1
|
Vojdani A, Almulla AF, Zhou B, Al-Hakeim HK, Maes M. Reactivation of herpesvirus type 6 and IgA/IgM-mediated responses to activin-A underpin long COVID, including affective symptoms and chronic fatigue syndrome. Acta Neuropsychiatr 2024; 36:172-184. [PMID: 38571295 DOI: 10.1017/neu.2024.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
BACKGROUND Persistent infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), reactivation of dormant viruses, and immune-oxidative responses are involved in long COVID. OBJECTIVES To investigate whether long COVID and depressive, anxiety, and chronic fatigue syndrome (CFS) symptoms are associated with IgA/IgM/IgG to SARS-CoV-2, human herpesvirus type 6 (HHV-6), Epstein-Barr Virus (EBV), and immune-oxidative biomarkers. METHODS We examined 90 long COVID patients and ninety healthy controls. We measured serum IgA/IgM/IgG against HHV-6 and EBV and their deoxyuridine 5′-triphosphate nucleotidohydrolase (duTPase), SARS-CoV-2, and activin-A, C-reactive protein (CRP), advanced oxidation protein products (AOPP), and insulin resistance (HOMA2-IR). RESULTS Long COVID patients showed significant elevations in IgG/IgM-SARS-CoV-2, IgG/IgM-HHV-6, and HHV-6-duTPase, IgA/IgM-activin-A, CRP, AOPP, and HOMA2-IR. Neural network analysis yielded a highly significant predictive accuracy of 80.6% for the long COVID diagnosis (sensitivity: 78.9%, specificity: 81.8%, area under the ROC curve = 0.876); the topmost predictors were as follows: IGA-activin-A, IgG-HHV-6, IgM-HHV-6-duTPase, IgG-SARS-CoV-2, and IgM-HHV-6 (all positively) and a factor extracted from all IgA levels to all viral antigens (inversely). The top 5 predictors of affective symptoms due to long COVID were IgM-HHV-6-duTPase, IgG-HHV-6, CRP, education, IgA-activin-A (predictive accuracy of r = 0.636). The top 5 predictors of CFS due to long COVID were in descending order: CRP, IgG-HHV-6-duTPase, IgM-activin-A, IgM-SARS-CoV-2, and IgA-activin-A (predictive accuracy: r = 0.709). CONCLUSION Reactivation of HHV-6, SARS-CoV-2 persistence, and autoimmune reactions to activin-A combined with activated immune-oxidative pathways play a major role in the pathophysiology of long COVID as well as the severity of its affective symptoms and CFS.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA90035, USA
- Cyrex Laboratories, LLC, Phoenix, AZ85034, USA
| | - Abbas F Almulla
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu610072, China
| | | | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu610072, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu610072, China
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Center, Medical University of Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul02447, Korea
| |
Collapse
|
2
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Understanding the relationship between cancer associated cachexia and hypoxia-inducible factor-1. Biomed Pharmacother 2023; 163:114802. [PMID: 37146421 DOI: 10.1016/j.biopha.2023.114802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a multifactorial disorder characterized by an unrestricted loss of body weight as a result of muscle and adipose tissue atrophy. Cachexia is influenced by several factors, including decreased metabolic activity and food intake, an imbalance between energy uptake and expenditure, excessive catabolism, and inflammation. Cachexia is highly associated with all types of cancers responsible for more than half of cancer-related mortalities worldwide. In healthy individuals, adipose tissue significantly regulates energy balance and glucose homeostasis. However, in metastatic cancer patients, CAC occurs mainly because of an imbalance between muscle protein synthesis and degradation which are organized by certain extracellular ligands and associated signaling pathways. Under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1α) accumulated and translocated to the nucleus and activate numerous genes involved in cell survival, invasion, angiogenesis, metastasis, metabolic reprogramming, and cancer stemness. On the other hand, the ubiquitination proteasome pathway is inhibited during low O2 levels which promote muscle wasting in cancer patients. Therefore, understanding the mechanism of the HIF-1 pathway and its metabolic adaptation to biomolecules is important for developing a novel therapeutic method for cancer and cachexia therapy. Even though many HIF inhibitors are already in a clinical trial, their mechanism of action remains unknown. With this background, this review summarizes the basic concepts of cachexia, the role of inflammatory cytokines, pathways connected with cachexia with special reference to the HIF-1 pathway and its regulation, metabolic changes, and inhibitors of HIFs.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
3
|
Liu W, Chen Z, Li R, Zheng M, Pang X, Wen A, Yang B, Wang S. High and low dose of luzindole or 4-phenyl-2-propionamidotetralin (4-P-PDOT) reverse bovine granulosa cell response to melatonin. PeerJ 2023; 11:e14612. [PMID: 36684672 PMCID: PMC9851050 DOI: 10.7717/peerj.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/30/2022] [Indexed: 01/18/2023] Open
Abstract
Background Communication between oocytes and granulosa cells ultimately dictate follicle development or atresia. Melatonin is also involved in follicle development. This study aimed to investigate the effects of melatonin and its receptor antagonists on hormone secretion, as well as gene expression related to hormone synthesis, TGF-β superfamily, and follicle development in bovine granulosa cells, and assess the effects of melatonin in the presence of 4-P-PDOT and luzindole. Methods Bovine ovaries were collected from a local abattoir and follicular fluid (follicle diameter 5-8 mm) was collected for granulosa cell isolation and culture. Granulosa cells and culture medium were collected 48 h after treatment with melatonin at high dose concentrations (10-5 M) and low dose concentrations (10-9 M) in the absence/presence of 4-P-PDOT and luzindole (10-5 M or 10-9 M). Furthermore, the expression level of genes related to hormonal synthesis (CYP11A1, CYP19A1, StAR, and RUNX2), TGF-β superfamily (BMP6, INHA, INHBA, INHBB, and TGFBR3), and development (EGFR, DNMT1A, and FSHR) were detected in each experimental group by real-time quantitative PCR. In addition, the level of hormones in culture medium were detected using ELISA. Results Both 10-5 M and 10-9 M melatonin doses promoted the secretion of inhibin A and progesterone without affecting the production of inhibin B and estradiol. In addition, both promoted the gene expression of INHA, StAR, RUNX2, TGFBR3, EGFR, and DNMT1A, and inhibited the expression of BMP6, INHBB, CYP11A1, CYP19A1, and FSHR. When combined with different doses of 4-P-PDOT and luzindole, they exhibited different effects on the secretion of inhibin B, estradiol, inhibin A, and progesterone, and the expression of CYP19A1, RUNX2, BMP6, INHBB, EGFR, and DNMT1A induced by melatonin. Conclusion High and low dose melatonin receptor antagonists exhibited different effects in regulating hormone secretion and the expression of various genes in response to melatonin. Therefore, concentration effects must be considered when using luzindole or 4-P-PDOT.
Collapse
Affiliation(s)
- Wenju Liu
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, China,Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhihao Chen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Rui Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Menghao Zheng
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Xunsheng Pang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Aiyou Wen
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Bing Yang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| | - Shujuan Wang
- College of Animal Science, Anhui Science and Technology University, Fengyang, China,Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Fengyang, China
| |
Collapse
|
4
|
Crucial Convolution: Genetic and Molecular Mechanisms of Coiling during Epididymis Formation and Development in Embryogenesis. J Dev Biol 2022; 10:jdb10020025. [PMID: 35735916 PMCID: PMC9225329 DOI: 10.3390/jdb10020025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/01/2023] Open
Abstract
As embryonic development proceeds, numerous organs need to coil, bend or fold in order to establish their final shape. Generally, this occurs so as to maximise the surface area for absorption or secretory functions (e.g., in the small and large intestines, kidney or epididymis); however, mechanisms of bending and shaping also occur in other structures, notably the midbrain–hindbrain boundary in some teleost fish models such as zebrafish. In this review, we will examine known genetic and molecular factors that operate to pattern complex, coiled structures, with a primary focus on the epididymis as an excellent model organ to examine coiling. We will also discuss genetic mechanisms involving coiling in the seminiferous tubules and intestine to establish the final form and function of these coiled structures in the mature organism.
Collapse
|
5
|
Xu G, Li J, Zhang D, Su T, Li X, Cui S. HSP70 inhibits pig pituitary gonadotrophin synthesis and secretion by regulating the corticotropin-releasing hormone signaling pathway and targeting SMAD3. Domest Anim Endocrinol 2021; 74:106533. [PMID: 32992141 DOI: 10.1016/j.domaniend.2020.106533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/23/2022]
Abstract
High levels or long periods of stress have been shown to negatively impact cell homeostasis, including with respect to abnormalities in domestic animal reproduction, which are typically activated through the hypothalamus-pituitary-adrenal axis, in which corticotropin-releasing hormone (CRH) and heat shock protein 70 (HSP70) are involved. In addition, CRH has been reported to inhibit pituitary gonadotrophin synthesis, and HSP70 is expressed in the pituitary gland. The aim of this study was to determine whether HSP70 was involved in regulating gonadotrophin synthesis and secretion by mediating the CRH pathway in the porcine pituitary gland. Our results showed that HSP70 was highly expressed in the porcine pituitary gland, with over 90% of gonadotrophic cells testing HSP70 positive. The results of functional studies demonstrated that the HSP70 inducer decreased FSH and LH levels in cultured porcine primary pituitary cells, whereas an HSP70 inhibitor blocked the negative effect of CRH on gonadotrophin synthesis and secretion. Furthermore, our results demonstrated that HSP70 inhibited gonadotrophin synthesis and secretion by blocking GnRH-induced SMAD3 phosphorylation, which acts as the targeting molecule of HSP70, while CRH upregulated HSP70 expression through the PKC and ERK pathways. Collectively, these data demonstrate that HSP70 inhibits pituitary gonadotrophin synthesis and secretion by regulating the CRH signaling pathway and inhibiting SMAD3 phosphorylation, which are important for our understanding the mechanisms of the stress affects domestic animal reproductive functions.
Collapse
Affiliation(s)
- G Xu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - J Li
- Department of Reproductive Medicine and Genetics, The Seventh Medical Center of PLA General Hospital, Beijing 100700, China
| | - D Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | - T Su
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - X Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - S Cui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 Jiangsu, China.
| |
Collapse
|
6
|
Hashimoto M, Ho G, Sugama S, Takenouchi T, Waragai M, Sugino H, Inoue S, Masliah E. Possible Role of Activin in the Adiponectin Paradox-Induced Progress of Alzheimer's Disease. J Alzheimers Dis 2021; 81:451-458. [PMID: 33814453 PMCID: PMC8203218 DOI: 10.3233/jad-210206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests that the adiponectin (APN) paradox might be involved in promoting aging-associated chronic diseases such as Alzheimer's disease (AD). In human brain, APN regulation of the evolvability of amyloidogenic proteins (APs), including amyloid-β (Aβ) and tau, in developmental/reproductive stages, might be paradoxically manifest as APN stimulation of AD through antagonistic pleiotropy in aging. The unique mechanisms underlying APN activity remain unclear, a better understanding of which might provide clues for AD therapy. In this paper, we discuss the possible relevance of activin, a member of transforming growth factor β (TGFβ) superfamily of peptides, to antagonistic pleiotropy effects of APN. Notably, activin, a multiple regulator of cell proliferation and differentiation, as well as an endocrine modulator in reproduction and an organizer in early development, might promote aging-associated disorders, such as inflammation and cancer. Indeed, serum activin, but not serum TGFβ increases during aging. Also, activin/TGFβ signal through type II and type I receptors, both of which are transmembrane serine/threonine kinases, and the serine/threonine phosphorylation of APs, including Aβ42 serine 8 and αS serine 129, may confer pathological significance in neurodegenerative diseases. Moreover, activin expression is induced by APN in monocytes and hepatocytes, suggesting that activin might be situated downstream of the APN paradox. Finally, a meta-analysis of genome-wide association studies demonstrated that two SNPs relevant to the activin/TGFβ receptor signaling pathways conferred risk for major aging-associated disease. Collectively, activin might be involved in the APN paradox of AD and could be a significant therapeutic target.
Collapse
Affiliation(s)
| | - Gilbert Ho
- PCND Neuroscience Research Institute, Poway, CA, USA
| | - Shuei Sugama
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masaaki Waragai
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiromu Sugino
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
- Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Eliezer Masliah
- Division of Neuroscience, National Institute on Aging, Bethesda, MD, USA
| |
Collapse
|
7
|
Jia R, Chen X, Zhu Z, Huang J, Yu F, Zhang L, Ogura A, Pan J. Improving ovulation in gilts using anti-inhibin serum treatment combined with fixed-time artificial insemination. Reprod Domest Anim 2020; 56:112-119. [PMID: 33152153 DOI: 10.1111/rda.13854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 11/28/2022]
Abstract
For successful batch farrowing, porcine oestrus and ovulation must be synchronized using fixed-time artificial insemination (FTAI). However, exogenous gonadotropins, which are currently used in FTAI, negatively affect gilt ovulation. Here, we aimed to improve sexually mature gilt superovulation efficiency using passive immunization against inhibin during FTAI. Altrenogest-treated gilts were challenged with 10 ml anti-inhibin serum (AIS group, n = 6), 1,000 IU pregnant mare serum gonadotropin (PMSG group, n = 6), or 10 ml goat serum (control group, n = 6). Gilts in the AIS and PMSG groups were inseminated according to the FTAI protocol, and gilts in the control group were inseminated during natural oestrus. When PMSG was replaced by AIS during FTAI of gilts, ovulation rate and embryos recovered were significantly greater in the AIS group as compared to the other two groups (p < .05). Especially the average number of 6-8-cell embryos in the AIS group was significantly higher than that in the PMSG group (p < .01). Moreover, the blastocyst number in the AIS group was significantly higher than that in the PMSG group and the control group (p < .05). But there was no significant difference in the blastocyst number between the PMSG group and the control group (p > .05). Besides, plasma levels of estradiol-β (E2) and progesterone (P4) were significantly greater in the AIS group as compared to the other two groups on Day 23 and D 27, respectively (p < .01). In summary, we devised an improved high-yield FTAI protocol for sexually mature gilts using AIS; this protocol had a greater superovulation efficiency than the FTAI using PMSG.
Collapse
Affiliation(s)
- Ruoxin Jia
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, China.,Department of Reproduction, the Third of Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Xiaoyu Chen
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, China
| | - Zhiwei Zhu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, China.,Ningbo Kuangdai Livestock Husbandry Technology Co. Ltd., Ningbo, China
| | - Jing Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, China.,Ningbo Kuangdai Livestock Husbandry Technology Co. Ltd., Ningbo, China
| | - Fuxian Yu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, China
| | - Liang Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, China
| | - Atsuo Ogura
- RIKEN Bioresource Research Center, Tsukuba, Japan
| | - Jianzhi Pan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agriculture Science, Hangzhou, China.,Ningbo Kuangdai Livestock Husbandry Technology Co. Ltd., Ningbo, China
| |
Collapse
|
8
|
Xu H, Khan A, Zhao S, Wang H, Zou H, Pang Y, Zhu H. Effects of Inhibin A on Apoptosis and Proliferation of Bovine Granulosa Cells. Animals (Basel) 2020; 10:ani10020367. [PMID: 32102430 PMCID: PMC7071129 DOI: 10.3390/ani10020367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Inhibin A is well known for its inhibitory properties against follicle-stimulating hormone (FSH), released through a pituitary-gonadal negative feedback loop to regulate follicular development. Ovarian folliculogenesis, hormonal biosynthesis, and gametogenesis are dependent on inhibins, playing vital roles in promoting or inhibiting cell proliferation. The present study explored the physiological and molecular response of bovine granulosa cells (GCs) to different concentrations of inhibin A in vitro. We treated the primary GCs isolated from ovarian follicles (3-6 mm) with different levels of inhibin A (20, 50, and 100 ng/mL) along with the control (0 ng/mL) for 24 h. To evaluate the impact of inhibin A on GCs, several in vitro cellular parameters, including cell apoptosis, viability, cell cycle, and mitochondrial membrane potential (MMP) were detected. Besides, the transcriptional regulation of pro-apoptotic (BAX, Caspase-3) and cell proliferation (PCNA, CyclinB1) genes were also quantified. The results indicated a significant (p < 0.05) increase in the cell viability in a dose-dependent manner of inhibin A. Likewise, MMP was significantly (p < 0.05) enhanced when GCs were treated with high doses (50, 100 ng/mL) of inhibin A. Furthermore, inhibin A dose (100 ng/mL) markedly improved the progression of the G1 phase of the cell cycle and increased the cell number in the S phase, which was supported by the up-regulation of the proliferating cell nuclear antigen PCNA (20, 50, and 100ng/mL) and CyclinB (100 ng/mL) genes. In addition, higher doses of inhibin A (50 and 100 ng/mL) significantly (p < 0.05) decreased the apoptotic rate in GCs, which was manifested by down regulating BAX and Caspase-3 genes. Conclusively, our study presented a worthy strategy for the first time to characterize the cellular adaptation of bovine GCs under different concentrations of inhibin A. Our results conclude that inhibin A is a broad regulatory marker in GCs by regulating apoptosis and cellular progression.
Collapse
Affiliation(s)
- Huitao Xu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Huan Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
- Correspondence: ; Tel.: +86-010-62895971
| |
Collapse
|
9
|
Padmanabhan V, Cardoso RC. Neuroendocrine, autocrine, and paracrine control of follicle-stimulating hormone secretion. Mol Cell Endocrinol 2020; 500:110632. [PMID: 31682864 PMCID: PMC7433377 DOI: 10.1016/j.mce.2019.110632] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Follicle-stimulating hormone (FSH) is a glycoprotein hormone produced by gonadotropes in the anterior pituitary that plays a central role in controlling ovarian folliculogenesis and steroidogenesis in females. Moreover, recent studies strongly suggest that FSH exerts extragonadal actions, particularly regulating bone mass and adiposity. Despite its crucial role, the mechanisms regulating FSH secretion are not completely understood. It is evident that hypothalamic, ovarian, and pituitary factors are involved in the neuroendocrine, paracrine, and autocrine regulation of FSH production. Large animal models, such as the female sheep, represent valuable research models to investigate specific aspects of FSH secretory processes. This review: (i) summarizes the role of FSH controlling reproduction and other biological processes; (ii) discusses the hypothalamic, gonadal, and pituitary regulation of FSH secretion; (iii) considers the biological relevance of the different FSH isoforms; and (iv) summarizes the distinct patterns of FSH secretion under different physiological conditions.
Collapse
|
10
|
Yu DY, Wu RZ, Zhao Y, Nie ZH, Wei L, Wang TY, Liu ZP. Polymorphisms of four candidate genes and their correlations with growth traits in blue fox (Alopex lagopus). Gene 2019; 717:143987. [PMID: 31362037 DOI: 10.1016/j.gene.2019.143987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 11/16/2022]
Abstract
To improve the accuracy and genetic progress of blue fox breeding, the relationships between genetic polymorphisms and growth and reproductive traits of the blue fox were investigated. MC4R, MC3R, INHA and INHBA were selected as candidate genes for molecular evolution and statistical analyses. Single-factor variance analyses showed that the MC4R (g.267C > T, g.423C > T, and g.731C > A) and MC3R (g.677C > T) genotypes had significant impacts on body weight, chest circumference, abdominal perimeter and body mass index (BMI) (P < 0.05) in blue fox. The MC4R and MC3R combined genotypes had significant effects on the body weight and abdominal circumference. The different genotypes of INHA g.75G > A had significant effects on female fecundity, whereas the different genotypes of INHBA g.404G > T and g.467G > T and the INHA and INHBA combined genotypes had significant effects on male fecundity. The proteins encoded by the open reading frames (ORFs) of different polymorphic loci were predicted and analysed. The aims of this study were to identify genetic markers related to growth and reproduction in the blue fox and to provide an efficient, economical and accurate theoretical approach for auxiliary fox breeding.
Collapse
Affiliation(s)
- Dong-Yue Yu
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Ru-Zi Wu
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Yao Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Zi-Han Nie
- College of Wildlife Resources, Northeast Forestry University, Harbin, China
| | - Lai Wei
- Hualong Blue Fox Breeding Company, Harbin, China
| | - Tian-Yi Wang
- Hualong Blue Fox Breeding Company, Harbin, China
| | - Zhi-Ping Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin, China.
| |
Collapse
|
11
|
Wetzel DL, Reynolds JE, Bonde RK, Schloesser RW, Schwierzke-Wade L, Roudebush WE. Enhancing reproductive assessments of the Florida manatee Trichechus manatus latirostris by establishing optimal time period and inhibin B baseline concentrations. ENDANGER SPECIES RES 2019. [DOI: 10.3354/esr00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Paracrine/autocrine control of spermatogenesis by gonadotropin-inhibitory hormone. Mol Cell Endocrinol 2019; 492:110440. [DOI: 10.1016/j.mce.2019.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 11/17/2022]
|
13
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
14
|
Cole CL, Kleckner IR, Jatoi A, Schwarz E, Dunne RF. The Role of Systemic Inflammation in Cancer-Associated Muscle Wasting and Rationale for Exercise as a Therapeutic Intervention. JCSM CLINICAL REPORTS 2018. [DOI: 10.17987/jcsm-cr.v3i2.65] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progressive skeletal muscle wasting in cancer cachexia involves a process of dysregulated protein synthesis and breakdown. This catabolism may be the result of mal-nutrition, and an upregulation of both pro-inflammatory cytokines and the ubiquitin proteasome pathway (UPP), which can subsequently increase myostatin and activin A release. The skeletal muscle wasting associated with cancer cachexia is clinically significant, it can contribute to treatment toxicity or the premature discontinuation of treatments resulting in increases in morbidity and mortality. Thus, there is a need for further investigation into the pathophysiology of muscle wasting in cancer cachexia to develop effective prophylactic and therapeutic interventions. Several studies have identified a central role for chronic-systemic inflammation in initiating and perpetuating muscle wasting in patients with cancer. Interestingly, while exercise has shown efficacy in improving muscle quality, only recently have investigators begun to assess the impact that exercise has on chronic-systemic inflammation. To put this new information into context with established paradigms, here we review several biological pathways (e.g. dysfunctional inflammatory response, hypothalamus pituitary adrenal axis, and increased myostatin/activin A activity) that may be responsible for the muscle wasting in patients with cancer. Additionally, we discuss the potential impact that exercise has on these pathways in the treatment of cancer cachexia. Exercise is an attractive intervention for muscle wasting in this population, partially because it disrupts chronic-systemic inflammation mediated catabolism. Most importantly, exercise is a potent stimulator of muscle synthesis, and therefore this therapy may reverse muscle damage caused by cancer cachexia.
Collapse
|
15
|
Principe M, Chanal M, Karam V, Wierinckx A, Mikaélian I, Gadet R, Auger C, Raverot V, Jouanneau E, Vasiljevic A, Hennino A, Raverot G, Bertolino P. ALK7 expression in prolactinoma is associated with reduced prolactin and increased proliferation. Endocr Relat Cancer 2018; 25:795-806. [PMID: 30012586 DOI: 10.1530/erc-18-0082] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
Prolactinoma represents the most frequent hormone-secreting pituitary tumours. These tumours appear in a benign form, but some of them can reach an invasive and aggressive stage through an unknown mechanism. Discovering markers to identify prolactinoma proliferative and invading character is therefore crucial to develop new diagnostic/prognostic strategies. Interestingly, members of the TGFβ-Activin/BMP signalling pathways have emerged as important actors of pituitary development and adult function, but their role in prolactinomas remains to be precisely determined. Here, using a heterotopic allograft model derived from a rat prolactinoma, we report that the Activins orphan type I receptor ALK7 is ectopically expressed in prolactinomas-cells. Through immunohistological approaches, we further confirm that normal prolactin-producing cells lack ALK7-expression. Using a series of human tumour samples, we show that ALK7 expression in prolactinomas cells is evolutionary conserved between rat and human. More interestingly, our results highlight that tumours showing a robust expression of ALK7 present an increased proliferation as address by Ki67 expression and retrospective analysis of clinical data from 38 patients, presenting ALK7 as an appealing marker of prolactinoma aggressiveness. Beside this observation, our work pinpoints that the expression of prolactin is highly heterogeneous in prolactinoma cells. We further confirm the contribution of ALK7 in these observations and the existence of highly immunoreactive prolactin cells lacking ALK7 expression. Taken together, our observations suggest that Activin signalling mediated through ALK7 could therefore contribute to the hormonal heterogeneity and increased proliferation of prolactinomas.
Collapse
Affiliation(s)
- M Principe
- Cancer Research Centre of Lyon (CRCL)INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - M Chanal
- Cancer Research Centre of Lyon (CRCL)INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - V Karam
- Cancer Research Centre of Lyon (CRCL)INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - A Wierinckx
- Cancer Research Centre of Lyon (CRCL)INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
- ProfilXpertLyon, France
| | - I Mikaélian
- Cancer Research Centre of Lyon (CRCL)INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - R Gadet
- Cancer Research Centre of Lyon (CRCL)INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - C Auger
- Cancer Research Centre of Lyon (CRCL)INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - V Raverot
- Laboratoire d'HormonologieCentre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - E Jouanneau
- Service de NeurochirurgieGroupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Faculté de Médecine Lyon EstUniversité Lyon 1, Lyon, France
| | - A Vasiljevic
- Faculté de Médecine Lyon EstUniversité Lyon 1, Lyon, France
- Department of PathologyGroupement Hospitalier EST, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - A Hennino
- Cancer Research Centre of Lyon (CRCL)INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| | - G Raverot
- Cancer Research Centre of Lyon (CRCL)INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
- Department of PathologyGroupement Hospitalier EST, Hospices Civils de Lyon, University of Lyon, Lyon, France
- Department of EndocrinologyReference Center for Rare Pituitary Disease (HYPO), Groupement Hospitalier EST, Hospices Civils de Lyon, University of Lyon, Lyon, France
| | - P Bertolino
- Cancer Research Centre of Lyon (CRCL)INSERM U1052, CNRS UMR5286, Claude Bernard University, Lyon, France
| |
Collapse
|
16
|
Ahmad I, Jagtap DD, Selvaa Kumar C, Balasinor NH, Babitha Rani AM, Agarwal D, Saharan N. Molecular characterization of inhibin-A: Structure and expression analysis in Clarias batrachus. Gen Comp Endocrinol 2018; 261:104-114. [PMID: 29438674 DOI: 10.1016/j.ygcen.2018.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 11/30/2017] [Accepted: 02/09/2018] [Indexed: 12/27/2022]
Abstract
The inhibins are disulphide-linked heterodimeric glycoproteins that belong to the TGFβ superfamily. Inhibins have been well studied in mammals but the information about their structure and function is very limited in lower vertebrates. The aim of the present study was to characterize inhibin-A and to understand its receptor binding interaction, and to evaluate its biological function in Clarias batrachus. Structure prediction of inhibin-A revealed two glycosylation sites on inhibin-α (Asp262 and Asn334). Docking of inhibin-A with its receptor; betaglycan and Act RIIA showed that residues Ser321, Gly324 and Leu325 of inhibin-α are involved in high affinity binding with betaglycan while inhibin-βA bound to Act RIIA by forming hydrogen bonds. The mRNA transcript analysis of various tissues indicated the presence of higher to moderate expression of inhibin-α and inhibin-βA in the gonads and the extra-gonadal tissues. Further, stage specific expression showed decreased levels of inhibin-α in the gonads during the annual reproductive cycles. Inhibin-βA, activin-βB and Act RIIA increased in the brain during spawning while FSHr increased in the gonads during the preparatory phase. Our study provides molecular, structural and functional insights of inhibin-A for the first time in C. batrachus.
Collapse
Affiliation(s)
- Irshad Ahmad
- ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai 400061, India
| | - Dhanashree D Jagtap
- National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400012, India
| | - C Selvaa Kumar
- Bioinformatics Department, School of Biotechnology and Bioinformatics, D.Y. Patil University, CBD Belapur, Navi Mumbai 400614, India
| | - Nafisa H Balasinor
- National Institute for Research in Reproductive Health (Indian Council of Medical Research), Jehangir Merwanji Street, Parel, Mumbai 400012, India
| | - A M Babitha Rani
- ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai 400061, India
| | - Deepak Agarwal
- ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai 400061, India
| | - Neelam Saharan
- ICAR-Central Institute of Fisheries Education, Panch Marg, Yari Road, Versova, Andheri West, Mumbai 400061, India.
| |
Collapse
|
17
|
Bauman WA, La Fountaine MF, Cirnigliaro CM, Kirshblum SC, Spungen AM. Administration of increasing doses of gonadotropin-releasing hormone in men with spinal cord injury to investigate dysfunction of the hypothalamic-pituitary-gonadal axis. Spinal Cord 2018; 56:247-258. [PMID: 29142294 PMCID: PMC5839914 DOI: 10.1038/s41393-017-0002-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Prospective. OBJECTIVES To determine the optimum gonadotropin-releasing hormone (GnRH) dose to identify dysfunction of the hypothalamic-pituitary-gonadal axis in men with spinal cord injury (SCI). SETTING Metropolitan Area Hospitals, New York and New Jersey, USA. METHODS SCI men (16 hypogonadal (HG = serum testosterone <12.1 nmol/l) and 14 eugonadal (EG)) and able-bodied (AB) men (27 HG and 11 EG) were studied. GnRH (10, 50, and 100 μg) was randomly administered intravenously on three separate visits. Blood samples were collected post-GnRH for serum-luteinizing hormone (LH) and follicular-stimulating hormone (FSH). RESULTS HG and EG men had a similar proportion of clinically acceptable gonadotropin responses to all three GnRH doses. The incremental gonadotropin responses to GnRH were not significantly different across the groups. However, in the SCI-HG group, GnRH of 100 μg resulted in the greatest integrated FSH response, and in the SCI-EG group, GnRH of 50 μg resulted in the greatest integrated LH response compared with the AB groups. A consistent, but not significant, absolute increase in gonadotropin release was observed in the SCI groups at all GnRH doses. CONCLUSIONS Lower doses of GnRH did not improve the ability to identify the clinical dysfunction of the hypothalamic-pituitary-gonadal axis. However, the absolutely higher SCI-HG FSH response to GnRH of 100 μg and a higher SCI-EG LH response to GnRH of 50 μg, along with a higher gonadotropin release at all GnRH doses, albeit not significant, suggests a hypothalamic-pituitary dysfunction in persons with SCI.
Collapse
Affiliation(s)
- William A Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National, Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Michael F La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National, Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA
| | - Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National, Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Steven C Kirshblum
- Kessler Institute for Rehabilitation, West Orange, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Ann M Spungen
- Department of Veterans Affairs Rehabilitation Research & Development Service National, Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Winters SJ, Moore JP, Clark BJ. Leydig cell insufficiency in hypospermatogenesis: a paracrine effect of activin-inhibin signaling? Andrology 2018; 6:262-271. [PMID: 29409132 DOI: 10.1111/andr.12459] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/02/2017] [Accepted: 11/20/2017] [Indexed: 12/18/2022]
Abstract
Clinical findings and a variety of experimental models indicate that Leydig cell dysfunction accompanies damage to the seminiferous tubules with increasing severity. Most studies support the idea that intratesticular signaling from the seminiferous tubules to Leydig cells regulates steroidogenesis, which is disrupted when hypospermatogenesis occurs. Sertoli cells seem to play a pivotal role in this process. In this review, we summarize relevant clinical and experimental observations and present evidence to support the hypothesis that testicular activin signaling and its regulation by testicular inhibin may link seminiferous tubular dysfunction to reduced testosterone biosynthesis.
Collapse
Affiliation(s)
- S J Winters
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - J P Moore
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - B J Clark
- Division of Endocrinology, Metabolism and Diabetes, Department of Anatomical Sciences and Neurobiology and Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| |
Collapse
|
19
|
Effects of silencing INHα gene by RNAi on the mRNA expressions of StAR, FST, INHβB, and FSHR genes in cultured sheep granulosa cells. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Nguyen LT, Reverter A, Cánovas A, Venus B, Islas-Trejo A, Porto-Neto LR, Lehnert SA, Medrano JF, Moore SS, Fortes MRS. Global differential gene expression in the pituitary gland and the ovaries of pre- and postpubertal Brahman heifers. J Anim Sci 2017; 95:599-615. [PMID: 28380590 DOI: 10.2527/jas.2016.0921] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
To understand genes, pathways, and networks related to puberty, we characterized the transcriptome of two tissues: the pituitary gland and ovaries. Samples were harvested from pre- and postpubertal Brahman heifers (same age group). Brahman heifers () are older at puberty compared with , a productivity issue. With RNA sequencing, we identified differentially expressed (DEx) genes and important transcription factors (TF) and predicted coexpression networks. The number of DEx genes detected in the pituitary gland was 284 ( < 0.05), and was the most DEx gene (fold change = 4.12, = 0.01). The gene promotes bone mineralization through transforming growth factor-β (TGFβ) signaling. Further studies of the link between bone mineralization and puberty could target . In ovaries, 3,871 genes were DEx ( < 0.05). Four highly DEx genes were noteworthy for their function: (a γ-aminobutyric acid [GABA] transporter), (), and () and its receptor . These genes had higher ovarian expression in postpubertal heifers. The GABA and its receptors and transporters were expressed in the ovaries of many mammals, suggesting a role for this pathway beyond the brain. The pathway has been known to influence the timing of puberty in rats, via modulation of GnRH. The effects of at the hypothalamus, pituitary gland, and ovaries have been documented. and its receptors are known factors in the release of GnRH, similar to and GABA, although their roles in ovarian tissue are less clear. Pathways previously related to puberty such as TGFβ signaling ( = 6.71 × 10), Wnt signaling ( = 4.1 × 10), and peroxisome proliferator-activated receptor (PPAR) signaling ( = 4.84 × 10) were enriched in our data set. Seven genes were identified as key TF in both tissues: , , , , , , and a novel gene. An ovarian subnetwork created with TF and significant ovarian DEx genes revealed five zinc fingers as regulators: , , , , and . Recent work of hypothalamic gene expression also pointed to zinc fingers as TF for bovine puberty. Although some zinc fingers may be ubiquitously expressed, the identification of DEx genes in common across tissues points to key regulators of puberty. The hypothalamus and pituitary gland had eight DEx genes in common. The hypothalamus and ovaries had 89 DEx genes in common. The pituitary gland and ovaries had 48 DEx genes in common. Our study confirmed the complexity of puberty and suggested further investigation on genes that code zinc fingers.
Collapse
|
21
|
Bauman WA, La Fountaine MF, Cirnigliaro CM, Kirshblum SC, Spungen AM. Testicular responses to hCG stimulation at varying doses in men with spinal cord injury. Spinal Cord 2017; 55:659-663. [PMID: 28220820 PMCID: PMC5501758 DOI: 10.1038/sc.2017.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 11/08/2022]
Abstract
STUDY DESIGN Prospective. OBJECTIVES To test whether provocative stimulation of the testes identifies men with chronic spinal cord injury (SCI), a population in which serum testosterone concentrations are often depressed, possibly due to gonadal dysfunction. To accomplish this objective, conventional and lower than the conventional doses of human chorionic gonadotropin (hCG) were administered. METHODS Thirty men with chronic SCI (duration of injury >1 year; 18 and 65 years old; 16 eugonadal (>12.1 nmol l-1) and 14 hypogonadal (⩽12.1 nmol l-1)) or able-bodied (AB) men (11 eugonadal and 27 hypogonadal) were recruited for the study. Stimulation tests were performed to quantify testicular responses to the intramuscular administration of hCG at three dose concentrations (ithat is, 400, 2000 and 4000 IU). The hCG was administered on two consecutive days, and blood was collected for serum testosterone in the early morning prior to each of the two injections; subjects returned on day 3 for a final blood sample collection. RESULTS The average gonadal response in the SCI and AB groups to each dose of hCG was not significantly different in the hypogonadal or eugonadal subjects, with the mean serum testosterone concentrations in all groups demonstrating an adequate response. CONCLUSIONS This work confirmed the absence of primary testicular dysfunction without additional benefit demonstrated of provocative stimulation of the testes with lower than conventional doses of hCG. Our findings support prior work that suggested a secondary testicular dysfunction that occurs in a majority of those with SCI and depressed serum testosterone concentrations.
Collapse
Affiliation(s)
- William A. Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael F. La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- School of Health and Medical Sciences, Seton Hall University, South Orange, NJ
| | - Christopher M. Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Steven C. Kirshblum
- Kessler Institute for Rehabilitation, West Orange, NJ
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Ann M. Spungen
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Morphometric analysis of the folliculostellate cells and luteinizing hormone gonadotropic cells of the anterior pituitary of the men during the aging process. Tissue Cell 2016; 49:78-85. [PMID: 27884532 DOI: 10.1016/j.tice.2016.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/27/2016] [Accepted: 11/11/2016] [Indexed: 11/23/2022]
Abstract
The aim of this research was to quantify the changes in the morphology and density of the anterior pituitary folliculostellate (FS) and luteinizing hormone (LH) cells. Material was tissue of the pituitary gland of the 14 male cadavers. Tissue slices were immunohistochemically stained with monoclonal anti-LH antibody and polyclonal anti-S100 antibody for the detection of LH and FS cells, respectively. Digital images of the stained slices were afterwards morphometrically analyzed by ImageJ. Results of the morphometric analysis showed significant increase of the FS cells volume density in cases older than 70 years. Volume density of the LH cells did not significantly change, whereas their area significantly increased with age. Nucleocytoplasmic ratio of the LH cells gradually decreased and became significant after the age of 70. Finally, volume density of the FS cell significantly correlated with LH cells area and nucleocytoplasmic ratio. From all above cited, we concluded that in men, density and size of the FS cells increase with age. Long-term hypertrophy of the LH cells results in their functional decline after the age of 70. Strong correlation between FS cells and LH cells morphometric parameters might point to age-related interaction between these two cell groups.
Collapse
|
23
|
Mouse Models for the Study of Synthesis, Secretion, and Action of Pituitary Gonadotropins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:49-84. [PMID: 27697204 DOI: 10.1016/bs.pmbts.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gonadotropins play fundamental roles in reproduction. More than 30years ago, Cga transgenic mice were generated, and more than 20years ago, the phenotypes of Cga null mice were reported. Since then, numerous mouse strains have been generated and characterized to address several questions in reproductive biology involving gonadotropin synthesis, secretion, and action. More recently, extragonadal expression, and in some cases, functions of gonadotropins in nongonadal tissues have been identified. Several genomic and proteomic approaches including novel mouse genome editing tools are available now. It is anticipated that these and other emerging technologies will be useful to build an integrated network of gonadotropin signaling pathways in various tissues. Undoubtedly, research on gonadotropins will continue to provide new knowledge and allow us transcend from benchside to the bedside.
Collapse
|
24
|
Dubois SL, Wolfe A, Radovick S, Boehm U, Levine JE. Estradiol Restrains Prepubertal Gonadotropin Secretion in Female Mice via Activation of ERα in Kisspeptin Neurons. Endocrinology 2016; 157:1546-54. [PMID: 26824364 PMCID: PMC4816723 DOI: 10.1210/en.2015-1923] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elimination of estrogen receptorα (ERα) from kisspeptin (Kiss1) neurons results in premature LH release and pubertal onset, implicating these receptors in 17β-estradiol (E2)-mediated negative feedback regulation of GnRH release during the prepubertal period. Here, we tested the dependency of prepubertal negative feedback on ERα in Kiss1 neurons. Prepubertal (postnatal d 14) and peripubertal (postnatal d 34) wild-type (WT) and Kiss1 cell-specific ERα knockout (KERαKO) female mice were sham operated or ovariectomized and treated with either vehicle- or E2-containing capsules. Plasma and tissues were collected 2 days after surgery for analysis. Ovariectomy increased LH and FSH levels, and E2 treatments completely prevented these increases in WT mice of both ages. However, in prepubertal KERαKO mice, basal LH levels were elevated vs WT, and both LH and FSH levels were not further increased by ovariectomy or affected by E2 treatment. Similarly, Kiss1 mRNA levels in the medial basal hypothalamus, which includes the arcuate nucleus, were suppressed with E2 treatment in ovariectomized prepubertal WT mice but remained unaffected by any treatment in KERαKO mice. In peripubertal KERαKO mice, basal LH and FSH levels were not elevated vs WT and were unaffected by ovariectomy or E2. In contrast to our previous findings in adult animals, these results demonstrate that suppression of gonadotropins and Kiss1 mRNA by E2 in prepubertal animals depends upon ERα activation in Kiss1 neurons. Our observations are consistent with the hypothesis that these receptors play a critical role in restraining GnRH release before the onset and completion of puberty.
Collapse
Affiliation(s)
- Sharon L Dubois
- Neuroscience Training Program (S.L.D.) and Department of Neuroscience (S.L.D., J.E.L.), University of Wisconsin-Madison, Madison, Wisconsin 53705; Department of Pediatrics (A.W., S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Pharmacology and Toxicology (U.B.), University of Saarland School of Medicine, Homburg D-66421, Germany; and Wisconsin National Primate Research Center (J.E.L.), Madison, Wisconsin 53715
| | - Andrew Wolfe
- Neuroscience Training Program (S.L.D.) and Department of Neuroscience (S.L.D., J.E.L.), University of Wisconsin-Madison, Madison, Wisconsin 53705; Department of Pediatrics (A.W., S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Pharmacology and Toxicology (U.B.), University of Saarland School of Medicine, Homburg D-66421, Germany; and Wisconsin National Primate Research Center (J.E.L.), Madison, Wisconsin 53715
| | - Sally Radovick
- Neuroscience Training Program (S.L.D.) and Department of Neuroscience (S.L.D., J.E.L.), University of Wisconsin-Madison, Madison, Wisconsin 53705; Department of Pediatrics (A.W., S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Pharmacology and Toxicology (U.B.), University of Saarland School of Medicine, Homburg D-66421, Germany; and Wisconsin National Primate Research Center (J.E.L.), Madison, Wisconsin 53715
| | - Ulrich Boehm
- Neuroscience Training Program (S.L.D.) and Department of Neuroscience (S.L.D., J.E.L.), University of Wisconsin-Madison, Madison, Wisconsin 53705; Department of Pediatrics (A.W., S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Pharmacology and Toxicology (U.B.), University of Saarland School of Medicine, Homburg D-66421, Germany; and Wisconsin National Primate Research Center (J.E.L.), Madison, Wisconsin 53715
| | - Jon E Levine
- Neuroscience Training Program (S.L.D.) and Department of Neuroscience (S.L.D., J.E.L.), University of Wisconsin-Madison, Madison, Wisconsin 53705; Department of Pediatrics (A.W., S.R.), Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Pharmacology and Toxicology (U.B.), University of Saarland School of Medicine, Homburg D-66421, Germany; and Wisconsin National Primate Research Center (J.E.L.), Madison, Wisconsin 53715
| |
Collapse
|
25
|
Li W, Chen S, Li H, Liu Z, Zhao Y, Chen L, Zhou X, Li C. A new insertion/deletion fragment polymorphism of inhibin-α gene associated with follicular cysts in Large White sows. J Vet Med Sci 2015; 78:473-6. [PMID: 26521695 PMCID: PMC4868885 DOI: 10.1292/jvms.14-0489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovarian follicular cysts are anovulatory follicular structures that lead to infertility.
Hormones play key roles in the formation and persistence of cysts. Inhibins are
heterodimeric gonadal glycoprotein hormones that belong to the transforming growth
factor-β superfamily. These hormones suppress the secretion of follicle-stimulating
hormone. In this report, partial fragment of inhibin-α (INHA) subunit gene of Large White
pig was detected from the genomic DNA by polymerase chain reaction. The sequence showed a
283 bp fragment insertion/deletion (I/D) polymorphism in INHA subunit gene. A total of 49
Large White sows with cystic follicles and 152 normal sows were screened for this
polymorphism. The relationship of INHA I/D polymorphisms with follicular cysts was
investigated. The distribution of I/D was significantly different between cystic and
normal sows, thereby suggesting that the INHA subunit gene might be a potential biological
marker for breeding programs in pig.
Collapse
Affiliation(s)
- Wanhong Li
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, 5333 Xian Road, Changchun, Jilin 130062, P. R. of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Bone morphogenetic proteins (BMPs), together with the eponymous transforming growth factor (TGF) β and the Activins form the TGFβ superfamily of ligands. This protein family comprises more than 30 structurally highly related proteins, which determine formation, maintenance, and regeneration of tissues and organs. Their importance for the development of multicellular organisms is evident from their existence in all vertebrates as well as nonvertebrate animals. From their highly specific functions in vivo either a strict relation between a particular ligand and its cognate cellular receptor and/or a stringent regulation to define a distinct temperospatial expression pattern for the various ligands and receptor is expected. However, only a limited number of receptors are found to serve a large number of ligands thus implicating highly promiscuous ligand-receptor interactions instead. Since in tissues a multitude of ligands are often found, which signal via a highly overlapping set of receptors, this raises the question how such promiscuous interactions between different ligands and their receptors can generate concerted and highly specific cellular signals required during embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Thomas D Mueller
- Department Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
27
|
Herndon MK, Nilson JH. Maximal expression of Foxl2 in pituitary gonadotropes requires ovarian hormones. PLoS One 2015; 10:e0126527. [PMID: 25955311 PMCID: PMC4425675 DOI: 10.1371/journal.pone.0126527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/03/2015] [Indexed: 12/30/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) and activin regulate synthesis of FSH and ultimately fertility. Recent in vivo studies cast SMAD4 and FOXL2 as master transcriptional mediators of activin signaling that act together and independently of GnRH to regulate Fshb gene expression and female fertility. Ovarian hormones regulate GnRH and its receptor (GNRHR) through negative and positive feedback loops. In contrast, the role of ovarian hormones in regulating activin, activin receptors, and components of the activin signaling pathway, including SMAD4 and FOXL2, remains understudied. The widespread distribution of activin and many of its signaling intermediates complicates analysis of the effects of ovarian hormones on their synthesis in gonadotropes, one of five pituitary cell types. We circumvented this complication by using a transgenic model that allows isolation of polyribosomes selectively from gonadotropes of intact females and ovariectomized females treated with or without a GnRH antagonist. This paradigm allows assessment of ovarian hormonal feedback and distinguishes responses that are either independent or dependent on GnRH. Surprisingly, our results indicate that Foxl2 levels in gonadotropes decline significantly in the absence of ovarian input and independently of GnRH. Expression of the genes encoding other members of the activin signaling pathway are unaffected by loss of ovarian hormonal feedback, highlighting their selective effect on Foxl2. Expression of Gnrhr, a known target of FOXL2, also declines upon ovariectomy consistent with reduced expression of Foxl2 and loss of ovarian hormones. In contrast, Fshb mRNA increases dramatically post-ovariectomy due to increased compensatory input from GnRH. Together these data suggest that ovarian hormones regulate expression of Foxl2 thereby expanding the number of genes controlled by the hypothalamic-pituitary-gonadal axis that ultimately dictate reproductive fitness.
Collapse
Affiliation(s)
- Maria K. Herndon
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
| | - John H. Nilson
- School of Molecular Biosciences, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
28
|
Wekesa A, Harrison M, Watson RW. Physical activity and its mechanistic effects on prostate cancer. Prostate Cancer Prostatic Dis 2015; 18:197-207. [PMID: 25800589 DOI: 10.1038/pcan.2015.9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 02/04/2015] [Accepted: 02/06/2015] [Indexed: 12/22/2022]
Abstract
Beneficial effects of physical activity have been illustrated in numerous aspects of health. With the increasing incidence of prostate cancer and changes in physical activity of men, understanding the link between the two has important implications for changing this cancer burden. Both positive and negative associations between physical activity and prostate cancer have been previously demonstrated in observational epidemiological studies. Elucidating the biological mechanisms would lead to a better understanding of how physical activity influences the progression of prostate cancer. This review was undertaken to: (1) identify evidence in literature that demonstrates the effects of physical activity on skeletal muscle secretomes, (2) indicate the plausible signaling pathways these proteins might activate, and (3) identify evidence in literature that demonstrates the roles of the signaling pathways in prostate cancer progression and regression. We also discuss proposed biological mechanisms and signaling pathways by which physical activity may prevent the development and progression of prostate cancer. We discuss proteins involved in the normal and aberrant growth and development of the prostate gland that may be affected by physical activity. We further identify future directions for research, including a better understanding of the biological mechanisms, the need to standardize physical activity and identify mechanistic end points of physical activity that can then be correlated with outcomes.
Collapse
Affiliation(s)
- A Wekesa
- UCD School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - M Harrison
- Department of Health, Sport and Exercise Science, Waterford Institute of Technology, Waterford, Ireland
| | - R W Watson
- UCD School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
29
|
Li W, Sun L, Chen S, Chen L, Liu Z, Hou X, Chen C, Han Y, Wang C, Li C, Zhou X. Association of inhibin-α gene polymorphisms with follicular cysts in large white sows. Theriogenology 2014. [PMID: 26208435 DOI: 10.1016/j.theriogenology.2014.06.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ovarian follicular cysts are anovulatory follicular structures that have been identified in sows and are known to cause infertility. The pathogenesis of follicular cysts remains poorly understood. Hormones play key roles in the formation and persistence of cysts. The hormone inhibin is a member of the TGF-β superfamily and is named for its negative regulation of FSH, another hormone that controls follicular recruitment and growth. In the present study, 48 sows with follicular cysts and 60 normal sows with no cysts were screened for mutations in the inhibin-α gene to examine the association of inhibin-α gene polymorphisms with the presence of follicular cysts. The results show that the c.-42G>A and c.3222G>A polymorphisms are significantly associated with follicular cysts and that sows with c.-42GG and c.3222GG genotypes have lower risk of developing cysts. Our findings may provide novel biological biomarkers and promising gene therapy candidates for follicular cyst formation in sows, which would greatly benefit pig breeding programs.
Collapse
Affiliation(s)
- Wanhong Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Lina Sun
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Shuxiong Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Zhuo Liu
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Xiaofeng Hou
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Chao Chen
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yamei Han
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Chunqiang Wang
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China; College of Animal Science and Veterinary Medicine, Liaoning Medical University, Jinzhou, Liaoning, P.R. China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China.
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China.
| |
Collapse
|
30
|
Hart JE. The body has a brake: micrin is a postulated new gonadal hormone curbing tissue overgrowth and restricting reproduction. Med Hypotheses 2014; 83:775-86. [PMID: 25456786 DOI: 10.1016/j.mehy.2014.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/30/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
Abstract
There is evidence for an unrecognised classical hormone secreted by the mammalian gonad. This postulated hormone--'micrin' (pronounced 'my-crin')--represents the body's brake against tissue overgrowth. When oestrogens are administered in high doses to female rats there is a considerable (non-artefactual) increase in the relative size and weight of organs such as the pituitary, adrenals, uterus and liver--suggesting an organotrophic (organ-building) role for endogenous oestrogens. This effect is exaggerated if the animals are first ovariectomized, indicating the removal of a negative ovarian factor, micrin. These organ enlargements can be reduced by pretreating the rats with large doses of antioestrogens such as clomiphene and tamoxifen. This antiestrogenic blockade of exogenous oestrogens is itself blunted by prior removal of the ovaries. It is proposed that antioestrogens (e.g. tamoxifen in breast cancer treatment) antagonize the organotrophic effects of oestrogens by competing for the oestrogen receptor peripherally and centrally and via an increase in the secretion of ovarian micrin. It is deduced that micrin is the testicular 'inhibin' proposed in the 1930s, not the molecule that now bears that name, which acts at the pituitary tier as a downregulator of follicle-stimulating hormone. The hallmark of micrin deficiency in the male rat is a pituitary hypertrophy that follows castration. This is reversible with a steroid-depleted aqueous bovine testicular extract, the micrin within which suppresses the hypothalamus, normalizing the pituitary. Micrin probably acts as a brake on peripheral tissues directly but also indirectly at the meta-level via the hypothalamic-pituitary axis, resetting a hypothalamic 'organostat' controlling organ and tissue masses, part of the 'organotrophic system' of internal size regulation. Besides endocrine (circulating) micrin from the gonads there is probably paracrine (locally acting) micrin produced in the brain. This is involved in a somatic cueing system for puberty: the brake comes off at an appropriate body tissue mass disinhibiting the hypothalamus and accelerating the organism towards sexual maturity and full adult stature. This suggests the use in reproductive disorders of micrin-related drugs. These could also be inhibitors of breast, prostate and other cancers, while protecting the bone marrow via a trophic effect on the adrenals (the lack of which protection causes lethal bone marrow depression in oestrogen-treated ferrets and dogs). Benign prostatic hyperplasia is asserted to be a micrin deficiency disorder, involving insufficiently opposed androgen. The rise in cancers with age could be associated with a reduction in micrin protection and a relative lack of this hormone could partly explain why men die younger than women. Micrin is dissimilar in activity to any known molecule and could usefully be isolated, characterised and exploited therapeutically.
Collapse
Affiliation(s)
- John E Hart
- Endocrine Pharmaceuticals Limited, Wilderness End, Tadley Common Road, Tadley, Hampshire RG26 3TA, UK.
| |
Collapse
|
31
|
Makanji Y, Zhu J, Mishra R, Holmquist C, Wong WPS, Schwartz NB, Mayo KE, Woodruff TK. Inhibin at 90: from discovery to clinical application, a historical review. Endocr Rev 2014; 35:747-94. [PMID: 25051334 PMCID: PMC4167436 DOI: 10.1210/er.2014-1003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When it was initially discovered in 1923, inhibin was characterized as a hypophysiotropic hormone that acts on pituitary cells to regulate pituitary hormone secretion. Ninety years later, what we know about inhibin stretches far beyond its well-established capacity to inhibit activin signaling and suppress pituitary FSH production. Inhibin is one of the major reproductive hormones involved in the regulation of folliculogenesis and steroidogenesis. Although the physiological role of inhibin as an activin antagonist in other organ systems is not as well defined as it is in the pituitary-gonadal axis, inhibin also modulates biological processes in other organs through paracrine, autocrine, and/or endocrine mechanisms. Inhibin and components of its signaling pathway are expressed in many organs. Diagnostically, inhibin is used for prenatal screening of Down syndrome as part of the quadruple test and as a biochemical marker in the assessment of ovarian reserve. In this review, we provide a comprehensive summary of our current understanding of the biological role of inhibin, its relationship with activin, its signaling mechanisms, and its potential value as a diagnostic marker for reproductive function and pregnancy-associated conditions.
Collapse
Affiliation(s)
- Yogeshwar Makanji
- Department of Obstetrics and Gynecology (Y.M., J.Z., C.H., W.P.S.W., T.K.W.), Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60610; Center for Molecular Innovation and Drug Discovery (R.M., C.H.), Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208; and Department of Molecular Biosciences (N.B.S., K.E.M., T.K.W.), Center for Reproductive Science, Northwestern University, Evanston, Illinois 60208
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gonzalez B, Ratner LD, Scerbo MJ, Di Giorgio NP, Poutanen M, Huhtaniemi IT, Calandra RS, Lux-Lantos VAR, Cambiasso MJ, Rulli SB. Elevated hypothalamic aromatization at the onset of precocious puberty in transgenic female mice hypersecreting human chorionic gonadotropin: effect of androgens. Mol Cell Endocrinol 2014; 390:102-11. [PMID: 24755422 DOI: 10.1016/j.mce.2014.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/03/2014] [Accepted: 04/10/2014] [Indexed: 01/26/2023]
Abstract
Transgenic female mice overexpressing the α- and β- subunits of human chorionic gonadotropin (hCGαβ+) exhibited precocious puberty, as evidenced by early vaginal opening. Chronically elevated hCG in 21-day-old hCGαβ+ females stimulated gonadal androgen production, which exerted negative feedback over the endogenous gonadotropin synthesis, and activated the hypothalamic GnRH pulsatility and gene expression. Transgenic females also exhibited elevated hypothalamic aromatization in the preoptic area (POA), which is the sexually-differentiated area that controls the LH surge in adulthood. Ovariectomy at 14 days of age was unable to rescue this phenotype. However, the blockade of androgen action by flutamide from postnatal day 6 onwards reduced the aromatase levels in the POA of hCGαβ+ females. Our results suggest that early exposure of females to androgen action during a critical period between postnatal days 6-14 induces sex-specific organizational changes of the brain, which affect the aromatase expression in the POA at the onset of precocious puberty.
Collapse
Affiliation(s)
- Betina Gonzalez
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Laura D Ratner
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - María J Scerbo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Casilla de Correo 389, 5000 Córdoba, Argentina
| | - Noelia P Di Giorgio
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Matti Poutanen
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland; Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland
| | - Ilpo T Huhtaniemi
- Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland; Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Ricardo S Calandra
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Victoria A R Lux-Lantos
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - María J Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Casilla de Correo 389, 5000 Córdoba, Argentina
| | - Susana B Rulli
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina.
| |
Collapse
|
33
|
Marino FE, Risbridger G, Gold E. The therapeutic potential of blocking the activin signalling pathway. Cytokine Growth Factor Rev 2013; 24:477-84. [DOI: 10.1016/j.cytogfr.2013.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 12/24/2022]
|
34
|
Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. Int J Biochem Cell Biol 2013; 45:2333-47. [DOI: 10.1016/j.biocel.2013.05.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 11/21/2022]
|
35
|
Sherman ML, Borgstein NG, Mook L, Wilson D, Yang Y, Chen N, Kumar R, Kim K, Laadem A. Multiple-dose, safety, pharmacokinetic, and pharmacodynamic study of sotatercept (ActRIIA-IgG1), a novel erythropoietic agent, in healthy postmenopausal women. J Clin Pharmacol 2013; 53:1121-30. [PMID: 23939631 DOI: 10.1002/jcph.160] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/02/2013] [Indexed: 12/20/2022]
Abstract
Ligands of the transforming growth factor-beta superfamily and activin-receptor signaling play an important role in erythropoiesis. Sotatercept, an activin receptor type IIA (ActRIIA) ligand trap, is a novel, recombinant, fusion protein comprising the extracellular domain of human ActRIIA linked to the Fc portion of human immunoglobulin G1. Sotatercept, originally developed to increase bone mineral density, was noted to have robust effects on erythropoiesis. Here, we evaluated the safety, pharmacokinetic properties, and pharmacodynamic effects of sotatercept in 31 healthy postmenopausal women. Sotatercept was administered at dose level 0.1, 0.3, or 1 mg/kg every 28 days subcutaneously for up to four doses. Sotatercept was generally safe and well tolerated, and elicited clinically significant, dose-dependent increases in hemoglobin, hematocrit, and red blood cell counts that persisted for up to 4 months. The effect of sotatercept on hemoglobin was dose-limiting. Sotatercept also increased bone mineral density and biomarkers of bone formation. The sotatercept serum exposure-dose relationship was linear, with a mean terminal half-life of approximately 23 days. ActRIIA ligands are important regulators of erythrocyte production in healthy individuals. Clinical studies are ongoing to explore the potential of sotatercept to treat anemia and diseases of ineffective erythropoiesis as well as an agent to increase bone mineral density.
Collapse
|
36
|
Rejon CA, Hancock MA, Li YN, Thompson TB, Hébert TE, Bernard DJ. Activins bind and signal via bone morphogenetic protein receptor type II (BMPR2) in immortalized gonadotrope-like cells. Cell Signal 2013; 25:2717-26. [PMID: 24018044 DOI: 10.1016/j.cellsig.2013.09.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/15/2013] [Accepted: 09/01/2013] [Indexed: 11/25/2022]
Abstract
TGFβ superfamily ligands greatly outnumber their receptors. Thus, receptors are shared between ligands and individual ligands can bind multiple receptors. Bone morphogenetic proteins (BMPs) bind and signal via both BMP type II (BMPR2) and activin type II (ACVR2) receptors. We hypothesized that, in addition to its canonical receptor ACVR2, activin A might similarly bind and signal via BMPR2. First, using surface plasmon resonance, we showed that activin A binds to the BMPR2 extracellular domain (ECD), though with lower affinity compared to the ACVR2-ECD. We confirmed these results in cells, where radiolabeled activin A bound to ACVR2 and BMPR2, but not to other type II receptors (AMHR2 or TGFBR2). Using homology modeling and site-directed mutagenesis, we identified key residues in BMPR2 that mediate its interaction with activin A. The soluble ECDs of ACVR2 or BMPR2 dose-dependently inhibited activin A-, but not TGFβ-induced signaling in cells, suggesting that activin binding to BMPR2 could have functional consequences. To address this idea, we altered BMPR2 expression levels in immortalized murine gonadotrope-like cells, LβT2, in which activins potently stimulate follicle-stimulating hormone β (Fshb) subunit transcription. BMPR2 expression potentiated activin A responses whereas depletion of endogenous BMPR2 with short interfering RNAs attenuated activin A-stimulated Fshb transcription. Additional data suggest, for the first time, that BMPR2 may form functional complexes with the canonical activin type I receptor, activin receptor-like kinase 4. Collectively, our data show that BMPR2, along with ACVR2, functions as a bona fide activin type II receptor in gonadotrope-like cells, thereby broadening our understanding of mechanisms of activin action.
Collapse
Affiliation(s)
- Carlis A Rejon
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
37
|
Rejon CA, Ho CC, Wang Y, Zhou X, Bernard DJ, Hébert TE. Cycloheximide inhibits follicle-stimulating hormone β subunit transcription by blocking de novo synthesis of the labile activin type II receptor in gonadotrope cells. Cell Signal 2013; 25:1403-12. [PMID: 23499904 DOI: 10.1016/j.cellsig.2013.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/04/2013] [Indexed: 01/08/2023]
Abstract
The pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), play essential roles in the regulation of vertebrate reproduction. Activins and inhibins have opposing actions on FSH (but not LH) synthesis, either inducing or inhibiting transcription of the FSHβ subunit gene (Fshb). The translational inhibitor cycloheximide (CHX) produces inhibin-like effects in cultured pituitary cells, selectively suppressing FSH production. Using the murine gonadotrope-like cell line, LβT2, as a model, we tested the hypothesis that a component of the activin pathway is highly labile in gonadotrope cells and that its rapid loss following CHX treatment impairs activin-stimulated Fshb transcription. Treatment of cells with CHX for 6h, but not 1h, blocked activin A-stimulated Fshb transcription. Pre-treatment of LβT2 cells with CHX for as few as 2-3h inhibited activin A-stimulated SMAD2/3 phosphorylation without altering total SMAD2/3 protein levels. These data indicated that CHX affects activin signalling upstream of SMAD proteins, most likely at the receptor level. Indeed, CHX rapidly reduced activin A binding to LβT2 cells. We went on to show that activin A signals via the type II receptor ACVR2, rather than ACVR2B, to regulate Fshb transcription and that the receptor has a half life of ~2h in LβT2 cells. The mechanism of ACVR2 turnover remains undefined, but appears to be ligand-, proteasome-, and lysosome-independent. Collectively, these data indicate that CHX produces inhibin-like effects in gonadotropes by preventing de novo synthesis of the highly labile ACVR2, thereby blocking activin signaling to the Fshb promoter.
Collapse
Affiliation(s)
- Carlis A Rejon
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Roudebush WE, Nethery RA, Heldreth T. Presence of anti-müllerian hormone in the squirrel monkey (Saimiri boliviensis
): gender and seasonal differences. J Med Primatol 2012; 42:15-9. [DOI: 10.1111/jmp.12022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2012] [Indexed: 11/30/2022]
Affiliation(s)
- William E. Roudebush
- Department of Biomedical Sciences; University of South Carolina School of Medicine-Greenville; Greenville SC USA
| | - R. Andrew Nethery
- Department of Biology; Charleston Southern University; Charleston SC USA
| | - Todd Heldreth
- Department of Biology; Charleston Southern University; Charleston SC USA
| |
Collapse
|
39
|
Bilezikjian LM, Justice NJ, Blackler AN, Wiater E, Vale WW. Cell-type specific modulation of pituitary cells by activin, inhibin and follistatin. Mol Cell Endocrinol 2012; 359:43-52. [PMID: 22330643 PMCID: PMC3367026 DOI: 10.1016/j.mce.2012.01.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/26/2012] [Accepted: 01/30/2012] [Indexed: 01/01/2023]
Abstract
Activins are multifunctional proteins and members of the TGF-β superfamily. Activins are expressed locally in most tissues and, analogous to the actions of other members of this large family of pleiotropic factors, play prominent roles in the regulation of diverse biological processes in both differentiated and embryonic stem cells. They have an essential role in maintaining tissue homeostasis in the adult and are known to contribute to the developmental programs in the embryo. Activins are further implicated in the growth and metastasis of tumor cells. Through distinct modes of action, inhibins and follistatins function as antagonists of activin and several other TGF-β family members, including a subset of BMPs/GDFs, and modulate cellular responses and the signaling cascades downstream of these ligands. In the pituitary, the activin pathway is known to regulate key aspects of gonadotrope functions and also exert effects on other pituitary cell types. As in other tissues, activin is produced locally by pituitary cells and acts locally by exerting cell-type specific actions on gonadotropes. These local actions of activin on gonadotropes are modulated by the autocrine/paracrine actions of locally secreted follistatin and by the feedback actions of gonadal inhibin. Knowledge about the mechanism of activin, inhibin and follistatin actions is providing information about their importance for pituitary function as well as their contribution to the pathophysiology of pituitary adenomas. The aim of this review is to highlight recent findings and summarize the evidence that supports the important functions of activin, inhibin and follistatin in the pituitary.
Collapse
Affiliation(s)
- Louise M Bilezikjian
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
40
|
The Monocyte Locomotion Inhibitory Factor (MLIF) Produced by Entamoeba histolytica Alters the Expression of Genes Related to the Wound-Healing Process. Int J Pept Res Ther 2012. [DOI: 10.1007/s10989-012-9315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
41
|
Sheng X, Weng J, Zhang H, Li X, Zhang M, Xu M, Weng Q, Watanabe G, Taya K. Immunohistochemical localization of inhibin/activin subunits in the wild ground squirrel (Citellus dauricus Brandt) ovary. J Reprod Dev 2012; 58:531-6. [PMID: 22673204 DOI: 10.1262/jrd.2011-048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intraovarian function of gonadally produced inhibin and activin has been extensively studied in experimental models for decades, yet their presence and function have been rarely reported in wild rodents. With our seasonal breeding model, the wild ground squirrel, we aimed to investigate the possible roles of these peptides in the seasonal folliculogenesis. Immunohistochemical staining and Western blotting have been used to detect the cellular localization and expression patterns of inhibin/activin subunits (α, β(A) and β(B)). In the breeding season ovary, all three subunits were present in granulosa cells, theca cells of antral follicles and interstitial cells, with the strongest immunostaining in granulosa cells. Following ovulation, the corpora lutea become a major site of inhibin/activin synthesis. In the nonbreeding season ovary, inhibin/activin α and β(A) subunits were weakly immunopositive in granulosa cells of early stage follicles, while β(B) subunit was undetectable. The expression level of inhibin/activin subunit proteins were generally higher in the ovaries of the breeding season, and then decreased to a relatively low level during the nonbreeding season. The dynamic expression of inhibin/activin subunits indicated that they might play important paracrine and/or autocrine roles during the seasonal folliculogenesis of the wild ground squirrel.
Collapse
Affiliation(s)
- Xia Sheng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Miller MC, Lambert-Messerlian GM, Eklund EE, Heath NL, Donahue JE, Stopa EG. Expression of inhibin/activin proteins and receptors in the human hypothalamus and basal forebrain. J Neuroendocrinol 2012; 24:962-72. [PMID: 22296042 DOI: 10.1111/j.1365-2826.2012.02289.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The inhibin/activin family of proteins is known to have a broad distribution of synthesis and expression in many species, as well as a variety of functions in reproductive and other physiological systems. Yet, our knowledge regarding the production and function of inhibin and activin in the central nervous system is relatively limited, especially in humans. The present study aimed to explore the distribution of inhibin/activin protein subunits and receptors in the adult human brain. The human hypothalamus and surrounding basal forebrain was examined using post-mortem tissues from 29 adults. Immunocytochemical studies were conducted with antibodies directed against the inhibin/activin α, βA, and βB subunits, betaglycan and the activin type IIA and IIB receptors. An immunoassay was also utilised to measure dimeric inhibin A and B levels in tissue homogenates of the infundibulum of the hypothalamus. Robust βA subunit immunoreactivity was present in the paraventricular, supraoptic, lateral hypothalamic, infundibular, dorsomedial and suprachiasmatic nuclei of the hypothalamus, in the basal ganglia, and in the nucleus basalis of Meynert. A similar staining distribution was noted for the βB subunit, betaglycan and the type II receptor antibodies, whereas α subunit staining was not detected in any of the major anatomical regions of the human brain. Inhibin B immunoreactivity was present in all tissues, whereas inhibin A levels were below detectable limits. These studies show for the first time that the inhibin/activin protein subunits and receptors can be co-localised in the human brain, implicating potential, diverse neural functions.
Collapse
Affiliation(s)
- M C Miller
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | | | | | | |
Collapse
|
43
|
Sharma TP, Nett TM, Karsch FJ, Phillips DJ, Lee JS, Herkimer C, Padmanabhan V. Neuroendocrine control of FSH secretion: IV. Hypothalamic control of pituitary FSH-regulatory proteins and their relationship to changes in FSH synthesis and secretion. Biol Reprod 2012; 86:171. [PMID: 22423050 PMCID: PMC3386145 DOI: 10.1095/biolreprod.111.098442] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/04/2012] [Accepted: 02/27/2012] [Indexed: 11/01/2022] Open
Abstract
The current dogma is that the differential regulation of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) synthesis and secretion is modulated by gonadotropin-releasing hormone (GnRH) pulse frequency and by changes in inhibins, activins, and follistatins both at the pituitary and at the peripheral level. To date no studies have looked at the overlapping function of these regulators in a combined setting. We tested the hypothesis that changes in GnRH pulse frequency alter the relative abundance of these regulators at the pituitary and peripheral levels in a manner consistent with changes in pituitary and circulating concentrations of FSH; that is, an increase in FSH will be accompanied by increased stimulatory input (activin) and/or reduced follistatin and inhibin. Ovariectomized ewes were subjected to a combination hypothalamic pituitary disconnection (HPD)-hypophyseal portal blood collection procedure. Hypophyseal portal and jugular blood samples were collected for a 6-h period from non-HPD ewes, HPD ewes, or HPD ewes administered GnRH hourly or every 3 h for 4 days. In the absence of endogenous hypothalamic and ovarian hormones that regulate gonadotropin secretion, 3-hourly pulses of GnRH increased pituitary content of FSH more than hourly GnRH, although these differences were not evident in the peripheral circulation. The results failed to support the hypothesis in that the preferential increase of pituitary content of FSH by the lower GnRH pulse frequency could be explained by changes in the pituitary content of inhibin A, follistatin, or activin B. Perhaps the effects of GnRH pulse frequency on FSH is due to changes in the balance of free versus bound amounts of these FSH regulatory proteins or to the involvement of other regulators not monitored in this study.
Collapse
Affiliation(s)
- Tejinder P. Sharma
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - Terry M. Nett
- Animal Reproduction and Biotechnology Laboratory, Colorado State University, Fort Collins, Colorado
| | - Fred J. Karsch
- Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| | - David J. Phillips
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - James S. Lee
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Carol Herkimer
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Reproductive Sciences Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
44
|
Promiscuity and specificity in BMP receptor activation. FEBS Lett 2012; 586:1846-59. [PMID: 22710174 DOI: 10.1016/j.febslet.2012.02.043] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 02/03/2023]
Abstract
Bone Morphogenetic Proteins (BMPs), together with Transforming Growth Factor (TGF)-β and Activins/Inhibins constitute the TGF-β superfamily of ligands. This superfamily is formed by more than 30 structurally related secreted proteins. Since TGF-β members act as morphogens, either a strict relation between a particular ligand to a distinct cellular receptor and/or temporospatial expression patterns of ligands and receptors is expected. Instead, only a limited number of receptors exist implicating promiscuous interactions of ligands and receptors. Furthermore, in complex tissues a multitude of different ligands can be found, which signal via overlapping subsets of receptors. This raises the intriguing question how concerted interactions of different ligands and receptors generate highly specific cellular signals, which are required during development and tissue homeostasis.
Collapse
|
45
|
Zhu J, Lin SJ, Zou C, Makanji Y, Jardetzky TS, Woodruff TK. Inhibin α-subunit N terminus interacts with activin type IB receptor to disrupt activin signaling. J Biol Chem 2012; 287:8060-70. [PMID: 22267736 DOI: 10.1074/jbc.m111.293381] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibin is a heterodimeric peptide hormone produced in the ovary that antagonizes activin signaling and FSH synthesis in the pituitary. The inhibin β-subunit interacts with the activin type II receptor (ActRII) to functionally antagonize activin. The inhibin α-subunit mature domain (N terminus) arose relatively early during the evolution of the hormone, and inhibin function is decreased by an antibody directed against the α-subunit N-terminal extension region or by deletion of the N-terminal region. We hypothesized that the α-subunit N-terminal extension region interacts with the activin type I receptor (ALK4) to antagonize activin signaling in the pituitary. Human or chicken free α-subunit inhibited activin signaling in a pituitary gonadotrope-derived cell line (LβT2) in a dose-dependent manner, whereas an N-terminal extension deletion mutant did not. An α-subunit N-terminal peptide, but not a control peptide, was able to inhibit activin A signaling and decrease activin-stimulated FSH synthesis. Biotinylated inhibin A, but not activin A, bound ALK4. Soluble ALK4-ECD bioneutralized human free α-subunit in LβT2 cells, but did not affect activin A function. Competitive binding ELISAs with N-terminal mutants and an N-terminal region peptide confirmed that this region is critical for direct interaction of the α-subunit with ALK4. These data expand our understanding of how endocrine inhibin achieves potent antagonism of local, constitutive activin action in the pituitary, through a combined mechanism of competitive binding of both ActRII and ALK4 by each subunit of the inhibin heterodimer, in conjunction with the co-receptor betaglycan, to block activin receptor-ligand binding, complex assembly, and downstream signaling.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
46
|
Krieglstein K, Zheng F, Unsicker K, Alzheimer C. More than being protective: functional roles for TGF-β/activin signaling pathways at central synapses. Trends Neurosci 2011; 34:421-9. [PMID: 21742388 DOI: 10.1016/j.tins.2011.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 12/14/2022]
Abstract
It is becoming increasingly clear that members of the transforming growth factor-β (TGF-β) family have roles in the central nervous system that extend beyond their well-established roles as neurotrophic and neuroprotective factors. Recent findings have indicated that the TGF-β signaling pathways are involved in the modulation of both excitatory and inhibitory synaptic transmission in the adult mammalian brain. In this review, we discuss how TGF-β, bone morphogenetic protein and activin signaling at central synapses modulate synaptic plasticity, cognition and affective behavior. We also discuss the implications of these findings for the molecular understanding and potential treatment of neuropsychiatric diseases, such as anxiety, depression and other neurological disorders.
Collapse
Affiliation(s)
- Kerstin Krieglstein
- Institute of Anatomy and Cell Biology, University of Freiburg, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
47
|
Moragianni VA, Aronis KN, Chamberland JP, Mantzoros CS. Short-term energy deprivation alters activin a and follistatin but not inhibin B levels of lean healthy women in a leptin-independent manner. J Clin Endocrinol Metab 2011; 96:3750-8. [PMID: 21917874 PMCID: PMC3232616 DOI: 10.1210/jc.2011-1453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Leptin is a potent modulator of the hypothalamic-pituitary-gonadal axis mediating the effect of energy deprivation on several hypothalamic-pituitary-peripheral axes. Activin A, inhibin B, and follistatin (FST) also regulate the hypothalamic-pituitary-gonadal axis in humans. It remains unknown whether energy deprivation affects these hormone levels in a leptin-dependent or -independent manner. OBJECTIVE We investigated 1) day-night variability patterns of activin, inhibin, and FST in the fed state, 2) whether their levels are affected by fasting, and 3) whether such an effect is mediated by leptin in physiological replacement or pharmacological doses. DESIGN We conducted two studies in healthy, eumenorrheic females, each comprising three separate admissions. In study 1, six women were maintained for 72 h 1) on isocaloric diet, 2) fasting while receiving placebo, or 3) fasting while receiving metreleptin in physiological replacement doses. In study 2, five women were administered physiological or pharmacological metreleptin doses (0.01, 0.1, or 0.3 mg/kg i.v. four times daily). RESULTS Neither activin A nor FST had a pulsatile or day-night variability pattern. Inhibin B levels were also nonpulsatile, but a trend toward a day-night pattern was noted. When compared with the fed state, inhibin B levels remained unchanged, whereas FST levels increased (P = 0.01) and activin A decreased (P = 0.01) in the fasting state. These changes were not corrected with metreleptin administered in replacement or pharmacological doses. CONCLUSIONS Short-term energy deprivation alters levels of activin A and FST, but these effects are not mediated by leptin.
Collapse
Affiliation(s)
- Vasiliki A Moragianni
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02130, USA
| | | | | | | |
Collapse
|
48
|
Justice NJ, Blount AL, Pelosi E, Schlessinger D, Vale W, Bilezikjian LM. Impaired FSHbeta expression in the pituitaries of Foxl2 mutant animals. Mol Endocrinol 2011; 25:1404-15. [PMID: 21700720 DOI: 10.1210/me.2011-0093] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Forkhead box L2 (FoxL2) is required for ovarian development and differentiation. FoxL2 is also expressed in the pituitary where it has been implicated in the development and regulation of gonadotropes, which secrete LH and FSH, the endocrine signals that regulate folliculogenesis in the ovary and spermatogenesis in the testis. Here, we show that FoxL2 is not required for the specification of gonadotropes; the pituitaries of Foxl2 mutant mice contain normal numbers of gonadotropes that express glycoprotein α subunit and LHβ. Whereas the specification of gonadotropes and all other hormonal cell types is normal in the pituitaries of Foxl2 mutant animals, FSHβ levels are severely impaired in both male and female animals, suggesting that FoxL2 is required for normal Fshb expression. The size of the pituitary is reduced in proportion to the smaller body size of Foxl2 mutants, with a concomitant increase in the pituitary cellular density. In primary pituitary cultures, activin induces FSH secretion and Fshb mRNA expression in cells from wild-type mice. In cells from Foxl2 mutant mice, however, FSH secretion is not detected, and activin is unable to drive Fshb expression, suggesting that the mechanism of activin-dependent activation of Fshb transcription is impaired. However, a small number of gonadotropes in the ventromedial region of the pituitaries from Foxl2 mutant mice maintain FSHβ expression, suggesting that a FoxL2- and activin-independent mechanism can drive Fshb transcription. These data indicate that, in addition to its role in the ovary, FoxL2 function in the pituitary is required for normal expression of FSH.
Collapse
Affiliation(s)
- Nicholas J Justice
- Clayton Foundation Laboratories for Peptide Biology, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
49
|
Itman C, Wong C, Hunyadi B, Ernst M, Jans DA, Loveland KL. Smad3 dosage determines androgen responsiveness and sets the pace of postnatal testis development. Endocrinology 2011; 152:2076-89. [PMID: 21385936 DOI: 10.1210/en.2010-1453] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The establishment and maturation of the testicular Sertoli cell population underpins adult male fertility. These events are influenced by hormones and endocrine factors, including FSH, testosterone and activin. Activin A has developmentally regulated effects on Sertoli cells, enhancing proliferation of immature cells and later promoting postmitotic maturation. These differential responses correlate with altered mothers against decapentaplegic (SMAD)-2/3 signaling: immature cells signal via SMAD3, whereas postmitotic cells use both SMAD2 and SMAD3. This study examined the contribution of SMAD3 to postnatal mouse testis development. We show that SMAD3 production and subcellular localization are highly regulated and, through histological and molecular analyses, identify effects of altered Smad3 dosage on Sertoli and germ cell development. Smad3(+/-) and Smad3(-/-) mice had smaller testes at 7 d postpartum, but this was not sustained into adulthood. Juvenile and adult serum FSH levels were unaffected by genotype. Smad3-null mice displayed delayed Sertoli cell maturation and had reduced expression of androgen receptor (AR), androgen-regulated transcripts, and Smad2, whereas germ cell and Leydig cell development were essentially normal. This contrasted remarkably with advanced Sertoli and germ cell maturation and increased expression of AR and androgen-regulated transcripts in Smad3(+/-) mice. In addition, SMAD3 was down-regulated during testis development and testosterone up-regulated Smad2, but not Smad3, in the TM4 Sertoli cell line. Collectively these data reveal that appropriate SMAD3-mediated signaling drives normal Sertoli cell proliferation, androgen responsiveness, and maturation and influences the pace of the first wave of spermatogenesis, providing new clues to causes of altered pubertal development in boys.
Collapse
Affiliation(s)
- Catherine Itman
- Department of Biochemistry, Monash University, Melbourne 3800, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Gonzalez B, Ratner LD, Di Giorgio NP, Poutanen M, Huhtaniemi IT, Calandra RS, Lux-Lantos VAR, Rulli SB. Endogenously elevated androgens alter the developmental programming of the hypothalamic-pituitary axis in male mice. Mol Cell Endocrinol 2011; 332:78-87. [PMID: 20933053 DOI: 10.1016/j.mce.2010.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 09/14/2010] [Accepted: 09/28/2010] [Indexed: 01/09/2023]
Abstract
Transgenic male mice that express human chorionic gonadotropin (hCG) α and β subunits constitutively hypersecrete hCG and produce elevated levels of androgens. The aim of this study was to characterize the hypothalamic-pituitary function of these transgenic (hCGαβ+) males by focusing on FSH regulation. Serum FSH levels and pituitary mRNA expression of Fshb, Lhb, Cga, Gnrhr and Esr1 were reduced, whereas Fst expression was increased in prepubertal hCGαβ+ males as compared with wild-type. In the hypothalamus, Cyp19a1 expression, GnRH concentration and ex-vivo GnRH pulsatility were elevated in prepubertal hCGαβ+ mice, whereas Kiss1 expression was decreased prepubertally and Gad67 expression was elevated neonatally. The effect of androgens on the developmental programming of the hypothalamic-pituitary axis of hCGαβ+ males was evaluated by perinatal and prepubertal antiandrogen (flutamide) administration. Our studies identified a critical window between gestational day 18 and postnatal day 14, during which chronically elevated androgens and/or their locally produced metabolites activate the hypothalamus and concomitantly shut-down the gonadotropin axis.
Collapse
Affiliation(s)
- Betina Gonzalez
- Instituto de Biología y Medicina Experimental-CONICET, Vuelta de Obligado 2490 (1428), Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|