1
|
Tamai T, Reginato G, Ojiri R, Morita I, Avrutis A, Cejka P, Shinohara M, Sugimoto K. Sae2 controls Mre11 endo- and exonuclease activities by different mechanisms. Nat Commun 2024; 15:7221. [PMID: 39174552 PMCID: PMC11341764 DOI: 10.1038/s41467-024-51493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
DNA double-strand breaks (DSBs) must be repaired to ensure cell survival and genomic integrity. In yeast, the Mre11-Rad50-Xrs2 complex (MRX) collaborates with Sae2 to initiate DSB repair. Sae2 stimulates two MRX nuclease activities, endonuclease and 3'-5' exonuclease. However, how Sae2 controls the two nuclease activities remains enigmatic. Using a combined genetic and biochemical approach, we identified a separation-of-function rad50 mutation, rad50-C47, that causes a defect in Sae2-dependent MRX 3'-5' exonuclease activity, but not endonuclease activity. We found that both the endo- and 3'-5' exonuclease activities are essential to release Spo11 from DNA ends, whereas only the endonuclease activity is required for hairpin removal. We also uncovered that MRX-Sae2 endonuclease introduces a cleavage at defined distances from the Spo11-blocked end with gradually decreasing efficiency. Our findings demonstrate that Sae2 stimulates the MRX endo- and exonuclease activities via Rad50 by different mechanisms, ensuring diverse actions of MRX-Sae2 nuclease at DNA ends.
Collapse
Affiliation(s)
- Tomoki Tamai
- Faculty of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara City, Nara, 631-8505, Japan
| | - Giordano Reginato
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Ryusei Ojiri
- Faculty of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara City, Nara, 631-8505, Japan
| | - Issei Morita
- Faculty of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara City, Nara, 631-8505, Japan
| | - Alexandra Avrutis
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, 07103, USA
| | - Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland.
| | - Miki Shinohara
- Faculty of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara City, Nara, 631-8505, Japan.
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara City, Nara, 631-8505, Japan.
| | - Katsunori Sugimoto
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
2
|
Szücs B, Selvan R, Lisby M. High-throughput classification of S. cerevisiae tetrads using deep learning. Yeast 2024; 41:423-436. [PMID: 38850080 DOI: 10.1002/yea.3965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/17/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024] Open
Abstract
Meiotic crossovers play a vital role in proper chromosome segregation and evolution of most sexually reproducing organisms. Meiotic recombination can be visually observed in Saccharomyces cerevisiae tetrads using linked spore-autonomous fluorescent markers placed at defined intervals within the genome, which allows for analysis of meiotic segregation without the need for tetrad dissection. To automate the analysis, we developed a deep learning-based image recognition and classification pipeline for high-throughput tetrad detection and meiotic crossover classification. As a proof of concept, we analyzed a large image data set from wild-type and selected gene knock-out mutants to quantify crossover frequency, interference, chromosome missegregation, and gene conversion events. The deep learning-based method has the potential to accelerate the discovery of new genes involved in meiotic recombination in S. cerevisiae such as the underlying factors controlling crossover frequency and interference.
Collapse
Affiliation(s)
- Balint Szücs
- Section for Functional Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Raghavendra Selvan
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Michael Lisby
- Section for Functional Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Dash S, Joshi S, Pankajam AV, Shinohara A, Nishant KT. Heterozygosity alters Msh5 binding to meiotic chromosomes in the baker's yeast. Genetics 2024; 226:iyad214. [PMID: 38124392 DOI: 10.1093/genetics/iyad214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Meiotic crossovers are initiated from programmed DNA double-strand breaks. The Msh4-Msh5 heterodimer is an evolutionarily conserved mismatch repair-related protein complex that promotes meiotic crossovers by stabilizing strand invasion intermediates and joint molecule structures such as Holliday junctions. In vivo studies using homozygous strains of the baker's yeast Saccharomyces cerevisiae (SK1) show that the Msh4-Msh5 complex associates with double-strand break hotspots, chromosome axes, and centromeres. Many organisms have heterozygous genomes that can affect the stability of strand invasion intermediates through heteroduplex rejection of mismatch-containing sequences. To examine Msh4-Msh5 function in a heterozygous context, we performed chromatin immunoprecipitation and sequencing (ChIP-seq) analysis in a rapidly sporulating hybrid S. cerevisiae strain (S288c-sp/YJM789, containing sporulation-enhancing QTLs from SK1), using SNP information to distinguish reads from homologous chromosomes. Overall, Msh5 localization in this hybrid strain was similar to that determined in the homozygous strain (SK1). However, relative Msh5 levels were reduced in regions of high heterozygosity, suggesting that high mismatch densities reduce levels of recombination intermediates to which Msh4-Msh5 binds. Msh5 peaks were also wider in the hybrid background compared to the homozygous strain (SK1). We determined regions containing heteroduplex DNA by detecting chimeric sequence reads with SNPs from both parents. Msh5-bound double-strand break hotspots overlap with regions that have chimeric DNA, consistent with Msh5 binding to heteroduplex-containing recombination intermediates.
Collapse
Affiliation(s)
- Suman Dash
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Sameer Joshi
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Ajith V Pankajam
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Koodali T Nishant
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
- Center for High-Performance Computing, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| |
Collapse
|
4
|
Horan TS, Ascenção CFR, Mellor C, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in double strand break repair processing, but not crossover formation during prophase I of meiosis in male mice. PLoS Genet 2024; 20:e1011175. [PMID: 38377115 PMCID: PMC10906868 DOI: 10.1371/journal.pgen.1011175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Meiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites. The regulation of CO number and position is poorly understood, but undoubtedly requires the coordinated action of multiple repair pathways. In a previous report, we found gene-trap disruption of the DNA helicase, FANCJ (BRIP1/BACH1), elicited elevated numbers of MLH1 foci and chiasmata. In somatic cells, FANCJ interacts with numerous DNA repair proteins including MLH1, and we hypothesized that FANCJ functions with MLH1 to regulate the major CO pathway. To further elucidate the meiotic function of FANCJ, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, truncation of the N-terminal Helicase domain, and a C-terminal dual-tagged allele. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, none of our Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 in meiosis. Instead, FANCJ co-localizes with BRCA1 and TOPBP1, forming discrete foci along the chromosome cores beginning in early meiotic prophase I and densely localized to unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data indicate a role for FANCJ in early DSB repair, but they rule out a role for FANCJ in MLH1-mediated CO events.
Collapse
Affiliation(s)
- Tegan S. Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| | - Carolline F. R. Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Christopher Mellor
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Marcus B. Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
5
|
Horan TS, Ascenção CFR, Mellor CA, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in Double Strand Break repair processing, but not crossover formation during Prophase I of meiosis in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561296. [PMID: 37873301 PMCID: PMC10592954 DOI: 10.1101/2023.10.06.561296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
During meiotic prophase I, recombination between homologous parental chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs), each of which must be repaired with absolute fidelity to ensure genome stability of the germline. One outcome of these DSB events is the formation of Crossovers (COs), the sites of physical DNA exchange between homologs that are critical to ensure the correct segregation of parental chromosomes. However, COs account for only a small (~10%) proportion of all DSB repair events; the remaining 90% are repaired as non-crossovers (NCOs), most by synthesis dependent strand annealing. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers. The number and positioning of COs is exquisitely controlled via mechanisms that remain poorly understood, but which undoubtedly require the coordinated action of multiple repair pathways downstream of the initiating DSB. In a previous report we found evidence suggesting that the DNA helicase and Fanconi Anemia repair protein, FANCJ (BRIP1/BACH1), functions to regulate meiotic recombination in mouse. A gene-trap disruption of Fancj showed an elevated number of MLH1 foci and COs. FANCJ is known to interact with numerous DNA repair proteins in somatic cell repair contexts, including MLH1, BLM, BRCA1, and TOPBP1, and we hypothesized that FANCJ regulates CO formation through a direct interaction with MLH1 to suppress the major CO pathway. To further elucidate the function of FANCJ in meiosis, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, a mutant line lacking the MLH1 interaction site and the N-terminal region of the Helicase domain, and a C-terminal 6xHIS-HA dual-tagged allele of Fancj. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, while Fanconi-like phenotypes are observed within the somatic cell lineages of the full deletion Fancj line, none of the Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I of meiosis. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 during late prophase I. Instead, FANCJ forms discrete foci along the chromosome cores beginning in early meiotic prophase I, occasionally co-localizing with MSH4, and then becomes densely localized on unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Strikingly, this localization strongly overlaps with BRCA1 and TOPBP1. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data suggest a role for FANCJ in early DSB repair events, and possibly in the formation of NCOs, but they rule out a role for FANCJ in MLH1-mediated CO events. Thus, the role of FANCJ in meiotic cells involves different pathways and different interactors to those described in somatic cell lineages.
Collapse
Affiliation(s)
- Tegan S Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Carolline F R Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | | | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Marcus B Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
6
|
Shinohara M, Shinohara A. The Msh5 complex shows homeostatic localization in response to DNA double-strand breaks in yeast meiosis. Front Cell Dev Biol 2023; 11:1170689. [PMID: 37274743 PMCID: PMC10232913 DOI: 10.3389/fcell.2023.1170689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023] Open
Abstract
Meiotic crossing over is essential for the segregation of homologous chromosomes. The formation and distribution of meiotic crossovers (COs), which are initiated by the formation of double-strand break (DSB), are tightly regulated to ensure at least one CO per bivalent. One type of CO control, CO homeostasis, maintains a consistent level of COs despite fluctuations in DSB numbers. Here, we analyzed the localization of proteins involved in meiotic recombination in budding yeast xrs2 hypomorphic mutants which show different levels of DSBs. The number of cytological foci with recombinases, Rad51 and Dmc1, which mark single-stranded DNAs at DSB sites is proportional to the DSB numbers. Among the pro-CO factor, ZMM/SIC proteins, the focus number of Zip3, Mer3, or Spo22/Zip4, was linearly proportional to reduced DSBs in the xrs2 mutant. In contrast, foci of Msh5, a component of the MutSγ complex, showed a non-linear response to reduced DSBs. We also confirmed the homeostatic response of COs by genetic analysis of meiotic recombination in the xrs2 mutants and found a chromosome-specific homeostatic response of COs. Our study suggests that the homeostatic response of the Msh5 assembly to reduced DSBs was genetically distinct from that of the Zip3 assembly for CO control.
Collapse
Affiliation(s)
- Miki Shinohara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
- Agricultural Technology and Innovation Research Institute, Kindai University, Nara, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Abstract
Segregation of chromosomes during meiosis, to form haploid gametes from diploid precursor cells, requires in most species formation of crossovers physically connecting homologous chromosomes. Along with sister chromatid cohesion, crossovers allow tension to be generated when chromosomes begin to segregate; tension signals that chromosome movement is proceeding properly. But crossovers too close to each other might result in less sister chromatid cohesion and tension and thus failed meiosis. Interference describes the non-random distribution of crossovers, which occur farther apart than expected from independence. We discuss both genetic and cytological methods of assaying crossover interference and models for interference, whose molecular mechanism remains to be elucidated. We note marked differences among species.
Collapse
Affiliation(s)
| | - Gerald R Smith
- Fred Hutchinson Cancer Center, Seattle, WA, United States.
| |
Collapse
|
8
|
Lee MS, Higashide MT, Choi H, Li K, Hong S, Lee K, Shinohara A, Shinohara M, Kim KP. The synaptonemal complex central region modulates crossover pathways and feedback control of meiotic double-strand break formation. Nucleic Acids Res 2021; 49:7537-7553. [PMID: 34197600 PMCID: PMC8287913 DOI: 10.1093/nar/gkab566] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous structure that mediates homolog engagement and genetic recombination during meiosis. In budding yeast, Zip-Mer-Msh (ZMM) proteins promote crossover (CO) formation and initiate SC formation. During SC elongation, the SUMOylated SC component Ecm11 and the Ecm11-interacting protein Gmc2 facilitate the polymerization of Zip1, an SC central region component. Through physical recombination, cytological, and genetic analyses, we found that ecm11 and gmc2 mutants exhibit chromosome-specific defects in meiotic recombination. CO frequencies on a short chromosome (chromosome III) were reduced, whereas CO and non-crossover frequencies on a long chromosome (chromosome VII) were elevated. Further, in ecm11 and gmc2 mutants, more double-strand breaks (DSBs) were formed on a long chromosome during late prophase I, implying that the Ecm11–Gmc2 (EG) complex is involved in the homeostatic regulation of DSB formation. The EG complex may participate in joint molecule (JM) processing and/or double-Holliday junction resolution for ZMM-dependent CO-designated recombination. Absence of the EG complex ameliorated the JM-processing defect in zmm mutants, suggesting a role for the EG complex in suppressing ZMM-independent recombination. Our results suggest that the SC central region functions as a compartment for sequestering recombination-associated proteins to regulate meiosis specificity during recombination.
Collapse
Affiliation(s)
- Min-Su Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Mika T Higashide
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Hyungseok Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Ke Li
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.,Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Soogil Hong
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Miki Shinohara
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.,Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, Nara 631-8505, Japan
| | - Keun P Kim
- Department of Life Science, Chung-Ang University, Seoul 06974, South Korea
| |
Collapse
|
9
|
Resolvases, Dissolvases, and Helicases in Homologous Recombination: Clearing the Road for Chromosome Segregation. Genes (Basel) 2020; 11:genes11010071. [PMID: 31936378 PMCID: PMC7017083 DOI: 10.3390/genes11010071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 12/13/2022] Open
Abstract
The execution of recombinational pathways during the repair of certain DNA lesions or in the meiotic program is associated to the formation of joint molecules that physically hold chromosomes together. These structures must be disengaged prior to the onset of chromosome segregation. Failure in the resolution of these linkages can lead to chromosome breakage and nondisjunction events that can alter the normal distribution of the genomic material to the progeny. To avoid this situation, cells have developed an arsenal of molecular complexes involving helicases, resolvases, and dissolvases that recognize and eliminate chromosome links. The correct orchestration of these enzymes promotes the timely removal of chromosomal connections ensuring the efficient segregation of the genome during cell division. In this review, we focus on the role of different DNA processing enzymes that collaborate in removing the linkages generated during the activation of the homologous recombination machinery as a consequence of the appearance of DNA breaks during the mitotic and meiotic programs. We will also discuss about the temporal regulation of these factors along the cell cycle, the consequences of their loss of function, and their specific role in the removal of chromosomal links to ensure the accurate segregation of the genomic material during cell division.
Collapse
|
10
|
Shinohara M, Bishop DK, Shinohara A. Distinct Functions in Regulation of Meiotic Crossovers for DNA Damage Response Clamp Loader Rad24(Rad17) and Mec1(ATR) Kinase. Genetics 2019; 213:1255-1269. [PMID: 31597673 PMCID: PMC6893372 DOI: 10.1534/genetics.119.302427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/02/2019] [Indexed: 11/18/2022] Open
Abstract
The number and distribution of meiotic crossovers (COs) are highly regulated, reflecting the requirement for COs during the first round of meiotic chromosome segregation. CO control includes CO assurance and CO interference, which promote at least one CO per chromosome bivalent and evenly-spaced COs, respectively. Previous studies revealed a role for the DNA damage response (DDR) clamp and the clamp loader in CO formation by promoting interfering COs and interhomolog recombination, and also by suppressing ectopic recombination. In this study, we use classical tetrad analysis of Saccharomyces cerevisiae to show that a mutant defective in RAD24, which encodes the DDR clamp loader (RAD17 in other organisms), displayed reduced CO frequencies on two shorter chromosomes (III and V), but not on a long chromosome (chromosome VII). The residual COs in the rad24 mutant do not show interference. In contrast to rad24, mutants defective in the ATR kinase homolog Mec1, including a mec1 null and a mec1 kinase-dead mutant, show slight or few defects in CO frequency. On the other hand, mec1 COs show defects in interference, similar to the rad24 mutant. Our results support a model in which the DDR clamp and clamp-loader proteins promote interfering COs by recruiting pro-CO Zip, Mer, and Msh proteins to recombination sites, while the Mec1 kinase regulates CO distribution by a distinct mechanism. Moreover, CO formation and its control are implemented in a chromosome-specific manner, which may reflect a role for chromosome size in regulation.
Collapse
Affiliation(s)
- Miki Shinohara
- Institute for Protein Research, Osaka University, 565-0871, Japan
- Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
- Department of Radiation Oncology, University of Chicago, Illinois 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | - Douglas K Bishop
- Department of Radiation Oncology, University of Chicago, Illinois 60637
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, 565-0871, Japan
| |
Collapse
|
11
|
Saito TT, Colaiácovo MP. Regulation of Crossover Frequency and Distribution during Meiotic Recombination. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:223-234. [PMID: 29222342 DOI: 10.1101/sqb.2017.82.034132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Crossover recombination is essential for generating genetic diversity and promoting accurate chromosome segregation during meiosis. The process of crossover recombination is tightly regulated and is initiated by the formation of programmed meiotic DNA double-strand breaks (DSBs). The number of DSBs is around 10-fold higher than the number of crossovers in most species, because only a limited number of DSBs are repaired as crossovers during meiosis. Moreover, crossovers are not randomly distributed. Most crossovers are located on chromosomal arm regions and both centromeres and telomeres are usually devoid of crossovers. Either loss or mislocalization of crossovers frequently results in chromosome nondisjunction and subsequent aneuploidy, leading to infertility, miscarriages, and birth defects such as Down syndrome. Here, we will review aspects of crossover regulation observed in most species and then focus on crossover regulation in the nematode Caenorhabditis elegans in which both the frequency and distribution of crossovers are tightly controlled. In this system, only a single crossover is formed, usually at an off-centered position, between each pair of homologous chromosomes. We have identified C. elegans mutants with deregulated crossover distribution, and we are analyzing crossover control by using an inducible single DSB system with which a single crossover can be produced at specific genomic positions. These combined studies are revealing novel insights into how crossover position is linked to accurate chromosome segregation.
Collapse
Affiliation(s)
- Takamune T Saito
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
12
|
Modulating Crossover Frequency and Interference for Obligate Crossovers in Saccharomyces cerevisiae Meiosis. G3-GENES GENOMES GENETICS 2017; 7:1511-1524. [PMID: 28315832 PMCID: PMC5427503 DOI: 10.1534/g3.117.040071] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Meiotic crossover frequencies show wide variation among organisms. But most organisms maintain at least one crossover per homolog pair (obligate crossover). In Saccharomyces cerevisiae, previous studies have shown crossover frequencies are reduced in the mismatch repair related mutant mlh3Δ and enhanced in a meiotic checkpoint mutant pch2Δ by up to twofold at specific chromosomal loci, but both mutants maintain high spore viability. We analyzed meiotic recombination events genome-wide in mlh3Δ, pch2Δ, and mlh3Δ pch2Δ mutants to test the effect of variation in crossover frequency on obligate crossovers. mlh3Δ showed ∼30% genome-wide reduction in crossovers (64 crossovers per meiosis) and loss of the obligate crossover, but nonexchange chromosomes were efficiently segregated. pch2Δ showed ∼50% genome-wide increase in crossover frequency (137 crossovers per meiosis), elevated noncrossovers as well as loss of chromosome size dependent double-strand break formation. Meiotic defects associated with pch2∆ did not cause significant increase in nonexchange chromosome frequency. Crossovers were restored to wild-type frequency in the double mutant mlh3Δ pch2Δ (100 crossovers per meiosis), but obligate crossovers were compromised. Genetic interference was reduced in mlh3Δ, pch2Δ, and mlh3Δ pch2Δ. Triple mutant analysis of mlh3Δ pch2Δ with other resolvase mutants showed that most of the crossovers in mlh3Δ pch2Δ are made through the Mus81-Mms4 pathway. These results are consistent with a requirement for increased crossover frequencies in the absence of genetic interference for obligate crossovers. In conclusion, these data suggest crossover frequencies and the strength of genetic interference in an organism are mutually optimized to ensure obligate crossovers.
Collapse
|
13
|
Allam WR, Ashour ME, Waly AA, El-Khamisy S. Role of Protein Linked DNA Breaks in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:41-58. [PMID: 28840551 DOI: 10.1007/978-3-319-60733-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerases are a group of specialized enzymes that function to maintain DNA topology by introducing transient DNA breaks during transcription and replication. As a result of abortive topoisomerases activity, topoisomerases catalytic intermediates may be trapped on the DNA forming topoisomerase cleavage complexes (Topcc). Topoisomerases trapping on the DNA is the mode of action of several anticancer drugs, it lead to formation of protein linked DAN breaks (PDBs). PDBs are now considered as one of the most dangerous forms of endogenous DNA damage and a major threat to genomic stability. The repair of PDBs involves both the sensing and repair pathways. Unsuccessful repair of PDBs leads to different signs of genomic instabilities such as chromosomal rearrangements and cancer predisposition. In this chapter we will summarize the role of topoisomerases induced PDBs, identification and signaling, repair, role in transcription. We will also discuss the role of PDBs in cancer with a special focus on prostate cancer.
Collapse
Affiliation(s)
- Walaa R Allam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
| | - Mohamed E Ashour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Amr A Waly
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt. .,Krebs Institute and Sheffield Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|