1
|
Peluso JJ. Progesterone Signaling and Mammalian Ovarian Follicle Growth Mediated by Progesterone Receptor Membrane Component Family Members. Cells 2022; 11:1632. [PMID: 35626669 PMCID: PMC9139379 DOI: 10.3390/cells11101632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
How progesterone influences ovarian follicle growth is a difficult question to answer because ovarian cells synthesize progesterone and express not only the classic nuclear progesterone receptor but also members of the progestin and adipoQ receptor family and the progesterone receptor membrane component (PGRMC) family. Which type of progestin receptor is expressed depends on the ovarian cell type as well as the stage of the estrous/menstrual cycle. Given the complex nature of the mammalian ovary, this review will focus on progesterone signaling that is transduced by PGRMC1 and PGRMC2 specifically as it relates to ovarian follicle growth. PGRMC1 was identified as a progesterone binding protein cloned from porcine liver in 1996 and detected in the mammalian ovary in 2005. Subsequent studies focused on PGRMC family members as regulators of granulosa cell proliferation and survival, two physiological processes required for follicle development. This review will present evidence that demonstrates a causal relationship between PGRMC family members and the promotion of ovarian follicle growth. The mechanisms through which PGRMC-dependent signaling regulates granulosa cell proliferation and viability will also be discussed in order to provide a more complete understanding of our current concept of how progesterone regulates ovarian follicle growth.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
2
|
Peluso JJ, Pru JK. Progesterone Receptor Membrane Component (PGRMC)1 and PGRMC2 and Their Roles in Ovarian and Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13235953. [PMID: 34885064 PMCID: PMC8656518 DOI: 10.3390/cancers13235953] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Cancers of the female reproductive tract are both lethal and highly prevalent. For example, the five-year survival rate of women diagnosed with ovarian cancer is still less than 50%, and endometrial cancer is the fourth most common cancer in women with > 65,000 new cases in the United States in 2020. Among the many genes already established as key participants in ovarian and endometrial oncogenesis, progesterone receptor membrane component (PGRMC)1 and PGRMC2 have gained recent attention given that there is now solid correlative information supporting a role for at least PGRMC1 in enhancing tumor growth and chemoresistance. The expression of PGRMC1 is significantly increased in both ovarian and endometrial cancers, similar to that reported in other cancer types. Xenograft studies using human ovarian and endometrial cancer cell lines in immunocompromised mice demonstrate that reduced expression of PGRMC1 results in tumors that grow substantially slower. While the molecular underpinnings of PGRMCs' mechanisms of action are not clearly established, it is known that PGRMCs regulate survival pathways that attenuate stress-induced cell death. The objective of this review is to provide an overview of what is known about the roles that PGRMC1 and PGRMC2 play in ovarian and endometrial cancers, particularly as related to the mechanisms through which they regulate mitosis, apoptosis, chemoresistance, and cell migration.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Correspondence: ; +1-860-679-2860
| | - James K. Pru
- Department of Animal Science, Program in Reproductive Biology, University of Wyoming, Laramie, WY 82071, USA;
| |
Collapse
|
3
|
Xia Z, Xiao J, Chen Q. Solving the Puzzle: What Is the Role of Progestogens in Neovascularization? Biomolecules 2021; 11:1686. [PMID: 34827682 PMCID: PMC8615949 DOI: 10.3390/biom11111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Ovarian sex steroids can modulate new vessel formation and development, and the clarification of the underlying mechanism will provide insight into neovascularization-related physiological changes and pathological conditions. Unlike estrogen, which mainly promotes neovascularization through activating classic post-receptor signaling pathways, progesterone (P4) regulates a variety of downstream factors with angiogenic or antiangiogenic effects, exerting various influences on neovascularization. Furthermore, diverse progestins, the synthetic progesterone receptor (PR) agonists structurally related to P4, have been used in numerous studies, which could contribute to unequal actions. As a result, there have been many conflicting observations in the past, making it difficult for researchers to define the exact role of progestogens (PR agonists including naturally occurring P4 and synthetic progestins). This review summarizes available evidence for progestogen-mediated neovascularization under physiological and pathological circumstances, and attempts to elaborate their functional characteristics and regulatory patterns from a comprehensive perspective.
Collapse
Affiliation(s)
| | | | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha 410008, China; (Z.X.); (J.X.)
| |
Collapse
|
4
|
Medina-Laver Y, Rodríguez-Varela C, Salsano S, Labarta E, Domínguez F. What Do We Know about Classical and Non-Classical Progesterone Receptors in the Human Female Reproductive Tract? A Review. Int J Mol Sci 2021; 22:11278. [PMID: 34681937 PMCID: PMC8538361 DOI: 10.3390/ijms222011278] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
The progesterone hormone regulates the human menstrual cycle, pregnancy, and parturition by its action via the different progesterone receptors and signaling pathways in the female reproductive tract. Progesterone actions can be exerted through classical and non-classical receptors, or even a combination of both. The former are nuclear receptors whose activation leads to transcriptional activity regulation and thus in turn leads to slower but long-lasting responses. The latter are composed of progesterone receptors membrane components (PGRMC) and membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and they can subsequently initiate specific cell responses or even modulate genomic cell responses. This review covers our current knowledge on the mechanisms of action and the relevance of classical and non-classical progesterone receptors in female reproductive tissues ranging from the ovary and uterus to the cervix, and it exposes their crucial role in female infertility.
Collapse
Affiliation(s)
- Yassmin Medina-Laver
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| | | | - Stefania Salsano
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| | - Elena Labarta
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
- IVI RMA Valencia, 46015 Valencia, Spain
| | - Francisco Domínguez
- IVI Foundation—IIS La Fe, 46026 Valencia, Spain; (Y.M.-L.); (C.R.-V.); (S.S.); (E.L.)
| |
Collapse
|
5
|
Abstract
Steroid hormones bind receptors in the cell nucleus and in the cell membrane. The most widely studied class of steroid hormone receptors are the nuclear receptors, named for their function as ligand-dependent transcription factors in the cell nucleus. Nuclear receptors, such as estrogen receptor alpha, can also be anchored to the plasma membrane, where they respond to steroids by activating signaling pathways independent of their function as transcription factors. Steroids can also bind integral membrane proteins, such as the G protein-coupled estrogen receptor. Membrane estrogen and progestin receptors have been cloned and characterized in vitro and influence the development and function of many organ systems. Membrane androgen receptors were cloned and characterized in vitro, but their function as androgen receptors in vivo is unresolved. We review the identity and function of membrane proteins that bind estrogens, progestins, and androgens. We discuss evidence that membrane glucocorticoid and mineralocorticoid receptors exist, and whether glucocorticoid and mineralocorticoid nuclear receptors act at the cell membrane. In many cases, integral membrane steroid receptors act independently of nuclear steroid receptors, even though they may share a ligand.
Collapse
Affiliation(s)
- Lindsey S Treviño
- Department of Population Sciences, Division of Health Equities, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Daniel A Gorelick
- Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: Daniel A Gorelick, PhD, One Baylor Plaza, Alkek Building N1317.07, Houston, TX, 77030-3411, USA.
| |
Collapse
|
6
|
Kabe Y, Koike I, Yamamoto T, Hirai M, Kanai A, Furuhata R, Tsugawa H, Harada E, Sugase K, Hanadate K, Yoshikawa N, Hayashi H, Noda M, Uchiyama S, Yamazaki H, Tanaka H, Kobayashi T, Handa H, Suematsu M. Glycyrrhizin Derivatives Suppress Cancer Chemoresistance by Inhibiting Progesterone Receptor Membrane Component 1. Cancers (Basel) 2021; 13:3265. [PMID: 34209885 PMCID: PMC8269059 DOI: 10.3390/cancers13133265] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is highly expressed in various cancer cells and contributes to tumor progression. We have previously shown that PGRMC1 forms a unique heme-stacking functional dimer to enhance EGF receptor (EGFR) activity required for cancer proliferation and chemoresistance, and the dimer dissociates by carbon monoxide to attenuate its biological actions. Here, we determined that glycyrrhizin (GL), which is conventionally used to ameliorate inflammation, specifically binds to heme-dimerized PGRMC1. Binding analyses using isothermal titration calorimetry revealed that some GL derivatives, including its glucoside-derivative (GlucoGL), bind to PGRMC1 potently, whereas its aglycone, glycyrrhetinic acid (GA), does not bind. GL and GlucoGL inhibit the interaction between PGRMC1 and EGFR, thereby suppressing EGFR-mediated signaling required for cancer progression. GL and GlucoGL significantly enhanced EGFR inhibitor erlotinib- or cisplatin (CDDP)-induced cell death in human colon cancer HCT116 cells. In addition, GL derivatives suppressed the intracellular uptake of low-density lipoprotein (LDL) by inhibiting the interaction between PGRMC1 and the LDL receptor (LDLR). Effects on other pathways cannot be excluded. Treatment with GlucoGL and CDDP significantly suppressed tumor growth following xenograft transplantation in mice. Collectively, this study indicates that GL derivatives are novel inhibitors of PGRMC1 that suppress cancer progression, and our findings provide new insights for cancer treatment.
Collapse
Affiliation(s)
- Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ikko Koike
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Tatsuya Yamamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto 619-0284, Japan
| | - Miwa Hirai
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ayaka Kanai
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Ryogo Furuhata
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Erisa Harada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences (SUNBOR), 8-1-1 Seikadai, Seika, Soraku, Kyoto 619-0284, Japan
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Kazue Hanadate
- Cokey, Co., Ltd., 2 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Nobuji Yoshikawa
- Cokey, Co., Ltd., 2 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hiroaki Hayashi
- Laboratory of Natural Products Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | | | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Hiroki Yamazaki
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo 108-8639, Japan
| | - Hirotoshi Tanaka
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo 108-8639, Japan
| | - Takuya Kobayashi
- Department of Medical Chemistry, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
7
|
Cahill MA, Neubauer H. PGRMC Proteins Are Coming of Age: A Special Issue on the Role of PGRMC1 and PGRMC2 in Metabolism and Cancer Biology. Cancers (Basel) 2021; 13:512. [PMID: 33572771 PMCID: PMC7866220 DOI: 10.3390/cancers13030512] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
This is a preface by the guest editors of the special issue of Cancers featuring the biology of progesterone (P4) receptor membrane component (PGRMC) proteins as it relates to metabolism and cancer [...].
Collapse
Affiliation(s)
- Michael A. Cahill
- School of Biomedical Sciences, Charles Sturt University, WaggaWagga, NSW 2678, Australia
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia
| | - Hans Neubauer
- Department of Gynecology and Obstetrics, University Women’s Hospital of Dusseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
8
|
Furuhata R, Kabe Y, Kanai A, Sugiura Y, Tsugawa H, Sugiyama E, Hirai M, Yamamoto T, Koike I, Yoshikawa N, Tanaka H, Koseki M, Nakae J, Matsumoto M, Nakamura M, Suematsu M. Progesterone receptor membrane associated component 1 enhances obesity progression in mice by facilitating lipid accumulation in adipocytes. Commun Biol 2020; 3:479. [PMID: 32887925 PMCID: PMC7473863 DOI: 10.1038/s42003-020-01202-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/03/2020] [Indexed: 12/26/2022] Open
Abstract
Progesterone receptor membrane associated component 1 (PGRMC1) exhibits haem-dependent dimerization on cell membrane and binds to EGF receptor and cytochromes P450 to regulate cancer proliferation and chemoresistance. However, its physiological functions remain unknown. Herein, we demonstrate that PGRMC1 is required for adipogenesis, and its expression is significantly enhanced by insulin or thiazolidine, an agonist for PPARγ. The haem-dimerized PGRMC1 interacts with low-density lipoprotein receptors (VLDL-R and LDL-R) or GLUT4 to regulate their translocation to the plasma membrane, facilitating lipid uptake and accumulation, and de-novo fatty acid synthesis in adipocytes. These events are cancelled by CO through interfering with PGRMC1 dimerization. PGRMC1 expression in mouse adipose tissues is enhanced during obesity induced by a high fat diet. Furthermore, adipose tissue-specific PGRMC1 knockout in mice dramatically suppressed high-fat-diet induced adipocyte hypertrophy. Our results indicate a pivotal role of PGRMC1 in developing obesity through its metabolic regulation of lipids and carbohydrates in adipocytes.
Collapse
Affiliation(s)
- Ryogo Furuhata
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
- Department of Orthopaedic[s] Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan.
| | - Ayaka Kanai
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eiji Sugiyama
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Miwa Hirai
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Takehiro Yamamoto
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ikko Koike
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noritada Yoshikawa
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hirotoshi Tanaka
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Jun Nakae
- Department of Physiology, International University of Health and Welfare School of Medicine, Narita, 286-8686, Japan
| | - Morio Matsumoto
- Department of Orthopaedic[s] Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masaya Nakamura
- Department of Orthopaedic[s] Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
9
|
Sinchak K, Mohr MA, Micevych PE. Hypothalamic Astrocyte Development and Physiology for Neuroprogesterone Induction of the Luteinizing Hormone Surge. Front Endocrinol (Lausanne) 2020; 11:420. [PMID: 32670203 PMCID: PMC7333179 DOI: 10.3389/fendo.2020.00420] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/26/2020] [Indexed: 12/26/2022] Open
Abstract
Neural circuits in female rats sequentially exposed to estradiol and progesterone underlie so-called estrogen positive feedback that induce the surge release of pituitary luteinizing hormone (LH) leading to ovulation and luteinization of the corpus hemorrhagicum. It is now well-established that gonadotropin releasing hormone (GnRH) neurons express neither the reproductively critical estrogen receptor-α (ERα) nor classical progesterone receptor (PGR). Estradiol from developing ovarian follicles acts on ERα-expressing kisspeptin neurons in the rostral periventricular region of the third ventricle (RP3V) to induce PGR expression, and kisspeptin release. Circulating estradiol levels that induce positive feedback also induce neuroprogesterone (neuroP) synthesis in hypothalamic astrocytes. This local neuroP acts on kisspeptin neurons that express PGR to augment kisspeptin expression and release needed to stimulate GnRH release, triggering the LH surge. In vitro and in vivo studies demonstrate that neuroP signaling in kisspeptin neurons occurs through membrane PGR activation of Src family kinase (Src). This signaling cascade has been also implicated in PGR signaling in the arcuate nucleus of the hypothalamus, suggesting that Src may be a common mode of membrane PGR signaling. Sexual maturation requires that signaling between neuroP synthesizing astrocytes, kisspeptin and GnRH neurons be established. Prior to puberty, estradiol does not facilitate the synthesis of neuroP in hypothalamic astrocytes. During pubertal development, levels of membrane ERα increase in astrocytes coincident with an increase of PKA phosphorylation needed for neuroP synthesis. Currently, it is not clear whether these developmental changes occur in existing astrocytes or are due to a new population of astrocytes born during puberty. However, strong evidence suggests that it is the former. Blocking new cell addition during puberty attenuates the LH surge. Together these results demonstrate the importance of pubertal maturation involving hypothalamic astrocytes, estradiol-induced neuroP synthesis and membrane-initiated progesterone signaling for the CNS control of ovulation and reproduction.
Collapse
Affiliation(s)
- Kevin Sinchak
- Department of Biological Sciences, California State University, Long Beach, Long Beach, CA, United States
| | - Margaret A Mohr
- The Laboratory of Neuroendocrinology, Department of Neurobiology, David Geffen School of Medicine at UCLA, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul E Micevych
- The Laboratory of Neuroendocrinology, Department of Neurobiology, David Geffen School of Medicine at UCLA, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Hehenberger E, Eitel M, Fortunato SAV, Miller DJ, Keeling PJ, Cahill MA. Early eukaryotic origins and metazoan elaboration of MAPR family proteins. Mol Phylogenet Evol 2020; 148:106814. [PMID: 32278076 DOI: 10.1016/j.ympev.2020.106814] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
The membrane-associated progesterone receptor (MAPR) family consists of heme-binding proteins containing a cytochrome b5 (cytb5) domain characterized by the presence of a MAPR-specific interhelical insert region (MIHIR) between helices 3 and 4 of the canonical cytb5-domain fold. Animals possess three MAPR genes (PGRMC-like, Neuferricin and Neudesin). Here we show that all three animal MAPR genes were already present in the common ancestor of the opisthokonts (comprising animals and fungi as well as related single-celled taxa). All three MAPR genes acquired extensions C-terminal to the cytb5 domain, either before or with the evolution of animals. The archetypical MAPR protein, progesterone receptor membrane component 1 (PGRMC1), contains phosphorylated tyrosines Y139 and Y180. The combination of Y139/Y180 appeared in the common ancestor of cnidarians and bilaterians, along with an early embryological organizer and synapsed neurons, and is strongly conserved in all bilaterian animals. A predicted protein interaction motif in the PGRMC1 MIHIR is potentially regulated by Y139 phosphorylation. A multilayered model of animal MAPR function acquisition includes some pre-metazoan functions (e.g., heme binding and cytochrome P450 interactions) and some acquired animal-specific functions that involve regulation of strongly conserved protein interaction motifs acquired by animals (Metazoa). This study provides a conceptual framework for future studies, against which especially PGRMC1's multiple functions can perhaps be stratified and functionally dissected.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sofia A V Fortunato
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia.
| |
Collapse
|