear donor cell-inherited genome during specific pathways of somatic and germ cell lineage differentiation. A more extensive understanding of the molecular mechanisms and recognition of determinants for epigenetic transcriptional reprogrammability of somatic cell nuclear genome will be helpful to solve the problems resulting from unsatisfactory SCNT effectiveness and open new possibilities for common application of this technology in transgenic research focused on human biomedicine.
Collapse
|
20
|
Masala L, Ariu F, Bogliolo L, Bellu E, Ledda S, Bebbere D. Delay in maternal transcript degradation in ovine embryos derived from low competence oocytes. Mol Reprod Dev 2018; 85:427-439. [PMID: 29542856 DOI: 10.1002/mrd.22977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 01/06/2023]
Abstract
Oocytes from prepubertal animals have a reduced ability to undergo embryo development and produce viable offspring. The present work used an ovine model consisting of oocytes derived from adult and prepubertal donors to assess the molecular status of oocytes and preimplantation embryos with different developmental competence. The lower potential of oocytes of young donors was confirmed in terms of in vitro developmental capabilities and kinetics. A panel of genes including maternal effect (DPPA3, GDF9, NMP2, ZAR1) and housekeeping genes (ACTB, RPL19, SDHA, YWHAZ, ATP1A1), genes involved in DNA methylation (DNMT1, DNMT3A, DNMT3B), genomic imprinting (IGF2R), pluripotency (NANOG, POU5F1) and cell cycle regulation (CCNB1, CDK1, MELK) was relatively quantified. Temporal analysis during oocyte maturation and preimplantation embryo development evidenced patterns associated with donor age. With a few gene-specific exceptions, the differential model showed a reduced transcript abundance in immature prepubertal oocytes that completely reversed trend after fertilization, when higher mRNA levels were consistently observed in early embryos, indicating a delay in maternal transcript degradation. We propose that the molecular shortage in the prepubertal oocyte may affect its developmental potential and impair the early pathways of maternal mRNA clearance in the embryo. While confirming the different potential of oocytes derived from adult and prepubertal donors, our work showed for the first time a consistent delay in maternal transcript degradation in embryos derived from low competence oocytes that interestingly recalls the delayed developmental kinetics. Such abnormal transcript persistence may hinder further development and represents a novel perspective on the complexity of developmental competence.
Collapse
Affiliation(s)
- Laura Masala
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Emanuela Bellu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Daniela Bebbere
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
21
|
Zhu Q, Stöger R, Alberio R. A Lexicon of DNA Modifications: Their Roles in Embryo Development and the Germline. Front Cell Dev Biol 2018; 6:24. [PMID: 29637072 PMCID: PMC5880922 DOI: 10.3389/fcell.2018.00024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/27/2018] [Indexed: 12/12/2022] Open
Abstract
5-methylcytosine (5mC) on CpG dinucleotides has been viewed as the major epigenetic modification in eukaryotes for a long time. Apart from 5mC, additional DNA modifications have been discovered in eukaryotic genomes. Many of these modifications are thought to be solely associated with DNA damage. However, growing evidence indicates that some base modifications, namely 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxylcytosine (5caC), and N6-methadenine (6mA), may be of biological relevance, particularly during early stages of embryo development. Although abundance of these DNA modifications in eukaryotic genomes can be low, there are suggestions that they cooperate with other epigenetic markers to affect DNA-protein interactions, gene expression, defense of genome stability and epigenetic inheritance. Little is still known about their distribution in different tissues and their functions during key stages of the animal lifecycle. This review discusses current knowledge and future perspectives of these novel DNA modifications in the mammalian genome with a focus on their dynamic distribution during early embryonic development and their potential function in epigenetic inheritance through the germ line.
Collapse
Affiliation(s)
- Qifan Zhu
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|