1
|
Cheng Y, Chi Y, Sun L, Wang GZ. Dominant constraints on the evolution of rhythmic gene expression. Comput Struct Biotechnol J 2023; 21:4301-4311. [PMID: 37692081 PMCID: PMC10492206 DOI: 10.1016/j.csbj.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
Although the individual transcriptional regulators of the core circadian clock are distinct among different organisms, the autoregulatory feedback loops they form are conserved. This unified design principle explains how daily physiological activities oscillate across species. However, it is unknown whether analogous design principles govern the gene expression output of circadian clocks. In this study, we performed a comparative analysis of rhythmic gene expression in eight diverse species and identified four common distribution patterns of cycling gene expression across these species. We hypothesized that the maintenance of reduced energetic costs constrains the evolution of rhythmic gene expression. Our large-scale computational simulations support this hypothesis by showing that selection against high-energy expenditure completely regenerates all cycling gene patterns. Moreover, we find that the peaks of rhythmic expression have been subjected to this type of selective pressure. The results suggest that selective pressure from circadian regulation efficiently removes unnecessary gene products from the transcriptome, thereby significantly impacting its evolutionary path.
Collapse
Affiliation(s)
| | | | | | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
2
|
Sumiya N. Cis-acting elements involved in the G2/M-phase-specific transcription of the cyclin B gene in the unicellular alga Cyanidioschyzon merolae. JOURNAL OF PLANT RESEARCH 2021; 134:1301-1310. [PMID: 34338916 DOI: 10.1007/s10265-021-01334-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
M-specific activator (MSA) cis-acting elements have been determined to be involved in the regulation of G2/M-phase-specific transcription in spermatophytes. In this study, the involvement of MSA-core elements in G2/M-phase-specific transcription was examined in the unicellular red alga Cyanidioschyzon merolae. In the C. merolae genome, MSA-core elements do not accumulate specifically in the upstream of mitosis-specific transcriptional genes. Mutations of the four MSA-core elements of the cyclin B gene, which encodes a central factor of the G2-to-M-phase transition, have resulted in the abolishment of transcription or permission of transcription even in the G1 phase. These results suggest that all four MSA-core elements located in the upstream region of cyclin B are involved in G2/M-phase-specific transcription in C. merolae; however, the nature of the involvement of MSA-core elements in G2/M-phase-specific transcription differed among the four elements. Thus, MSA-core-element-mediated G2/M-phase-specific transcription in C. merolae seems to be regulated by a complex mechanism.
Collapse
Affiliation(s)
- Nobuko Sumiya
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8521, Japan.
| |
Collapse
|
3
|
Salomé PA, Merchant SS. Co-expression networks in Chlamydomonas reveal significant rhythmicity in batch cultures and empower gene function discovery. THE PLANT CELL 2021; 33:1058-1082. [PMID: 33793846 PMCID: PMC8226298 DOI: 10.1093/plcell/koab042] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/25/2021] [Indexed: 05/18/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a choice reference system for the study of photosynthesis and chloroplast metabolism, cilium assembly and function, lipid and starch metabolism, and metal homeostasis. Despite decades of research, the functions of thousands of genes remain largely unknown, and new approaches are needed to categorically assign genes to cellular pathways. Growing collections of transcriptome and proteome data now allow a systematic approach based on integrative co-expression analysis. We used a dataset comprising 518 deep transcriptome samples derived from 58 independent experiments to identify potential co-expression relationships between genes. We visualized co-expression potential with the R package corrplot, to easily assess co-expression and anti-correlation between genes. We extracted several hundred high-confidence genes at the intersection of multiple curated lists involved in cilia, cell division, and photosynthesis, illustrating the power of our method. Surprisingly, Chlamydomonas experiments retained a significant rhythmic component across the transcriptome, suggesting an underappreciated variable during sample collection, even in samples collected in constant light. Our results therefore document substantial residual synchronization in batch cultures, contrary to assumptions of asynchrony. We provide step-by-step protocols for the analysis of co-expression across transcriptome data sets from Chlamydomonas and other species to help foster gene function discovery.
Collapse
Affiliation(s)
- Patrice A Salomé
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles California 90095
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California—Los Angeles, Los Angeles California 90095
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California-Berkeley, Berkeley, California 94720 and Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
4
|
Regulation of Multiple Fission and Cell-Cycle-Dependent Gene Expression by CDKA1 and the Rb-E2F Pathway in Chlamydomonas. Curr Biol 2020; 30:1855-1865.e4. [PMID: 32243861 DOI: 10.1016/j.cub.2020.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/06/2020] [Accepted: 03/09/2020] [Indexed: 01/07/2023]
Abstract
The green alga Chlamydomonas proliferates by "multiple fission": a long G1 with >10-fold cell growth followed by multiple rapid divisions. Cells above a critical size threshold are "committed" and will divide independent of light and further cell growth. The number of divisions carried out depends on the initial size of the committed mother cell. Here, I show that CDKA1, the ortholog of the yeast and animal mitotic inducer CDK1, regulates the critical size for commitment. The Rb/E2F/Dp1 pathway regulates division number as well as commitment size. Epistasis analysis indicated that CDKA1 and Rb/E2F/Dp1 regulate multiple fission by distinct mechanisms. Rb-E2F/Dp1 regulates G1/S gene expression in animals and land plants. Transcriptome analysis showed that mat3 or dp1 disruption altered regulation of a large group of cell-division-associated genes with respect to cell size, but not with respect to synchronization timing. In contrast, cdka1 inactivation disturbed both temporal and cell-size regulation of expression. These defects were enhanced by double inactivation of cdka1 and dp1, suggesting interaction between CDKA1 and the Rb-E2F/Dp1 pathways in regulating cell-cycle-specific gene expression and cell-cycle initiation. In the context of a theoretical model for regulation of Chlamydomonas multiple fission, these results suggest that CDKA1 may promote a switch into a division-competent state, and E2F/Dp1 may promote maintenance of this state.
Collapse
|
5
|
McWhite CD, Papoulas O, Drew K, Cox RM, June V, Dong OX, Kwon T, Wan C, Salmi ML, Roux SJ, Browning KS, Chen ZJ, Ronald PC, Marcotte EM. A Pan-plant Protein Complex Map Reveals Deep Conservation and Novel Assemblies. Cell 2020; 181:460-474.e14. [PMID: 32191846 PMCID: PMC7297045 DOI: 10.1016/j.cell.2020.02.049] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/08/2020] [Accepted: 02/21/2020] [Indexed: 01/11/2023]
Abstract
Plants are foundational for global ecological and economic systems, but most plant proteins remain uncharacterized. Protein interaction networks often suggest protein functions and open new avenues to characterize genes and proteins. We therefore systematically determined protein complexes from 13 plant species of scientific and agricultural importance, greatly expanding the known repertoire of stable protein complexes in plants. By using co-fractionation mass spectrometry, we recovered known complexes, confirmed complexes predicted to occur in plants, and identified previously unknown interactions conserved over 1.1 billion years of green plant evolution. Several novel complexes are involved in vernalization and pathogen defense, traits critical for agriculture. We also observed plant analogs of animal complexes with distinct molecular assemblies, including a megadalton-scale tRNA multi-synthetase complex. The resulting map offers a cross-species view of conserved, stable protein assemblies shared across plant cells and provides a mechanistic, biochemical framework for interpreting plant genetics and mutant phenotypes.
Collapse
Affiliation(s)
- Claire D McWhite
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Kevin Drew
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Rachael M Cox
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Viviana June
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Oliver Xiaoou Dong
- Department of Plant Pathology and The Genome Center, University of California, Davis, Davis, CA 95616, USA; Joint Bioenergy Institute, Emeryville, CA 94608, USA
| | - Taejoon Kwon
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Cuihong Wan
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA; Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, P.R. China
| | - Mari L Salmi
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Stanley J Roux
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Karen S Browning
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Pamela C Ronald
- Department of Plant Pathology and The Genome Center, University of California, Davis, Davis, CA 95616, USA; Joint Bioenergy Institute, Emeryville, CA 94608, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
6
|
Takeuchi T, Sears BB, Lindeboom C, Lin YT, Fekaris N, Zienkiewicz K, Zienkiewicz A, Poliner E, Benning C. Chlamydomonas CHT7 Is Required for an Effective Quiescent State by Regulating Nutrient-Responsive Cell Cycle Gene Expression. THE PLANT CELL 2020; 32:1240-1269. [PMID: 32001503 PMCID: PMC7145468 DOI: 10.1105/tpc.19.00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/07/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
COMPROMISED HYDROLYSIS OF TRIACYLGLYCEROLS7 (CHT7) in Chlamydomonas (Chlamydomonas reinhardtii) was previously shown to affect the transcription of a subset of genes during nitrogen (N)-replete growth and following N refeeding. Here, we show that an extensive derepression of genes involved in DNA metabolism and cell cycle-related processes, as well as downregulation of genes encoding oxidoreductases and nutrient transporters, occurs in the cht7 mutant during N deprivation. Cellular mutant phenotypes are consistent with the observed transcriptome misregulation, as cht7 cells fail to properly arrest growth, nuclear replication, and cell division following N deprivation. Reduction in cht7 colony formation following N refeeding is explained by its compromised viability during N deprivation and by the occurrence of abortive divisions during N refeeding. Surprisingly, the largely unstructured C-terminal half of CHT7 with predicted protein binding domains, but not the canonical CXC DNA binding domain, is essential for the ability of CHT7 to form stable complexes and reverse the cellular phenotypes and transcription levels in the cht7 mutant. Hence, although lacking the presumed DNA binding domain, CHT7 modulates the expression of cell cycle genes in response to N availability, which is essential for establishing an effective quiescent state and the coordinated resumption of growth following N refeeding.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Barbara B Sears
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Chase Lindeboom
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yang-Tsung Lin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Nicholas Fekaris
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Krzysztof Zienkiewicz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Centre of Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
| | - Agnieszka Zienkiewicz
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Centre of Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| | - Eric Poliner
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
7
|
Panchy NL, Lloyd JP, Shiu SH. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data. BMC Genomics 2020; 21:159. [PMID: 32054475 PMCID: PMC7020519 DOI: 10.1186/s12864-020-6554-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Gene expression is regulated by DNA-binding transcription factors (TFs). Together with their target genes, these factors and their interactions collectively form a gene regulatory network (GRN), which is responsible for producing patterns of transcription, including cyclical processes such as genome replication and cell division. However, identifying how this network regulates the timing of these patterns, including important interactions and regulatory motifs, remains a challenging task. RESULTS We employed four in vivo and in vitro regulatory data sets to investigate the regulatory basis of expression timing and phase-specific patterns cell-cycle expression in Saccharomyces cerevisiae. Specifically, we considered interactions based on direct binding between TF and target gene, indirect effects of TF deletion on gene expression, and computational inference. We found that the source of regulatory information significantly impacts the accuracy and completeness of recovering known cell-cycle expressed genes. The best approach involved combining TF-target and TF-TF interactions features from multiple datasets in a single model. In addition, TFs important to multiple phases of cell-cycle expression also have the greatest impact on individual phases. Important TFs regulating a cell-cycle phase also tend to form modules in the GRN, including two sub-modules composed entirely of unannotated cell-cycle regulators (STE12-TEC1 and RAP1-HAP1-MSN4). CONCLUSION Our findings illustrate the importance of integrating both multiple omics data and regulatory motifs in order to understand the significance regulatory interactions involved in timing gene expression. This integrated approached allowed us to recover both known cell-cycles interactions and the overall pattern of phase-specific expression across the cell-cycle better than any single data set. Likewise, by looking at regulatory motifs in the form of TF-TF interactions, we identified sets of TFs whose co-regulation of target genes was important for cell-cycle expression, even when regulation by individual TFs was not. Overall, this demonstrates the power of integrating multiple data sets and models of interaction in order to understand the regulatory basis of established biological processes and their associated gene regulatory networks.
Collapse
Affiliation(s)
- Nicholas L Panchy
- Genetics Graduate Program, Michigan State University, East Lansing, MI, 48824, USA.,Present address: National Institute for Mathematical and Biological Synthesis, University of Tennessee, 1122 Volunteer Blvd., Suite 106, Knoxville, TN, 37996-3410, USA
| | - John P Lloyd
- Department of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shin-Han Shiu
- Genetics Graduate Program, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA. .,Michigan State University, Plant Biology Laboratories, 612 Wilson Road, Room 166, East Lansing, MI, 48824-1312, USA.
| |
Collapse
|
8
|
Heldt FS, Tyson JJ, Cross FR, Novák B. A Single Light-Responsive Sizer Can Control Multiple-Fission Cycles in Chlamydomonas. Curr Biol 2020; 30:634-644.e7. [DOI: 10.1016/j.cub.2019.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022]
|
9
|
Molecular Traits of Long Non-protein Coding RNAs from Diverse Plant Species Show Little Evidence of Phylogenetic Relationships. G3-GENES GENOMES GENETICS 2019; 9:2511-2520. [PMID: 31235560 PMCID: PMC6686929 DOI: 10.1534/g3.119.400201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) represent a diverse class of regulatory loci with roles in development and stress responses throughout all kingdoms of life. LncRNAs, however, remain under-studied in plants compared to animal systems. To address this deficiency, we applied a machine learning prediction tool, Classifying RNA by Ensemble Machine learning Algorithm (CREMA), to analyze RNAseq data from 11 plant species chosen to represent a wide range of evolutionary histories. Transcript sequences of all expressed and/or annotated loci from plants grown in unstressed (control) conditions were assembled and input into CREMA for comparative analyses. On average, 6.4% of the plant transcripts were identified by CREMA as encoding lncRNAs. Gene annotation associated with the transcripts showed that up to 99% of all predicted lncRNAs for Solanum tuberosum and Amborella trichopoda were missing from their reference annotations whereas the reference annotation for the genetic model plant Arabidopsis thaliana contains 96% of all predicted lncRNAs for this species. Thus a reliance on reference annotations for use in lncRNA research in less well-studied plants can be impeded by the near absence of annotations associated with these regulatory transcripts. Moreover, our work using phylogenetic signal analyses suggests that molecular traits of plant lncRNAs display different evolutionary patterns than all other transcripts in plants and have molecular traits that do not follow a classic evolutionary pattern. Specifically, GC content was the only tested trait of lncRNAs with consistently significant and high phylogenetic signal, contrary to high signal in all tested molecular traits for the other transcripts in our tested plant species.
Collapse
|
10
|
Ferrari C, Proost S, Janowski M, Becker J, Nikoloski Z, Bhattacharya D, Price D, Tohge T, Bar-Even A, Fernie A, Stitt M, Mutwil M. Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida. Nat Commun 2019; 10:737. [PMID: 30760717 PMCID: PMC6374488 DOI: 10.1038/s41467-019-08703-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/23/2019] [Indexed: 01/19/2023] Open
Abstract
Plants have adapted to the diurnal light-dark cycle by establishing elaborate transcriptional programs that coordinate many metabolic, physiological, and developmental responses to the external environment. These transcriptional programs have been studied in only a few species, and their function and conservation across algae and plants is currently unknown. We performed a comparative transcriptome analysis of the diurnal cycle of nine members of Archaeplastida, and we observed that, despite large phylogenetic distances and dramatic differences in morphology and lifestyle, diurnal transcriptional programs of these organisms are similar. Expression of genes related to cell division and the majority of biological pathways depends on the time of day in unicellular algae but we did not observe such patterns at the tissue level in multicellular land plants. Hence, our study provides evidence for the universality of diurnal gene expression and elucidates its evolutionary history among different photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Camilla Ferrari
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Sebastian Proost
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Marcin Janowski
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Jörg Becker
- Instituto Gulbenkian de Ciência, R. Q.ta Grande 6, 2780-156, Oeiras, Portugal
| | - Zoran Nikoloski
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany.,Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Dana Price
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Takayuki Tohge
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany.,Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Arren Bar-Even
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Alisdair Fernie
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Mark Stitt
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Marek Mutwil
- Max-Planck Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany. .,School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
11
|
Takeuchi T, Benning C. Nitrogen-dependent coordination of cell cycle, quiescence and TAG accumulation in Chlamydomonas. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:292. [PMID: 31890020 PMCID: PMC6927116 DOI: 10.1186/s13068-019-1635-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 05/07/2023]
Abstract
Microalgae hold great promises as sustainable cellular factories for the production of alternative fuels, feeds, and biopharmaceuticals for human health. While the biorefinery approach for fuels along with the coproduction of high-value compounds with industrial, therapeutic, or nutraceutical applications have the potential to make algal biofuels more economically viable, a number of challenges continue to hamper algal production systems at all levels. One such hurdle includes the metabolic trade-off often observed between the increased yields of desired products, such as triacylglycerols (TAG), and the growth of an organism. Initial genetic engineering strategies to improve lipid productivity in microalgae, which focused on overproducing the enzymes involved in fatty acid and TAG biosynthesis or inactivating competing carbon (C) metabolism, have seen some successes albeit at the cost of often greatly reduced biomass. Emergent approaches that aim at modifying the dynamics of entire metabolic pathways by engineering of pertinent transcription factors or signaling networks appear to have successfully achieved a balance between growth and neutral lipid accumulation. However, the biological knowledge of key signaling networks and molecular components linking these two processes is still incomplete in photosynthetic eukaryotes, making it difficult to optimize metabolic engineering strategies for microalgae. Here, we focus on nitrogen (N) starvation of the model green microalga, Chlamydomonas reinhardtii, to present the current understanding of the nutrient-dependent switch between proliferation and quiescence, and the drastic reprogramming of metabolism that results in the storage of C compounds following N starvation. We discuss the potential components mediating the transcriptional repression of cell cycle genes and the establishment of quiescence in Chlamydomonas, and highlight the importance of signaling pathways such as those governed by the target of rapamycin (TOR) and sucrose nonfermenting-related (SnRK) kinases in the coordination of metabolic status with cellular growth. A better understanding of how the cell division cycle is regulated in response to nutrient scarcity and of the signaling pathways linking cellular growth to energy and lipid homeostasis, is essential to improve the prospects of biofuels and biomass production in microalgae.
Collapse
Affiliation(s)
- Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824 USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
12
|
Umen JG. Sizing up the cell cycle: systems and quantitative approaches in Chlamydomonas. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:96-103. [PMID: 30212737 PMCID: PMC6269190 DOI: 10.1016/j.pbi.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 05/06/2023]
Abstract
The unicellular green alga Chlamydomonas provides a simplified model for defining core cell cycle functions conserved in the green lineage and for understanding multiple fission, a common cell cycle variation found in many algae. Systems-level approaches including a recent groundbreaking screen for conditional lethal cell cycle mutants and genome-wide transcriptome analyses are revealing the complex relationships among cell cycle regulators and helping define roles for CDKA/CDK1 and CDKB, the latter of which is unique to the green lineage and plays a central role in mitotic regulation. Genetic screens and quantitative single-cell analyses have provided insight into cell-size control during multiple fission including the identification of a candidate `sizer' protein. Quantitative single-cell tracking and modeling are promising approaches for gaining additional insight into regulation of cellular and subcellular scaling during the Chlamydomonas cell cycle.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, 975 N. Warson Rd., St. Louis, MO 63132, USA.
| |
Collapse
|
13
|
Millar AJ. The Intracellular Dynamics of Circadian Clocks Reach for the Light of Ecology and Evolution. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:595-618. [PMID: 26653934 DOI: 10.1146/annurev-arplant-043014-115619] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A major challenge for biology is to extend our understanding of molecular regulation from the simplified conditions of the laboratory to ecologically relevant environments. Tractable examples are essential to make these connections for complex, pleiotropic regulators and, to go further, to link relevant genome sequences to field traits. Here, I review the case for the biological clock in higher plants. The gene network of the circadian clock drives pervasive, 24-hour rhythms in metabolism, behavior, and physiology across the eukaryotes and in some prokaryotes. In plants, the scope of chronobiology is now extending from the most tractable, intracellular readouts to the clock's many effects at the whole-organism level and across the life cycle, including biomass and flowering. I discuss five research areas where recent progress might be integrated in the future, to understand not only circadian functions in natural conditions but also the evolution of the clock's molecular mechanisms.
Collapse
Affiliation(s)
- Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, Scotland, United Kingdom;
| |
Collapse
|
14
|
Liu TL, Newton L, Liu MJ, Shiu SH, Farré EM. A G-Box-Like Motif Is Necessary for Transcriptional Regulation by Circadian Pseudo-Response Regulators in Arabidopsis. PLANT PHYSIOLOGY 2016; 170:528-39. [PMID: 26586835 PMCID: PMC4704597 DOI: 10.1104/pp.15.01562] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/17/2015] [Indexed: 05/18/2023]
Abstract
PSEUDO-RESPONSE REGULATORs (PRRs) play overlapping and distinct roles in maintaining circadian rhythms and regulating diverse biological processes, including the photoperiodic control of flowering, growth, and abiotic stress responses. PRRs act as transcriptional repressors and associate with chromatin via their conserved C-terminal CCT (CONSTANS, CONSTANS-like, and TIMING OF CAB EXPRESSION 1 [TOC1/PRR1]) domains by a still-poorly understood mechanism. Here, we identified genome-wide targets of PRR9 using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) and compared them with PRR7, PRR5, and TOC1/PRR1 ChIP-seq data. We found that PRR binding sites are located within genomic regions of low nucleosome occupancy and high DNase I hypersensitivity. Moreover, conserved noncoding regions among Brassicaceae species are enriched around PRR binding sites, indicating that PRRs associate with functionally relevant cis-regulatory regions. The PRRs shared a significant number of binding regions, and our results indicate that they coordinately restrict the expression of target genes to around dawn. A G-box-like motif was overrepresented at PRR binding regions, and we showed that this motif is necessary for mediating transcriptional regulation of CIRCADIAN CLOCK ASSOCIATED 1 and PRR9 by the PRRs. Our results further our understanding of how PRRs target specific promoters and provide an extensive resource for studying circadian regulatory networks in plants.
Collapse
Affiliation(s)
- Tiffany L Liu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Linsey Newton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Ming-Jung Liu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Eva M Farré
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
15
|
Lopez D, Hamaji T, Kropat J, De Hoff P, Morselli M, Rubbi L, Fitz-Gibbon S, Gallaher SD, Merchant SS, Umen J, Pellegrini M. Dynamic Changes in the Transcriptome and Methylome of Chlamydomonas reinhardtii throughout Its Life Cycle. PLANT PHYSIOLOGY 2015; 169:2730-43. [PMID: 26450704 PMCID: PMC4677889 DOI: 10.1104/pp.15.00861] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/07/2015] [Indexed: 05/02/2023]
Abstract
The green alga Chlamydomonas reinhardtii undergoes gametogenesis and mating upon nitrogen starvation. While the steps involved in its sexual reproductive cycle have been extensively characterized, the genome-wide transcriptional and epigenetic changes underlying different life cycle stages have yet to be fully described. Here, we performed transcriptome and methylome sequencing to quantify expression and DNA methylation from vegetative and gametic cells of each mating type and from zygotes. We identified 361 gametic genes with mating type-specific expression patterns and 627 genes that are specifically induced in zygotes; furthermore, these sex-related gene sets were enriched for secretory pathway and alga-specific genes. We also examined the C. reinhardtii nuclear methylation map with base-level resolution at different life cycle stages. Despite having low global levels of nuclear methylation, we detected 23 hypermethylated loci in gene-poor, repeat-rich regions. We observed mating type-specific differences in chloroplast DNA methylation levels in plus versus minus mating type gametes followed by chloroplast DNA hypermethylation in zygotes. Lastly, we examined the expression of candidate DNA methyltransferases and found three, DMT1a, DMT1b, and DMT4, that are differentially expressed during the life cycle and are candidate DNA methylases. The expression and methylation data we present provide insight into cell type-specific transcriptional and epigenetic programs during key stages of the C. reinhardtii life cycle.
Collapse
Affiliation(s)
- David Lopez
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Takashi Hamaji
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Janette Kropat
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Peter De Hoff
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Marco Morselli
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Liudmilla Rubbi
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sorel Fitz-Gibbon
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sean D Gallaher
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Sabeeha S Merchant
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - James Umen
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| | - Matteo Pellegrini
- Molecular Biology Institute (D.L.), Department of Molecular, Cell, and Developmental Biology (D.L., M.M., L.R., S.F.-G., M.P.), Department of Chemistry and Biochemistry (J.K., S.F.-G., S.D.G., S.S.M.), and Institute for Genomics and Proteomics (S.S.M., M.P.), University of California, Los Angeles, California 90095;Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.H., J.U.); andSalk Institute for Biological Studies, La Jolla, California 92037 (P.D.H.)
| |
Collapse
|
16
|
Zones JM, Blaby IK, Merchant SS, Umen JG. High-Resolution Profiling of a Synchronized Diurnal Transcriptome from Chlamydomonas reinhardtii Reveals Continuous Cell and Metabolic Differentiation. THE PLANT CELL 2015; 27:2743-69. [PMID: 26432862 PMCID: PMC4682324 DOI: 10.1105/tpc.15.00498] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/27/2015] [Accepted: 09/14/2015] [Indexed: 05/18/2023]
Abstract
The green alga Chlamydomonas reinhardtii is a useful model organism for investigating diverse biological processes, such as photosynthesis and chloroplast biogenesis, flagella and basal body structure/function, cell growth and division, and many others. We combined a highly synchronous photobioreactor culture system with frequent temporal sampling to characterize genome-wide diurnal gene expression in Chlamydomonas. Over 80% of the measured transcriptome was expressed with strong periodicity, forming 18 major clusters. Genes associated with complex structures and processes, including cell cycle control, flagella and basal bodies, ribosome biogenesis, and energy metabolism, all had distinct signatures of coexpression with strong predictive value for assigning and temporally ordering function. Importantly, the frequent sampling regime allowed us to discern meaningful fine-scale phase differences between and within subgroups of genes and enabled the identification of a transiently expressed cluster of light stress genes. Coexpression was further used both as a data-mining tool to classify and/or validate genes from other data sets related to the cell cycle and to flagella and basal bodies and to assign isoforms of duplicated enzymes to their cognate pathways of central carbon metabolism. Our diurnal coexpression data capture functional relationships established by dozens of prior studies and are a valuable new resource for investigating a variety of biological processes in Chlamydomonas and other eukaryotes.
Collapse
Affiliation(s)
- James Matt Zones
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132 Division of Biological Sciences, University of California San Diego, La Jolla, California 92093
| | - Ian K Blaby
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| |
Collapse
|
17
|
Tulin F, Cross FR. Cyclin-Dependent Kinase Regulation of Diurnal Transcription in Chlamydomonas. THE PLANT CELL 2015; 27:2727-42. [PMID: 26475866 PMCID: PMC4682320 DOI: 10.1105/tpc.15.00400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/01/2015] [Accepted: 09/18/2015] [Indexed: 05/18/2023]
Abstract
We analyzed global transcriptome changes during synchronized cell division in the green alga Chlamydomonas reinhardtii. The Chlamydomonas cell cycle consists of a long G1 phase, followed by an S/M phase with multiple rapid, alternating rounds of DNA replication and segregation. We found that the S/M period is associated with strong induction of ∼2300 genes, many with conserved roles in DNA replication or cell division. Other genes, including many involved in photosynthesis, are reciprocally downregulated in S/M, suggesting a gene expression split correlating with the temporal separation between G1 and S/M. The Chlamydomonas cell cycle is synchronized by light-dark cycles, so in principle, these transcriptional changes could be directly responsive to light or to metabolic cues. Alternatively, cell-cycle-periodic transcription may be directly regulated by cyclin-dependent kinases. To distinguish between these possibilities, we analyzed transcriptional profiles of mutants in the kinases CDKA and CDKB, as well as other mutants with distinct cell cycle blocks. Initial cell-cycle-periodic expression changes are largely CDK independent, but later regulation (induction and repression) is under differential control by CDKA and CDKB. Deviation from the wild-type transcriptional program in diverse cell cycle mutants will be an informative phenotype for further characterization of the Chlamydomonas cell cycle.
Collapse
Affiliation(s)
- Frej Tulin
- The Rockefeller University, New York, NY
| | | |
Collapse
|
18
|
Poliner E, Panchy N, Newton L, Wu G, Lapinsky A, Bullard B, Zienkiewicz A, Benning C, Shiu SH, Farré EM. Transcriptional coordination of physiological responses in Nannochloropsis oceanica CCMP1779 under light/dark cycles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015. [PMID: 26216534 DOI: 10.1111/tpj.12944] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nannochloropsis oceanica CCMP1779 is a marine unicellular stramenopile and an emerging reference species for basic research on oleogenic microalgae with biotechnological relevance. We investigated its physiology and transcriptome under light/dark cycles. We observed oscillations in lipid content and a predominance of cell division in the first half of the dark phase. Globally, more than 60% of the genes cycled in N. oceanica CCMP1779, with gene expression peaking at different times of the day. Interestingly, the phase of expression of genes involved in certain biological processes was conserved across photosynthetic lineages. Furthermore, in agreement with our physiological studies we found the processes of lipid metabolism and cell division enriched in cycling genes. For example, there was tight coordination of genes involved in the lower part of glycolysis, fatty acid synthesis and lipid production at dawn preceding lipid accumulation during the day. Our results suggest that diel lipid storage plays a key role for N. oceanica CCMP1779 growth under natural conditions making this alga a promising model to gain a basic mechanistic understanding of triacylglycerol production in photosynthetic cells. Our data will help the formulation of new hypotheses on the role of cyclic gene expression in cell growth and metabolism in Nannochloropsis.
Collapse
Affiliation(s)
- Eric Poliner
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Nicholas Panchy
- Genetics Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Linsey Newton
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Guangxi Wu
- Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Andrew Lapinsky
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Blair Bullard
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Agnieszka Zienkiewicz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Eva M Farré
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|