1
|
Ramirez DA, Garrott K, Garlitski A, Koop B. Coronary Spasm Due to Pulsed Field Ablation: A State-of-the-Art Review. Pacing Clin Electrophysiol 2024. [PMID: 39494719 DOI: 10.1111/pace.15101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
With the ever-growing population of patients undergoing cardiac ablation with pulsed electric fields, there is a need to understand secondary effects from the therapy. Coronary artery spasm is one such effect that has recently emerged as the subject of further investigation in electrophysiology literature. This review aims to elucidate the basic anatomy underlying vascular spasm due to pulsed electric fields and the effects of irreversible electroporation on coronary arteries. This review also aims to gather the current preclinical and clinical data regarding the physiology and function of coronary arteries following electroporation.
Collapse
Affiliation(s)
- David A Ramirez
- Electrophysiology Research & Development, Boston Scientific Corporation, Marlborough, Massachusetts, USA
| | - Kara Garrott
- Electrophysiology Research & Development, Boston Scientific Corporation, Marlborough, Massachusetts, USA
| | - Ann Garlitski
- Electrophysiology Research & Development, Boston Scientific Corporation, Marlborough, Massachusetts, USA
| | - Brendan Koop
- Electrophysiology Research & Development, Boston Scientific Corporation, Marlborough, Massachusetts, USA
| |
Collapse
|
2
|
Ezzeddine FM, Asirvatham SJ, Nguyen DT. Pulsed Field Ablation: A Comprehensive Update. J Clin Med 2024; 13:5191. [PMID: 39274404 PMCID: PMC11396515 DOI: 10.3390/jcm13175191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/16/2024] Open
Abstract
One of the recent advancements in the field of cardiac electrophysiology is pulsed field ablation (PFA). PFA is a novel energy modality that does not rely on thermal processes to achieve ablation which, in turn, results in limited collateral damage to surrounding structures. In this review, we discuss the mechanisms, safety, efficacy, and clinical applications of PFA for the management of atrial and ventricular arrhythmias. We also summarize the published pre-clinical and clinical studies regarding this new technology.
Collapse
Affiliation(s)
- Fatima M Ezzeddine
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Samuel J Asirvatham
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Department of Clinical Anatomy, Mayo Clinic, Rochester, MN 55905, USA
| | - Duy T Nguyen
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
3
|
Matthee A, Aghababaie Z, Nisbet LA, Dowrick JM, Windsor JA, Sands GB, Angeli-Gordon TR. Pulsed-field ablation: an alternative ablative method for gastric electrophysiological intervention. Am J Physiol Gastrointest Liver Physiol 2024; 327:G456-G465. [PMID: 39010831 DOI: 10.1152/ajpgi.00124.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Pulsed-field ablation (PFA) is an emerging ablative technology that has been used successfully to eliminate cardiac arrhythmias. As a nonthermal technique, it has significant benefits over traditional radiofrequency ablation with improved target tissue specificity and reduced risk of adverse events during cardiac applications. We investigated whether PFA is safe for use in the stomach and whether it could modulate gastric slow waves. Female weaner pigs were fasted overnight before anesthesia was induced using tiletamine hydrochloride (50 mg·mL-1) and zolazepam hydrochloride (50 mg·mL-1) and maintained with propofol (Diprivan 2%, 0.2-0.4 mg·kg-1·min-1). Pulsed-field ablation was performed on their gastric serosa in vivo. Adjacent point lesions (n = 2-4) were used to create a linear injury using bipolar pulsed-field ablation consisting of 40 pulses (10 Hz frequency, 0.1 ms pulse width, 1,000 V amplitude). High-resolution electrical mapping defined baseline and postablation gastric slow-wave patterns. A validated five-point scale was used to evaluate tissue damage in hematoxylin and eosin-stained images. Results indicated that PFA successfully induced complete conduction blocks in all cases, with lesions through the entire thickness of the gastric muscle layers. Consistent postablation slow-wave patterns emerged immediately following ablation and persisted over the study period. Pulsed-field ablation induces rapid conduction blocks as a tool to modulate slow-wave patterns, indicating it may be suitable as an alternative to radiofrequency ablation.NEW & NOTEWORTHY Results show that pulsed-field ablation can serve as a gastric slow-wave intervention by preventing slow-wave propagation across the lesion site. Stable conduction blocks were established immediately following energy delivery, faster than previous examples of radiofrequency gastric ablation. Pulsed-field ablation may be an alternative for gastric slow-wave intervention, and further functional and posthealing studies are now warranted.
Collapse
Affiliation(s)
- Ashton Matthee
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Zahra Aghababaie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Linley A Nisbet
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jarrah M Dowrick
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - John A Windsor
- Department of Surgery, University of Auckland, Auckland, New Zealand
- Surgical and Translational Research Centre, University of Auckland, Auckland, New Zealand
| | - Gregory B Sands
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Timothy R Angeli-Gordon
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Surgery, University of Auckland, Auckland, New Zealand
- Te Manawahoukura Rangahau Centre, Te Wānanga o Aotearoa, Te Awamutu, Aotearoa New Zealand
| |
Collapse
|
4
|
Zang L, Gu K, Zhou T, Si P, Ji X, Zhang H, Yan S, Wu X. Investigate the relationship between pulsed field ablation parameters and ablation outcomes. J Interv Card Electrophysiol 2024:10.1007/s10840-024-01872-1. [PMID: 39183230 DOI: 10.1007/s10840-024-01872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/07/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Pulsed field ablation (PFA) is an emerging non-thermal ablation method. The primary challenge is the control of multiple parameters in PFA, as the interplay of these parameters remains unclear in terms of ensuring effective and safe tissue ablation. PURPOSE This study employs the response surface method (RSM) to explore the interactions between various PFA parameters and ablation outcomes, and seeks to enhance the efficacy and safety of PFA. METHODS In vivo experiments were conducted using rabbit liver for varying PFA parameters: pulse amplitude (PA), pulse interval (PI), number of pulse trains (NT), and number of pulses in a pulse train (NP). Ablation outcomes assessed included three ablation sizes, surface temperature, and muscle contraction strength. Additionally, histological analysis was performed on the ablated tissue. We analyzed the relationship between PFA parameters and ablation outcomes, and results were then compared with those from a simulation using an electric-thermal coupling PFA finite element model. RESULTS A linear relationship between ablation outcomes and PFA parameters was established. PA and NT exhibited extremely significant (P < 0.0001) and significant effects (P < 0.05) on all ablation outcomes, respectively. NP showed an extremely significant impact (P < 0.0001) on surface temperature and muscle contraction strength, while PI significantly influenced (P < 0.05) muscle contraction strength alone. Histological analysis revealed that PFA produces controlled, well-defined areas of liver tissue necrosis. Surface temperature results from simulations and experiments were highly consistent (R2 > 0.97). CONCLUSIONS This study clarifies the relationship between various PFA parameters and ablation outcomes, and aims to improve the efficacy and safety of PFA.
Collapse
Affiliation(s)
- Lianru Zang
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China
| | - Kaihao Gu
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China
| | - Tuo Zhou
- Cardiac Electrophysiology R&D Center, APT Medical Inc., Shenzhen, 518057, China
| | - Peng Si
- Cardiac Electrophysiology R&D Center, APT Medical Inc., Shenzhen, 518057, China
| | - Xingkai Ji
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China
| | - Hao Zhang
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China
| | - Shengjie Yan
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China.
| | - Xiaomei Wu
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
5
|
Yu F, Dong X, Sun Y, Reddy V, Sievert H, Tang M. Percutaneous LAAO and Pulsed-Field Isolation in a Canine Model: Feasibility and Safety Evaluation. JACC Basic Transl Sci 2024; 9:971-981. [PMID: 39297134 PMCID: PMC11405818 DOI: 10.1016/j.jacbts.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 09/21/2024]
Abstract
In this study, we investigated the feasibility, safety, and efficiency of using a novel device system to perform percutaneous left atrial appendage occlusion concomitant with left atrial appendage electrical isolation (LAAEI) via pulsed field ablation. In the acute phase, LAAEI was successful in 10 of 10 canines. At follow-up, full endothelialization was observed in 5 of 5 (100%) cases at 6 months. LAAEI was durable in 8 of 10 (80.00%) canines. Histologic examination in 4 of 6 LAAs with durable isolation showed transmural scars comprising fibrosis and fat. No pericardial effusion or phrenic paralysis was observed at follow-up. This preliminary study provides the scientific basis for first-in-human studies.
Collapse
Affiliation(s)
- Fengyuan Yu
- Department of Arrhythmia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaonan Dong
- Department of Arrhythmia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Yang Sun
- Department of Pathology, Diagnostic Laboratory Service, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Vivek Reddy
- Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| | | | - Min Tang
- Department of Arrhythmia, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Kim J, Slotwiner D. Phrenic nerve injury with pulsed field ablation: A lesson to be learned? HeartRhythm Case Rep 2024; 10:451-452. [PMID: 39129745 PMCID: PMC11312014 DOI: 10.1016/j.hrcr.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Affiliation(s)
- Joonhyuk Kim
- New York Presbyterian/Queens, Flushing, New York
| | | |
Collapse
|
7
|
Wang Z, Liang M, Sun J, Zhang J, Han Y. A New Hope for the Treatment of Atrial Fibrillation: Application of Pulsed-Field Ablation Technology. J Cardiovasc Dev Dis 2024; 11:175. [PMID: 38921675 PMCID: PMC11204042 DOI: 10.3390/jcdd11060175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
In recent years, the prevalence of and mortality associated with cardiovascular diseases have been rising in most countries and regions. AF is the most common arrhythmic condition, and there are several treatment options for AF. Pulmonary vein isolation is an effective treatment for AF and is the cornerstone of current ablation techniques, which have one major limitation: even when diagnosed and treated at a facility that specializes in ablation, patients have a greater chance of recurrence. Therefore, there is a need to develop better ablation techniques for the treatment of AF. This article first compares the current cryoablation (CBA) and radiofrequency ablation (RFA) techniques for the treatment of AF and discusses the utility and advantages of the development of pulsed-field ablation (PFA) technology. The current research on PFA is summarized from three perspectives, namely, simulation experiments, animal experiments, and clinical studies. The results of different stages of experiments are summarized, especially during animal studies, where pulmonary vein isolation was carried out effectively without causing injury to the phrenic nerve, esophagus, and pulmonary veins, with higher safety and shorter incision times. This paper focuses on a review of various a priori and clinical studies of this new technique for the treatment of AF.
Collapse
Affiliation(s)
- Zhen Wang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China;
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China; (M.L.); (J.S.); (J.Z.)
| | - Ming Liang
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China; (M.L.); (J.S.); (J.Z.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Shenyang 110016, China
| | - Jingyang Sun
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China; (M.L.); (J.S.); (J.Z.)
| | - Jie Zhang
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China; (M.L.); (J.S.); (J.Z.)
| | - Yaling Han
- Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110016, China; (M.L.); (J.S.); (J.Z.)
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Shenyang 110016, China
| |
Collapse
|
8
|
Maizels L, Heller E, Landesberg M, Glatstein S, Huber I, Arbel G, Gepstein A, Aronson D, Sharabi S, Beinart R, Segev A, Maor E, Gepstein L. Utilizing Human-Induced Pluripotent Stem Cells to Study Cardiac Electroporation Pulsed-Field Ablation. Circ Arrhythm Electrophysiol 2024; 17:e012278. [PMID: 38344845 PMCID: PMC10949974 DOI: 10.1161/circep.123.012278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/16/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Electroporation is a promising nonthermal ablation method for cardiac arrhythmia treatment. Although initial clinical studies found electroporation pulsed-field ablation (PFA) both safe and efficacious, there are significant knowledge gaps concerning the mechanistic nature and electrophysiological consequences of cardiomyocyte electroporation, contributed by the paucity of suitable human in vitro models. Here, we aimed to establish and characterize a functional in vitro model based on human-induced pluripotent stem cells (hiPSCs)-derived cardiac tissue, and to study the fundamentals of cardiac PFA. METHODS hiPSC-derived cardiomyocytes were seeded as circular cell sheets and subjected to different PFA protocols. Detailed optical mapping, cellular, and molecular characterizations were performed to study PFA mechanisms and electrophysiological outcomes. RESULTS PFA generated electrically silenced lesions within the hiPSC-derived cardiac circular cell sheets, resulting in areas of conduction block. Both reversible and irreversible electroporation components were identified. Significant electroporation reversibility was documented within 5 to 15-minutes post-PFA. Irreversibly electroporated regions persisted at 24-hours post-PFA. Per single pulse, high-frequency PFA was less efficacious than standard (monophasic) PFA, whereas increasing pulse-number augmented lesion size and diminished reversible electroporation. PFA augmentation could also be achieved by increasing extracellular Ca2+ levels. Flow-cytometry experiments revealed that regulated cell death played an important role following PFA. Assessing for PFA antiarrhythmic properties, sustainable lines of conduction block could be generated using PFA, which could either terminate or isolate arrhythmic activity in the hiPSC-derived cardiac circular cell sheets. CONCLUSIONS Cardiac electroporation may be studied using hiPSC-derived cardiac tissue, providing novel insights into PFA temporal and electrophysiological characteristics, facilitating electroporation protocol optimization, screening for potential PFA-sensitizers, and investigating the mechanistic nature of PFA antiarrhythmic properties.
Collapse
Affiliation(s)
- Leonid Maizels
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
- Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel (L.M., R.B., A.S., E.M.)
- Talpiot Sheba Medical Leadership Program, Sheba Medical Center, Ramat Gan, Israel (L.M., E.M.)
- Department of Cardiology, Royal Melbourne Hospital, Australia (L.M.)
| | - Eyal Heller
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
| | - Michal Landesberg
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Shany Glatstein
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Irit Huber
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Gil Arbel
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Amira Gepstein
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
| | - Doron Aronson
- Division of Cardiology, Rambam Health Care Campus, Haifa, Israel (D.A., L.G.)
| | - Shirley Sharabi
- Advanced Technology Center and Department of Radiology, Sheba Medical Center, Ramat Gan, Israel (S.S.)
| | - Roy Beinart
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
- Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel (L.M., R.B., A.S., E.M.)
| | - Amit Segev
- Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel (L.M., R.B., A.S., E.M.)
| | - Elad Maor
- Division of Cardiology, Leviev Center of Cardiovascular Medicine, Sheba Medical Center, Ramt Gan, Israel (L.M., E.H., R.B., A.S., E.M.)
- Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel (L.M., R.B., A.S., E.M.)
- Talpiot Sheba Medical Leadership Program, Sheba Medical Center, Ramat Gan, Israel (L.M., E.M.)
| | - Lior Gepstein
- Sohnis Laboratory for Cardiac Electrophysiology and Regenerative Medicine, Rappaport Faculty of Medicine, Technion, Haifa, Israel (M.L., S.G., I.H., G.A., A.G., L.G.)
- Division of Cardiology, Rambam Health Care Campus, Haifa, Israel (D.A., L.G.)
| |
Collapse
|
9
|
Chen B, Lv C, Cui Y, Lu C, Cai H, Xue Z, Xu X, Su S. A pilot clinical assessment of biphasic asymmetric pulsed field ablation catheter for pulmonary vein isolation. Front Cardiovasc Med 2024; 11:1266195. [PMID: 38385135 PMCID: PMC10879394 DOI: 10.3389/fcvm.2024.1266195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Pulsed field ablation (PFA) is a new treatment for atrial fibrillation (AF), and its selective ablation characteristics give it a significant advantage in treatment. In previous cellular and animal experiments, we have demonstrated that biphasic asymmetric pulses can be used to ablate myocardial tissue. However, small-scale clinical trials are needed to test whether this approach is safe and feasible before extensive clinical trials can be performed. Therefore, the purpose of this experiment is to determine the safety and feasibility of biphasic asymmetric pulses in patients with AF and is to lay the foundation for a larger clinical trial. Ablation was performed in 10 patients with AF using biphasic asymmetric pulses. Voltage mapping was performed before and after PFA operation to help us detect the change in the electrical voltage of the pulmonary veins (PV). 3-Dimensional mapping system showed continuous low potential in the ablation site, and pulmonary vein isolation (PVI) was achieved in all four PV of the patients. There were no recurrences, PV stenosis, or other serious adverse events during the 12 months follow-up. The results suggest that PFA using biphasic asymmetric waveforms for patients with AF is safe, durable, and effective and that a larger clinical trial could begin. Clinical Trial Registration https://www.chictr.org.cn/, identifier, ChiCTR2100051894.
Collapse
Affiliation(s)
- Bingwei Chen
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| | - Chang Lv
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Yingjian Cui
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Chengzhi Lu
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| | - Heng Cai
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhixiao Xue
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xinyu Xu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Siying Su
- Department of Research and Development, Tianjin Intelligent Health Medical Co., Ltd., Tianjin, China
| |
Collapse
|
10
|
Chinyere IR, Mori S, Hutchinson MD. Cardiac blood vessels and irreversible electroporation: findings from pulsed field ablation. VESSEL PLUS 2024; 8:7. [PMID: 38646143 PMCID: PMC11027649 DOI: 10.20517/2574-1209.2023.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The clinical use of irreversible electroporation in invasive cardiac laboratories, termed pulsed field ablation (PFA), is gaining early enthusiasm among electrophysiologists for the management of both atrial and ventricular arrhythmogenic substrates. Though electroporation is regularly employed in other branches of science and medicine, concerns regarding the acute and permanent vascular effects of PFA remain. This comprehensive review aims to summarize the preclinical and adult clinical data published to date on PFA's effects on pulmonary veins and coronary arteries. These data will be contrasted with the incidences of iatrogenic pulmonary vein stenosis and coronary artery injury secondary to thermal cardiac ablation modalities, namely radiofrequency energy, laser energy, and liquid nitrogen-based cryoablation.
Collapse
Affiliation(s)
- Ikeotunye Royal Chinyere
- Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
- Banner University Medicine, Banner Health, Tucson, AZ 85719, USA
| | - Shumpei Mori
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Mathew D. Hutchinson
- Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
- Banner University Medicine, Banner Health, Tucson, AZ 85719, USA
| |
Collapse
|
11
|
Menè R, Sousonis V, Combes S, Maltret A, Albenque JP, Combes N. Pulsed field ablation of a persistent left superior vena cava in recurrent paroxysmal atrial fibrillation and its effect on the mitral isthmus: A case report. HeartRhythm Case Rep 2024; 10:6-10. [PMID: 38264100 PMCID: PMC10800993 DOI: 10.1016/j.hrcr.2023.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Affiliation(s)
- Roberto Menè
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | | | - Stéphane Combes
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
| | - Alice Maltret
- Department of Pediatric Cardiology and Congenital Heart Diseases, Marie Lannelongue Hospital, Groupe Hospitalier Paris Saint Joseph, Le Plessis-Robinson, France
| | | | - Nicolas Combes
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
- Department of Pediatric Cardiology and Congenital Heart Diseases, Marie Lannelongue Hospital, Groupe Hospitalier Paris Saint Joseph, Le Plessis-Robinson, France
| |
Collapse
|
12
|
Khorasani A. Thermal damage map prediction during irreversible electroporation with U-Net. Electromagn Biol Med 2023; 42:182-192. [PMID: 38156621 DOI: 10.1080/15368378.2023.2299212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Recent developments in cancer treatment with irreversible electroporation (IRE) have led to a renewed interest in developing a treatment planning system based on Deep-Learning methods. This paper will give an account of U-Net, as a Deep-Learning architecture usage for predicting thermal damage area during IRE. In this study, an irregular shape of the liver tumor with MIMICS and 3-Matic software was created from Magnetic Resonance Imaging (MRI) images. To create electric field distribution and thermal damage maps in IRE, COMSOL Multiphysics 5.3 finite element analysis was performed. It was decided to use the pair needle, single bipolar, and multi-tine electrodes with different geometrical parameters as electrodes. The U-Net was designed as a Deep-Learning network to train and predict the thermal damage area from electric field distribution in the IRE. The average DICE coefficient and accuracy of trained U-Net for predicting thermal damage area on test data sets were 0.96 and 0.98, respectively, for the dataset consisting of all electrode type electric field intensity images. This is the first time that U-Net has been used to predict thermal damage area. The results of this research support the idea that the U-Net can be used for predicting thermal damage areas during IRE as a treatment planning system.
Collapse
Affiliation(s)
- Amir Khorasani
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Tabaja C, Younis A, Hussein AA, Taigen TL, Nakagawa H, Saliba WI, Sroubek J, Santangeli P, Wazni OM. Catheter-Based Electroporation: A Novel Technique for Catheter Ablation of Cardiac Arrhythmias. JACC Clin Electrophysiol 2023; 9:2008-2023. [PMID: 37354168 DOI: 10.1016/j.jacep.2023.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 06/26/2023]
Abstract
Catheter ablation of arrhythmias is now standard of care in invasive electrophysiology. Current ablation strategies are based on the use of thermal energy. With continuous efforts to optimize thermal energy delivery, effectiveness has greatly improved; however, safety concerns persist. This review focuses on a novel ablation technology, irreversible electroporation (IRE), also known as pulsed-field ablation which may be a safer alternative for arrhythmia management. Pulsed-field ablation is thought to be a nonthermal ablation that applies short-duration high-voltage electrical fields to ablate myocardial tissue with high selectivity and durability while sparing important neighboring structures such as the esophagus and phrenic nerves. There are multiple ongoing studies investigating the potential superior outcomes of IRE compared to radiofrequency ablation in treating patients with atrial and ventricular arrhythmias. In this review, we describe the current evidence of preclinical and clinical trials that have shown promising results of catheter-based IRE.
Collapse
Affiliation(s)
- Chadi Tabaja
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Arwa Younis
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ayman A Hussein
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tyler L Taigen
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hiroshi Nakagawa
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Walid I Saliba
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jakub Sroubek
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Pasquale Santangeli
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Oussama M Wazni
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
14
|
Liu D, Li Y, Zhao Q. Effects of Inflammatory Cell Death Caused by Catheter Ablation on Atrial Fibrillation. J Inflamm Res 2023; 16:3491-3508. [PMID: 37608882 PMCID: PMC10441646 DOI: 10.2147/jir.s422002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Atrial fibrillation (AF) poses a serious healthcare burden on society due to its high morbidity and the resulting serious complications such as thrombosis and heart failure. The principle of catheter ablation is to achieve electrical isolation by linear destruction of cardiac tissue, which makes AF a curable disease. Currently, catheter ablation does not have a high long-term success rate. The current academic consensus is that inflammation and fibrosis are central mechanisms in the progression of AF. However, artificially caused inflammatory cell death by catheter ablation may have a significant impact on structural and electrical remodeling, which may affect the long-term prognosis. This review first focused on the inflammatory response induced by apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis and their interaction with arrhythmia. Then, we compared the differences in cell death induced by radiofrequency ablation, cryoballoon ablation and pulsed-field ablation. Finally, we discussed the structural and electrical remodeling caused by inflammation and the association between inflammation and the recurrence of AF after catheter ablation. Collectively, pulsed-field ablation will be a revolutionary innovation with faster, safer, better tissue selectivity and less inflammatory response induced by apoptosis-dominated cell death.
Collapse
Affiliation(s)
- Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Yajia Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| |
Collapse
|
15
|
Kos B, Mattison L, Ramirez D, Cindrič H, Sigg DC, Iaizzo PA, Stewart MT, Miklavčič D. Determination of lethal electric field threshold for pulsed field ablation in ex vivo perfused porcine and human hearts. Front Cardiovasc Med 2023; 10:1160231. [PMID: 37424913 PMCID: PMC10326317 DOI: 10.3389/fcvm.2023.1160231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/31/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Pulsed field ablation is an emerging modality for catheter-based cardiac ablation. The main mechanism of action is irreversible electroporation (IRE), a threshold-based phenomenon in which cells die after exposure to intense pulsed electric fields. Lethal electric field threshold for IRE is a tissue property that determines treatment feasibility and enables the development of new devices and therapeutic applications, but it is greatly dependent on the number of pulses and their duration. Methods In the study, lesions were generated by applying IRE in porcine and human left ventricles using a pair of parallel needle electrodes at different voltages (500-1500 V) and two different pulse waveforms: a proprietary biphasic waveform (Medtronic) and monophasic 48 × 100 μs pulses. The lethal electric field threshold, anisotropy ratio, and conductivity increase by electroporation were determined by numerical modeling, comparing the model outputs with segmented lesion images. Results The median threshold was 535 V/cm in porcine ((N = 51 lesions in n = 6 hearts) and 416 V/cm in the human donor hearts ((N = 21 lesions in n = 3 hearts) for the biphasic waveform. The median threshold value was 368 V/cm in porcine hearts ((N = 35 lesions in n = 9 hearts) cm for 48 × 100 μs pulses. Discussion The values obtained are compared with an extensive literature review of published lethal electric field thresholds in other tissues and were found to be lower than most other tissues, except for skeletal muscle. These findings, albeit preliminary, from a limited number of hearts suggest that treatments in humans with parameters optimized in pigs should result in equal or greater lesions.
Collapse
Affiliation(s)
- Bor Kos
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Lars Mattison
- Cardiac Ablation Solutions, Medtronic, Inc., Minneapolis, MN, United States
| | - David Ramirez
- Department of Surgery, Visible Heart® Laboratories, University of Minnesota, Minneapolis, MN, United States
| | - Helena Cindrič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Daniel C. Sigg
- Cardiac Ablation Solutions, Medtronic, Inc., Minneapolis, MN, United States
| | - Paul A. Iaizzo
- Department of Surgery, Visible Heart® Laboratories, University of Minnesota, Minneapolis, MN, United States
| | - Mark T. Stewart
- Cardiac Ablation Solutions, Medtronic, Inc., Minneapolis, MN, United States
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
16
|
Davong B, Adeliño R, Delasnerie H, Albenque JP, Combes N, Cardin C, Voglimacci-Stephanopoli Q, Combes S, Boveda S. Pulsed-Field Ablation on Mitral Isthmus in Persistent Atrial Fibrillation: Preliminary Data on Efficacy and Safety. JACC Clin Electrophysiol 2023:S2405-500X(23)00261-X. [PMID: 37354173 DOI: 10.1016/j.jacep.2023.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Pulsed-field ablation (PFA) is a new and promising modality of ablation that has been shown to specifically ablate cardiac tissue while sparing other anatomic structures, thus avoiding thermal ablation-related complications. Recent studies have certified safety and efficacy of PFA for pulmonary vein isolation (PVI) in the setting of paroxysmal atrial fibrillation (AF). However, there are very limited data assessing the feasibility and safety of PFA ablation of different substrates within the left atrium in the setting of persistent AF. OBJECTIVES The purpose of this study was to evaluate the feasibility and safety of mitral isthmus (MI) ablation in addition to PVI and posterior wall (PW) ablation with PFA in patients with persistent AF. METHODS We prospectively included all consecutive patients with persistent AF who underwent a first ablation procedure with PFA. We performed in all these patients a substrate ablation strategy comprising PVI, PW, and MI ablation with the use of PFA only. The primary feasibility endpoint was obtaining a persistent MI block at the end of the procedure. The safety endpoint was a composite of major safety events. RESULTS From November 2021 to September 2022, we included 45 patients. Complete MI block was achieved in all 45 (100%). Three patients presented with complications, among them 2 cases (4.4%) of reversible and nonfatal coronary spasm. During a mean follow-up time of 107.8 ± 59.5 days, a 20% recurrence rate was observed. CONCLUSIONS PFA is a feasible and safe ablation approach for mitral isthmus ablation in addition to PVI in patients with persistent AF.
Collapse
Affiliation(s)
- Baptiste Davong
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
| | - Raquel Adeliño
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
| | - Hubert Delasnerie
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
| | | | - Nicolas Combes
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
| | - Christelle Cardin
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
| | | | - Stéphane Combes
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France
| | - Serge Boveda
- Heart Rhythm Management Department, Clinique Pasteur, Toulouse, France.
| |
Collapse
|
17
|
Hartl S, Reinsch N, Füting A, Neven K. Pearls and Pitfalls of Pulsed Field Ablation. Korean Circ J 2023; 53:273-293. [PMID: 37161743 PMCID: PMC10172271 DOI: 10.4070/kcj.2023.0023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 05/11/2023] Open
Abstract
Pulsed field ablation (PFA) was recently rediscovered as an emerging treatment modality for the ablation of cardiac arrhythmias. Ultra-short high voltage pulses are leading to irreversible electroporation of cardiac cells subsequently resulting in cell death. Current literature of PFA for pulmonary vein isolation (PVI) consistently reported excellent acute and long-term efficacy along with a very low adverse event rate. The undeniable benefit of the novel ablation technique is that cardiac cells are more susceptible to electrical fields whereas surrounding structures such as the pulmonary veins, the phrenic nerve or the esophagus are not, or if at all, minimally affected, which results in a favorable safety profile that is expected to be superior to the current standard of care without compromising efficacy. Nevertheless, the exact mechanisms of electroporation are not yet entirely understood on a cellular basis and pulsed electrical field protocols of different manufactures are not comparable among one another and require their own validation for each indication. Importantly, randomized controlled trials and comparative data to current standard of care modalities, such as radiofrequency- or cryoballoon ablation, are still missing. This review focuses on the "pearls" and "pitfalls" of PFA, a technology that has the potential to become the future leading energy source for PVI and beyond.
Collapse
Affiliation(s)
- Stefan Hartl
- Department of Electrophysiology, Alfried Krupp Hospital, Essen, Germany
- Department of Medicine, Witten/Herdecke University, Witten, Germany
| | - Nico Reinsch
- Department of Electrophysiology, Alfried Krupp Hospital, Essen, Germany
- Department of Medicine, Witten/Herdecke University, Witten, Germany
| | - Anna Füting
- Department of Electrophysiology, Alfried Krupp Hospital, Essen, Germany
- Department of Medicine, Witten/Herdecke University, Witten, Germany
| | - Kars Neven
- Department of Electrophysiology, Alfried Krupp Hospital, Essen, Germany
- Department of Medicine, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
18
|
Buist TJ, Groen MHA, Wittkampf FHM, Loh P, Doevendans PAFM, van Es R, Elvan A. Feasibility of Linear Irreversible Electroporation Ablation in the Coronary Sinus. Cardiovasc Eng Technol 2023; 14:60-66. [PMID: 35710861 DOI: 10.1007/s13239-022-00633-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/18/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Previous studies demonstrated that the coronary sinus (CS) is an important target for ablation in persistent atrial fibrillation. However, radiofrequency ablation in the CS is associated with coronary vessel damage and tamponade. Animal data suggest irreversible electroporation (IRE) ablation can be a safe ablation modality in vicinity of coronary arteries. We investigated the feasibility of IRE in the CS in a porcine model. METHODS Ablation and pacing was performed in the CS in six pigs (weight 60-75 kg) using a modified 9-French steerable linear hexapolar Tip-Versatile Ablation Catheter. Pacing maneuvers were performed from distal to proximal segments of the CS to assess atrial capture thresholds before and after IRE application. IRE ablations were performed with 100 J IRE pulses. After 3-week survival animals were euthanized and histological sections from the CS were analyzed. RESULTS A total of 27 IRE applications in six animals were performed. Mean peak voltage was 1509 ± 36 V, with a mean peak current of 22.9 ± 1.0 A. No complications occurred during procedure and 3-week survival. At 30 min post ablation 100% isolation was achieved in all animals. At 3 weeks follow-up pacing thresholds were significant higher as compared to baseline. Histological analysis showed transmural ablation lesions in muscular sleeves surrounding the CS. CONCLUSION IRE ablation of the musculature along the CS using a multi-electrode catheter is feasible in a porcine model.
Collapse
Affiliation(s)
- Thomas J Buist
- Heart Centre, Isala Hospital, Dr. Van Heesweg 2, 8025 AB, Zwolle, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Marijn H A Groen
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Fred H M Wittkampf
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Peter Loh
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Pieter A F M Doevendans
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
- Central Military Hospital, Utrecht, The Netherlands
| | - René van Es
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Arif Elvan
- Heart Centre, Isala Hospital, Dr. Van Heesweg 2, 8025 AB, Zwolle, The Netherlands.
- Department of Cardiology, Isala Heart Centre, Dr. Van Heesweg 2, 8025 AB, Zwolle, The Netherlands.
| |
Collapse
|
19
|
Casciola M, Feaster TK, Caiola MJ, Keck D, Blinova K. Human in vitro assay for irreversible electroporation cardiac ablation. Front Physiol 2023; 13:1064168. [PMID: 36699682 PMCID: PMC9869257 DOI: 10.3389/fphys.2022.1064168] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/29/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction: Pulsed electric field (PEF) cardiac ablation has been recently proposed as a technique to treat drug resistant atrial fibrillation by inducing cell death through irreversible electroporation (IRE). Improper PEF dosing can result in thermal damage or reversible electroporation. The lack of comprehensive and systematic studies to select PEF parameters for safe and effective IRE cardiac treatments hinders device development and regulatory decision-making. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been proposed as an alternative to animal models in the evaluation of cardiac electrophysiology safety. Methods: We developed a novel high-throughput in vitro assay to quantify the electric field threshold (EFT) for electroporation (acute effect) and cell death (long-term effect) in hiPSC-CMs. Monolayers of hiPSC-CMs were cultured in high-throughput format and exposed to clinically relevant biphasic PEF treatments. Electroporation and cell death areas were identified using fluorescent probes and confocal microscopy; electroporation and cell death EFTs were quantified by comparison of fluorescent images with electric field numerical simulations. Results: Study results confirmed that PEF induces electroporation and cell death in hiPSC-CMs, dependent on the number of pulses and the amplitude, duration, and repetition frequency. In addition, PEF-induced temperature increase, absorbed dose, and total treatment time for each PEF parameter combination are reported. Discussion: Upon verification of the translatability of the in vitro results presented here to in vivo models, this novel hiPSC-CM-based assay could be used as an alternative to animal or human studies and can assist in early nonclinical device development, as well as inform regulatory decision-making for cardiac ablation medical devices.
Collapse
|
20
|
Zang L, Gu K, Ji X, Zhang H, Yan S, Wu X. Effect of Anisotropic Electrical Conductivity Induced by Fiber Orientation on Ablation Characteristics of Pulsed Field Ablation in Atrial Fibrillation Treatment: A Computational Study. J Cardiovasc Dev Dis 2022; 9:319. [PMID: 36286271 PMCID: PMC9604654 DOI: 10.3390/jcdd9100319] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 09/07/2024] Open
Abstract
Pulsed field ablation (PFA) is a promising new ablation modality for the treatment of atrial fibrillation (AF); however, the effect of fiber orientation on the ablation characteristics of PFA in AF treatment is still unclear, which is likely an essential factor in influencing the ablation characteristics. This study constructed an anatomy-based left atrium (LA) model incorporating fiber orientation and selected various electrical conductivity and ablation targets to investigate the effect of anisotropic electrical conductivity (AC), compared with isotropic electrical conductivity (IC), on the ablation characteristics of PFA in AF treatment. The results show that the percentage differences in the size of the surface ablation area between AC and IC are greater than 73.71%; the maximum difference in the size of the ablation isosurface between AC and IC at different locations in the atrial wall is 3.65 mm (X-axis), 3.65 mm (Z-axis), and 4.03 mm (X-axis), respectively; and the percentage differences in the size of the ablation volume are greater than 6.9%. Under the condition of the pulse, the amplitude is 1000 V, the total PFA duration is 1 s, and the pulse train interval is 198.4 ms; the differences in the temperature increase between AC and IC in LA are less than 2.46 °C. Hence, this study suggests that in further exploration of the computational study of PFA in AF treatment using the same or similar conditions as those used here (myocardial electrical conductivity, pulse parameters, and electric field intensity damage threshold), to obtain more accurate computational results, it is necessary to adopt AC rather than IC to investigate the size of the surface ablation area, the size of the ablation isosurface, or the size of the ablation volume generated by PFA in LA. Moreover, if only investigating the temperature increase generated by PFA in LA, adopting IC instead of AC for simplifying the model construction process is reasonable.
Collapse
Affiliation(s)
- Lianru Zang
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Kaihao Gu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Xingkai Ji
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Hao Zhang
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Shengjie Yan
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Xiaomei Wu
- Center for Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
- Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
- Key Laboratory of Medical Imaging Computing and Computer-Assisted Intervention (MICCAI) of Shanghai, Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Assistive Devices, Shanghai 200093, China
- Yiwu Research Institute, Fudan University, Yiwu 322000, China
| |
Collapse
|
21
|
Qiu J, Lan L, Wang Y. Pulsed Electrical Field in Arrhythmia Treatment: Current Status and Future Directions. Pacing Clin Electrophysiol 2022; 45:1255-1262. [PMID: 36029174 DOI: 10.1111/pace.14586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
Pulsed electrical field (PEF) ablation is a promising novel ablation modality for the treatment of arrhythmia, especially for atrial fibrillation(AF). It relies on electroporation inducing cellular permeabilization by the formation of pores in cell membranes, potentially resulting in cell death. Due to its' non-thermal nature and remarkable tissue selectivity, PEF ablation has be expected largely to replace conventional energy sources, such as radiofrequency (RF) and cryothermy. Up to now, the results in almost all clinical studies of PFA for AF ablation are optimistic, both in terms of effectiveness and safety. The possibility of clinical application of this technology to ventricular tachycardia(VT) has also been supported by several animal models. In this review, we aim to give an overview of the mechanism and technical progress of PFA in cardiac arrhythmia treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Qiu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Lan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Avazzadeh S, Hosseinzahdehkordi M, Owens P, Jalali A, O'Brien B, Coffey K, O'Halloran M, Fernhead HO, Keane D, Quinlan LR. Establishing electroporation thresholds for targeted cell specific cardiac ablation in a 2D culture model. J Cardiovasc Electrophysiol 2022; 33:2050-2061. [PMID: 35924470 PMCID: PMC9543844 DOI: 10.1111/jce.15641] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Irreversible electroporation has emerged as a new modality to overcome issues associated with other energy sources for cardiac ablation. Strong evidence on the optimal, effective, and selective voltage threshold is lacking for both in-vitro and pre-clinical in-vivo studies. The aim of this study is to examine the optimal threshold for selective cell ablation on cardiac associated cell types. METHODS Conventional monophasic and biphasic pulses of different field strength were delivered in a monolayer culture system of cardiomyocytes, neurons and adipocytes. The dynamics of cell death mechanisms were examined at different time points. RESULTS Neurons exhibit higher susceptibility to electroporation and cell death at higher field strength of 1250 V/cm in comparison to cardiomyocytes. Cardiac adipocytes showed lower susceptibility to electroporation in comparison to other cell types. A significant proportion of cardiomyocytes recovered after 24 hours post-electroporation, while neuronal cell death remained consistent but with a significant delayed cell death at a higher voltage threshold. Caspase 3/7 activity was observed in both cardiomyocytes and neurons, with a higher level of activity in cardiomyocytes in response to electroporation. Biphasic and monophasic pulses showed no significant difference in both cell types, and significantly lower cell death in neurons when inter pulse interval was reduced. CONCLUSIONS This study presents important findings on the differences in the susceptibility of neurons and cardiomyocytes to IRE. Cell type alone yielded selective and different dynamics in terms of the evolution and signaling mechanism of cell death in response to electroporation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sahar Avazzadeh
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human biology building, National University of Ireland (NUI) Galway, Ireland
| | - Mahshid Hosseinzahdehkordi
- Pharmacology and Therapeutics, School of Medicine, Biomedical Research Building, National University of Ireland (NUI) Galway, Ireland
| | - Peter Owens
- Centre for Microscopy and Imaging, Human Biology Building, National University of Ireland (NUI) Galway, Ireland
| | - Amirhossein Jalali
- Department of Mathematics and statistics, University of limerick, Limerick, Ireland
| | - Barry O'Brien
- AtriAN Medical Limited, Unit 204, NUIG Business Innovation Centre, Upper Newcastle, Galway, Ireland
| | - Ken Coffey
- AtriAN Medical Limited, Unit 204, NUIG Business Innovation Centre, Upper Newcastle, Galway, Ireland
| | - Martin O'Halloran
- Translational Medical Devise Lab (TMDLab), Lambe Institute of Translational Research, University College Hospital Galway, Galway, Ireland.,Electrical & Electronic Engineering, School of Engineering, National University of Ireland Galway
| | - Howard O Fernhead
- Pharmacology and Therapeutics, School of Medicine, Biomedical Research Building, National University of Ireland (NUI) Galway, Ireland
| | - David Keane
- Cardiac Arrhythmia Service, St Vincent's University Hospital, Dublin, Ireland
| | - Leo R Quinlan
- Physiology and Cellular Physiology Research Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human biology building, National University of Ireland (NUI) Galway, Ireland
| |
Collapse
|
23
|
Electroporation Parameters for Human Cardiomyocyte Ablation In Vitro. J Cardiovasc Dev Dis 2022; 9:jcdd9080240. [PMID: 36005404 PMCID: PMC9409892 DOI: 10.3390/jcdd9080240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiac ablation with irreversible electroporation (IRE) is quickly being established as a modality of choice for atrial fibrillation treatment. While it has not yet been optimised, IRE has the potential to significantly limit collateral damage and improve cell-specific targeting associated with other energy sources. However, more tissue and cell-specific evidence is required to demonstrate the selective threshold parameters for human cells. The aim here is to determine the optimal ablation threshold parameters related to lesion size for human cardiomyocytes in 2D culture. Conventional biphasic pulses of different field strengths and on-times were delivered in a monolayer culture system of human AC16 cardiomyocytes. The dynamics of cell death and lesion dimensions were examined at different time points. Human cardiomyocytes are susceptible to significant electroporation and cell death at a field strength of 750 V/cm or higher with 100 μs pulses. Increasing the IRE on-time from 3 ms to 60 ms reduces the effective field threshold to 250 V/cm. Using very short pulses of 2 μs and 5 μs also causes significant cell death, but only at fields higher than 1000 V/cm. A longer on-time results in more cell death and induced greater lesion area in 2D models. In addition, different forms of cell death are predicted based on the evolution of cell death over time. This study presents important findings on the ability of different IRE parameters to induce human cardiomyocyte cell death. Lesion size can be tuned by appropriate choice of IRE parameters and cardiomyocytes display an upregulation of delayed cell death 24 h after electroporation, which is an important consideration for clinical practice.
Collapse
|
24
|
Sugrue A, Maor E, Del-Carpio Munoz F, Killu AM, Asirvatham SJ. Cardiac ablation with pulsed electric fields: principles and biophysics. Europace 2022; 24:1213-1222. [PMID: 35426908 DOI: 10.1093/europace/euac033] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/24/2022] [Indexed: 01/04/2023] Open
Abstract
Pulsed electric fields (PEFs) have emerged as an ideal cardiac ablation modality. At present numerous clinical trials in humans are exploring PEF as an ablation strategy for both atrial and ventricular arrhythmias, with early data showing significant promise. As this is a relatively new technology there is limited understanding of its principles and biophysics. Importantly, PEF biophysics and principles are starkly different to current energy modalities (radiofrequency and cryoballoon). Given the relatively novel nature of PEFs, this review aims to provide an understanding of the principles and biophysics of PEF ablation. The goal is to enhance academic research and ultimately enable optimization of ablation parameters to maximize procedure success and minimize risk.
Collapse
Affiliation(s)
- Alan Sugrue
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elad Maor
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Chaim Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Freddy Del-Carpio Munoz
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ammar M Killu
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samuel J Asirvatham
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
25
|
Di Monaco A, Vitulano N, Troisi F, Quadrini F, Romanazzi I, Calvi V, Grimaldi M. Pulsed Field Ablation to Treat Atrial Fibrillation: A Review of the Literature. J Cardiovasc Dev Dis 2022; 9:jcdd9040094. [PMID: 35448070 PMCID: PMC9030965 DOI: 10.3390/jcdd9040094] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 01/27/2023] Open
Abstract
Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and catheter ablation, which can be used in symptomatic patients refractory to antiarrhythmic therapy. Pulmonary vein isolation (PVI) remains the cornerstone of any ablation procedure. A major limitation of current catheter ablation procedures is important to recognize because even when the PVI is performed in highly experienced centers, PVI reconnection was documented in about 20% of patients. Therefore, better technology is needed to improve ablation lesions. One of the novelties in recent years is pulsed filed ablation (PFA), a non-thermal energy that uses trains of high-voltage, very-short-duration pulses to kill the cells. The mechanism of action of this energy consists of creating pores in the myocardiocyte cell membrane in a highly selective and tissue-specific way; this leads to death of the target cells reducing the risk of damage to surrounding non-cardiac tissues. In particular during the animal studies, PVI and atrial lines were performed effectively without PV stenosis. Using PFA directly on coronary arteries, there was no luminal narrowing, there has been no evidence of incidental phrenic nerve injury, and finally, PFA has been shown not to injure esophageal tissue when directly applied to the esophagus or indirectly through ablation in the left atrium. The aim of this review is to report all published animal and clinical studies regarding this new technology to treat paroxysmal and persistent AF.
Collapse
Affiliation(s)
- Antonio Di Monaco
- Department of Cardiology, General Regional Hospital “F. Miulli”, 70021 Bari, Italy; (N.V.); (F.T.); (F.Q.); (M.G.)
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence: ; Tel.: +39-33-9735-1594
| | - Nicola Vitulano
- Department of Cardiology, General Regional Hospital “F. Miulli”, 70021 Bari, Italy; (N.V.); (F.T.); (F.Q.); (M.G.)
| | - Federica Troisi
- Department of Cardiology, General Regional Hospital “F. Miulli”, 70021 Bari, Italy; (N.V.); (F.T.); (F.Q.); (M.G.)
| | - Federico Quadrini
- Department of Cardiology, General Regional Hospital “F. Miulli”, 70021 Bari, Italy; (N.V.); (F.T.); (F.Q.); (M.G.)
| | - Imma Romanazzi
- Department of Cardiology, Policlinico “G. Rodolico”—Azienda O.U. Policlinico “G. Rodolico”—San Marco, 95125 Catania, Italy; (I.R.); (V.C.)
| | - Valeria Calvi
- Department of Cardiology, Policlinico “G. Rodolico”—Azienda O.U. Policlinico “G. Rodolico”—San Marco, 95125 Catania, Italy; (I.R.); (V.C.)
| | - Massimo Grimaldi
- Department of Cardiology, General Regional Hospital “F. Miulli”, 70021 Bari, Italy; (N.V.); (F.T.); (F.Q.); (M.G.)
| |
Collapse
|
26
|
Bi S, Jia F, Lv C, He Q, Xu X, Xue Z, Su S. Preclinical Study of Biphasic Asymmetric Pulsed Field Ablation. Front Cardiovasc Med 2022; 9:859480. [PMID: 35402543 PMCID: PMC8987372 DOI: 10.3389/fcvm.2022.859480] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Pulsed field ablation (PFA) is a novel method of pulmonary venous isolation in atrial fibrillation ablation and is featured by tissue-selective ablation. Isolation is achieved via the application of high-voltage microsecond pulses that create irreversible perforations in cell membranes (i.e., electroporation). We proposed a new biphasic asymmetric pulse mode and verified the lesion persistence and safety of this mode for pulmonary vein ostia ablation in preclinical studies. We found that biphasic asymmetric pulses can effectively reduce muscle contractions and drop ablation threshold. In the electroanatomic mapping, the ablation site showed a continuous low potential area, and the atrium was not captured after 30 days of pacing. Pathological staining showed that cardiomyocytes in the ablation area were replaced by fibroblasts and there was no damage outside the ablation zone. Our results show that pulmonary venous isolation using the biphasic asymmetric discharge mode is safe, durable, effective, and causes no damage to other tissues.
Collapse
Affiliation(s)
- Shengyu Bi
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Fenglin Jia
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Chang Lv
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Qiang He
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, China
| | - Xinyu Xu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
- *Correspondence: Xinyu Xu
| | - Zhixiao Xue
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
- Zhixiao Xue
| | - Siying Su
- Tianjin Intelligent Health Medical Co., Ltd., Tianjin, China
| |
Collapse
|
27
|
Neven K, van Driel VJHM, Vink A, du Pré BC, van Wessel H, Füting A, Doevendans PA, Wittkampf FHM, van Es R. Characteristics and time course of acute and chronic myocardial lesion formation after electroporation ablation in the porcine model. J Cardiovasc Electrophysiol 2022; 33:360-367. [PMID: 35018697 DOI: 10.1111/jce.15352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Electroporation ablation creates deep and wide myocardial lesions. No data are available on time course and characteristics of acute lesion formation. METHODS For the acute phase of myocardial lesion development, 7 pigs were investigated. Single 200J applications were delivered at 4 different epicardial right ventricular sites using a linear suction device, yielding a total of 28 lesions. Timing of applications was designed to yield lesions at 7 time points: 0, 10, 20, 30, 40, 50, 60 minutes, with 4 lesions per time point. After euthanization, lesion characteristics were histologically investigated. For the chronic phase of myocardial lesion development, tissue samples were used from previously conducted studies where tissue was obtained at 3 weeks and 3 months after electroporation ablation. RESULTS Acute myocardial lesions induce a necrosis pattern with contraction band necrosis and interstitial edema, immediately present after electroporation ablation. No further histological changes such as hemorrhage or influx of inflammatory cells occurred in the first hour. After 3 weeks, the lesions consisted of sharply demarcated loose connective tissue that further developed to more fibrotic scar tissue after 3 months without additional changes. Within the scar tissue arteries and nerves were unaffected. CONCLUSION Electroporation ablation immediately induces contraction band necrosis and edema without additional tissue changes in the first hour. After 3 weeks a sharply demarked scar has been developed that remains stable during follow up of 3 months. This is highly relevant for clinical application of electroporation ablation in terms of the electrophysiological endpoint and waiting period after ablation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kars Neven
- Dept. of Cardiology, University Medical Center, Utrecht, The Netherlands.,Dept. of Electrophysiology, Alfried Krupp Krankenhaus, Essen, Germany.,Dept. of Medicine, Witten/Herdecke University, Witten, Germany
| | - Vincent J H M van Driel
- Dept. of Cardiology, University Medical Center, Utrecht, The Netherlands.,Dept. of Cardiology, Haga Teaching Hospital, The Hague, The Netherlands
| | - Aryan Vink
- Dept. of Pathology, University Medical Center, Utrecht, The Netherlands
| | - Bastiaan C du Pré
- Dept. of Cardiology, University Medical Center, Utrecht, The Netherlands
| | - Harry van Wessel
- Dept. of Cardiology, University Medical Center, Utrecht, The Netherlands.,Abbott Medical Nederland, Veenendaal, The Netherlands
| | - Anna Füting
- Dept. of Electrophysiology, Alfried Krupp Krankenhaus, Essen, Germany.,Dept. of Medicine, Witten/Herdecke University, Witten, Germany
| | - Pieter A Doevendans
- Dept. of Cardiology, University Medical Center, Utrecht, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands.,Central Military Hospital, Utrecht, The Netherlands
| | - Fred H M Wittkampf
- Dept. of Cardiology, University Medical Center, Utrecht, The Netherlands
| | - René van Es
- Dept. of Cardiology, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
28
|
Avazzadeh S, O’Brien B, Coffey K, O’Halloran M, Keane D, Quinlan LR. Establishing Irreversible Electroporation Electric Field Potential Threshold in A Suspension In Vitro Model for Cardiac and Neuronal Cells. J Clin Med 2021; 10:jcm10225443. [PMID: 34830725 PMCID: PMC8622402 DOI: 10.3390/jcm10225443] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
Aims: Irreversible electroporation is an ablation technique being adapted for the treatment of atrial fibrillation. Currently, there are many differences reported in the in vitro and pre-clinical literature for the effective voltage threshold for ablation. The aim of this study is a direct comparison of different cell types within the cardiovascular system and identification of optimal voltage thresholds for selective cell ablation. Methods: Monophasic voltage pulses were delivered in a cuvette suspension model. Cell viability and live–dead measurements of three different neuronal lines, cardiomyocytes, and cardiac fibroblasts were assessed under different voltage conditions. The immediate effects of voltage and the evolution of cell death was measured at three different time points post ablation. Results: All neuronal and atrial cardiomyocyte lines showed cell viability of less than 20% at an electric field of 1000 V/cm when at least 30 pulses were applied with no significant difference amongst them. In contrast, cardiac fibroblasts showed an optimal threshold at 1250 V/cm with a minimum of 50 pulses. Cell death overtime showed an immediate or delayed cell death with a proportion of cell membranes re-sealing after three hours but no significant difference was observed between treatments after 24 h. Conclusions: The present data suggest that understanding the optimal threshold of irreversible electroporation is vital for achieving a safe ablation modality without any side-effect in nearby cells. Moreover, the evolution of cell death post electroporation is key to obtaining a full understanding of the effects of IRE and selection of an optimal ablation threshold.
Collapse
Affiliation(s)
- Sahar Avazzadeh
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, Human Biology Building, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Barry O’Brien
- AtriAN Medical Limited, Unit 204, NUIG Business Innovation Centre, Upper Newcastle, H91 TK33 Galway, Ireland; (B.O.); (K.C.)
| | - Ken Coffey
- AtriAN Medical Limited, Unit 204, NUIG Business Innovation Centre, Upper Newcastle, H91 TK33 Galway, Ireland; (B.O.); (K.C.)
| | - Martin O’Halloran
- Translational Medical Devise Lab, Lambe Institute of Translational Research, University College Hospital Galway, H91 TK33 Galway, Ireland;
- Electrical & Electronic Engineering, School of Engineering, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - David Keane
- Cardiac Arrhythmia Service, St Vincent’s University Hospital, D04 T6F4 Dublin, Ireland;
| | - Leo R. Quinlan
- Physiology and Cellular Physiology Research Laboratory, School of Medicine, Human Biology Building, National University of Ireland, H91 TK33 Galway, Ireland;
- CÚRAM SFI Centre for Research in Medical Devices, National University of Ireland, H91 TK33 Galway, Ireland
- Correspondence: ; Tel.: +353-91493710
| |
Collapse
|
29
|
Lee EW, Shahrouki P, Peterson S, Tafti BA, Ding PX, Kee ST. Safety of Irreversible Electroporation Ablation of the Pancreas. Pancreas 2021; 50:1281-1286. [PMID: 34860812 DOI: 10.1097/mpa.0000000000001916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES To evaluate the safety of irreversible electroporation (IRE) on swine pancreatic tissue including its effects on peripancreatic vessels, bile ducts, and bowel. METHODS Eighteen Yorkshire pigs underwent IRE ablation of the pancreas successfully and without clinical complications. Contrast-enhanced computed tomography angiography and laboratory studies before the IRE ablation with follow-up computed tomography angiography, laboratory testing, and pathological examination up to 4 weeks postablation were performed. RESULTS In a subset of cases, anatomic peripancreatic vessel narrowing was seen by 1 week postablation, persisting at 4 weeks postablation, without apparent functional impairment of blood flow. Laboratory studies revealed elevated amylase and lipase at 24 hours post-IRE, suggestive of acute pancreatitis, which normalized by 4 weeks post-IRE. There was extensive pancreatic tissue damage 24 hours after IRE with infiltration of immune cells, which was gradually replaced by fibrotic tissue. Ductal regeneration without loss of pancreatic acinar tissue and glandular function was observed at 1 and 4 weeks postablation. CONCLUSIONS In our study, we demonstrated and confirmed the safety and minimal complications of IRE ablation in the pancreas and its surrounding vital structures. These results show the potential of IRE as an alternative treatment modality in patients with pancreatic cancer, especially those with locally advanced disease.
Collapse
Affiliation(s)
| | - Puja Shahrouki
- From the Division of Interventional Radiology, Department of Radiology, UCLA Medical Center
| | - Stephanie Peterson
- From the Division of Interventional Radiology, Department of Radiology, UCLA Medical Center
| | - Bashir A Tafti
- From the Division of Interventional Radiology, Department of Radiology, UCLA Medical Center
| | - Peng-Xu Ding
- From the Division of Interventional Radiology, Department of Radiology, UCLA Medical Center
| | - Stephen T Kee
- From the Division of Interventional Radiology, Department of Radiology, UCLA Medical Center
| |
Collapse
|
30
|
Eresen A, Yang J, Scotti A, Cai K, Yaghmai V, Zhang Z. Combination of natural killer cell-based immunotherapy and irreversible electroporation for the treatment of hepatocellular carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1089. [PMID: 34423001 PMCID: PMC8339821 DOI: 10.21037/atm-21-539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/05/2021] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is among the most lethal cancer types despite great advancement in overall survival of the patients over the last decades. Surgical resection or partial hepatectomy has been approved as the curative treatment for early-stage HCC patients however only up to 30% of them are eligible for the procedures. Natural killer (NK) cells are cytotoxic lymphocytes recognized for killing virally infected cells and improving immune functions for defending the body against malignant cells. Although autologous NK cells failed to demonstrate significant clinical benefit, transfer of allogeneic adoptive NK cells arises as a promising approach for the treatment of solid tumors. The immunosuppressive tumor microenvironment and inadequate homing efficiency of NK cells to tumors can inhibit adoptive transfer immunotherapy (ATI) efficacy. However, potential of the NK cells is challenged by the transfection efficiency. The local ablation techniques that employ thermal or chemical energy have been investigated for the destruction of solid tumors for three decades and demonstrated promising benefits for individuals not eligible for surgical resection or partial hepatectomy. Irreversible electroporation (IRE) is one of the most recent minimally invasive ablation methods that destruct the cell within the targeted region through non-thermal energy. IRE destroys the tumor cell membrane by delivering high-frequency electrical energy in short pulses and overcomes tumor immunosuppression. The previous studies demonstrated that IRE can induce immune changes which can facilitate activation of specific immune responses and improve transfection efficiency. In this review paper, we have discussed the mechanism of NK cell immunotherapy and IRE ablation methods for the treatment of HCC patients and the combinatorial benefits of NK cell immunotherapy and IRE ablation.
Collapse
Affiliation(s)
- Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alessandro Scotti
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Vahid Yaghmai
- Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Radiological Sciences, University of California Irvine, Irvine, CA, USA.,Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
31
|
Buist TJ, Groen MHA, Wittkampf FHM, Loh P, Doevendans PAFM, van Es R, Elvan A. Efficacy of multi-electrode linear irreversible electroporation. Europace 2021; 23:464-468. [PMID: 33200191 DOI: 10.1093/europace/euaa280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022] Open
Abstract
AIMS We investigated the efficacy of linear multi-electrode irreversible electroporation (IRE) ablation in a porcine model. METHODS AND RESULTS The study was performed in six pigs (weight 60-75 kg). After median sternotomy and opening of the pericardium, a pericardial cradle was formed and filled with blood. A linear seven polar 7-Fr electrode catheter with 2.5 mm electrodes and 2.5 mm inter-electrode spacing was placed in good contact with epicardial tissue. A single IRE application was delivered using 50 J at one site and 100 J at two other sites, in random sequence, using a standard monophasic defibrillator connected to all seven electrodes connected in parallel. The pericardium and thorax were closed and after 3 weeks survival animals were euthanized. A total of 82 histological sections from all 18 electroporation lesions were analysed. A total of seven 50 J and fourteen 100 J epicardial IRE applications were performed. Mean peak voltages at 50 and 100 J were 1079.2 V ± 81.1 and 1609.5 V ± 56.8, with a mean peak current of 15.4 A ± 2.3 and 20.2 A ± 1.7, respectively. Median depth of the 50 and 100 J lesions were 3.2 mm [interquartile range (IQR) 3.1-3.6] and 5.5 mm (IQR 4.6-6.6) (P < 0.001), respectively. Median lesion width of the 50 and 100 J lesions was 3.9 mm (IQR 3.7-4.8) and 5.4 mm (IQR 5.0-6.3), respectively (P < 0.001). Longitudinal sections showed continuous lesions for 100 J applications. CONCLUSION Epicardial multi-electrode linear application of IRE pulses is effective in creating continuous deep lesions.
Collapse
Affiliation(s)
- Thomas J Buist
- Department of Cardiology, Isala Hospital, Heart Centre, Dr Van Heesweg 2, 8025 AB Zwolle, The Netherlands.,Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Marijn H A Groen
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Fred H M Wittkampf
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Peter Loh
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Pieter A F M Doevendans
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands.,Central Military Hospital, Utrecht, The Netherlands
| | - René van Es
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Arif Elvan
- Department of Cardiology, Isala Hospital, Heart Centre, Dr Van Heesweg 2, 8025 AB Zwolle, The Netherlands
| |
Collapse
|
32
|
Di Biase L, Diaz JC, Zhang XD, Romero J. Pulsed field catheter ablation in atrial fibrillation. Trends Cardiovasc Med 2021; 32:378-387. [PMID: 34329732 DOI: 10.1016/j.tcm.2021.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/06/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022]
Abstract
Catheter ablation (CA) has become the mainstay therapy for the maintenance of sinus rhythm in patients with atrial fibrillation (AF), with pulmonary vein isolation (PVI) the most frequently used treatment strategy. Although several energy sources have been tested (including radiofrequency, cryothermal and laser), these are not devoid of safety issues and in many instances effectiveness is dependent on operator experience. Pulsed field ablation (PFA) is a novel energy source by which high-voltage electric pulses are used to create pores in the cellular membrane (i.e., electroporation), leading to cellular death. The amount of energy required to produce irreversible electroporation is highly tissue dependent. In consequence, a tailored protocol in which specific targeting of the atrial myocardium is achieved while sparing adjacent tissues is theoretically feasible, increasing the safety of the procedure. While large scale clinical trials are lacking, current clinical evidence has demonstrated significant efficacy in achieving durable PVI without ablation related adverse events.
Collapse
Affiliation(s)
- Luigi Di Biase
- Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx 10467, NY, United States.
| | - Juan Carlos Diaz
- Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx 10467, NY, United States
| | - Xiao-Dong Zhang
- Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx 10467, NY, United States
| | - Jorge Romero
- Montefiore Medical Center, Albert Einstein College of Medicine, 111 East 210th Street, Bronx 10467, NY, United States
| |
Collapse
|
33
|
Groen MHA, van Es R, van Klarenbosch BR, Stehouwer M, Loh P, Doevendans PA, Wittkampf FH, Neven K. In vivo analysis of the origin and characteristics of gaseous microemboli during catheter-mediated irreversible electroporation. Europace 2021; 23:139-146. [PMID: 33111141 PMCID: PMC7842095 DOI: 10.1093/europace/euaa243] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/27/2020] [Indexed: 01/21/2023] Open
Abstract
Aims Irreversible electroporation (IRE) ablation is a non-thermal ablation method based on the application of direct current between a multi-electrode catheter and skin electrode. The delivery of current through blood leads to electrolysis. Some studies suggest that gaseous (micro)emboli might be associated with myocardial damage and/or (a)symptomatic cerebral ischaemic events. The aim of this study was to compare the amount of gas generated during IRE ablation and during radiofrequency (RF) ablation. Methods and results In six 60–75 kg pigs, an extracorporeal femoral shunt was outfitted with a bubble-counter to detect the size and total volume of gas bubbles. Anodal and cathodal 200 J IRE applications were delivered in the left atrium (LA) using a 14-electrode circular catheter. The 30 and 60 s 40 W RF point-by-point ablations were performed. Using transoesophageal echocardiography (TOE), gas formation was visualized. Average gas volumes were 0.6 ± 0.6 and 56.9 ± 19.1 μL (P < 0.01) for each anodal and cathodal IRE application, respectively. Also, qualitative TOE imaging showed significantly less LA bubble contrast with anodal than with cathodal applications. Radiofrequency ablations produced 1.7 ± 2.9 and 6.7 ± 7.4 μL of gas, for 30 and 60 s ablation time, respectively. Conclusion Anodal IRE applications result in significantly less gas formation than both cathodal IRE applications and RF applications. This finding is supported by TOE observations.
Collapse
Affiliation(s)
- Marijn H A Groen
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - René van Es
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Bas R van Klarenbosch
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Marco Stehouwer
- Department of Extracorporeal Circulation, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Peter Loh
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Pieter A Doevendans
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Fred H Wittkampf
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Kars Neven
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.,Department of Electrophysiology, Alfried Krupp Krankenhaus, Essen, Germany.,Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
34
|
Lindemann F, Nedios S, Seewöster T, Hindricks G. [Pulmonary vein isolation in atrial fibrillation using pulsed field ablation]. Herz 2021; 46:318-322. [PMID: 34142178 DOI: 10.1007/s00059-021-05047-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2021] [Indexed: 01/19/2023]
Abstract
Atrial fibrillation is the most common supraventricular arrhythmia with increasing incidence and prevalence. Until now, thermal energy sources such as radiofrequency or cryoablation have been used for pulmonary vein isolation of atrial fibrillation but these have led to indiscriminate tissue destruction in the target area. Pulsed field ablation (PFA) is an energy modality that does not utilize thermal effects. An ultrarapid electric field produces irreversible changes in cell membrane pores (irreversible electroporation) culminating in cell death. The myocardium is very sensitive to PFA compared to the esophagus, the pulmonary veins or the phrenic nerve. Consequently, it is possible to perform effective ablation of the pulmonary veins in a very short time and to make the treatment time more effective without causing relevant collateral damage. The treatment offers a potential paradigm shift from catheter ablation of cardiac arrhythmia.
Collapse
Affiliation(s)
- F Lindemann
- Abteilung für Elektrophysiologie, Herzzentrum Leipzig, Strümpellstr. 39, 04289, Leipzig, Deutschland.
| | - S Nedios
- Abteilung für Elektrophysiologie, Herzzentrum Leipzig, Strümpellstr. 39, 04289, Leipzig, Deutschland
| | - T Seewöster
- Abteilung für Elektrophysiologie, Herzzentrum Leipzig, Strümpellstr. 39, 04289, Leipzig, Deutschland
| | - G Hindricks
- Abteilung für Elektrophysiologie, Herzzentrum Leipzig, Strümpellstr. 39, 04289, Leipzig, Deutschland
| |
Collapse
|
35
|
McBride S, Avazzadeh S, Wheatley AM, O’Brien B, Coffey K, Elahi A, O’Halloran M, Quinlan LR. Ablation Modalities for Therapeutic Intervention in Arrhythmia-Related Cardiovascular Disease: Focus on Electroporation. J Clin Med 2021; 10:jcm10122657. [PMID: 34208708 PMCID: PMC8235263 DOI: 10.3390/jcm10122657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Targeted cellular ablation is being increasingly used in the treatment of arrhythmias and structural heart disease. Catheter-based ablation for atrial fibrillation (AF) is considered a safe and effective approach for patients who are medication refractory. Electroporation (EPo) employs electrical energy to disrupt cell membranes which has a minimally thermal effect. The nanopores that arise from EPo can be temporary or permanent. Reversible electroporation is transitory in nature and cell viability is maintained, whereas irreversible electroporation causes permanent pore formation, leading to loss of cellular homeostasis and cell death. Several studies report that EPo displays a degree of specificity in terms of the lethal threshold required to induce cell death in different tissues. However, significantly more research is required to scope the profile of EPo thresholds for specific cell types within complex tissues. Irreversible electroporation (IRE) as an ablative approach appears to overcome the significant negative effects associated with thermal based techniques, particularly collateral damage to surrounding structures. With further fine-tuning of parameters and longer and larger clinical trials, EPo may lead the way of adapting a safer and efficient ablation modality for the treatment of persistent AF.
Collapse
Affiliation(s)
- Shauna McBride
- Physiology and Cellular Physiology Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, National University of Ireland (NUI) Galway, H91 W5P7 Galway, Ireland; (S.M.); (S.A.); (A.M.W.)
| | - Sahar Avazzadeh
- Physiology and Cellular Physiology Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, National University of Ireland (NUI) Galway, H91 W5P7 Galway, Ireland; (S.M.); (S.A.); (A.M.W.)
| | - Antony M. Wheatley
- Physiology and Cellular Physiology Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, National University of Ireland (NUI) Galway, H91 W5P7 Galway, Ireland; (S.M.); (S.A.); (A.M.W.)
| | - Barry O’Brien
- AtriAN Medical Limited, Unit 204, NUIG Business Innovation Centre, Upper Newcastle, H91 R6W6 Galway, Ireland; (B.O.); (K.C.)
| | - Ken Coffey
- AtriAN Medical Limited, Unit 204, NUIG Business Innovation Centre, Upper Newcastle, H91 R6W6 Galway, Ireland; (B.O.); (K.C.)
| | - Adnan Elahi
- Translational Medical Device Lab (TMDL), Lamb Translational Research Facility, University College Hospital Galway, H91 V4AY Galway, Ireland; (A.E.); (M.O.)
- Electrical & Electronic Engineering, School of Engineering, National University of Ireland Galway, H91 HX31 Galway, Ireland
| | - Martin O’Halloran
- Translational Medical Device Lab (TMDL), Lamb Translational Research Facility, University College Hospital Galway, H91 V4AY Galway, Ireland; (A.E.); (M.O.)
| | - Leo R. Quinlan
- Physiology and Cellular Physiology Laboratory, CÚRAM SFI Centre for Research in Medical Devices, School of Medicine, Human Biology Building, National University of Ireland (NUI) Galway, H91 W5P7 Galway, Ireland; (S.M.); (S.A.); (A.M.W.)
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H92 W2TY Galway, Ireland
- Correspondence:
| |
Collapse
|
36
|
Batista Napotnik T, Polajžer T, Miklavčič D. Cell death due to electroporation - A review. Bioelectrochemistry 2021; 141:107871. [PMID: 34147013 DOI: 10.1016/j.bioelechem.2021.107871] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Exposure of cells to high voltage electric pulses increases transiently membrane permeability through membrane electroporation. Electroporation can be reversible and is used in gene transfer and enhanced drug delivery but can also lead to cell death. Electroporation resulting in cell death (termed as irreversible electroporation) has been successfully used as a new non-thermal ablation method of soft tissue such as tumours or arrhythmogenic heart tissue. Even though the mechanisms of cell death can influence the outcome of electroporation-based treatments due to use of different electric pulse parameters and conditions, these are not elucidated yet. We review the mechanisms of cell death after electroporation reported in literature, cell injuries that may lead to cell death after electroporation and membrane repair mechanisms involved. The knowledge of membrane repair and cell death mechanisms after cell exposure to electric pulses, targets of electric field in cells need to be identified to optimize existing and develop of new electroporation-based techniques used in medicine, biotechnology, and food technology.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tamara Polajžer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
37
|
High-Frequency and High-Voltage Asymmetric Bipolar Pulse Generator for Electroporation Based Technologies and Therapies. ELECTRONICS 2021. [DOI: 10.3390/electronics10101203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Currently, in high-frequency electroporation, much progress has been made but limited to research groups with custom-made laboratory prototype electroporators. According to the review of electroporators and economic evaluations, there is still an area of pulse parameters that needs to be investigated. The development of an asymmetric bipolar pulse generator with a maximum voltage of 4 kV and minimum duration time of a few hundred nanoseconds, would enable in vivo evaluation of biological effects of high-frequency electroporation pulses. Herein, from a series of most commonly used drivers and optical isolations in high-voltage pulse generators the one with optimal characteristics was used. In addition, the circuit topology of the developed device is described in detail. The developed device is able to generate 4 kV pulses, with theoretical 131 A maximal current and 200 ns minimal pulse duration, the maximal pulse repetition rate is 2 MHz and the burst maximal repetition rate is 1 MHz. The device was tested in vivo. The effectiveness of electrochemotherapy of high-frequency electroporation pulses is compared to “classical” electrochemotherapy pulses. In vivo electrochemotherapy with high-frequency electroporation pulses was at least as effective as with “classical” well-established electric pulses, resulting in 86% and 50% complete responses, respectively. In contrast to previous reports, however, muscle contractions were comparable between the two protocols.
Collapse
|
38
|
Hunter DW, Kostecki G, Fish JM, Jensen JA, Tandri H. In Vitro Cell Selectivity of Reversible and Irreversible: Electroporation in Cardiac Tissue. Circ Arrhythm Electrophysiol 2021; 14:e008817. [PMID: 33729827 DOI: 10.1161/circep.120.008817] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- David W Hunter
- Department of Medicine (D.W.H., H.T.), The Johns Hopkins University, Baltimore, MD
| | - Geran Kostecki
- Department of Biomedical Engineering (G.K.), The Johns Hopkins University, Baltimore, MD
| | | | | | - Harikrishna Tandri
- Department of Medicine (D.W.H., H.T.), The Johns Hopkins University, Baltimore, MD
| |
Collapse
|
39
|
Stewart MT, Haines DE, Miklavčič D, Kos B, Kirchhof N, Barka N, Mattison L, Martien M, Onal B, Howard B, Verma A. Safety and chronic lesion characterization of pulsed field ablation in a Porcine model. J Cardiovasc Electrophysiol 2021; 32:958-969. [PMID: 33650743 PMCID: PMC8048690 DOI: 10.1111/jce.14980] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 12/11/2022]
Abstract
Background Pulsed field ablation (PFA) has been identified as an alternative to thermal‐based ablation systems for treatment of atrial fibrillation patients. The objective of this Good Laboratory Practice (GLP) study was to characterize the chronic effects and safety of overlapping lesions created by a PFA system at intracardiac locations in a porcine model. Methods A circular catheter with nine gold electrodes was used for overlapping low‐ or high‐dose PFA deliveries in the superior vena cava (SVC), right atrial appendage (RAA), and right superior pulmonary vein (RSPV) in six pigs. Electrical isolation was evaluated acutely and chronic lesions were assessed via necropsy and histopathology after 4‐week survival. Acute and chronic safety data were recorded peri‐ and post‐procedurally. Results No animal experienced ventricular arrhythmia during PFA delivery, and there was no evidence of periprocedural PFA‐related adverse events. Lesions created in all anatomies resulted in electrical isolation postprocedure. Lesions were circumferential, contiguous, and transmural, with all converting into consistent lines of chronic replacement fibrosis, regardless of trabeculated or smooth endocardial surface structure. Ablations were non‐thermally generated with only minimal post‐delivery temperature rises recorded at the electrodes. There was no evidence of extracardiac damage, stenosis, aneurysms, endocardial disruption, or thrombus. Conclusion PFA deliveries to the SVC, RAA, and RSPV resulted in complete circumferential replacement fibrosis at 4‐week postablation with an excellent chronic myocardial and collateral tissue safety profile. This GLP study evaluated the safety and efficacy of a dosage range in preparation for a clinical trial and characterized the non‐thermal nature of PFA.
Collapse
Affiliation(s)
- Mark T Stewart
- Cardiac Rhythm Management, Medtronic, Inc., Minneapolis, Minnesota, USA
| | - David E Haines
- Beaumont Health System, Div of Cardiology, EP Services, Oakland University William Beaumont School of Medicine, Royal Oaks, Michigan, USA
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Bor Kos
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Nicole Kirchhof
- Cardiac Rhythm Management, Medtronic, Inc., Minneapolis, Minnesota, USA
| | - Noah Barka
- Cardiac Rhythm Management, Medtronic, Inc., Minneapolis, Minnesota, USA
| | - Lars Mattison
- Cardiac Rhythm Management, Medtronic, Inc., Minneapolis, Minnesota, USA
| | - Matt Martien
- Cardiac Rhythm Management, Medtronic, Inc., Minneapolis, Minnesota, USA
| | - Birce Onal
- Cardiac Rhythm Management, Medtronic, Inc., Minneapolis, Minnesota, USA
| | - Brian Howard
- Cardiac Rhythm Management, Medtronic, Inc., Minneapolis, Minnesota, USA
| | - Atul Verma
- Southlake Regional Health Centre, Arrhythmia Services, University of Toronto, Newmarket, Ontario, Canada
| |
Collapse
|
40
|
La Rosa G, Quintanilla JG, Salgado R, González-Ferrer JJ, Cañadas-Godoy V, Pérez-Villacastín J, Jalife J, Pérez-Castellano N, Filgueiras-Rama D. Anatomical targets and expected outcomes of catheter-based ablation of atrial fibrillation in 2020. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:341-359. [PMID: 33283883 DOI: 10.1111/pace.14140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 11/29/2022]
Abstract
Anatomical-based approaches, targeting either pulmonary vein isolation (PVI) or additional extra PV regions, represent the most commonly used ablation treatments in symptomatic patients with atrial fibrillation (AF) recurrences despite antiarrhythmic drug therapy. PVI remains the main anatomical target during catheter-based AF ablation, with the aid of new technological advances as contact force monitoring to increase safety and effective radiofrequency (RF) lesions. Nowadays, cryoballoon ablation has also achieved the same level of scientific evidence in patients with paroxysmal AF undergoing PVI. In parallel, electrical isolation of extra PV targets has progressively increased, which is associated with a steady increase in complex cases undergoing ablation. Several atrial regions as the left atrial posterior wall, the vein of Marshall, the left atrial appendage, or the coronary sinus have been described in different series as locations potentially involved in AF initiation and maintenance. Targeting these regions may be challenging using conventional point-by-point RF delivery, which has opened new opportunities for coadjuvant alternatives as balloon ablation or selective ethanol injection. Although more extensive ablation may increase intraprocedural AF termination and freedom from arrhythmias during the follow-up, some of the targets to achieve such outcomes are not exempt of potential severe complications. Here, we review and discuss current anatomical approaches and the main ablation technologies to target atrial regions associated with AF initiation and maintenance.
Collapse
Affiliation(s)
- Giulio La Rosa
- Department of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain
| | - Jorge G Quintanilla
- Department of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ricardo Salgado
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain
| | - Juan José González-Ferrer
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Victoria Cañadas-Godoy
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Julián Pérez-Villacastín
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Madrid, Spain
| | - José Jalife
- Department of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Nicasio Pérez-Castellano
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Fundación Interhospitalaria para la Investigación Cardiovascular (FIC), Madrid, Spain
| | - David Filgueiras-Rama
- Department of Myocardial Pathophysiology, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Cardiovascular Institute, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
41
|
Tomlinson DR, Mandrola J. Pulsed Field Ablation for Persistent Atrial Fibrillation (PersAFOne): Hope or Hype? J Am Coll Cardiol 2021; 76:1081-1083. [PMID: 32854843 DOI: 10.1016/j.jacc.2020.07.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 11/25/2022]
Affiliation(s)
- David R Tomlinson
- Consultant Cardiologist and Electrophysiologist, University Hospitals Plymouth NHS Trust, Derriford Road, Plymouth, United Kingdom.
| | - John Mandrola
- Baptist Health Louisville, Louisville, Kentucky. https://twitter.com/drjohnm
| |
Collapse
|
42
|
Yang YC, Aung TT, Bailin SJ, Mickelsen SR. Direct Current Ablation of Deep Substrate Arrhythmia. JACC Case Rep 2020; 2:1762-1765. [PMID: 34317052 PMCID: PMC8312130 DOI: 10.1016/j.jaccas.2020.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/05/2020] [Accepted: 06/23/2020] [Indexed: 11/17/2022]
Abstract
Direct-current ablation has been reinvestigated in animal models with considerably good outcomes and safety margins. Its modified version using biphasic energy lowers the current density further, minimizing its complications. We report a first-in-human ablation of ventricular tachycardia using biphasic direct current with short-term success and no procedural complications. (Level of Difficulty: Intermediate.)
Collapse
|
43
|
Poompavai S, Gowri Sree V, Kaviya Priyaa A. Electrothermal Analysis of the Breast-Tumor Model During Electroporation. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2020.2967558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Bradley CJ, Haines DE. Pulsed field ablation for pulmonary vein isolation in the treatment of atrial fibrillation. J Cardiovasc Electrophysiol 2020; 31:2136-2147. [DOI: 10.1111/jce.14414] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Christopher J. Bradley
- Department of Cardiovascular Medicine, Beaumont HospitalOakland University William Beaumont School of Medicine Royal Oak Michigan
| | - David E. Haines
- Department of Cardiovascular Medicine, Beaumont HospitalOakland University William Beaumont School of Medicine Royal Oak Michigan
| |
Collapse
|
45
|
He C, Wang J, Zhang Y, Lin X, Li S. Irreversible electroporation after induction chemotherapy versus chemotherapy alone for patients with locally advanced pancreatic cancer: A propensity score matching analysis. Pancreatology 2020; 20:477-484. [PMID: 32131993 DOI: 10.1016/j.pan.2020.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Locally advanced pancreatic cancer (LAPC) is a devastating disease and irreversible electroporation (IRE) is a non-thermal ablation method that is especially suitable for the treatment of LAPC. This study aimed to compare the long-term survival of LAPC patients after induction chemotherapy followed by IRE and chemotherapy alone. METHODS From August 2015 to August 2017, a total of 132 patients with LAPC were identified. The oncological outcomes of these two treatments were analyzed by propensity score matching (PSM) analysis. RESULTS Before PSM analysis, patients with LAPC had better overall survival (OS) and progression-free survival (PFS) after induction chemotherapy followed by IRE than those who received chemotherapy alone (2-year OS rates, 57.9% vs 19.8%, P < 0.001; 2-year PFS rates, 31.4% vs 9.3%, P < 0.001). The baseline clinicopathological factors were balanced between the 2 groups through PSM analysis. Even after PSM, the OS and PFS rates of patients after induction chemotherapy followed by IRE treatment were superior to those of patients who received chemotherapy treatment alone (2-year OS rates, 57.9% vs 18.1%, P < 0.001; 2-year PFS rates, 31.4% vs 7.1%, P < 0.001). Multivariate Cox regression analysis indicated that chemotherapy plus IRE was a significant prognostic factor for both OS and PFS in patients of both the whole cohort and the matched cohort. CONCLUSIONS Induction chemotherapy followed by IRE provided better OS and PFS than chemotherapy alone for patients with LAPC. This combination method may be a more suitable treatment for patients with LAPC.
Collapse
Affiliation(s)
- Chaobin He
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Jun Wang
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China; Department of Ultrasonics, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Yu Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, 510060, PR China.
| | - Xiaojun Lin
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| | - Shengping Li
- Department of Pancreatobiliary Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
| |
Collapse
|
46
|
Aycock KN, Davalos RV. Irreversible Electroporation: Background, Theory, and Review of Recent Developments in Clinical Oncology. Bioelectricity 2019; 1:214-234. [PMID: 34471825 PMCID: PMC8370296 DOI: 10.1089/bioe.2019.0029] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Irreversible electroporation (IRE) has established a clinical niche as an alternative to thermal ablation for the eradication of unresectable tumors, particularly those near critical vascular structures. IRE has been used in over 50 independent clinical trials and has shown clinical success when used as a standalone treatment and as a single component within combinatorial treatment paradigms. Recently, many studies evaluating IRE in larger patient cohorts and alongside other novel therapies have been reported. Here, we present the basic principles of reversible electroporation and IRE followed by a review of preclinical and clinical data with a focus on tumors in three organ systems in which IRE has shown great promise: the prostate, pancreas, and liver. Finally, we discuss alternative and future developments, which will likely further advance the use of IRE in the clinic.
Collapse
Affiliation(s)
- Kenneth N Aycock
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Virginia
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University, Blacksburg, Virginia
| |
Collapse
|
47
|
Es R, Groen MHA, Stehouwer M, Doevendans PA, Wittkampf FHM, Neven K. In vitro analysis of the origin and characteristics of gaseous microemboli during catheter electroporation ablation. J Cardiovasc Electrophysiol 2019; 30:2071-2079. [DOI: 10.1111/jce.14091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022]
Affiliation(s)
- René Es
- Department of CardiologyUniversity Medical Center UtrechtUtrecht The Netherlands
| | - Marijn H. A. Groen
- Department of CardiologyUniversity Medical Center UtrechtUtrecht The Netherlands
| | - Marco Stehouwer
- Department of Extracorporeal CirculationSt Antonius HospitalNieuwegein The Netherlands
| | - Pieter A. Doevendans
- Department of CardiologyUniversity Medical Center UtrechtUtrecht The Netherlands
- Netherlands Heart InstituteUtrecht The Netherlands
| | - Fred H. M. Wittkampf
- Department of CardiologyUniversity Medical Center UtrechtUtrecht The Netherlands
| | - Kars Neven
- Department of CardiologyUniversity Medical Center UtrechtUtrecht The Netherlands
- Department of ElectrophysiologyAlfried Krupp KrankenhausEssen Germany
- Faculty of HealthWitten/Herdecke UniversityWitten Germany
| |
Collapse
|
48
|
Sugrue A, Vaidya V, Witt C, DeSimone CV, Yasin O, Maor E, Killu AM, Kapa S, McLeod CJ, Miklavčič D, Asirvatham SJ. Irreversible electroporation for catheter-based cardiac ablation: a systematic review of the preclinical experience. J Interv Card Electrophysiol 2019; 55:251-265. [PMID: 31270656 DOI: 10.1007/s10840-019-00574-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/26/2019] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Irreversible electroporation (IRE) utilizing high voltage pulses is an emerging strategy for catheter-based cardiac ablation with considerable growth in the preclinical arena. METHODS A systematic search for articles was performed from three sources (PubMed, EMBASE, and Google Scholar). The primary outcome was the efficacy of tissue ablation with characteristics of lesion formation evaluated by histologic analysis. The secondary outcome was focused on safety and damage to collateral structures. RESULTS Sixteen studies met inclusion criteria. IRE was most commonly applied to the ventricular myocardium (n = 7/16, 44%) by a LifePak 9 Defibrillator (n = 9/16, 56%), NanoKnife Generator (n = 2/16, 13%), or other custom generators (n = 5/16, 31%). There was significant heterogeneity regarding electroporation protocols. On histological analysis, IRE was successful in creating ablation lesions with variable transmurality depending on the electric pulse parameters and catheter used. CONCLUSION Preclinical studies suggest that cardiac tissue ablation using IRE shows promise in delivering efficacious, safe lesions.
Collapse
Affiliation(s)
- Alan Sugrue
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vaibhav Vaidya
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Chance Witt
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Christopher V DeSimone
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Omar Yasin
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Elad Maor
- Leviev Heart Center, Sheba Medical Center, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ammar M Killu
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Suraj Kapa
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Christopher J McLeod
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Trzaska 25, 1000, Ljubljana, Slovenia
| | - Samuel J Asirvatham
- Department of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
49
|
Abstract
Electroporation is a process in which brief electrical pulses create transient pores in the plasma membrane that allow nucleic acids to enter the cellular cytoplasm. Here, we provide information on the history, mechanism, and optimization of electroporation. We also describe nucleofection, an improvement of the electroporation technology that permits the introduction of nucleic acids directly into the nucleus.
Collapse
|
50
|
Pulsed electric fields for cardiac ablation and beyond: A state-of-the-art review. Heart Rhythm 2019; 16:1112-1120. [DOI: 10.1016/j.hrthm.2019.01.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Indexed: 12/15/2022]
|