1
|
Zayed KM. Innate and putative adaptive immunological responses of schistosome-parasitized snails. Acta Trop 2025; 261:107503. [PMID: 39675412 DOI: 10.1016/j.actatropica.2024.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
Schistosomiasis is a neglected tropical disease caused by digenetic trematode from Schistosoma genus, as an etiological agent that uses snails as an intermediate host. In mollusc-trematode relationships, the miracidia attract in the aquatic media to a specific snail as an intermediate hosts, then penetrate its integument in the sporocyst form thereafter, the invasive sporocysts produce secreted/excreted products in order to survive and avoid the snails' immune system. The next larval stage is the cercariae that developed by sporocysts. Subsequently, the snail intermediate host suffers from biological, physiological, biochemical and immunological changes during the development of these parasite larval stages within their tissues. Snails and their parasites engage in an interactive innate and putative adaptive immune response that involves many immune mechanisms, such as the production of nitric oxide, lysozymes, phagocytosis, lectin formation and phenol oxidase activity. Schistosomes have developed a variety of strategies to evade and counteract these deliberate host reactions. These strategies include the secretion of many strong proteases, the use of an immune-resistant outer tegument, the molecular mimicry of host antigens, and the controlled release of certain immunomodulatory substances that influence immune cell activities. This review aims to characterize these important immune evasion mechanisms in order to comprehend the many immunological molecular determinants in the snail/schistosome interaction and to develop alternate management measures for schistosomiasis control.
Collapse
Affiliation(s)
- Khaled M Zayed
- Medical Malacology Department, Theodor Bilharz Research Institute, Kornaish El Nile St.,Warrak El-Haddar, Imbaba, Giza, 12411, Egypt.
| |
Collapse
|
2
|
Pennance T, Calvelo J, Tennessen JA, Burd R, Cayton J, Bollmann SR, Blouin MS, Spaan JM, Hoffmann FG, Ogara G, Rawago F, Andiego K, Mulonga B, Odhiambo M, Loker ES, Laidemitt MR, Lu L, Iriarte A, Odiere MR, Steinauer ML. The genome and transcriptome of the snail Biomphalaria sudanica s.l.: immune gene diversification and highly polymorphic genomic regions in an important African vector of Schistosoma mansoni. BMC Genomics 2024; 25:192. [PMID: 38373909 PMCID: PMC10875847 DOI: 10.1186/s12864-024-10103-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Control and elimination of schistosomiasis is an arduous task, with current strategies proving inadequate to break transmission. Exploration of genetic approaches to interrupt Schistosoma mansoni transmission, the causative agent for human intestinal schistosomiasis in sub-Saharan Africa and South America, has led to genomic research of the snail vector hosts of the genus Biomphalaria. Few complete genomic resources exist, with African Biomphalaria species being particularly underrepresented despite this being where the majority of S. mansoni infections occur. Here we generate and annotate the first genome assembly of Biomphalaria sudanica sensu lato, a species responsible for S. mansoni transmission in lake and marsh habitats of the African Rift Valley. Supported by whole-genome diversity data among five inbred lines, we describe orthologs of immune-relevant gene regions in the South American vector B. glabrata and present a bioinformatic pipeline to identify candidate novel pathogen recognition receptors (PRRs). RESULTS De novo genome and transcriptome assembly of inbred B. sudanica originating from the shoreline of Lake Victoria (Kisumu, Kenya) resulted in a haploid genome size of ~ 944.2 Mb (6,728 fragments, N50 = 1.067 Mb), comprising 23,598 genes (BUSCO = 93.6% complete). The B. sudanica genome contains orthologues to all described immune genes/regions tied to protection against S. mansoni in B. glabrata, including the polymorphic transmembrane clusters (PTC1 and PTC2), RADres, and other loci. The B. sudanica PTC2 candidate immune genomic region contained many PRR-like genes across a much wider genomic region than has been shown in B. glabrata, as well as a large inversion between species. High levels of intra-species nucleotide diversity were seen in PTC2, as well as in regions linked to PTC1 and RADres orthologues. Immune related and putative PRR gene families were significantly over-represented in the sub-set of B. sudanica genes determined as hyperdiverse, including high extracellular diversity in transmembrane genes, which could be under pathogen-mediated balancing selection. However, no overall expansion in immunity related genes was seen in African compared to South American lineages. CONCLUSIONS The B. sudanica genome and analyses presented here will facilitate future research in vector immune defense mechanisms against pathogens. This genomic/transcriptomic resource provides necessary data for the future development of molecular snail vector control/surveillance tools, facilitating schistosome transmission interruption mechanisms in Africa.
Collapse
Affiliation(s)
- Tom Pennance
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA.
| | - Javier Calvelo
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de La República, Montevideo, 11600, Uruguay
| | | | - Ryan Burd
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Jared Cayton
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | | | | | - Johannie M Spaan
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS, USA
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - George Ogara
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Fredrick Rawago
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Kennedy Andiego
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Boaz Mulonga
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Meredith Odhiambo
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Eric S Loker
- Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Martina R Laidemitt
- Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Lijun Lu
- Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, Department of Biology, University of New Mexico, Albuquerque, NM, USA
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Facultad de Medicina, Instituto de Higiene, Universidad de La República, Montevideo, 11600, Uruguay
| | - Maurice R Odiere
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Michelle L Steinauer
- College of Osteopathic Medicine of the Pacific - Northwest, Western University of Health Sciences, Lebanon, OR, USA.
| |
Collapse
|
3
|
Pennance T, Calvelo J, Tennessen JA, Burd R, Cayton J, Bollmann SR, Blouin MS, Spaan JM, Hoffmann FG, Ogara G, Rawago F, Andiego K, Mulonga B, Odhiambo M, Loker ES, Laidemitt MR, Lu L, Iriarte A, Odiere M, Steinauer ML. The genome and transcriptome of the snail Biomphalaria sudanica s.l.: Immune gene diversification and highly polymorphic genomic regions in an important African vector of Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565203. [PMID: 37961413 PMCID: PMC10635097 DOI: 10.1101/2023.11.01.565203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background Control and elimination of schistosomiasis is an arduous task, with current strategies proving inadequate to break transmission. Exploration of genetic approaches to interrupt Schistosoma mansoni transmission, the causative agent for human intestinal schistosomiasis in sub-Saharan Africa and South America, has led to genomic research of the snail vector hosts of the genus Biomphalaria. Few complete genomic resources exist, with African Biomphalaria species being particularly underrepresented despite this being where the majority of S. mansoni infections occur. Here we generate and annotate the first genome assembly of Biomphalaria sudanica sensu lato, a species responsible for S. mansoni transmission in lake and marsh habitats of the African Rift Valley. Supported by whole-genome diversity data among five inbred lines, we describe orthologs of immune-relevant gene regions in the South American vector B. glabrata and present a bioinformatic pipeline to identify candidate novel pathogen recognition receptors (PRRs). Results De novo genome and transcriptome assembly of inbred B. sudanica originating from the shoreline of Lake Victoria (Kisumu, Kenya) resulted in a haploid genome size of ~944.2 Mb (6732 fragments, N50=1.067 Mb), comprising 23,598 genes (BUSCO=93.6% complete). The B. sudanica genome contains orthologues to all described immune genes/regions tied to protection against S. mansoni in B. glabrata. The B. sudanica PTC2 candidate immune genomic region contained many PRR-like genes across a much wider genomic region than has been shown in B. glabrata, as well as a large inversion between species. High levels of intra-species nucleotide diversity were seen in PTC2, as well as in regions linked to PTC1 and RADres orthologues. Immune related and putative PRR gene families were significantly over-represented in the sub-set of B. sudanica genes determined as hyperdiverse, including high extracellular diversity in transmembrane genes, which could be under pathogen-mediated balancing selection. However, no overall expansion in immunity related genes were seen in African compared to South American lineages. Conclusions The B. sudanica genome and analyses presented here will facilitate future research in vector immune defense mechanisms against pathogens. This genomic/transcriptomic resource provides necessary data for the future development of molecular snail vector control/surveillance tools, facilitating schistosome transmission interruption mechanisms in Africa.
Collapse
Affiliation(s)
- Tom Pennance
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | - Javier Calvelo
- Laboratorio Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | | | - Ryan Burd
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | - Jared Cayton
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | | | | | - Johannie M. Spaan
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS USA
| | - George Ogara
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Fredrick Rawago
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Kennedy Andiego
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Boaz Mulonga
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Meredith Odhiambo
- Centre for Global Health Research, Kenya Medical Research Institute (KEMRI), P. O. Box 1578-40100, Kisumu, Kenya
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A
| | - Martina R. Laidemitt
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A
| | - Lijun Lu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, Parasite Division Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico 87131, U.S.A
| | - Andrés Iriarte
- Laboratorio Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Maurice Odiere
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS USA
| | - Michelle L. Steinauer
- College of Osteopathic Medicine of the Pacific – Northwest, Western University of Health Sciences, Lebanon OR, USA
| |
Collapse
|
4
|
Blouin MS, Bollmann SR, Tennessen JA. PTC2 region genotypes counteract Biomphalaria glabrata population differences between M-line and BS90 in resistance to infection by Schistosoma mansoni. PeerJ 2022; 10:e13971. [PMID: 36117535 PMCID: PMC9480060 DOI: 10.7717/peerj.13971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/09/2022] [Indexed: 01/19/2023] Open
Abstract
Background Biomphalaria glabrata is a snail intermediate host for Schistosoma mansoni, a trematode responsible for human schistosomiasis. BS90 is one of the most well studied strains of B. glabrata owing to its high resistance to infection by most strains of S. mansoni. An F2 mapping study from 1999 identified two RAPD markers that associated with what appeared to be single-locus, dominant resistance by the BS90 population relative to the susceptible M-line population. One marker cannot be mapped, but the other, OPM-04, maps to within 5 Mb of PTC2, a region we recently showed has a very large effect on resistance within another snail population challenged by the same strain of parasite (PR1). Here we tested the hypothesis that the PTC2 region contains the causal gene/s that explain the iconic resistance of BS90 snails. Methods We used marker-assisted backcrossing to drive the BS90 version of the PTC2 region (+/-~1 Mb on either side) into an M-line (susceptible strain) genetic background, and the M-line version into a BS90 genetic background. We challenged the offspring with PR1-strain schistosomes and tested for effects of allelic variation in the PTC2 region in a common genetic background. Results Relative to M-line haplotypes, the BS90 haplotype actually confers enhanced susceptibility. So we reject our original hypothesis. One possible explanation for our result was that the causal gene linked to OPM-04 is near, but not in the PTC2 block that we introgressed into each line. So we used an F2 cross to independently test the effects of the PTC2 and OPM-04 regions in a randomized genetic background. We confirmed that the BS90 haplotype confers increased susceptibility, and we see a similar, although non-significant effect at OPM-04. We discuss possible reasons why our results differed so dramatically from those of the 1999 study. We also present Pacbio assemblies of the PTC2 and flanking region in BS90 and M-line, compare with previously published PTC2 haplotypes, and discuss candidate genes that might be behind the enhanced susceptibility of the BS90 haplotype.
Collapse
Affiliation(s)
- Michael S. Blouin
- Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Stephanie R. Bollmann
- Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Jacob A. Tennessen
- Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
5
|
Single-cell RNA-seq profiling of individual Biomphalaria glabrata immune cells with a focus on immunologically relevant transcripts. Immunogenetics 2021; 74:77-98. [PMID: 34854945 DOI: 10.1007/s00251-021-01236-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
The immune cells of the snail Biomphalaria glabrata are classified into hyalinocyte and granulocyte subtypes. Both subtypes are essential for the proper functioning of the snail immune response, which we understand best within the context of how it responds to challenge with the human parasite Schistosoma mansoni. Granulocytes are adherent phagocytic cells that possess conspicuous granules within the cell cytoplasm. Hyalinocytes, on the other hand, are predominantly non-adherent and are known to produce a handful of anti-S. mansoni immune effectors. While our understanding of these cells has progressed, an in-depth comparison of the functional capabilities of each type of immune cell has yet to be undertaken. Here, we present the results of a single-cell RNA-seq study in which single granulocytes and hyalinocytes from S. mansoni-susceptible M-line B. glabrata and S. mansoni-resistant BS-90 B. glabrata are compared without immune stimulation. This transcriptomic analysis supports a role for the hyalinocytes as producers of immune effectors such as biomphalysin and thioester-containing proteins. It suggests that granulocytes are primarily responsible for producing fibrinogen-related proteins and are armed with various pattern-recognition receptors such as toll-like receptors with a confirmed role in the anti-S. mansoni immune response. This analysis also confirms that the granulocytes and hyalinocytes of BS-90 snails are generally more immunologically prepared than their M-line counterparts. As the first single-cell analysis of the transcriptional profiles of B. glabrata immune cells, this study provides crucial context for understanding the B. glabrata immune response. It sets the stage for future investigations into how each immune cell subtype differs in its response to various immunological threats.
Collapse
|
6
|
Tsai H, Kippes N, Firl A, Lieberman M, Comai L, Henry IM. Efficient construction of a linkage map and haplotypes for Mentha suaveolens using sequence capture. G3-GENES GENOMES GENETICS 2021; 11:6321234. [PMID: 34544134 PMCID: PMC8496254 DOI: 10.1093/g3journal/jkab232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/25/2021] [Indexed: 11/12/2022]
Abstract
The sustainability of many crops is hindered by the lack of genomic resources and a poor understanding of natural genetic diversity. Particularly, application of modern breeding requires high-density linkage maps that are integrated into a highly contiguous reference genome. Here, we present a rapid method for deriving haplotypes and developing linkage maps, and its application to Mentha suaveolens, one of the diploid progenitors of cultivated mints. Using sequence-capture via DNA hybridization to target single nucleotide polymorphisms (SNPs), we successfully genotyped ∼5000 SNPs within the genome of >400 individuals derived from a self cross. After stringent quality control, and identification of nonredundant SNPs, 1919 informative SNPs were retained for linkage map construction. The resulting linkage map defined a total genetic space of 942.17 cM divided among 12 linkage groups, ranging from 56.32 to 122.61 cM in length. The linkage map is in good agreement with pseudomolecules from our preliminary genome assembly, proving this resource effective for the correction and validation of the reference genome. We discuss the advantages of this method for the rapid creation of linkage maps.
Collapse
Affiliation(s)
- Helen Tsai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Nestor Kippes
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Alana Firl
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Meric Lieberman
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Davison A, Neiman M. Mobilizing molluscan models and genomes in biology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200163. [PMID: 33813892 PMCID: PMC8059959 DOI: 10.1098/rstb.2020.0163] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Molluscs are among the most ancient, diverse, and important of all animal taxa. Even so, no individual mollusc species has emerged as a broadly applied model system in biology. We here make the case that both perceptual and methodological barriers have played a role in the relative neglect of molluscs as research organisms. We then summarize the current application and potential of molluscs and their genomes to address important questions in animal biology, and the state of the field when it comes to the availability of resources such as genome assemblies, cell lines, and other key elements necessary to mobilising the development of molluscan model systems. We conclude by contending that a cohesive research community that works together to elevate multiple molluscan systems to 'model' status will create new opportunities in addressing basic and applied biological problems, including general features of animal evolution. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Department of Gender, Women's, and Sexuality Studies, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Tennessen JA, Bollmann SR, Peremyslova E, Kronmiller BA, Sergi C, Hamali B, Blouin MS. Clusters of polymorphic transmembrane genes control resistance to schistosomes in snail vectors. eLife 2020; 9:59395. [PMID: 32845238 PMCID: PMC7494358 DOI: 10.7554/elife.59395] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Schistosomiasis is a debilitating parasitic disease infecting hundreds of millions of people. Schistosomes use aquatic snails as intermediate hosts. A promising avenue for disease control involves leveraging innate host mechanisms to reduce snail vectorial capacity. In a genome-wide association study of Biomphalaria glabrata snails, we identify genomic region PTC2 which exhibits the largest known correlation with susceptibility to parasite infection (>15 fold effect). Using new genome assemblies with substantially higher contiguity than the Biomphalaria reference genome, we show that PTC2 haplotypes are exceptionally divergent in structure and sequence. This variation includes multi-kilobase indels containing entire genes, and orthologs for which most amino acid residues are polymorphic. RNA-Seq annotation reveals that most of these genes encode single-pass transmembrane proteins, as seen in another resistance region in the same species. Such groups of hyperdiverse snail proteins may mediate host-parasite interaction at the cell surface, offering promising targets for blocking the transmission of schistosomiasis.
Collapse
Affiliation(s)
- Jacob A Tennessen
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, United States.,Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Stephanie R Bollmann
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Ekaterina Peremyslova
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Brent A Kronmiller
- Department of Integrative Biology, Oregon State University, Corvallis, United States.,Center for Genome Research and Biocomputing, Oregon State University, Corvallis, United States
| | - Clint Sergi
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Bulut Hamali
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| | - Michael Scott Blouin
- Department of Integrative Biology, Oregon State University, Corvallis, United States
| |
Collapse
|
9
|
Feng X, Zhu L, Qin Z, Mo X, Hao Y, Jiang Y, Hu W, Li S. Temporal transcriptome change of Oncomelania hupensis revealed by Schistosoma japonicum invasion. Cell Biosci 2020; 10:58. [PMID: 32328235 PMCID: PMC7165382 DOI: 10.1186/s13578-020-00420-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Background The freshwater snail Oncomelania hupensis is the obligate intermediate host for Schistosoma japonicum in China. Transcriptomic examination of snail–schistosome interactions can provide valuable information of host response at physiological and immune levels. Methods To investigate S. japonicum-induced changes in O. hupensis gene expression, we utilized high-throughput sequencing to identify transcripts that were differentially expressed between infected snails and their uninfected controls at two key time-point, Day 7 and Day 30 after challenge. Time-series transcriptomic profiles were analyzed using R package DESeq 2, followed by GO, KEGG and (weighted gene correlation network analysis) WGCNA analysis to elucidate and identify important molecular mechanism, and subsequently understand host–parasite relationship. The identified unigenes was verified by bioinformatics and real-time PCR. Possible adaptation molecular mechanisms of O. hupensis to S. japonicum challenge were proposed. Results Transcriptomic analyses of O. hupensis by S. japonicum invasion yielded billion reads including 92,144 annotated transcripts. Over 5000 differentially expressed genes (DEGs) were identified by pairwise comparisons of infected libraries from two time points to uninfected libraries in O. hupensis. In total, 6032 gene ontology terms and 149 KEGG pathways were enriched. After the snails were infected with S. japonicum on Day 7 and Day 30, DEGs were shown to be involved in many key processes associated with biological regulation and innate immunity pathways. Gene expression patterns differed after exposure to S. japonicum. Using WGCNA, 16 modules were identified. Module-trait analysis identified that a module involved in RNA binding, ribosome, translation, mRNA processing, and structural constituent of ribosome were strongly associated with S. japonicum invasion. Many of the genes from enriched KEGG pathways were involved in lysosome, spliceosome and ribosome, indicating that S. japonicum invasion may activate the regulation of ribosomes and immune response to infection in O. hupensis. Conclusions Our analysis provided a temporally dynamic gene expression pattern of O. hupensis by S. japonicum invasion. The identification of gene candidates serves as a foundation for future investigations of S. japonicum infection. Additionally, major DEGs expression patterns and putative key regulatory pathways would provide useful information to construct gene regulatory networks between host-parasite crosstalk.
Collapse
Affiliation(s)
- Xinyu Feng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China.,2Joint Research Laboratory of Genetics and Ecology on Parasites-hosts Interaction, National Institute of Parasitic Diseases-Fudan University, Shanghai, 200025 People's Republic of China
| | - Lingqian Zhu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China
| | - Zhiqiang Qin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China
| | - Xiaojin Mo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China
| | - Yuwan Hao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China
| | - Ying Jiang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China
| | - Wei Hu
- 3State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 People's Republic of China
| | - Shizhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, National Health and Family Planning Commission, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, 200025 People's Republic of China
| |
Collapse
|
10
|
Castillo MG, Humphries JE, Mourão MM, Marquez J, Gonzalez A, Montelongo CE. Biomphalaria glabrata immunity: Post-genome advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103557. [PMID: 31759924 PMCID: PMC8995041 DOI: 10.1016/j.dci.2019.103557] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The freshwater snail, Biomphalaria glabrata, is an important intermediate host in the life cycle for the human parasite Schistosoma mansoni, the causative agent of schistosomiasis. Current treatment and prevention strategies have not led to a significant decrease in disease transmission. However, the genome of B. glabrata was recently sequenced to provide additional resources to further our understanding of snail biology. This review presents an overview of recently published, post-genome studies related to the topic of snail immunity. Many of these reports expand on findings originated from the genome characterization. These novel studies include a complementary gene linkage map, analysis of the genome of the B. glabrata embryonic (Bge) cell line, as well as transcriptomic and proteomic studies looking at snail-parasite interactions and innate immune memory responses towards schistosomes. Also included are biochemical investigations on snail pheromones, neuropeptides, and attractants, as well as studies investigating the frontiers of molluscan epigenetics and cell signaling were also included. Findings support the current hypotheses on snail-parasite strain compatibility, and that snail host resistance to schistosome infection is dependent not only on genetics and expression, but on the ability to form multimeric molecular complexes in a timely and tissue-specific manner. The relevance of cell immunity is reinforced, while the importance of humoral factors, especially for secondary infections, is supported. Overall, these studies reflect an improved understanding on the diversity, specificity, and complexity of molluscan immune systems.
Collapse
Affiliation(s)
- Maria G Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | | | - Marina M Mourão
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Fiocruz Minas, Brazil
| | - Joshua Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Adrian Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Cesar E Montelongo
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
11
|
Allan ERO, Yang L, Tennessen JA, Blouin MS. Allelic variation in a single genomic region alters the hemolymph proteome in the snail Biomphalaria glabrata. FISH & SHELLFISH IMMUNOLOGY 2019; 88:301-307. [PMID: 30849501 PMCID: PMC6687060 DOI: 10.1016/j.fsi.2019.02.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 05/04/2023]
Abstract
Freshwater snails are obligate intermediate hosts for numerous parasitic trematodes, most notably schistosomes. Schistosomiasis is a devastating human and veterinary illness, which is primarily controlled by limiting the transmission of these parasites from their intermediate snail hosts. Understanding how this transmission occurs, as well as the basic immunobiology of these snails may be important for controlling this disease in the future. Allelic variation in the Guadeloupe resistance complex (GRC) of Biomphalaria glabrata partially determines their susceptibility to parasitic infection, and can influence the microbiome diversity and microbial defenses in the hemolymph of these snails. In the present study, we examine the most abundant proteins present in the hemolymph of snails that are resistant or susceptible to schistosomes, as determined by their GRC genotype. Using proteomic analysis, we found that snails with different GRC genotypes have differentially abundant hemolymph proteins that are not explained by differences in transcription. There are 13 revealed hemolymph proteins that differ significantly between resistant and susceptible genotypes, nearly 40% of which are involved in immune responses. These findings build on the mounting evidence that genes in the GRC region have multiple physiological roles, and likely contribute more extensively to the general immune response than previously believed. These data also raise the intriguing possibility that the GRC region controls resistance to schistosomes, not directly, but indirectly via its effects on the snail's proteome and potentially its microbiome.
Collapse
Affiliation(s)
- Euan R O Allan
- Department of Pathobiology, School of Veterinary Medicine, St. George's University, Grenada.
| | - Liping Yang
- Mass Spectrometry Center, Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Jacob A Tennessen
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR, USA
| | - Michael S Blouin
- Department of Integrative Biology, College of Science, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
12
|
Wheeler NJ, Dinguirard N, Marquez J, Gonzalez A, Zamanian M, Yoshino TP, Castillo MG. Sequence and structural variation in the genome of the Biomphalaria glabrata embryonic (Bge) cell line. Parasit Vectors 2018; 11:496. [PMID: 30180879 PMCID: PMC6122571 DOI: 10.1186/s13071-018-3059-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
Background The aquatic pulmonate snail Biomphalaria glabrata is a significant vector and laboratory host for the parasitic flatworm Schistosoma mansoni, an etiological agent for the neglected tropical disease schistosomiasis. Much is known regarding the host-parasite interactions of these two organisms, and the B. glabrata embryonic (Bge) cell line has been an invaluable resource in these studies. The B. glabrata BB02 genome sequence was recently released, but nothing is known of the sequence variation between this reference and the Bge cell genome, which has likely accumulated substantial genetic variation in the ~50 years since its isolation. Results Here, we report the genome sequence of our laboratory subculture of the Bge cell line (designated Bge3), which we mapped to the B. glabrata BB02 reference genome. Single nucleotide variants (SNVs) were predicted and focus was given to those SNVs that are most likely to affect the structure or expression of protein-coding genes. Furthermore, we have highlighted and validated high-impact SNVs in genes that have often been studied using Bge cells as an in vitro model, and other genes that may have contributed to the immortalization of this cell line. We also resolved representative karyotypes for the Bge3 subculture, which revealed a mixed population exhibiting substantial aneuploidy, in line with previous reports from other Bge subcultures. Conclusions The Bge3 genome differs from the B. glabrata BB02 reference genome in both sequence and structure, and these are likely to have significant biological effects. The availability of the Bge3 genome sequence, and an awareness of genomic differences with B. glabrata, will inform the design of experiments to understand gene function in this unique in vitro snail cell model. Additionally, this resource will aid in the development of new technologies and molecular approaches that promise to reveal more about this schistosomiasis-transmitting snail vector. Electronic supplementary material The online version of this article (10.1186/s13071-018-3059-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolas J Wheeler
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Nathalie Dinguirard
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Joshua Marquez
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Adrian Gonzalez
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Timothy P Yoshino
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Maria G Castillo
- Department of Biology, New Mexico State University, Las Cruces, NM, USA.
| |
Collapse
|
13
|
Anderson TJC, LoVerde PT, Le Clec'h W, Chevalier FD. Genetic Crosses and Linkage Mapping in Schistosome Parasites. Trends Parasitol 2018; 34:982-996. [PMID: 30150002 DOI: 10.1016/j.pt.2018.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
Abstract
Linkage mapping - utilizing experimental genetic crosses to examine cosegregation of phenotypic traits with genetic markers - is now 100 years old. Schistosome parasites are exquisitely well suited to linkage mapping approaches because genetic crosses can be conducted in the laboratory, thousands of progeny are produced, and elegant experimental work over the last 75 years has revealed heritable genetic variation in multiple biomedically important traits such as drug resistance, host specificity, and virulence. Application of this approach is timely because the improved genome assembly for Schistosoma mansoni and developing molecular toolkit for schistosomes increase our ability to link phenotype with genotype. We describe current progress and potential future directions of linkage mapping in schistosomes.
Collapse
Affiliation(s)
| | | | - Winka Le Clec'h
- Texas Biomedical Research Institute, San Antonio, Texas 78227, USA
| | | |
Collapse
|
14
|
Tennessen JA. Gene buddies: linked balanced polymorphisms reinforce each other even in the absence of epistasis. PeerJ 2018; 6:e5110. [PMID: 29967750 PMCID: PMC6026533 DOI: 10.7717/peerj.5110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/05/2018] [Indexed: 01/16/2023] Open
Abstract
The fates of genetic polymorphisms maintained by balancing selection depend on evolutionary dynamics at linked sites. While coevolution across linked, epigenetically-interacting loci has been extensively explored, such supergenes may be relatively rare. However, genes harboring adaptive variation can occur in close physical proximity while generating independent effects on fitness. Here, I present a model in which two linked loci without epistasis are both under balancing selection for unrelated reasons. Using forward-time simulations, I show that recombination rate strongly influences the retention of adaptive polymorphism, especially for intermediate selection coefficients. A locus is more likely to retain adaptive variation if it is closely linked to another locus under balancing selection, even if the two loci have no interaction. Thus, two linked polymorphisms can both be retained indefinitely even when they would both be lost to drift if unlinked. While these results may be intuitive, they have important implications for genetic architecture: clusters of mutually reinforcing genes may underlie phenotypic variation in natural populations, and such genes cannot be assumed to be functionally associated. Future studies that measure selection coefficients and recombination rates among closely linked genes will be fruitful for characterizing the extent of this phenomenon.
Collapse
Affiliation(s)
- Jacob A. Tennessen
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
15
|
Linkage Disequilibrium Estimation in Low Coverage High-Throughput Sequencing Data. Genetics 2018; 209:389-400. [PMID: 29588288 PMCID: PMC5972415 DOI: 10.1534/genetics.118.300831] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/22/2018] [Indexed: 12/31/2022] Open
Abstract
High-throughput sequencing methods provide a cost-effective approach for genotyping and are commonly used in population genetics studies. A drawback of these methods, however, is that sequencing and genotyping errors can arise... High-throughput sequencing methods that multiplex a large number of individuals have provided a cost-effective approach for discovering genome-wide genetic variation in large populations. These sequencing methods are increasingly being utilized in population genetic studies across a diverse range of species. Two side-effects of these methods, however, are (1) sequencing errors and (2) heterozygous genotypes called as homozygous due to only one allele at a particular locus being sequenced, which occurs when the sequencing depth is insufficient. Both of these errors have a profound effect on the estimation of linkage disequilibrium (LD) and, if not taken into account, lead to inaccurate estimates. We developed a new likelihood method, GUS-LD, to estimate pairwise linkage disequilibrium using low coverage sequencing data that accounts for undercalled heterozygous genotypes and sequencing errors. Our findings show that accurate estimates were obtained using GUS-LD, whereas underestimation of LD results if no adjustment is made for the errors.
Collapse
|