1
|
Hiltunen Thorén M, Stanojković A, Ryberg M, Johannesson H. Evolution of a bipolar sexual compatibility system in Marasmius. Mycologia 2025; 117:19-33. [PMID: 39661443 DOI: 10.1080/00275514.2024.2425583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Sexual compatibility in the Basidiomycota is governed by genetic identity at one or two loci, resulting in compatibility systems called bipolar and tetrapolar. The loci are known as HD and P/R, encoding homeodomain transcription factors and pheromone precursors and receptors, respectively. Bipolarity is known to evolve either by linkage of the two loci or by loss of mating-type determination of either the HD or the P/R locus. The ancestor to basidiomycete fungi is thought to have been tetrapolar, and many transitions to bipolarity have been described in different lineages. In the diverse genus Marasmius (Agaricales), both compatibility systems are found, and the system has been shown to follow the infrageneric sections of the genus, suggesting a single origin of bipolarity. Here, we tested this hypothesis using a comprehensive phylogenetic framework and investigated the mode by which bipolarity has evolved in this group. We utilized available genomic data and marker sequences to investigate evolution of sexual compatibility in Marasmius and allied genera. By generating a concatenated multilocus phylogeny, we found support for a single transition to known bipolarity within Marasmius. Furthermore, utilizing genomic data of the bipolar species Marasmius oreades, we found that the HD and P/R loci likely have remained unlinked through this transition. By comparing nucleotide diversity at the HD and P/R loci in Ma. oreades, we show that the HD locus has retained high diversity, and thus likely the function of determining sexual identity, as similarly in other bipolar mushroom-forming fungi. Finally, we describe the genomic architecture of the MAT loci of species of both sexual compatibility systems in Marasmiaceae and related families.
Collapse
Affiliation(s)
- Markus Hiltunen Thorén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius v. 20 A, Stockholm SE-114 18, Sweden
- The Royal Swedish Academy of Sciences, Stockholm SE-114 18, Sweden
| | - Aleksandar Stanojković
- Department of Botany, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Martin Ryberg
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala SE-752 36, Sweden
| | - Hanna Johannesson
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius v. 20 A, Stockholm SE-114 18, Sweden
- The Royal Swedish Academy of Sciences, Stockholm SE-114 18, Sweden
| |
Collapse
|
2
|
Dong Y, Ma H, Sun L, He R, Ye X, Gan B, Zhang Q, Gong Z, Han X, Duan X, Yan J. Comparative Transcriptome Analysis of Candidate Genes Associated with Mycelia Growth from a He-Ne Laser with Pulsed Light Mutant of Phellinus igniarius (Agaricomycetes). Int J Med Mushrooms 2024; 26:71-85. [PMID: 38421697 DOI: 10.1615/intjmedmushrooms.2023051538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A mutant Phellinus igniarius JQ9 with higher mycelial production was screened out by He-Ne laser with pulsed light irradiation, the mechanism underlying the higher mycelial production is still unknown. This study aims to obtain a comprehensive transcriptome assembly during the Ph. igniarius liquid fermentation and characterize the key genes associated with the mycelial growth and metabolism in Ph. igniarius JQ9. Our transcriptome data of Ph. iniarius JQ9 and the wild strain were obtained with the Illumina platform comparative transcriptome sequencing technology. The results showed that among all the 346 differentially expressed genes (DEGs), 245 were upregulated and 101 were downregulated. Candidate genes encoding endoglucanase, beta-glucosidase, cellulose 1,4-beta-cellobiosidase, glycoside hydrolase family 61 protein, were proposed to participate in the carbohydrate utilization from KEGG enrichment of the starch and sucrose metabolism pathways were upregulated in Ph. igniarius JQ9. In addition, three candidate genes encoding the laccase and another two candidate genes related with the cell growth were higher expressed in Ph. igniarius JQ9 than in the wild type of strain (CK). Analysis of these data revealed that increased these related carbohydrate metabolism candidate genes underlying one crucial way may cause the higher mycelia production.
Collapse
Affiliation(s)
- Yating Dong
- School of Food and Biological Engineering, Institute of Food Physical Processing, International Joint Research Center for Food Physical Processing, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R. China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, P.R. China
| | - Haile Ma
- School of Food and Biological Engineering, Institute of food physical processing, Jiangsu University
| | - Ling Sun
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R. China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang Jiangsu 212013, China
| | - Xiaofei Ye
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, P.R. China; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville 37996, Tennessee, USA
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000 P.R. China
| | - Qin Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), Tianfu New Area, Chengdu, 610000, P.R. China
| | - ZongJun Gong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), Tianfu New Area, Chengdu, 610000, P.R. China
| | - Xing Han
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, P.R. China
| | - Xinlian Duan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), Tianfu New Area, Chengdu, 610000, P.R. China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, P.R. China
| |
Collapse
|
3
|
Wang YW, McKeon MC, Elmore H, Hess J, Golan J, Gage H, Mao W, Harrow L, Gonçalves SC, Hull CM, Pringle A. Invasive Californian death caps develop mushrooms unisexually and bisexually. Nat Commun 2023; 14:6560. [PMID: 37875491 PMCID: PMC10598064 DOI: 10.1038/s41467-023-42317-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
Canonical sexual reproduction among basidiomycete fungi involves the fusion of two haploid individuals of different mating types, resulting in a heterokaryotic mycelial body made up of genetically different nuclei. Using population genomics data and experiments, we discover mushrooms of the invasive and deadly Amanita phalloides can also be homokaryotic; evidence of sexual reproduction by single, unmated individuals. In California, genotypes of homokaryotic mushrooms are also found in heterokaryotic mushrooms, implying nuclei of homokaryotic mycelia are also involved in outcrossing. We find death cap mating is controlled by a single mating type locus, but the development of homokaryotic mushrooms appears to bypass mating type gene control. Ultimately, sporulation is enabled by nuclei able to reproduce alone as well as with others, and nuclei competent for both unisexuality and bisexuality have persisted in invaded habitats for at least 17 but potentially as long as 30 years. The diverse reproductive strategies of invasive death caps are likely facilitating its rapid spread, suggesting a profound similarity between plant, animal and fungal invasions.
Collapse
Affiliation(s)
- Yen-Wen Wang
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA.
| | - Megan C McKeon
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Jacob Golan
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Hunter Gage
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - William Mao
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Lynn Harrow
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Susana C Gonçalves
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Christina M Hull
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, USA
| | - Anne Pringle
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Wang G, Wang Y, Chen L, Wang H, Guo L, Zhou X, Dou M, Wang B, Lin J, Liu L, Wang Z, Deng Y, Zhang J. Genetic structure and evolutionary diversity of mating-type (MAT) loci in Hypsizygus marmoreus. IMA Fungus 2021; 12:35. [PMID: 34930496 PMCID: PMC8686365 DOI: 10.1186/s43008-021-00086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022] Open
Abstract
The mating compatibility in fungi is generally governed by genes located within a single or two unlinked mating type (MAT) loci. Hypsizygus marmoreus is an edible mushroom in the order Agaricales with a tetrapolar system, which contains two unlinked MAT loci-homeodomain (HD) transcription factor genes and pheromone/pheromone receptor genes (P/R). In this study, we analyzed the genetic structure and diversity of MAT loci in tetrapolar system of H. marmoreus through sequencing of 54 heterokaryon and 8 homokaryon strains. Although within the HD loci, the gene order was conserved, the gene contents were variable, and the HD loci haplotypes were further classified into four types. By analyzing the structure, phylogeny, and the HD transmissibility based on the progeny of these four HD mating-type loci types, we found that they were heritable and tightly linked at the HD loci. The P/R loci genes were found to comprise three pheromone receptors, three pheromones, and two pheromone receptor-like genes. Intra- and inter-specific phylogenetic analyses of pheromone receptors revealed that the STE3 genes were divided into three groups, and we thus theorize that they diverged before speciation. Comparative analysis of the MAT regions among 73 Basidiomycete species indicated that the diversity of HD and P/R loci in Agaricales and Boletales may contribute to mating compatibility. The number of HD genes were not correlated with the tetrapolar or bipolar systems. In H. marmoreus, the expression levels of these genes at HD and P/R loci of compatible strains were found higher than in those of homonuclear/homokaryotic strains, indicating that these mating genes acted as switches for mating processes. Further collinear analysis of HD loci in interspecific species found that HD loci contains conserved recombination hotspots showing major rearrangements in Coprinopsis cinerea and Schizophyllum commune, suggesting different mechanisms for evolution of physically linked MAT loci in these groups. It seems likely that gene rearrangements are common in Agaricales fungi around HD loci. Together, our study provides insights into the genomic basis of mating compatibility in H. marmoreus.
Collapse
Affiliation(s)
- Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng, 224002 China
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuanyuan Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lianfu Chen
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430000 China
| | - Hongbo Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lin Guo
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xuan Zhou
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Meijie Dou
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Baiyu Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jingxian Lin
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lei Liu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350002 China
| | - Youjin Deng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
5
|
Rebecca R, Gao Q, Cui Y, Rong C, Liu Y, Zhao W, Kumara W, Wang S. Nuclear conditions of basidiospores and hyphal cells in the edible mushroom Oudemansiella aparlosarca. Microbiologyopen 2021; 10:e1233. [PMID: 34713602 PMCID: PMC8473813 DOI: 10.1002/mbo3.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/18/2021] [Indexed: 11/12/2022] Open
Abstract
Oudemansiella aparlosarca is an edible mushroom possessing medicinal and health benefits. Although there are studies on the cultivation of O. aparlosarca, only a few studies have focused on its genetics and life cycle. Therefore, the main objective of this study was to identify the nuclear conditions of basidiospores and homokaryotic and heterokaryotic hyphal cells and to determine the influence of different nuclear conditions on basidiospore diameter in O. aparlosarca. Two parental strains: strain-55 and strain-81 were used. Staining of basidiospores and hyphal cells in the apical region was performed. We observed the following nuclear conditions: non-nucleate, mononucleate, binucleate, and multinucleate. In both parental strains, binucleate spores were predominant, while the number of non-nucleate spores was the lowest. The diameter of non-nucleate spores was the smallest, being 11.52 µm and 12.15 µm in parental strain-81 and strain-55, respectively, while multinucleate spores had the largest diameter, being 14.78 µm in both parental strains. Both homokaryotic and heterokaryotic strains were identified in isolated single spores from parental strains. Binucleate cells were majorly present in heterokaryotic hyphal cells, and multinucleate cells were predominant in homokaryotic hyphal cells. We conclude that O. aparlosarca contains homokaryotic and heterokaryotic basidiospores, which indicates an amphithallic life cycle. The observed binucleate spores might be the result of post-meiotic mitosis.
Collapse
Affiliation(s)
- Roy Rebecca
- Key Laboratory of Urban Agriculture (North)Institute of Plant ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijing Engineering Research Center for Edible MushroomMinistry of AgricultureBeijingChina
- Department of Agricultural BiologyFaculty of AgricultureUniversity of RuhunaKamburupitiyaSri Lanka
| | - Qi Gao
- Key Laboratory of Urban Agriculture (North)Institute of Plant ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijing Engineering Research Center for Edible MushroomMinistry of AgricultureBeijingChina
| | - Yujin Cui
- Key Laboratory of Urban Agriculture (North)Institute of Plant ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijing Engineering Research Center for Edible MushroomMinistry of AgricultureBeijingChina
| | - Chengbo Rong
- Key Laboratory of Urban Agriculture (North)Institute of Plant ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijing Engineering Research Center for Edible MushroomMinistry of AgricultureBeijingChina
| | - Yu Liu
- Key Laboratory of Urban Agriculture (North)Institute of Plant ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijing Engineering Research Center for Edible MushroomMinistry of AgricultureBeijingChina
| | | | - Wasantha Kumara
- Department of Agricultural BiologyFaculty of AgricultureUniversity of RuhunaKamburupitiyaSri Lanka
| | - Shouxian Wang
- Key Laboratory of Urban Agriculture (North)Institute of Plant ProtectionBeijing Academy of Agriculture and Forestry SciencesBeijing Engineering Research Center for Edible MushroomMinistry of AgricultureBeijingChina
| |
Collapse
|
6
|
The Pacific Tree-Parasitic Fungus Cyclocybe parasitica Exhibits Monokaryotic Fruiting, Showing Phenotypes Known from Bracket Fungi and from Cyclocybe aegerita. J Fungi (Basel) 2021; 7:jof7050394. [PMID: 34069435 PMCID: PMC8159124 DOI: 10.3390/jof7050394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 05/15/2021] [Indexed: 11/23/2022] Open
Abstract
Cyclocybe parasitica is a wood-destroying parasitic edible mushroom growing on diverse broad-leafed trees in New Zealand and other Pacific areas. Recent molecular systematics of European Cyclocybe aegerita, a newly delimited Asian phylum and of related species, corroborated the distinction of the chiefly saprobic cultivated edible mushroom C. aegerita from C. parasitica. Here, we show that C. parasitica exhibits a morpho-physiological trait characteristic to its European cousin, i.e., monokaryotic fruiting sensu stricto (basidiome formation without mating). Monokaryotic fruiting structures formed by C. parasitica ICMP 11668-derived monokaryons were categorized into four phenotypes. One of them displays ulcer-like structures previously reported from bracket fungi. Histology of dikaryotic and monokaryotic C. parasitica fruiting structures revealed anatomical commonalities and differences between them, and towards monokaryotic fruiting structures of C. aegerita. Mating experiments with C. parasitica strains representative of each fruiting phenotype identified compatible sibling monokaryons. Given reports on hypothetically monokaryotic basidiome field populations of ‘C. aegerita sensu lato’, it seems worthwhile to prospectively investigate whether monokaryotic fruiting s.str. occurs in nature. Sampling from such populations including karyotyping, comparative -omics, and competition assays may help to answer this question and provide evidence whether this trait may confer competitive advantages to a species capable of it.
Collapse
|
7
|
Liu M, Yu T, Singh PK, Liu Q, Liu H, Zhu Q, Xiao Z, Xu J, Peng Y, Fu S, Chen S, He H. A Comparative Transcriptome Analysis of Volvariella volvacea Identified the Candidate Genes Involved in Fast Growth at the Mycelial Growth Stage. Genes (Basel) 2020; 11:genes11020161. [PMID: 32033161 PMCID: PMC7074523 DOI: 10.3390/genes11020161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/01/2020] [Indexed: 01/13/2023] Open
Abstract
The edible straw mushroom, Volvariella volvacea, is one of the most important cultivated mushrooms in tropical and sub-tropical regions. Strain improvement for V. volvacea is difficult because of the unknown mechanisms involved in its growth regulation and substrate utilization. A comparative physiological and transcriptomic study was conducted between two commercially available straw mushroom strains (v9 and v26) to explore their fast-growth regulation mechanism(s). The physiological study showed that V. volvacea v9 had a shorter growth cycle and higher biological efficiency (4% higher) than that in v26. At least 14,556 unigenes were obtained from the four cDNA libraries (two replicates per strain). Among them, the expression of 1597 unigenes was up-regulated while 1352 were down-regulated. Four heat-shock proteins were highly expressed in v9, showing that v9 has the better ability to handle stresses and/or environmental changes. Moreover, up to 14 putative transporter genes were expressed at a higher level in v9 than those in v26, implying that v9 has a better ability to transport nutrients or export xenobiotics efficiently. Our report allows to identify the candidate genes involved in the fast growth requirement of V. volvacea, which represents a valuable resource for strain improvement in this commercially important edible mushroom.
Collapse
Affiliation(s)
- Ming Liu
- Vegetables Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China; (M.L.); (Z.X.); (J.X.); (Y.P.)
| | - Ting Yu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.Y.); (Q.L.); (Q.Z.)
| | - Puneet Kumar Singh
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (P.K.S.); (H.L.); (S.F.)
| | - Qinjian Liu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.Y.); (Q.L.); (Q.Z.)
| | - Hao Liu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (P.K.S.); (H.L.); (S.F.)
| | - Qingfeng Zhu
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (T.Y.); (Q.L.); (Q.Z.)
| | - Zitian Xiao
- Vegetables Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China; (M.L.); (Z.X.); (J.X.); (Y.P.)
| | - Jiang Xu
- Vegetables Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China; (M.L.); (Z.X.); (J.X.); (Y.P.)
| | - Yangyang Peng
- Vegetables Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China; (M.L.); (Z.X.); (J.X.); (Y.P.)
| | - Shiyu Fu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; (P.K.S.); (H.L.); (S.F.)
| | - Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
- Correspondence: (S.C.); (H.H.); Tel.: +1-517-884-5383 (S.C.); +86-20-38469598 (H.H.); Fax: +1-517-884-5384 (S.C.); +86-20-38469598 (H.H.)
| | - Huanqing He
- Vegetables Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China; (M.L.); (Z.X.); (J.X.); (Y.P.)
- Correspondence: (S.C.); (H.H.); Tel.: +1-517-884-5383 (S.C.); +86-20-38469598 (H.H.); Fax: +1-517-884-5384 (S.C.); +86-20-38469598 (H.H.)
| |
Collapse
|
8
|
Zhu W, Hu J, Li Y, Yang B, Guan Y, Xu C, Chen F, Chi J, Bao Y. Comparative Proteomic Analysis of Pleurotus ostreatus Reveals Great Metabolic Differences in the Cap and Stipe Development and the Potential Role of Ca 2+ in the Primordium Differentiation. Int J Mol Sci 2019; 20:ijms20246317. [PMID: 31847351 PMCID: PMC6940972 DOI: 10.3390/ijms20246317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023] Open
Abstract
Pleurotus ostreatus is a widely cultivated edible fungus around the world. At present, studies on the developmental process of the fruiting body are limited. In our study, we compared the differentially expressed proteins (DEPs) in the stipe and cap of the fruiting body by high-throughput proteomics. GO and pathway analysis revealed the great differences in the metabolic levels, including sucrose and starch metabolism, and sphingolipid signaling and metabolism, and the differences of 16 important DEPs were validated further by qPCR analysis in expression level. In order to control the cap and stipe development, several chemical inducers were applied to the primordium of the fruiting body according to the pathway enrichment results. We found that CaCl2 can affect the primordium differentiation through inhibiting the stipe development. EGTA (ethyleneglycol bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid) treatment confirmed the inhibitory role of Ca2+ in the stipe development. Our study not only shows great metabolic differences during the cap and stipe development but also reveals the underlying mechanism directing the primordium differentiation in the early development of the fruiting body for the first time. Most importantly, we provide a reliable application strategy for the cultivation and improvement of the Pleurotus ostreatus, which can be an example and reference for a more edible fungus.
Collapse
Affiliation(s)
- Weiwei Zhu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Jinbo Hu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
| | - Yang Li
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Bing Yang
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (J.H.); (B.Y.)
| | - Yanli Guan
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Chong Xu
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Fei Chen
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Jingliang Chi
- Microbial Research Institute of Liaoning Province, Chaoyang 122000, China; (Y.L.); (Y.G.); (C.X.); (F.C.); (J.C.)
| | - Yongming Bao
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China;
- School of Food and Environmental Science and Technology, Dalian University of Technology, Panjin 12421, China
- Correspondence: ; Tel.: +86-411-8470-6344; Fax: +86-411-8470-6365
| |
Collapse
|
9
|
Wang W, Wang L, Chen B, Mukhtar I, Xie B, Li Z, Meng L. Characterization and expression pattern of homeobox transcription factors in fruiting body development of straw mushroom Volvariella volvacea. Fungal Biol 2019; 123:95-102. [DOI: 10.1016/j.funbio.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/27/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
|
10
|
Wan J, Li Y, Wang H, Tang L, Li Z, Zhou C, Tan Q, Bao D, Yang R. Three complete mitochondrial genomes of straw-rotting edible fungus Volvariella volvacea using next generation sequencing. Mitochondrial DNA B Resour 2018; 3:1054-1056. [PMID: 33474412 PMCID: PMC7799644 DOI: 10.1080/23802359.2018.1511849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/10/2018] [Indexed: 11/01/2022] Open
Abstract
The straw-rotting edible fungus Volvariella volvacea is a widely cultivated edible fungus across China and Southeast Asian countries. Three complete mitochondrial genomes of V. volvacea from China, Thailand, and India were determined using the next-generation sequencing technology. The genome sizes of the three strains (China, Thailand, and India) were 62,541 bp, 64,531 bp, and 65,668 bp with GC contents of 38.46%, 38.56%, and 38.52%, respectively. All the genomes encoded 14 conserved protein-coding genes, the small ribosomal RNA subunits (rns), large ribosomal RNA subunits (rnl), and 23 tRNAs were located on the same strand. In the putative protein-coding genes, four introns were distributed in cox1 in the genomes of V23-1 and V8. 5 introns (four introns invaded into cox1and one intron invaded into cob) were detected in Tai8. The phylogenetic analysis confirmed that V. volvacea was a number of Agaricales. This mitochondrial genome may open new avenues for understanding the phylogeny and evolution of Pluteaceae and Agaricales.
Collapse
Affiliation(s)
- Jianing Wan
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Li
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hong Wang
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Lihua Tang
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhengpeng Li
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chenli Zhou
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qi Tan
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ruiheng Yang
- National Engineering Research Center of Edible Fungi, Ministry of Science and Technology (MOST), Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
11
|
Gao W, Qu J, Zhang J, Sonnenberg A, Chen Q, Zhang Y, Huang C. A genetic linkage map of Pleurotus tuoliensis integrated with physical mapping of the de novo sequenced genome and the mating type loci. BMC Genomics 2018; 19:18. [PMID: 29304732 PMCID: PMC5755439 DOI: 10.1186/s12864-017-4421-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/27/2017] [Indexed: 11/21/2022] Open
Abstract
Background Pleurotus tuoliensis (Bailinggu) is a commercially cultivated mushroom species with an increasing popularity in China and other Asian countries. Commercial profits are now low, mainly due to a low yield, long cultivation period and sensitivity to diseases. Breeding efforts are thus required to improve agronomical important traits. Developing saturated genetic linkage and physical maps is a start for applying genetic and molecular approaches to accelerate the precise breeding programs. Results Here we present a genetic linkage map for P. tuoliensis constructed by using 115 haploid monokaryons derived from a hybrid strain H6. One thousand one hundred and eighty-two SNP markers developed by 2b–RAD (type IIB restriction-site associated DNA) approach were mapped to 12 linkage groups. The map covers 1073 cM with an average marker spacing of 1.0 cM. The genome of P. tuoliensis was de novo sequenced as 40.8 Mb and consisted of 500 scaffolds (>500 bp), which showed a high level of colinearity to the genome of P. eryngii var. eryngii. A total of 97.4% SNP markers (1151) were physically localized on 78 scaffolds, and the physical length of these anchored scaffolds were 33.9 Mb representing 83.1% of the whole genome. Mating type loci A and B were mapped on separate linkage groups and identified physically on the assembled genomes. Five putative pheromone receptors and two putative pheromone precursors were identified for the mating type B locus. Conclusions This study reported a first genetic linkage map integrated with physical mapping of the de novo sequenced genome and the mating type loci of an important cultivated mushroom in China, P. tuoliensis. The de novo sequenced and annotated genome, assembled using a 2b–RAD generated linkage map, provides a basis for marker-assisted breeding of this economic important mushroom species. Electronic supplementary material The online version of this article (10.1186/s12864-017-4421-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Gao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Jibin Qu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Jinxia Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Anton Sonnenberg
- Plant Breeding, Wageningen University & Research Centre, 6708, PB, Wageningen, The Netherlands
| | - Qiang Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Yan Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China. .,Key Laboratory of Microbial Resources, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
12
|
Advances in Understanding Mating Type Gene Organization in the Mushroom-Forming Fungus Flammulina velutipes. G3-GENES GENOMES GENETICS 2016; 6:3635-3645. [PMID: 27621376 PMCID: PMC5100862 DOI: 10.1534/g3.116.034637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The initiation of sexual development in the important edible and medicinal mushroom Flammulina velutipes is controlled by special genes at two different, independent, mating type (MAT) loci: HD and PR. We expanded our understanding of the F. velutipes mating type system by analyzing the MAT loci from a series of strains. The HD locus of F. velutipes houses homeodomain genes (Hd genes) on two separated locations: sublocus HD-a and HD-b. The HD-b subloci contained strain-specific Hd1/Hd2 gene pairs, and crosses between strains with different HD-b subloci indicated a role in mating. The function of the HD-a sublocus remained undecided. Many, but not all strains contained the same conserved Hd2 gene at the HD-a sublocus. The HD locus usually segregated as a whole, though we did detect one new HD locus with a HD-a sublocus from one parental strain, and a HD-b sublocus from the other. The PR locus of F. velutipes contained pheromone receptor (STE3) and pheromone precursor (Pp) genes at two locations, sublocus PR-a and PR-b. PR-a and PR-b both contained sets of strain-specific STE3 and Pp genes, indicating a role in mating. PR-a and PR-b cosegregated in our experiments. However, the identification of additional strains with identical PR-a, yet different PR-b subloci, demonstrated that PR subloci can recombine within the PR locus. In conclusion, at least three of the four MAT subloci seem to participate in mating, and new HD and PR loci can be generated through intralocus recombination in F. velutipes.
Collapse
|