1
|
Wei Y, Jiang Y, Lu Y, Hu Q. Histone modifications in Duchenne muscular dystrophy: pathogenesis insights and therapeutic implications. J Med Genet 2024; 61:1003-1010. [PMID: 39327039 DOI: 10.1136/jmg-2024-110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a commonly encountered genetic ailment marked by loss-of-function mutations in the Dystrophin gene, ultimately resulting in progressive debilitation of skeletal muscle. The investigation into the pathogenesis of DMD has increasingly converged on the role of histone modifications within the broader context of epigenetic regulation. These modifications, including histone acetylation, methylation and phosphorylation, are catalysed by specific enzymes and play a critical role in gene expression. This article provides an overview of the histone modifications occurring in DMD and analyses the research progress and potential of different types of histone modifications in DMD due to changes in cellular signalling for muscle regeneration, to provide new insights into diagnostic and therapeutic options for DMD.
Collapse
Affiliation(s)
- Yanning Wei
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Key Laboratory of Biological Molecular Medicine Research of Education, Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanyuan Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Yufei Lu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Longevity and Aging-related Diseases, Ministry of Education, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Fontes PK, Dos Santos EC, da Rocha HC, de Lima CB, Milazzotto MP. Metabolic stressful environment drives epigenetic modifications in oviduct epithelial cells. Theriogenology 2024; 215:151-157. [PMID: 38070214 DOI: 10.1016/j.theriogenology.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
The oviduct provides a suitable microenvironment from the gametes' final maturation until initial embryo development. Dynamic functional changes are observed in the oviduct cells, mainly controlled by steroid hormones and well-orchestrated during the estrous cycle. However, based on the roles played by the oviduct, additional layers of complexity might be present in its regulatory process. There is a cellular process that includes metabolic adaptation that can guide molecular modifications. This process is known as metaboloepigenetics. Therefore, we aimed to better understand how this crosstalk occurs in oviductal epithelial cells (OEC). Due to limited in situ access to the oviduct, we used the primary in vitro cell culture as a culture model and glucose as a metabolic disturbed factor. For that, cells derived from the oviductal epithelial layer were collected from cows at either follicular or luteal stages (n = 4 animals per group). They were cultured on a monolayer culture system under normoglycemic (2.7 mM glucose) or hyperglycemic conditions (27 mM glucose). On day five of culture, attached cells were submitted to analysis of mitochondrial metabolism (mitochondrial membrane potential - MMP) and epigenetics markers (5- methylcytosine - 5 mC and histone 3 lysine 9 acetylation - H3K9ac). Moreover, the culture media were submitted to the metabolites analysis profile by Raman spectrometry. Data were analyzed considering the effect of glucose level (normoglycemic vs. hyperglycemic), stages when OEC were harvested (follicular vs. luteal), and their interaction (glucose level * cycle stage) by two-way ANOVA. As a result, the high glucose level decreased the H3K9ac and MMP levels but did not affect the 5 mC. Regardless of the metabolic profile of the culture media, the glucose level was the only factor that changed the Raman shifts abundance. Although this present study evaluated oviductal epithelial cells after being submitted to an in vitro monolayer culture system, which is known to lead to cell dedifferentiation, yet, these results provide evidence of a relationship between epigenetic reprogramming and energy metabolism under these cell culture conditions. In conclusion, the levels of metabolites in culture media may be crucial for cellular function and differentiation, meaning that it should be considered in studies culturing oviductal cells.
Collapse
Affiliation(s)
- Patricia Kubo Fontes
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Erika Cristina Dos Santos
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Heloise Cale da Rocha
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Camila Bruna de Lima
- Département des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec, Canada
| | - Marcella Pecora Milazzotto
- Laboratory of Embryonic Metabolism and Epigenetic, Center of Natural and Human Science, Federal University of ABC, Santo André, São Paulo, Brazil.
| |
Collapse
|
3
|
Luo ZB, Yang LH, Han SZ, Chang SY, Liu H, An ZY, Zhang XL, Quan BH, Yin XJ, Kang JD. Cyclophosphamide reduces gene transcriptional activity and embryo in vitro development by inhibiting NF-κB expression through decreasing AcH4K12. Chem Biol Interact 2024; 387:110806. [PMID: 37980972 DOI: 10.1016/j.cbi.2023.110806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Cyclophosphamide (CTX), a widely used chemotherapeutic agent for cancer treatment, has been associated with long-term toxicity and detrimental effects on oocytes and ovaries, resulting in female reproductive dysfunction. This study aimed to investigate the potential impact of CTX on in vitro maturation (IVM) injury of porcine oocytes and subsequent embryonic development, as well as its effects on epigenetic modification and gene activation during early embryonic development. The results demonstrated that CTX treatment caused aberrant spindle structure and mitochondrial dysfunction during oocyte maturation, inducing DNA damage and early apoptosis, which consequently disrupted meiotic maturation. Indeed, CTX significantly reduced the in vitro developmental capacity of porcine embryos, and induced DNA damage and apoptosis in in vitro fertilization (IVF) blastocysts. Importantly, CTX induced abnormal histone modification of AcH4K12 in early porcine embryos. Moreover, addition of LBH589 before zygotic genome activation (ZGA) effectively increased AcH4K12 levels and restored the protein expression of NF-κB, which can effectively enhance the in vitro developmental potential of IVF embryos. The DNA damage and apoptosis induced by CTX compromised the quality of the blastocysts, which were recovered by supplementation with LBH589. This restoration was accompanied by down-regulation of BAX mRNA expression and up-regulation of BCL2, POU5F1, SOX2 and SOD1 mRNA expression. These findings indicated that CTX caused abnormal histone modification of AcH4K12 in early porcine embryos and reduced the protein expression of NF-κB, a key regulator of early embryo development, which may block subsequent ZGA processes.
Collapse
Affiliation(s)
- Zhao-Bo Luo
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Liu-Hui Yang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Sheng-Zhong Han
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Shuang-Yan Chang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Hongye Liu
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Zhi-Yong An
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Xiu-Li Zhang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China
| | - Biao-Hu Quan
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China
| | - Xi-Jun Yin
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| | - Jin-Dan Kang
- Department of Animal Science, College of Agriculture, Yanbian University, Yanji, Jilin, 133002, China; Jilin Provincial Key Laboratory of Transgenic Animal and Embryo Engineering, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
4
|
Sato T, Hamazaki M, Inoue Y, Aoki S, Koshiishi Y, Shirasuna K, Iwata H. Effect of a low ethanol concentration during in vitro maturation of bovine oocytes and subsequent embryo development. Theriogenology 2023; 208:158-164. [PMID: 37331264 DOI: 10.1016/j.theriogenology.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
The present study investigated the effects of low ethanol exposure on bovine oocytes. Cumulus-oocyte complexes (COCs) were aspirated for the antral follicles of slaughterhouse-derived ovaries. These COCs were incubated in maturation medium containing 0, 0.1, and 0.2% ethanol for 21 h and subjected to fertilization and in vitro development, and then the rates of nuclear maturation, mitochondrial DNA copy number (Mt-cn) and protein (TOMM40), ATP content and lipid content in oocyte, fertilization, and blastulation were examined. Furthermore, COCs were incubated with 0 or 0.1% ethanol and then mitochondrial membrane potential (MMP) and the glucose consumption of COCs was determined. In addition, gene expression in oocytes was examined by RNA sequencing. Ethanol (0.1 and 0.2%) increased Mt-cn and Mt-protein levels whereas 0.2% ethanol increased the blastulation rate and ATP content in oocytes and decreased lipid content in oocytes. Ethanol (0.1%) increased MMP in oocytes and decreased glucose consumption of COCs. Eight stage embryos derived from 0.1% ethanol treated oocytes had higher levels of trimethyl-H3K9 compared with that of nontreated counterpart. RNA sequencing revealed that differentially expressed genes were associated with glycolysis/gluconeogenesis, carbon metabolism, sphingolipid metabolism, amino acid metabolism, and fatty acid degradation pathways. In conclusion, even 0.1% concentrations of ethanol during in vitro maturation considerably affects oocyte metabolism and histone configuration of embryos.
Collapse
Affiliation(s)
- Takuya Sato
- Tokyo University of Agriculture, Funako 1737, Atsugi City, Japan
| | - Mao Hamazaki
- Tokyo University of Agriculture, Funako 1737, Atsugi City, Japan
| | - Yuki Inoue
- Tokyo University of Agriculture, Funako 1737, Atsugi City, Japan
| | - Sogo Aoki
- Tokyo University of Agriculture, Funako 1737, Atsugi City, Japan
| | | | - Koumei Shirasuna
- Tokyo University of Agriculture, Funako 1737, Atsugi City, Japan
| | - Hisataka Iwata
- Tokyo University of Agriculture, Funako 1737, Atsugi City, Japan.
| |
Collapse
|
5
|
da Fonseca Junior AM, Ispada J, Dos Santos EC, de Lima CB, da Silva JVA, Paulson E, Goszczynski DE, Goissis MD, Ross PJ, Milazzotto MP. Adaptative response to changes in pyruvate metabolism on the epigenetic landscapes and transcriptomics of bovine embryos. Sci Rep 2023; 13:11504. [PMID: 37460590 PMCID: PMC10352246 DOI: 10.1038/s41598-023-38686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
The epigenetic reprogramming that occurs during the earliest stages of embryonic development has been described as crucial for the initial events of cell specification and differentiation. Recently, the metabolic status of the embryo has gained attention as one of the main factors coordinating epigenetic events. In this work, we investigate the link between pyruvate metabolism and epigenetic regulation by culturing bovine embryos from day 5 in the presence of dichloroacetate (DCA), a pyruvate analog that increases the pyruvate to acetyl-CoA conversion, and iodoacetate (IA), which inhibits the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), leading to glycolysis inhibition. After 8 h of incubation, both DCA and IA-derived embryos presented higher mitochondrial membrane potential. Nevertheless, in both cases, lower levels of acetyl-CoA, ATP-citrate lyase and mitochondrial membrane potential were found in blastocysts, suggesting an adaptative metabolic response, especially in the DCA group. The metabolic alteration found in blastocysts led to changes in the global pattern of H3K9 and H3K27 acetylation and H3K27 trimethylation. Transcriptome analysis revealed that such alterations resulted in molecular differences mainly associated to metabolic processes, establishment of epigenetic marks, control of gene expression and cell cycle. The latter was further confirmed by the alteration of total cell number and cell differentiation in both groups when compared to the control. These results corroborate previous evidence of the relationship between the energy metabolism and the epigenetic reprogramming in preimplantation bovine embryos, reinforcing that the culture system is decisive for precise epigenetic reprogramming, with consequences for the molecular control and differentiation of cells.
Collapse
Affiliation(s)
- Aldcejam Martins da Fonseca Junior
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Jessica Ispada
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Erika Cristina Dos Santos
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | | | - João Vitor Alcantara da Silva
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil
| | - Erika Paulson
- Department of Animal Science, University of California, UC - Davis, Davis, USA
| | | | | | - Pablo Juan Ross
- Department of Animal Science, University of California, UC - Davis, Davis, USA
| | - Marcella Pecora Milazzotto
- Federal University of ABC - Center for Natural and Human Sciences, Av. Dos Estados, 5001, Bairro Santa Terezinha, Bloco A, Lab 504-3, Santo André, SP, CEP: 09210-580, Brazil.
| |
Collapse
|
6
|
Dos Santos AC, Joaquim DC, Nociti RP, Macabelli CH, Sampaio RV, Oliveira AS, Pita MO, de Oliveira RAM, da Silveira JC, Meirelles FV, Watanabe OY, Watanabe YF, Chiaratti MR. Micro-vibration results in vitro-derived bovine blastocysts with greater cryotolerance, epigenetic abnormalities, and a massive transcriptional change. Theriogenology 2023; 196:214-226. [PMID: 36427390 DOI: 10.1016/j.theriogenology.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022]
Abstract
Much effort has been employed to improve the quality of embryos obtained by in vitro production (IVP) given the relevance of this technology to current livestock systems. In this context, dynamic IVP systems have proved beneficial to the embryo once they mimic fluid flows and mechanical forces resulting from the movement of ciliated cells and muscle contraction in the reproductive tract. In the present study, we sought to confirm these initial findings as well as assess potential molecular consequences to the embryo by applying micro-vibration (45 Hz for 5 s once per 60 min) during both oocyte maturation and embryo culture in cattle. As a result, micro-vibration led to lower incidence of apoptosis in blastocysts following vitrification-thawing. Further analyses revealed epigenetic and transcriptional changes in blastocysts derived from the micro-vibration treatment, with a total of 502 differentially expressed genes. Enrichment analyses linked differentially expressed genes to 'Oxidative phosphorylation', 'Cytokine-cytokine receptor interaction', and 'Signaling pathways regulating pluripotency of stem cells'. Yet, a meta-analysis indicated that the transcriptional changes induced by micro-vibration were not toward that of in vivo-derived embryos. In conclusion, micro-vibration increases the cryoresistance of bovine embryos, but caution should be taken given the unclear consequences of epigenetic and transcriptional abnormalities induced by the treatment.
Collapse
Affiliation(s)
- Angélica C Dos Santos
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Daniel C Joaquim
- Vitrogen - Biotecnologia em Reprodução Animal, Cravinhos, SP, Brazil
| | - Ricardo P Nociti
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Carolina H Macabelli
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Rafael V Sampaio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil; ST Genetics, Navasota, TX, USA
| | - Aline S Oliveira
- Vitrogen - Biotecnologia em Reprodução Animal, Cravinhos, SP, Brazil
| | - Maico O Pita
- WTA - Watanabe Tecnologia Aplicada, Cravinhos, SP, Brazil
| | | | - Juliano C da Silveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Flávio V Meirelles
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | | | - Yeda F Watanabe
- Vitrogen - Biotecnologia em Reprodução Animal, Cravinhos, SP, Brazil
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Milazzotto MP, Ispada J, de Lima CB. Metabolism-epigenetic interactions on in vitro produced embryos. Reprod Fertil Dev 2022; 35:84-97. [PMID: 36592974 DOI: 10.1071/rd22203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Metabolism and epigenetics, which reciprocally regulate each other in different cell types, are fundamental aspects of cellular adaptation to the environment. Evidence in cancer and stem cells has shown that the metabolic status modifies the epigenome while epigenetic mechanisms regulate the expression of genes involved in metabolic processes, thereby altering the metabolome. This crosstalk occurs as many metabolites serve as substrates or cofactors of chromatin-modifying enzymes. If we consider the intense metabolic dynamic and the epigenetic remodelling of the embryo, the comprehension of these regulatory networks will be important not only for understanding early embryonic development, but also to determine in vitro culture conditions that support embryo development and may insert positive regulatory marks that may persist until adult life. In this review, we focus on how metabolism may affect epigenetic reprogramming of the early stages of development, in particular acetylation and methylation of histone and DNA. We also present other metabolic modifications in bovine embryos, such as lactylation, highlighting the promising epigenetic and metabolic targets to improve conditions for in vitro embryo development.
Collapse
Affiliation(s)
- Marcella Pecora Milazzotto
- Laboratory of Embryo Metabolism and Epigenomic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil
| | - Jessica Ispada
- Laboratory of Embryo Metabolism and Epigenomic, Center of Natural and Human Science, Federal University of ABC, Santo Andre, SP, Brazil
| | - Camila Bruna de Lima
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Département des Sciences Animales, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
8
|
Ispada J, Milazzotto MP. Silencing mark H3K27me3 is differently reprogrammed in bovine embryos with distinct kinetics of development. Reprod Domest Anim 2021; 57:333-336. [PMID: 34854135 DOI: 10.1111/rda.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/28/2021] [Indexed: 11/30/2022]
Abstract
The kinetics of the first cleavages is a predictor of blastocyst development and implantation. For bovine embryos, this attribute was previously related to distinct metabolic, molecular and epigenetic profiles, including DNA and histone modifications. In the present work, we described the dynamics of trimethylation of lysine 27 on histone H3 (H3K27me3) in fast and slow developing embryos and verified if this epigenetic mark was also influenced by the speed of the first cleavages. In vitro-produced bovine embryos were classified as fast (4 or more cells) or slow (2 cells) at 40 hr post fertilization (hpf) and either collected or cultured until 96 hpf or 186 hpf. Immunofluorescence analysis was performed in these three time points and showed that although both groups presented the same levels of H3K27me3 at 40 hpf, slow embryos presented a pronounced increase in this mark at 186 hpf when compared to fast embryos, resulting in blastocysts with remarkable differences in H3K27me3 levels. In conclusion, the increased levels of this repressive histone post-translation modification (PTM) might be an attempt of slow embryos to promote gene expression control and chromatin integrity, since it was already reported that these embryos present reduced levels of other epigenetic repressive marks as DNA methylation and trimethylation of lysine 9 on histone H3 (H3K9me3).
Collapse
Affiliation(s)
- Jessica Ispada
- Laboratory of Cellular and Molecular Biology, Center of Natural and Human Science, Federal University of ABC, Santo Andre, Brazil.,Institute of Biomedical Sciences, University of Sao Paulo, Butanta, Brazil
| | - Marcella Pecora Milazzotto
- Laboratory of Cellular and Molecular Biology, Center of Natural and Human Science, Federal University of ABC, Santo Andre, Brazil.,Institute of Biomedical Sciences, University of Sao Paulo, Butanta, Brazil
| |
Collapse
|