1
|
Kambara K, Gupta SK, Takano T, Tsugama D. Phenotyping and a genome-wide association study of elite lines of pearl millet. BREEDING SCIENCE 2024; 74:240-246. [PMID: 39555006 PMCID: PMC11561417 DOI: 10.1270/jsbbs.23082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/04/2024] [Indexed: 11/19/2024]
Abstract
Pearl millet (Pennisetum glaucum (L.) R. BR.) is a cereal crop mainly grown in India and sub-Saharan Africa. In pearl millet, genes and genomic regions associated with traits are largely unknown. Pearl millet parental lines bred at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) are useful for the production and breeding of pearl millet. However, the phenotypic diversity of these lines has not been fully evaluated. In this study, 16 traits of 107 of those parental lines were assessed with field trials in Japan, and a genome-wide association study (GWAS) was performed using these phenotypic data to identify the genomic regions and genes associated with those traits. The GWAS revealed genomic regions associated with culm height and pigmentation of the shoot basal part (PS). The genomic region associated with PS contained a homolog of PHENYLALANINE AMMONIA LYASE 2 (PAL2), a gene involved in anthocyanin accumulation in Arabidopsis thaliana. The PAL2 homolog can be a candidate for a gene involved in regulating PS in pearl millet. These results provide a better understanding of the phenotypic diversity of pearl millet and its genetic background.
Collapse
Affiliation(s)
- Kota Kambara
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo 188-0002, Japan
| | - Shashi Kumar Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana State, India
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo 188-0002, Japan
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Midori-cho, Nishitokyo-shi, Tokyo 188-0002, Japan
| |
Collapse
|
2
|
Wang X, Chen S, Ma X, Yssel AEJ, Chaluvadi SR, Johnson MS, Gangashetty P, Hamidou F, Sanogo MD, Zwaenepoel A, Wallace J, de Peer Y, Bennetzen JL, Van Deynze A. Genome sequence and genetic diversity analysis of an under-domesticated orphan crop, white fonio (Digitaria exilis). Gigascience 2021; 10:giab013. [PMID: 33710327 PMCID: PMC7953496 DOI: 10.1093/gigascience/giab013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/14/2020] [Accepted: 02/10/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Digitaria exilis, white fonio, is a minor but vital crop of West Africa that is valued for its resilience in hot, dry, and low-fertility environments and for the exceptional quality of its grain for human nutrition. Its success is hindered, however, by a low degree of plant breeding and improvement. FINDINGS We sequenced the fonio genome with long-read SMRT-cell technology, yielding a ∼761 Mb assembly in 3,329 contigs (N50, 1.73 Mb; L50, 126). The assembly approaches a high level of completion, with a BUSCO score of >99%. The fonio genome was found to be a tetraploid, with most of the genome retained as homoeologous duplications that differ overall by ∼4.3%, neglecting indels. The 2 genomes within fonio were found to have begun their independent divergence ∼3.1 million years ago. The repeat content (>49%) is fairly standard for a grass genome of this size, but the ratio of Gypsy to Copia long terminal repeat retrotransposons (∼6.7) was found to be exceptionally high. Several genes related to future improvement of the crop were identified including shattering, plant height, and grain size. Analysis of fonio population genetics, primarily in Mali, indicated that the crop has extensive genetic diversity that is largely partitioned across a north-south gradient coinciding with the Sahel and Sudan grassland domains. CONCLUSIONS We provide a high-quality assembly, annotation, and diversity analysis for a vital African crop. The availability of this information should empower future research into further domestication and improvement of fonio.
Collapse
Affiliation(s)
- Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Shiyu Chen
- Department of Plant Sciences, Seed Biotechnology Center, University of California, 1 Shields Ave. Davis, CA 95616, USA
| | - Xiao Ma
- Bioinformatics & Systems Biology, VIB / Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Anna E J Yssel
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- Centre for Bioinformatics and Computational Biology, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | | | - Matthew S Johnson
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, 111 Riverbend Rd, Athens, GA 30602, USA
| | - Prakash Gangashetty
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP 12404, Niamey, Niger
| | - Falalou Hamidou
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP 12404, Niamey, Niger
| | - Moussa D Sanogo
- Institut d'Economie Rurale, Ministere de l'Agriculture, Cinzana, BP 214, Ségou, Mali
| | - Arthur Zwaenepoel
- Bioinformatics & Systems Biology, VIB / Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
| | - Jason Wallace
- Department of Crop and Soil Sciences, University of Georgia, 3111 Carlton St Bldg, Athens, GA 30602, USA
| | - Yves de Peer
- Bioinformatics & Systems Biology, VIB / Ghent University, Technologiepark 71, 9052 Zwijnaarde, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | | | - Allen Van Deynze
- Department of Plant Sciences, Seed Biotechnology Center, University of California, 1 Shields Ave. Davis, CA 95616, USA
| |
Collapse
|
3
|
Govindarajulu R, Hostetler AN, Xiao Y, Chaluvadi SR, Mauro-Herrera M, Siddoway ML, Whipple C, Bennetzen JL, Devos KM, Doust AN, Hawkins JS. Integration of high-density genetic mapping with transcriptome analysis uncovers numerous agronomic QTL and reveals candidate genes for the control of tillering in sorghum. G3-GENES GENOMES GENETICS 2021; 11:6128573. [PMID: 33712819 PMCID: PMC8022972 DOI: 10.1093/g3journal/jkab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Phenotypes such as branching, photoperiod sensitivity, and height were modified during plant domestication and crop improvement. Here, we perform quantitative trait locus (QTL) mapping of these and other agronomic traits in a recombinant inbred line (RIL) population derived from an interspecific cross between Sorghum propinquum and Sorghum bicolor inbred Tx7000. Using low-coverage Illumina sequencing and a bin-mapping approach, we generated ∼1920 bin markers spanning ∼875 cM. Phenotyping data were collected and analyzed from two field locations and one greenhouse experiment for six agronomic traits, thereby identifying a total of 30 QTL. Many of these QTL were penetrant across environments and co-mapped with major QTL identified in other studies. Other QTL uncovered new genomic regions associated with these traits, and some of these were environment-specific in their action. To further dissect the genetic underpinnings of tillering, we complemented QTL analysis with transcriptomics, identifying 6189 genes that were differentially expressed during tiller bud elongation. We identified genes such as Dormancy Associated Protein 1 (DRM1) in addition to various transcription factors that are differentially expressed in comparisons of dormant to elongating tiller buds and lie within tillering QTL, suggesting that these genes are key regulators of tiller elongation in sorghum. Our study demonstrates the usefulness of this RIL population in detecting domestication and improvement-associated genes in sorghum, thus providing a valuable resource for genetic investigation and improvement to the sorghum community.
Collapse
Affiliation(s)
| | - Ashley N Hostetler
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| | - Yuguo Xiao
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | | | - Margarita Mauro-Herrera
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - Muriel L Siddoway
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Clinton Whipple
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | | | - Katrien M Devos
- Department of Crop and Soil Sciences (Institute for Plant Breeding, Genetics and Genomics), and Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Andrew N Doust
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jennifer S Hawkins
- Department of Biology, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
4
|
Structural Characterization of ABCB1, the Gene Underlying the d2 Dwarf Phenotype in Pearl Millet, Cenchrus Americanus (L.) Morrone. G3-GENES GENOMES GENETICS 2019; 9:2497-2509. [PMID: 31208958 PMCID: PMC6686935 DOI: 10.1534/g3.118.200846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pearl millet is an important food crop in arid and semi-arid regions of South Asia and sub-Saharan Africa and is grown in Australia and the United States as a summer fodder crop. The d2 dwarf germplasm has been widely used in the last half-century to develop high-performing pearl millet hybrids. We previously mapped the d2 phenotype to a 1.6 cM region in linkage group (LG) 4 and identified the ABCB1 gene as a candidate underlying the trait. Here, we report the sequence, structure and expression of ABCB1 in tall (D2D2) and d2 dwarf (d2d2) germplasm. The ABCB1 allele in d2 dwarfs differs from that in tall inbreds by the presence of two different high copy transposable elements, one in the coding region and the second located 664 bp upstream of the ATG start codon. These transposons were present in all d2 dwarfs tested that were reported to be of independent origin and absent in the analyzed wild-type tall germplasm. We also compared the expression profile of this gene in different organs of multiple tall and d2 dwarf inbreds, including the near-isogenic inbreds at the d2 locus, Tift 23B (D2D2) and Tift 23DB (d2d2). Heterologous transformation of the tall (Ca_ABCB1) and the d2 dwarf (Ca_abcb1) pearl millet alleles in the Arabidopsis double mutant abcb1abcb19 showed that the pearl millet D2 but not the d2 allele complements the Arabidopsis abcb1 mutation. Our studies also show the importance of the COOH-terminal 22 amino acids of the ABCB1 protein in either protein function or stability.
Collapse
|
5
|
Woodhouse MR, Hufford MB. Parallelism and convergence in post-domestication adaptation in cereal grasses. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180245. [PMID: 31154975 DOI: 10.1098/rstb.2018.0245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The selection of desirable traits in crops during domestication has been well studied. Many crops share a suite of modified phenotypic characteristics collectively known as the domestication syndrome. In this sense, crops have convergently evolved. Previous work has demonstrated that, at least in some instances, convergence for domestication traits has been achieved through parallel molecular means. However, both demography and selection during domestication may have placed limits on evolutionary potential and reduced opportunities for convergent adaptation during post-domestication migration to new environments. Here we review current knowledge regarding trait convergence in the cereal grasses and consider whether the complexity and dynamism of cereal genomes (e.g., transposable elements, polyploidy, genome size) helped these species overcome potential limitations owing to domestication and achieve broad subsequent adaptation, in many cases through parallel means. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- M R Woodhouse
- Iowa State University, Ecology, Evolution, and Organismal Biology , Ames, IA 50011 , USA
| | - M B Hufford
- Iowa State University, Ecology, Evolution, and Organismal Biology , Ames, IA 50011 , USA
| |
Collapse
|
6
|
Pucher A, Hash CT, Wallace JG, Han S, Leiser WL, Haussmann BIG. Mapping a male-fertility restoration locus for the A 4 cytoplasmic-genic male-sterility system in pearl millet using a genotyping-by-sequencing-based linkage map. BMC PLANT BIOLOGY 2018; 18:65. [PMID: 29665794 PMCID: PMC5905146 DOI: 10.1186/s12870-018-1267-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/12/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Pearl millet (Pennisetum glaucum (L.) R. Br., syn. Cenchrus americanus (L.) R. Br) is an important cereal and fodder crop in hot and arid environments. There is great potential to improve pearl millet production through hybrid breeding. Cytoplasmic male sterility (CMS) and the corresponding nuclear fertility restoration / sterility maintenance genes (Rfs) are essential tools for economic hybrid seed production in pearl millet. Mapping the Rf genes of the A4 CMS system in pearl millet would enable more efficient introgression of both dominant male-fertility restoration alleles (Rf) and their recessive male-sterility maintenance counterparts (rf). RESULTS A high density linkage map based on single nucleotide polymorphism (SNP) markers was generated using an F2 mapping population and genotyping-by-sequencing (GBS). The parents of this cross were 'ICMA 02777' and 'ICMR 08888', which segregate for the A4 Rf locus. The linkage map consists of 460 SNP markers distributed mostly evenly and has a total length of 462 cM. The segregation ratio of male-fertile and male-sterile plants (3:1) based on pollen production (presence/absence) indicated monogenic dominant inheritance of male-fertility restoration. Correspondingly, a major quantitative trait locus (QTL) for pollen production was found on linkage group 2, with cross-validation showing a very high QTL occurrence (97%). The major QTL was confirmed using selfed seed set as phenotypic trait, though with a lower precision. However, these QTL explained only 14.5% and 9.9% of the phenotypic variance of pollen production and selfed seed set, respectively, which was below expectation. Two functional KASP markers were developed for the identified locus. CONCLUSION This study identified a major QTL for male-fertility restoration using a GBS-based linkage map and developed KASP markers which support high-throughput screening of the haploblock. This is a first step toward marker-assisted selection of A4 male-fertility restoration and male-sterility maintenance in pearl millet.
Collapse
Affiliation(s)
- Anna Pucher
- Institute of Plant Breeding, Seed Science and Population Genetics, Fruwirthstr University of Hohenheim, 21, D-70599 Stuttgart, Germany
| | - C. Tom Hash
- ICRISAT Sahelian Center, 12404 Niamey, BP Niger
| | - Jason G. Wallace
- Department of Crop and Soil Sciences, the University of Georgia, 30602 Athens, GA USA
| | - Sen Han
- Institute of Plant Breeding, Seed Science and Population Genetics, Fruwirthstr University of Hohenheim, 21, D-70599 Stuttgart, Germany
| | - Willmar L. Leiser
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr, 21, D-70599 Stuttgart, Germany
| | - Bettina I. G. Haussmann
- Institute of Plant Breeding, Seed Science and Population Genetics, Fruwirthstr University of Hohenheim, 21, D-70599 Stuttgart, Germany
| |
Collapse
|
7
|
Parvathaneni RK, DeLeo VL, Spiekerman JJ, Chakraborty D, Devos KM. Parallel loss of introns in the ABCB1 gene in angiosperms. BMC Evol Biol 2017; 17:238. [PMID: 29202710 PMCID: PMC5716013 DOI: 10.1186/s12862-017-1077-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 11/16/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The presence of non-coding introns is a characteristic feature of most eukaryotic genes. While the size of the introns, number of introns per gene and the number of intron-containing genes can vary greatly between sequenced eukaryotic genomes, the structure of a gene with reference to intron presence and positions is typically conserved in closely related species. Unexpectedly, the ABCB1 (ATP-Binding Cassette Subfamily B Member 1) gene which encodes a P-glycoprotein and underlies dwarfing traits in maize (br2), sorghum (dw3) and pearl millet (d2) displayed considerable variation in intron composition. RESULTS An analysis of the ABCB1 gene structure in 80 angiosperms revealed that the number of introns ranged from one to nine. All introns in ABCB1 underwent either a one-time loss (single loss in one lineage/species) or multiple independent losses (parallel loss in two or more lineages/species) with the majority of losses occurring within the grass family. In contrast, the structure of the closest homolog to ABCB1, ABCB19, remained constant in the majority of angiosperms analyzed. Using known phylogenetic relationships within the grasses, we determined the ancestral branch-points where the losses occurred. Intron 7, the longest intron, was lost in only a single species, Mimulus guttatus, following duplication of ABCB1. Semiquantitative PCR showed that the M. guttatus ABCB1 gene copy without intron 7 had significantly lower transcript levels than the gene copy with intron 7. We further demonstrated that intron 7 carried two motifs that were highly conserved across the monocot-dicot divide. CONCLUSIONS The ABCB1 gene structure is highly dynamic, while the structure of ABCB19 remained largely conserved through evolution. Precise removal of introns, preferential removal of smaller introns and presence of at least 2 bp of microhomology flanking most introns indicated that intron loss may have predominantly occurred through non-homologous end-joining (NHEJ) repair of double strand breaks. Lack of microhomology in the exon upstream of lost phase I introns was likely due to release of the selective constraint on the penultimate base (3rd base in codon) of the terminal codon by the splicing machinery. In addition to size, the presence of regulatory motifs will make introns recalcitrant to loss.
Collapse
Affiliation(s)
- Rajiv K Parvathaneni
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 30602, Athens, Georgia, United States.,Current address: Donald Danforth Plant Science Center, St. Louis, MO, 63132, United States
| | - Victoria L DeLeo
- Department of Genetics, University of Georgia, 30602, Athens, GA, United States.,Current address: Department of Biology, Pennsylvania State University, University Park, PA, 16802, United States
| | - John J Spiekerman
- Department of Plant Biology, University of Georgia, 30602, Athens, GA, United States
| | - Debkanta Chakraborty
- Institute of Bioinformatics, University of Georgia, 30602, Athens, GA, United States
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, 30602, Athens, Georgia, United States. .,Department of Plant Biology, University of Georgia, 30602, Athens, GA, United States. .,Institute of Bioinformatics, University of Georgia, 30602, Athens, GA, United States.
| |
Collapse
|
8
|
Punnuri SM, Wallace JG, Knoll JE, Hyma KE, Mitchell SE, Buckler ES, Varshney RK, Singh BP. Development of a High-Density Linkage Map and Tagging Leaf Spot Resistance in Pearl Millet Using Genotyping-by-Sequencing Markers. THE PLANT GENOME 2016; 9. [PMID: 27898821 DOI: 10.3835/plantgenome2015.10.0106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Pearl millet [ (L.) R. Br; also (L.) Morrone] is an important crop throughout the world but better genomic resources for this species are needed to facilitate crop improvement. Genome mapping studies are a prerequisite for tagging agronomically important traits. Genotyping-by-sequencing (GBS) markers can be used to build high-density linkage maps, even in species lacking a reference genome. A recombinant inbred line (RIL) mapping population was developed from a cross between the lines 'Tift 99DB' and 'Tift 454'. DNA from 186 RILs, the parents, and the F was used for 96-plex KI GBS library development, which was further used for sequencing. The sequencing results showed that the average number of good reads per individual was 2.2 million, the pass filter rate was 88%, and the CV was 43%. High-quality GBS markers were developed with stringent filtering on sequence data from 179 RILs. The reference genetic map developed using 150 RILs contained 16,650 single-nucleotide polymorphisms (SNPs) and 333,567 sequence tags spread across all seven chromosomes. The overall average density of SNP markers was 23.23 SNP/cM in the final map and 1.66 unique linkage bins per cM covering a total genetic distance of 716.7 cM. The linkage map was further validated for its utility by using it in mapping quantitative trait loci (QTLs) for flowering time and resistance to leaf spot [ (Cke.) Sacc.]. This map is the densest yet reported for this crop and will be a valuable resource for the pearl millet community.
Collapse
|
9
|
Kantar MB, Tyl CE, Dorn KM, Zhang X, Jungers JM, Kaser JM, Schendel RR, Eckberg JO, Runck BC, Bunzel M, Jordan NR, Stupar RM, Marks MD, Anderson JA, Johnson GA, Sheaffer CC, Schoenfuss TC, Ismail B, Heimpel GE, Wyse DL. Perennial Grain and Oilseed Crops. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:703-729. [PMID: 26789233 DOI: 10.1146/annurev-arplant-043015-112311] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Historically, agroecosystems have been designed to produce food. Modern societies now demand more from food systems-not only food, fuel, and fiber, but also a variety of ecosystem services. And although today's farming practices are producing unprecedented yields, they are also contributing to ecosystem problems such as soil erosion, greenhouse gas emissions, and water pollution. This review highlights the potential benefits of perennial grains and oilseeds and discusses recent progress in their development. Because of perennials' extended growing season and deep root systems, they may require less fertilizer, help prevent runoff, and be more drought tolerant than annuals. Their production is expected to reduce tillage, which could positively affect biodiversity. End-use possibilities involve food, feed, fuel, and nonfood bioproducts. Fostering multidisciplinary collaborations will be essential for the successful integration of perennials into commercial cropping and food-processing systems.
Collapse
Affiliation(s)
- Michael B Kantar
- Department of Agronomy and Plant Genetics
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | | | | - Joe M Kaser
- Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108; ,
| | - Rachel R Schendel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | | | - Bryan C Runck
- Department of Geography, Environment, and Society, University of Minnesota, Minneapolis, Minnesota 55455
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | | - George E Heimpel
- Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108; ,
| | | |
Collapse
|
10
|
Wang Y, Xiao X, Wang X, Zeng J, Kang H, Fan X, Sha L, Zhang H, Zhou Y. RNA-Seq and iTRAQ Reveal the Dwarfing Mechanism of Dwarf Polish Wheat (Triticum polonicum L.). Int J Biol Sci 2016; 12:653-66. [PMID: 27194943 PMCID: PMC4870709 DOI: 10.7150/ijbs.14577] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/15/2016] [Indexed: 11/05/2022] Open
Abstract
The dwarfing mechanism of Rht-dp in dwarf Polish wheat (DPW) is unknown. Each internode of DPW was significantly shorter than it in high Polish wheat (HPW), and the dwarfism was insensitive to photoperiod, abscisic acid (ABA), gibberellin (GA), cytokinin (CK), auxin and brassinolide (BR). To understand the mechanism, three sets of transcripts, DPW, HPW, and a chimeric set (a combination of DPW and HPW), were constructed using RNA sequencing (RNA-Seq). Based on the chimeric transcripts, 2,446 proteins were identified using isobaric tags for relative and absolute quantification (iTRAQ). A total of 108 unigenes and 12 proteins were considered as dwarfism-related differentially expressed genes (DEGs) and differentially expressed proteins (DEPs), respectively. Among of these DEGs and DEPs, 6 DEGs and 6 DEPs were found to be involved in flavonoid and S-adenosyl-methionine (SAM) metabolisms; 5 DEGs and 3 DEPs were involved in cellulose metabolism, cell wall plasticity and cell expansion; 2 DEGs were auxin transporters; 2 DEPs were histones; 1 DEP was a peroxidase. These DEGs and DEPs reduced lignin and cellulose contents, increased flavonoid content, possibly decreased S-adenosyl-methionine (SAM) and polyamine contents and increased S-adenosyl-L-homocysteine hydrolase (SAHH) content in DPW stems, which could limit auxin transport and reduce extensibility of the cell wall, finally limited cell expansion (the cell size of DPW was significantly smaller than HPW cells) and caused dwarfism in DPW.
Collapse
Affiliation(s)
- Yi Wang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xue Xiao
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xiaolu Wang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Jian Zeng
- 2. College of Resources, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Houyang Kang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Xing Fan
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Lina Sha
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Haiqin Zhang
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| | - Yonghong Zhou
- 1. Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, China
| |
Collapse
|
11
|
Huang P, Shyu C, Coelho CP, Cao Y, Brutnell TP. Setaria viridis as a Model System to Advance Millet Genetics and Genomics. FRONTIERS IN PLANT SCIENCE 2016; 7:1781. [PMID: 27965689 PMCID: PMC5124564 DOI: 10.3389/fpls.2016.01781] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/11/2016] [Indexed: 05/18/2023]
Abstract
Millet is a common name for a group of polyphyletic, small-seeded cereal crops that include pearl, finger and foxtail millet. Millet species are an important source of calories for many societies, often in developing countries. Compared to major cereal crops such as rice and maize, millets are generally better adapted to dry and hot environments. Despite their food security value, the genetic architecture of agronomically important traits in millets, including both morphological traits and climate resilience remains poorly studied. These complex traits have been challenging to dissect in large part because of the lack of sufficient genetic tools and resources. In this article, we review the phylogenetic relationship among various millet species and discuss the value of a genetic model system for millet research. We propose that a broader adoption of green foxtail (Setaria viridis) as a model system for millets could greatly accelerate the pace of gene discovery in the millets, and summarize available and emerging resources in S. viridis and its domesticated relative S. italica. These resources have value in forward genetics, reverse genetics and high throughput phenotyping. We describe methods and strategies to best utilize these resources to facilitate the genetic dissection of complex traits. We envision that coupling cutting-edge technologies and the use of S. viridis for gene discovery will accelerate genetic research in millets in general. This will enable strategies and provide opportunities to increase productivity, especially in the semi-arid tropics of Asia and Africa where millets are staple food crops.
Collapse
|
12
|
Hu Z, Mbacké B, Perumal R, Guèye MC, Sy O, Bouchet S, Prasad PVV, Morris GP. Population genomics of pearl millet (Pennisetum glaucum (L.) R. Br.): Comparative analysis of global accessions and Senegalese landraces. BMC Genomics 2015; 16:1048. [PMID: 26654432 PMCID: PMC4674952 DOI: 10.1186/s12864-015-2255-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/30/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Pearl millet is a staple food for people in arid and semi-arid regions of Africa and South Asia due to its high drought tolerance and nutritional qualities. A better understanding of the genomic diversity and population structure of pearl millet germplasm is needed to support germplasm conservation and genetic improvement of this crop. Here we characterized two pearl millet diversity panels, (i) a set of global accessions from Africa, Asia, and the America, and (ii) a collection of landraces from multiple agro-ecological zones in Senegal. RESULTS We identified 83,875 single nucleotide polymorphisms (SNPs) in 500 pearl millet accessions, comprised of 252 global accessions and 248 Senegalese landraces, using genotyping by sequencing (GBS) of PstI-MspI reduced representation libraries. We used these SNPs to characterize genomic diversity and population structure among the accessions. The Senegalese landraces had the highest levels of genetic diversity (π), while accessions from southern Africa and Asia showed lower diversity levels. Principal component analyses and ancestry estimation indicated clear population structure between the Senegalese landraces and the global accessions, and among countries in the global accessions. In contrast, little population structure was observed across in the Senegalese landraces collections. We ordered SNPs on the pearl millet genetic map and observed much faster linkage disequilibrium (LD) decay in Senegalese landraces compared to global accessions. A comparison of pearl millet GBS linkage map with the foxtail millet (Setaria italica) and sorghum (Sorghum bicolor) genomes indicated extensive regions of synteny, as well as some large-scale rearrangements in the pearl millet lineage. CONCLUSIONS We identified 83,875 SNPs as a genomic resource for pearl millet improvement. The high genetic diversity in Senegal relative to other regions of Africa and Asia supports a West African origin of this crop, followed by wide diffusion. The rapid LD decay and lack of confounding population structure along agro-ecological zones in Senegalese pearl millet will facilitate future association mapping studies. Comparative population genomics will provide insights into panicoid crop evolution and support improvement of these climate-resilient crops.
Collapse
Affiliation(s)
- Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| | - Bassirou Mbacké
- Ecole Nationale Supérieure d'Agriculture, Université de Thiès, Thiès, BP 296, Senegal.
| | - Ramasamy Perumal
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
- Agricultural Research Center-Hays, Kansas State University, Hays, KS, 67601, USA.
| | - Mame Codou Guèye
- Institut Sénégalais de Recherches Agricoles, Thiès, BP 3320, Senegal.
| | - Ousmane Sy
- Institut Sénégalais de Recherches Agricoles, Thiès, BP 3320, Senegal.
| | - Sophie Bouchet
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| | - Geoffrey P Morris
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
13
|
Zanke CD, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann K, Ganal MW, Röder MS. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PLoS One 2014; 9:e113287. [PMID: 25405621 PMCID: PMC4236181 DOI: 10.1371/journal.pone.0113287] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/21/2014] [Indexed: 11/17/2022] Open
Abstract
The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs) were observed for plant height and the SSR markers (-log10 (P-value) ≥ 4.82) and 280 (-log10 (P-value) ≥ 5.89) for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA) metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, ent-kaurenoic acid oxidase orthologous to wheat chromosome 7A, ent-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes Rht-B1 and Rht-D1 there is a wide spectrum of loci available that could be used for modulating plant height in variety development.
Collapse
Affiliation(s)
- Christine D. Zanke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jie Ling
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | | | | | | | | | | | | | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | | | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
14
|
Association analysis of SSR markers with phenology, grain, and Stover-yield related traits in pearl millet (Pennisetum glaucum (L.) R. Br.). ScientificWorldJournal 2014; 2014:562327. [PMID: 24526909 PMCID: PMC3910278 DOI: 10.1155/2014/562327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022] Open
Abstract
Pearl millet is a staple food crop for millions of people living in the arid and semi-arid tropics. Molecular markers have been used to identify genomic regions linked to traits of interest by conventional QTL mapping and association analysis. Phenotypic recurrent selection is known to increase frequencies of favorable alleles and decrease those unfavorable for the traits under selection. This study was undertaken (i) to quantify the response to recurrent selection for phenotypic traits during breeding of the pearl millet open-pollinated cultivar “CO (Cu) 9” and its four immediate progenitor populations and (ii) to assess the ability of simple sequence repeat (SSR) marker alleles to identify genomic regions linked to grain and stover yield-related traits in these populations by association analysis. A total of 159 SSR alleles were detected across 34 selected single-copy SSR loci. SSR marker data revealed presence of subpopulations. Association analysis identified genomic regions associated with flowering time located on linkage group (LG) 6 and plant height on LG4, LG6, and LG7. Marker alleles on LG6 were associated with stover yield, and those on LG7 were associated with grain yield. Findings of this study would give an opportunity to develop marker-assisted recurrent selection (MARS) or marker-assisted population improvement (MAPI) strategies to increase the rate of gain for pearl millet populations undergoing recurrent selection.
Collapse
|
15
|
Lenser T, Theißen G. Molecular mechanisms involved in convergent crop domestication. TRENDS IN PLANT SCIENCE 2013; 18:704-14. [PMID: 24035234 DOI: 10.1016/j.tplants.2013.08.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/12/2013] [Accepted: 08/21/2013] [Indexed: 05/21/2023]
Abstract
Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Teresa Lenser
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | | |
Collapse
|