1
|
Wang X, Wu L, Zhang W, Qiu S, Xu Z, Wan H, He J, Wang W, Wang M, Yin Q, Shi Y, Gao R, Xiang L, Yang W. Multi-omics analysis reveals promiscuous O-glycosyltransferases involved in the diversity of flavonoid glycosides in Periploca forrestii (Apocynaceae). Comput Struct Biotechnol J 2024; 23:1106-1116. [PMID: 38495554 PMCID: PMC10940802 DOI: 10.1016/j.csbj.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Flavonoid glycosides are widespread in plants, and are of great interest owing to their diverse biological activities and effectiveness in preventing chronic diseases. Periploca forrestii, a renowned medicinal plant of the Apocynaceae family, contains diverse flavonoid glycosides and is clinically used to treat rheumatoid arthritis and traumatic injuries. However, the mechanisms underlying the biosynthesis of these flavonoid glycosides have not yet been elucidated. In this study, we used widely targeted metabolomics and full-length transcriptome sequencing to identify flavonoid diversity and biosynthetic genes in P. forrestii. A total of 120 flavonoid glycosides, including 21 C-, 96 O-, and 3 C/O-glycosides, were identified and annotated. Based on 24,123 full-length coding sequences, 99 uridine diphosphate sugar-utilizing glycosyltransferases (UGTs) were identified and classified into 14 groups. Biochemical assays revealed that four UGTs exhibited O-glycosyltransferase activity toward apigenin and luteolin. Among them, PfUGT74B4 and PfUGT92A8 were highly promiscuous and exhibited multisite O-glycosylation or consecutive glycosylation activities toward various flavonoid aglycones. These four glycosyltransferases may significantly contribute to the diversity of flavonoid glycosides in P. forrestii. Our findings provide a valuable genetic resource for further studies on P. forrestii and insights into the metabolic engineering of bioactive flavonoid glycosides.
Collapse
Affiliation(s)
- Xiaotong Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China
| | - Lan Wu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wanran Zhang
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China
| | - Shi Qiu
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhichao Xu
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin 150006, China
| | - Huihua Wan
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiang He
- Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China
| | - Wenting Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mengyue Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuhua Shi
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ranran Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Xiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi 830000, China
| | - Weijun Yang
- Xinjiang Institute of Materia Medica/Key Laboratory of Xinjiang Uygur Medicine, Urumqi 830004, China
| |
Collapse
|
2
|
Xie W, Bai B, Wang Y. Chromosome-scale genome assembly of Apocynum pictum, a drought-tolerant medicinal plant from the Tarim Basin. G3 (BETHESDA, MD.) 2024; 14:jkae237. [PMID: 39499589 PMCID: PMC11631493 DOI: 10.1093/g3journal/jkae237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/11/2024] [Indexed: 11/07/2024]
Abstract
Apocynum pictum Schrenk is a semishrub of the Apocynaceae family with a wide distribution throughout the Tarim Basin that holds significant ecological, medicinal, and economic values. Here, we report the assembly of its chromosome-level reference genome using Nanopore long-read, Illumina HiSeq paired-end, and high-throughput chromosome conformation capture sequencing. The final assembly is 225.32 Mb in length with a scaffold N50 of 19.64 Mb. It contains 23,147 protein-coding genes across 11 chromosomes, 21,148 of which (91.36%) have protein functional annotations. Comparative genomics analysis revealed that A. pictum diverged from the closely related species Apocynum venetum approximately 2.2 million years ago and has not undergone additional polyploidizations after the core eudicot WGT-γ event. Karyotype evolution analysis was used to characterize interchromosomal rearrangements in representative Apocynaceae species and revealed that several A. pictum chromosomes were derived entirely from single chromosomes of the ancestral eudicot karyotype. Finally, we identified 50 members of the well-known stress-responsive WRKY transcription factor family and used transcriptomic data to document changes in their expression at 2 stages of drought stress, identifying a number of promising candidate genes. Overall, this study provides high-quality genomic resources for evolutionary and comparative genomics of the Apocynaceae, as well as initial molecular insights into the drought adaptation of this valuable desert plant.
Collapse
Affiliation(s)
- Wenlong Xie
- College of Life Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, P.R. China
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in the Tarim Basin, Tarim University, Alar 843300, Xinjiang, P.R. China
| | - Baowei Bai
- College of Life Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, P.R. China
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in the Tarim Basin, Tarim University, Alar 843300, Xinjiang, P.R. China
| | - Yanqin Wang
- College of Life Science and Technology, Tarim University, Xingfu Road, Alar 843300, Xinjiang, P.R. China
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in the Tarim Basin, Tarim University, Alar 843300, Xinjiang, P.R. China
| |
Collapse
|
3
|
Kelsang GA, Ni L, Zhao Z. Insights from the first chromosome-level genome assembly of the alpine gentian Gentiana straminea Maxim. DNA Res 2024; 31:dsae022. [PMID: 39017645 PMCID: PMC11375616 DOI: 10.1093/dnares/dsae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024] Open
Abstract
Gentiana straminea Maxim. is a perennial herb and mainly distributed in the Qinghai-Tibetan Plateau. To adapt to the extreme environment, it has developed particular morphological, physiological, and genetic structures. Also, rich in iridoids, it is one of the original plants of traditional Chinese herb 'Qinjiao'. Herein, we present its first chromosome-level genome sequence assembly and compare it with the genomes of other Gentiana species to facilitate the analysis of genomic characteristics. The assembled genome size of G. straminea was 1.25 Gb, with a contig N50 of 7.5 Mb. A total of 96.08% of the genome sequences was anchored on 13 pseudochromosomes, with a scaffold N50 of 92.70 Mb. A total of 54,310 protein-coding genes were predicted, 80.25% of which were functionally annotated. Comparative genomic analyses indicated that G. straminea experienced two whole-genome duplication events after the γ whole-genome triplication with other eudicots, and it diverged from other Gentiana species at ~3.2 Mya. A total of 142 enzyme-coding genes related to iridoid biosynthesis were identified in its genome. Additionally, we identified differences in the number and expression patterns of iridoid biosynthetic pathway genes in G. straminea compared with two other Gentiana species by integrating whole-genome sequence and transcriptomic analyses.
Collapse
Affiliation(s)
- Gyab Ala Kelsang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Mentseekhang, Traditional Tibetan Hospital, Lhasa 850000, China
| | - Lianghong Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhili Zhao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
4
|
Younkin GC, Alani ML, Züst T, Jander G. Four enzymes control natural variation in the steroid core of Erysimum cardenolides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588904. [PMID: 38645095 PMCID: PMC11030354 DOI: 10.1101/2024.04.10.588904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Plants commonly produce families of structurally related metabolites with similar defensive functions. This apparent redundancy raises the question of underlying molecular mechanisms and adaptive benefits of such chemical variation. Cardenolides, a class defensive compounds found in the wallflower genus Erysimum (L., Brassicaceae) and scattered across other plant families, show substantial structural variation, with glycosylation and hydroxylation being common modifications of a steroid core, which itself may vary in terms of stereochemistry and saturation. Through a combination of chemical mutagenesis and analysis of gene coexpression networks, we identified four enzymes involved in cardenolide biosynthesis in Erysimum that work together to determine stereochemistry at carbon 5 of the steroid core: Ec3βHSD, a 3β-hydroxysteroid dehydrogenase, Ec3KSI, a ketosteroid isomerase, EcP5βR2, a progesterone 5β-reductase, and EcDET2, a steroid 5α-reductase. We biochemically characterized the activity of these enzymes in vitro and generated CRISPR/Cas9 knockout lines to confirm activity in vivo. Cardenolide biosynthesis was not eliminated in any of the knockouts. Instead, mutant plants accumulated cardenolides with altered saturation and stereochemistry of the steroid core. Furthermore, we found variation in carbon 5 configuration among the cardenolides of 44 species of Erysimum, where the occurrence of some 5β-cardenolides is associated with the expression and sequence of P5βR2. This may have allowed Erysimum species to fine-tune their defensive profiles to target specific herbivore populations over the course of evolution. SIGNIFICANCE STATEMENT Plants use an array of toxic compounds to defend themselves from attack against insects and other herbivores. One mechanism through which plants may evolve more toxic compounds is through modifications to the structure of compounds they already produce. In this study, we show how plants in the wallflower genus Erysimum use four enzymes to fine-tune the structure of toxic metabolites called cardenolides. Natural variation in the sequence and expression of a single enzyme called progesterone 5β-reductase 2 partly explains the variation in cardenolides observed across the Erysimum genus. These alterations to cardenolide structure over the course of evolution suggests that there may be context-dependent benefits to Erysimum to invest in one cardenolide variant over another.
Collapse
Affiliation(s)
- Gordon C. Younkin
- Boyce Thompson Institute, Ithaca, New York 14853
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | | | - Tobias Züst
- Institute of Systematic and Evolutionary Botany, University of Zurich, 8008 Zürich, Switzerland
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, New York 14853
| |
Collapse
|
5
|
Cuello C, Jansen HJ, Abdallah C, Zamar Mbadinga DL, Birer Williams C, Durand M, Oudin A, Papon N, Giglioli-Guivarc'h N, Dirks RP, Jensen MK, O'Connor SE, Besseau S, Courdavault V. The Madagascar palm genome provides new insights on the evolution of Apocynaceae specialized metabolism. Heliyon 2024; 10:e28078. [PMID: 38533072 PMCID: PMC10963385 DOI: 10.1016/j.heliyon.2024.e28078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Specialized metabolites possess diverse interesting biological activities and some cardenolides- and monoterpene indole alkaloids- (MIAs) derived pharmaceuticals are currently used to treat human diseases such as cancers or hypertension. While these two families of biocompounds are produced by specific subfamilies of Apocynaceae, one member of this medicinal plant family, the succulent tree Pachypodium lamerei Drake (also known as Madagascar palm), does not produce such specialized metabolites. To explore the evolutionary paths that have led to the emergence and loss of cardenolide and MIA biosynthesis in Apocynaceae, we sequenced and assembled the P. lamerei genome by combining Oxford Nanopore Technologies long-reads and Illumina short-reads. Phylogenomics revealed that, among the Apocynaceae whose genomes have been sequenced, the Madagascar palm is so far the species closest to the common ancestor between MIA producers/non-MIA producers. Transposable elements, constituting 72.48% of the genome, emerge as potential key players in shaping genomic architecture and influencing specialized metabolic pathways. The absence of crucial MIA biosynthetic genes such as strictosidine synthase in P. lamerei and non-Rauvolfioideae species hints at a transposon-mediated mechanism behind gene loss. Phylogenetic analysis not only showcases the evolutionary divergence of specialized metabolite biosynthesis within Apocynaceae but also underscores the role of transposable elements in this intricate process. Moreover, we shed light on the low conservation of enzymes involved in the final stages of MIA biosynthesis in the distinct MIA-producing plant families, inferring independent gains of these specialized enzymes along the evolution of these medicinal plant clades. Overall, this study marks a leap forward in understanding the genomic dynamics underpinning the evolution of specialized metabolites biosynthesis in the Apocynaceae family, with transposons emerging as potential architects of genomics restructuring and gene loss.
Collapse
Affiliation(s)
- Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Hans J. Jansen
- Future Genomics Technologies, 2333 BE, Leiden, the Netherlands
| | - Cécile Abdallah
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | | | - Ron P. Dirks
- Future Genomics Technologies, 2333 BE, Leiden, the Netherlands
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Sarah Ellen O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| |
Collapse
|
6
|
Stander EA, Lehka B, Carqueijeiro I, Cuello C, Hansson FG, Jansen HJ, Dugé De Bernonville T, Birer Williams C, Vergès V, Lezin E, Lorensen MDBB, Dang TT, Oudin A, Lanoue A, Durand M, Giglioli-Guivarc'h N, Janfelt C, Papon N, Dirks RP, O'connor SE, Jensen MK, Besseau S, Courdavault V. The Rauvolfia tetraphylla genome suggests multiple distinct biosynthetic routes for yohimbane monoterpene indole alkaloids. Commun Biol 2023; 6:1197. [PMID: 38001233 PMCID: PMC10673892 DOI: 10.1038/s42003-023-05574-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Monoterpene indole alkaloids (MIAs) are a structurally diverse family of specialized metabolites mainly produced in Gentianales to cope with environmental challenges. Due to their pharmacological properties, the biosynthetic modalities of several MIA types have been elucidated but not that of the yohimbanes. Here, we combine metabolomics, proteomics, transcriptomics and genome sequencing of Rauvolfia tetraphylla with machine learning to discover the unexpected multiple actors of this natural product synthesis. We identify a medium chain dehydrogenase/reductase (MDR) that produces a mixture of four diastereomers of yohimbanes including the well-known yohimbine and rauwolscine. In addition to this multifunctional yohimbane synthase (YOS), an MDR synthesizing mainly heteroyohimbanes and the short chain dehydrogenase vitrosamine synthase also display a yohimbane synthase side activity. Lastly, we establish that the combination of geissoschizine synthase with at least three other MDRs also produces a yohimbane mixture thus shedding light on the complex mechanisms evolved for the synthesis of these plant bioactives.
Collapse
Affiliation(s)
- Emily Amor Stander
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Beata Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Inês Carqueijeiro
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Frederik G Hansson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Hans J Jansen
- Future Genomics Technologies, 2333 BE, Leiden, The Netherlands
| | - Thomas Dugé De Bernonville
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
- Limagrain, Centre de Recherche, Route d'Ennezat, Chappes, France
| | - Caroline Birer Williams
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Valentin Vergès
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Enzo Lezin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Thu-Thuy Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, Kelowna, BC, Canada
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | - Mickael Durand
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France
| | | | - Christian Janfelt
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000, Angers, France
| | - Ron P Dirks
- Future Genomics Technologies, 2333 BE, Leiden, The Netherlands
| | - Sarah Ellen O'connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany.
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark.
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
| |
Collapse
|
7
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
8
|
Zhou Y, Fan W, Zhang H, Zhang J, Zhang G, Wang D, Xiang G, Zhao C, Li L, He S, Lu Y, Zhao J, Meng Z, Zhang X, Meng H, Yin X, Yang S, Long G. Marsdenia tenacissima genome reveals calcium adaptation and tenacissoside biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1146-1159. [PMID: 36575579 DOI: 10.1111/tpj.16081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Marsdenia tenacissima is a medicinal plant widely distributed in the calcium-rich karst regions of southwest China. However, the lack of a reference genome has hampered the implementation of molecular techniques in its breeding, pharmacology and domestication. We generated the chromosome-level genome assembly in Apocynaceae using combined SMRT sequencing and Hi-C. The genome length was 381.76 Mb, with 98.9% of it found on 11 chromosomes. The genome contained 222.63 Mb of repetitive sequences and 21 899 predicted gene models, with a contig N50 of 6.57 Mb. Phylogenetic analysis revealed that M. tenacissima diverged from Calotropis gigantea at least 13.43 million years ago. Comparative genomics showed that M. tenacissima underwent ancient shared whole-genome duplication. This event, together with tandem duplication, contributed to 70.71% of gene-family expansion. Both pseudogene analysis and selective pressure calculations suggested calcium-related adaptive evolution in the M. tenacissima genome. Calcium-induced differentially expressed genes (DEGs) were mainly enriched in cell-wall-related processes. Domains (e.g. Fasciclin and Amb_all) and cis-elements (e.g. MYB and MYC) frequently occurred in the coding and promoter regions of cell-wall DEGs, respectively, and the expression levels of these genes correlated significantly with those of calcium-signal-related transcription factors. Moreover, calcium addition increased tenacissoside I, G and H contents. The availability of this high-quality genome provides valuable genomic information for genetic breeding and molecular design, and lends insights into the calcium adaptation of M. tenacissima in karst areas.
Collapse
Affiliation(s)
- Yanli Zhou
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Wei Fan
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Haoyue Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jingling Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Guanghui Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Ding Wang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Guisheng Xiang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Changhong Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Lianhua Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Simei He
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Yingchun Lu
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Jiuxia Zhao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan, 650201, China
| | - Zhengui Meng
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Xianmin Zhang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Hengling Meng
- The Life Science and Technology College, Honghe University, Mengzi, Yunnan, 661199, China
| | - Xinhua Yin
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Shengchao Yang
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| | - Guangqiang Long
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- National & Local Joint Engineering Research Center on Germplasm Utilization & Innovation of Chinese Medicinal Materials in Southwestern China, Kunming, Yunnan, 650201, China
| |
Collapse
|
9
|
Wang Y, Zhang CF, Ochieng Odago W, Jiang H, Yang JX, Hu GW, Wang QF. Evolution of 101 Apocynaceae plastomes and phylogenetic implications. Mol Phylogenet Evol 2023; 180:107688. [PMID: 36581140 DOI: 10.1016/j.ympev.2022.107688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/21/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
Apocynaceae are one of the ten species-richest angiosperm families. However, the backbone phylogeny of the family is yet less well supported, and the evolution of plastome structure has not been thoroughly studied for the whole family. Herein, a total of 101 complete plastomes including 35 newly sequenced, 24 reassembled from public raw data and the rest from the NCBI GenBank database, representing 26 of 27 tribes of Apocynaceae, were used for comparative plastome analysis. Phylogenetic analyses were conducted using a combined plastid data matrix of 77 protein-coding genes from 162 taxa, encompassing all tribes and 41 of 49 subtribes of Apocynaceae. Plastome lengths ranged from 150,897 bp in Apocynum venetum to 178,616 bp in Hoya exilis. Six types of boundaries between the inverted repeat (IR) regions and single copy (SC) regions were identified. Different sizes of IR expansion were found in three lineages, including Alyxieae, Ceropegieae and Marsdenieae, suggesting multiple expansion events of the IRs over the SC regions in Apocynaceae. The IR regions of Marsdenieae evolved in two ways: expansion towards the large single copy (LSC) region in Lygisma + Stephanotis + Ruehssia + Gymnema (Cosmopolitan clade), and expansion towards both LSC and small single copy (SSC) region in Dischidia-Hoya alliance and Marsdenia (Asia-Pacific clade). Six coding genes and five non-coding regions were identified as highly variable, including accD, ccsA-ndhD, clpP, matK, ndhF, ndhG-ndhI, trnG(GCC)-trnfM(CAU), trnH(GUG)-psbA, trnY(GUA)-trnE(UUC), ycf1, and ycf2. Maximum likelihood and Bayesian phylogenetic analyses resulted in nearly identical tree topologies and produced a well-resolved backbone comprising 15 consecutive dichotomies that subdivided Apocynaceae into 15 clades. The subfamily Periplocoideae were embedded in the Apocynoid grade and were sister to the Echiteae-Odontadenieae-Mesechiteae clade with high support values. Three tribes (Melodineae, Vinceae, and Willughbeieae), the subtribe Amphineuriinae, and four genera (Beaumontia, Ceropegia, Hoya, and Stephanotis) were not resolved as monophyletic. Our work sheds light on the backbone phylogenetic relationships in the family Apocynaceae and offers insights into the evolution of Apocynaceae plastomes using the most densely sampled plastome dataset to date.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Cai-Fei Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Wyclif Ochieng Odago
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hui Jiang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jia-Xin Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Guang-Wan Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Qing-Feng Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
10
|
Zhu M, Wang Z, Yang Y, Wang Z, Mu W, Liu J. Multi-omics reveal differentiation and maintenance of dimorphic flowers in an alpine plant on the Qinghai-Tibet Plateau. Mol Ecol 2023; 32:1411-1424. [PMID: 35363913 DOI: 10.1111/mec.16449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022]
Abstract
Dimorphic flowers growing on a single individual plant play a critical role in extreme adaption and reproductive assurance in plants and have high ecological and evolutionary significance. However, the omics bases underlying such a differentiation and maintenance remain largely unknown. We aimed to investigate this through genomic, transcriptome and metabolomic analyses of dimorphic flowers in an alpine biennial, Sinoswertia tetraptera (Gentianaceae). A high-quality chromosome-level genome sequence (903 Mb) was first assembled for S. tetraptera with 31,359 protein-coding genes annotated. Two rounds of recent independent whole-genome duplication (WGD) were revealed. Numerous genes from the recent species-specific WGD were found to be differentially expressed in the two types of flowers, and this may have helped contribute to the origin of this innovative trait. The genes with contrasting expressions between flowers were related to biosynthesis of hormones, floral pigments (carotenoids and flavonoids) and iridoid compounds, which are involved in both flower development and colour. Metabolomic analyses similarly suggested differential concentrations of these chemicals in the two types of flowers. The expression interactions between multiple genes may together lead to contrasting morphology and chemical concentration and open versus closed pollination of the dimorphic flowers in this species for reproductive assurance.
Collapse
Affiliation(s)
- Mingjia Zhu
- State Key Laboratory of Grassland and Agro-ecosystems, Institute of Innovation Ecology, School of Life Science and the Supercomputing Center, Lanzhou University, Lanzhou, China
| | - Zhenyue Wang
- State Key Laboratory of Grassland and Agro-ecosystems, Institute of Innovation Ecology, School of Life Science and the Supercomputing Center, Lanzhou University, Lanzhou, China
| | - Yongzhi Yang
- State Key Laboratory of Grassland and Agro-ecosystems, Institute of Innovation Ecology, School of Life Science and the Supercomputing Center, Lanzhou University, Lanzhou, China
| | - Zefu Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Wenjie Mu
- State Key Laboratory of Grassland and Agro-ecosystems, Institute of Innovation Ecology, School of Life Science and the Supercomputing Center, Lanzhou University, Lanzhou, China
| | - Jianquan Liu
- State Key Laboratory of Grassland and Agro-ecosystems, Institute of Innovation Ecology, School of Life Science and the Supercomputing Center, Lanzhou University, Lanzhou, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Zhang W, Zeng Y, Jiao M, Ye C, Li Y, Liu C, Wang J. Integration of high-throughput omics technologies in medicinal plant research: The new era of natural drug discovery. FRONTIERS IN PLANT SCIENCE 2023; 14:1073848. [PMID: 36743502 PMCID: PMC9891177 DOI: 10.3389/fpls.2023.1073848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Medicinal plants are natural sources to unravel novel bioactive compounds to satisfy human pharmacological potentials. The world's demand for herbal medicines is increasing year by year; however, large-scale production of medicinal plants and their derivatives is still limited. The rapid development of modern technology has stimulated multi-omics research in medicinal plants, leading to a series of breakthroughs on key genes, metabolites, enzymes involved in biosynthesis and regulation of active compounds. Here, we summarize the latest research progress on the molecular intricacy of medicinal plants, including the comparison of genomics to demonstrate variation and evolution among species, the application of transcriptomics, proteomics and metabolomics to explore dynamic changes of molecular compounds, and the utilization of potential resources for natural drug discovery. These multi-omics research provide the theoretical basis for environmental adaptation of medicinal plants and allow us to understand the chemical diversity and composition of bioactive compounds. Many medicinal herbs' phytochemical constituents and their potential health benefits are not fully explored. Given their large diversity and global distribution as well as the impacts of growth duration and environmental factors on bioactive phytochemicals in medicinal plants, it is crucial to emphasize the research needs of using multi-omics technologies to address basic and applied problems in medicinal plants to aid in developing new and improved medicinal plant resources and discovering novel medicinal ingredients.
Collapse
Affiliation(s)
- Wenting Zhang
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, China
| | - Yuan Zeng
- School of Plant and Environmental Sciences, Virginia Tech, VA, Blacksburg, United States
- Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, VA, Blackstone, United States
| | - Meng Jiao
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chanjuan Ye
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yanrong Li
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Rice Engineering Laboratory, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jihua Wang
- Guangdong Provincial Key Laboratory of Crops Genetics & Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Engineering & Technology Research Center for Conservation and Utilization of the Genuine Southern Medicinal Resources, Guangzhou, China
| |
Collapse
|
12
|
Tyagi P, Singh D, Mathur S, Singh A, Ranjan R. Upcoming progress of transcriptomics studies on plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:1030890. [PMID: 36589087 PMCID: PMC9798009 DOI: 10.3389/fpls.2022.1030890] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Transcriptome sequencing or RNA-Sequencing is a high-resolution, sensitive and high-throughput next-generation sequencing (NGS) approach used to study non-model plants and other organisms. In other words, it is an assembly of RNA transcripts from individual or whole samples of functional and developmental stages. RNA-Seq is a significant technique for identifying gene predictions and mining functional analysis that improves gene ontology understanding mechanisms of biological processes, molecular functions, and cellular components, but there is limited information available on this topic. Transcriptomics research on different types of plants can assist researchers to understand functional genes in better ways and regulatory processes to improve breeding selection and cultivation practices. In recent years, several advancements in RNA-Seq technology have been made for the characterization of the transcriptomes of distinct cell types in biological tissues in an efficient manner. RNA-Seq technologies are briefly introduced and examined in terms of their scientific applications. In a nutshell, it introduces all transcriptome sequencing and analysis techniques, as well as their applications in plant biology research. This review will focus on numerous existing and forthcoming strategies for improving transcriptome sequencing technologies for functional gene mining in various plants using RNA- Seq technology, based on the principles, development, and applications.
Collapse
|
13
|
Stander EA, Cuello C, Birer-Williams C, Kulagina N, Jansen HJ, Carqueijeiro I, Méteignier LV, Vergès V, Oudin A, Papon N, Dirks RP, Jensen MK, O’Connor SE, Dugé de Bernonville T, Besseau S, Courdavault V. The Vinca minor genome highlights conserved evolutionary traits in monoterpene indole alkaloid synthesis. G3 (BETHESDA, MD.) 2022; 12:jkac268. [PMID: 36200869 PMCID: PMC9713385 DOI: 10.1093/g3journal/jkac268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2023]
Abstract
Vinca minor, also known as the lesser periwinkle, is a well-known species from the Apocynaceae, native to central and southern Europe. This plant synthesizes monoterpene indole alkaloids, which are a class of specialized metabolites displaying a wide range of bioactive- and pharmacologically important properties. Within the almost 50 monoterpene indole alkaloids it produces, V. minor mainly accumulates vincamine, which is commercially used as a nootropic. Using a combination of Oxford Nanopore Technologies long read- and Illumina short-read sequencing, a 679,098 Mb V. minor genome was assembled into 296 scaffolds with an N50 scaffold length of 6 Mb, and encoding 29,624 genes. These genes were functionally annotated and used in a comparative genomic analysis to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. Furthermore, homology-based monoterpene indole alkaloid gene predictions together with a metabolic analysis across 4 different V. minor tissue types guided the identification of candidate monoterpene indole alkaloid genes. These candidates were finally used to identify monoterpene indole alkaloid gene clusters, which combined with synteny analysis allowed for the discovery of a functionally validated vincadifformine-16-hydroxylase, reinforcing the potential of this dataset for monoterpene indole alkaloids gene discovery. It is expected that access to these resources will facilitate the elucidation of unknown monoterpene indole alkaloid biosynthetic routes with the potential of transferring these pathways to heterologous expression systems for large-scale monoterpene indole alkaloid production.
Collapse
Affiliation(s)
- Emily Amor Stander
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | | | - Natalja Kulagina
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Hans J Jansen
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands
| | - Ines Carqueijeiro
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | | | - Valentin Vergès
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| | - Ron P Dirks
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Sarah Ellen O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | | | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| |
Collapse
|
14
|
Cuello C, Stander EA, Jansen HJ, Dugé de Bernonville T, Lanoue A, Giglioli-Guivarc'h N, Papon N, Dirks RP, Jensen MK, O'Connor SE, Besseau S, Courdavault V. Genome Assembly of the Medicinal Plant Voacanga thouarsii. Genome Biol Evol 2022; 14:evac158. [PMID: 36300641 PMCID: PMC9673491 DOI: 10.1093/gbe/evac158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 11/26/2023] Open
Abstract
The Apocynaceae tree Voacanga thouarsii, native to southern Africa and Madagascar, produces monoterpene indole alkaloids (MIA), which are specialized metabolites with a wide range of bioactive properties. Voacanga species mainly accumulates tabersonine in seeds making these species valuable medicinal plants currently used for industrial MIA production. Despite their importance, the MIA biosynthesis in Voacanga species remains poorly studied. Here, we report the first genome assembly and annotation of a Voacanga species. The combined assembly of Oxford Nanopore Technologies long-reads and Illumina short-reads resulted in 3,406 scaffolds with a total length of 1,354.26 Mb and an N50 of 3.04 Mb. A total of 33,300 protein-coding genes were predicted and functionally annotated. These genes were then used to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. A transposable element (TE) analysis showed the highest proportion of TE in Voacanga thouarsii compared with all other MIA-producing plants. In a nutshell, this first reference genome of V. thouarsii will thus contribute to strengthen future comparative and evolutionary studies in MIA-producing plants leading to a better understanding of MIA pathway evolution. This will also allow the potential identification of new MIA biosynthetic genes for metabolic engineering purposes.
Collapse
Affiliation(s)
- Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Emily Amor Stander
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Hans J Jansen
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands
| | | | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | | | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| | - Ron P Dirks
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Sarah Ellen O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| |
Collapse
|
15
|
Sharma T, Sharma U, Kumar S. Iridoid glycosides from Picrorhiza genus endemic to the Himalayan region: phytochemistry, biosynthesis, pharmacological potential and biotechnological intercessions to boost production. Crit Rev Biotechnol 2022; 44:1-16. [PMID: 36184806 DOI: 10.1080/07388551.2022.2117681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Iridoid glycosides are monoterpenoids synthesized in several plant species known to exhibit a diverse range of pharmacological activities. They are used as important bioactive ingredients in many commercially available drug formulations and as lead compounds in pharmaceutical research. The genus Picrorhiza comprises two medicinally important herbs endemic to the Himalayan region viz. Picrorhiza kurrooa Royle and Picrorhiza scrophulariiflora Hong. The medicinal properties of these two species are mainly due to iridoid glycosides present in their root, rhizome, and leaves. Unregulated harvesting from the wild, habitat specificity, narrow distribution range, small population size and lack of organized cultivation led to the enrolling of these species in the endangered category by the International Union for Conservation of Nature and Natural Resources (IUCN). Therefore, there is a need for immediate biotechnological and molecular interventions. Such intercessions will open up new vistas for large-scale propagation, development of genomic/transcriptomic resources for understanding the biosynthetic pathway, the possibility of genetic/metabolic manipulations, and possible commercialization of iridoid glycosides. The current review article elucidates the phytochemistry and pharmacological importance of iridoid glycosides from the genus Picrorhiza. In addition, the role of biotechnological approaches and opportunities offered by next-generation sequencing technologies in overcoming challenges associated with the genetic engineering of these species are also discussed.
Collapse
Affiliation(s)
- Tanvi Sharma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Upendra Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Guo L, Yao H, Chen W, Wang X, Ye P, Xu Z, Zhang S, Wu H. Natural products of medicinal plants: biosynthesis and bioengineering in post-genomic era. HORTICULTURE RESEARCH 2022; 9:uhac223. [PMID: 36479585 PMCID: PMC9720450 DOI: 10.1093/hr/uhac223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Globally, medicinal plant natural products (PNPs) are a major source of substances used in traditional and modern medicine. As we human race face the tremendous public health challenge posed by emerging infectious diseases, antibiotic resistance and surging drug prices etc., harnessing the healing power of medicinal plants gifted from mother nature is more urgent than ever in helping us survive future challenge in a sustainable way. PNP research efforts in the pre-genomic era focus on discovering bioactive molecules with pharmaceutical activities, and identifying individual genes responsible for biosynthesis. Critically, systemic biological, multi- and inter-disciplinary approaches integrating and interrogating all accessible data from genomics, metabolomics, structural biology, and chemical informatics are necessary to accelerate the full characterization of biosynthetic and regulatory circuitry for producing PNPs in medicinal plants. In this review, we attempt to provide a brief update on the current research of PNPs in medicinal plants by focusing on how different state-of-the-art biotechnologies facilitate their discovery, the molecular basis of their biosynthesis, as well as synthetic biology. Finally, we humbly provide a foresight of the research trend for understanding the biology of medicinal plants in the coming decades.
Collapse
Affiliation(s)
- Li Guo
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261000, China
| | - Hui Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Weikai Chen
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong 261000, China
| | - Xumei Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an 710061, China
| | - Peng Ye
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhichao Xu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Sisheng Zhang
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wu
- State Key laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory For Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Li T, Yu X, Ren Y, Kang M, Yang W, Feng L, Hu Q. The chromosome-level genome assembly of Gentiana dahurica (Gentianaceae) provides insights into gentiopicroside biosynthesis. DNA Res 2022; 29:dsac008. [PMID: 35380665 PMCID: PMC9019652 DOI: 10.1093/dnares/dsac008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/02/2022] [Indexed: 12/02/2022] Open
Abstract
Gentiana dahurica Fisch. is a perennial herb of the family Gentianaceae. This species is used as a traditional Tibetan medicine because of its rich gentiopicroside constituents. Here, we generate a high-quality, chromosome-level genome of G. dahurica with a total length of 1,416.54 Mb. Comparative genomic analyses showed that G. dahurica shared one whole-genome duplication (WGD) event with Gelsemium sempervirens of the family Gelsemiaceaei and had one additional species-specific WGD after the ancient whole-genome triplication with other eudicots. Further transcriptome analyses identified numerous enzyme coding genes and the transcription factors related to gentiopicroside biosynthesis. A set of candidate cytochrome P450 genes were identified for being involved in biosynthetic shifts from swertiamarin to gentiopicroside. Both gene expressions and the contents measured by high-performance liquid chromatography indicated that the gentiopicrosides were mainly synthesized in the rhizomes with the highest contents. In addition, we found that two above-mentioned WGDs, contributed greatly to the identified candidate genes involving in gentiopicroside biosynthesis. The first reference genome of Gentianaceae we generated here will definitely accelerate evolutionary, ecological, and pharmaceutical studies of this family.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xi Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yumeng Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Minghui Kang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenjie Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Landi Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Quanjun Hu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Wang Y. A draft genome, resequencing, and metabolomes reveal the genetic background and molecular basis of the nutritional and medicinal properties of loquat (Eriobotrya japonica (Thunb.) Lindl). HORTICULTURE RESEARCH 2021; 8:231. [PMID: 34719689 PMCID: PMC8558328 DOI: 10.1038/s41438-021-00657-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/21/2021] [Accepted: 07/04/2021] [Indexed: 05/06/2023]
Abstract
Loquat (Eriobotrya japonica) is a popular fruit and medicinal plant. Here, a high-quality draft genome of the E. japonica 'Big Five-pointed Star' cultivar that covers ~98% (733.32 Mb) of the estimated genome size (749.25 Mb) and contains a total of 45,492 protein-coding genes is reported. Comparative genomic analysis suggests that the loquat genome has evolved a unique genetic mechanism of chromosome repair. Resequencing data from 52 loquat cultivars, including 16 white-fleshed and 36 yellow-fleshed variants, were analyzed, and the flower, leaf, and root metabolomes of 'Big Five-pointed Star' were determined using a UPLC-ESI-MS/M system. A genome-wide association study identified several candidate genes associated with flesh color in E. japonica, linking these phenotypes to sugar metabolism. A total of 577 metabolites, including 98 phenolic acids, 95 flavonoids, and 28 terpenoids, were found, and 191 metabolites, including 46 phenolic acids, 33 flavonoids, and 7 terpenoids, showed no differences in concentration among the leaves, roots, and flowers. Candidate genes related to the biosynthesis of various medicinal ingredients, such as phenolics, flavonoids, terpenoids, and polysaccharides, were identified. Some of these genes were confirmed to be members of expanding gene families, suggesting that the high concentrations of beneficial metabolites in loquat may be associated with the number of biosynthetic genes in this plant. In summary, this study provides fundamental molecular insights into the nutritional and medical properties of E. japonica.
Collapse
Affiliation(s)
- Yunsheng Wang
- School of Life and Health Science, Kaili University, Kaili City, Guizhou Province, 556011, China.
| |
Collapse
|
19
|
Chen Z, Li J, Hou N, Zhang Y, Qiao Y. TCM-Blast for traditional Chinese medicine genome alignment with integrated resources. BMC PLANT BIOLOGY 2021; 21:339. [PMID: 34273956 PMCID: PMC8285853 DOI: 10.1186/s12870-021-03096-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The traditional Chinese medicine (TCM) genome project aims to reveal the genetic information and regulatory network of herbal medicines, and to clarify their molecular mechanisms in the prevention and treatment of human diseases. Moreover, the TCM genome could provide the basis for the discovery of the functional genes of active ingredients in TCM, and for the breeding and improvement of TCM. The traditional Chinese Medicine Basic Local Alignment Search Tool (TCM-Blast) is a web interface for TCM protein and DNA sequence similarity searches. It contains approximately 40G of genome data on TCMs, including protein and DNA sequence for 36 TCMs with high medical value.The development of a publicly accessible TCM genome alignment database hosted on the TCM-Blast website ( http://viroblast.pungentdb.org.cn/TCM-Blast/viroblast.php ) has expanded to query multiple sequence databases to obtain TCM genome data, and provide user-friendly output for easy analysis and browsing of BLAST results. The genome sequencing of TCMs helps to elucidate the biosynthetic pathways of important secondary metabolites and provides an essential resource for gene discovery studies and molecular breeding. The TCMs genome provides a valuable resource for the investigation of novel bioactive compounds and drugs from these TCMs under the guidance of TCM clinical practice. Our database could be expanded to other TCMs after the determination of their genome data.
Collapse
Affiliation(s)
- Zhao Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| | - Jing Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| | - Ning Hou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| | - Yanling Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| | - Yanjiang Qiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
- Research Center of TCM-Information Engineering, State Administration of Traditional Chinese Medicine of The Peoples Republic of China, Yangguang South Avenue, Fangshan District, Beijing, 102488 China
| |
Collapse
|
20
|
RNA Sequencing-based Transcriptomic profiles of HeLa, MCF-7 and A549 cancer cell lines treated with Calotropis gigantea leaf extracts. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Rehman SU, Rizwan M, Khan S, Mehmood A, Munir A. Proteomic Analysis of Medicinal Plant Calotropis Gigantea by In Silico Peptide Mass Fingerprinting. Curr Comput Aided Drug Des 2021; 17:254-265. [PMID: 32072902 DOI: 10.2174/1573409916666200219114531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
Abstract
Medicinal plants are the basic source of medicinal compounds traditionally used for the treatment of human diseases. Calotropis gigantea is a medicinal plant belonging to the family of Apocynaceae in the plant kingdom and subfamily Asclepiadaceae usually bearing multiple medicinal properties to cure a variety of diseases. BACKGROUND The Peptide Mass Fingerprinting (PMF) identifies the proteins from a reference protein database by comparing the amino acid sequence that is previously stored in the database and identified. OBJECTIVE The purpose of the study is to identify the peptides having anti-cancerous properties by in silico peptide mass fingerprinting. METHODS The calculation of in silico peptide masses is done through the ExPASy PeptideMass and these masses are used to identify the peptides from the MASCOT online server. Anticancer probability is calculated by iACP server, docking of active peptides is done by CABS-dock the server. RESULTS The anti-cancer peptides are identified with the MASCOT peptide mass fingerprinting server, the identified peptides are screened and only the anti-cancer are selected. De-novo peptide structure prediction is used for 3D structure prediction by PEP-FOLD 3 server. The docking results confirm strong bonding with the interacting amino acids of the receptor protein of breast cancer BRCA1 which shows the best peptide binding to the active chain, the human leukemia protein docking with peptides shows the accurate binding. CONCLUSION These peptides are stable and functional and are the best way for the treatment of cancer and many other deadly diseases.
Collapse
Affiliation(s)
- Saad Ur Rehman
- Department of Bioinformatics, Govt. Post Graduate College Mandian Abbottabad, Abbottabad, Pakistan
| | - Muhammad Rizwan
- Department of Bioinformatics, Govt. Post Graduate College Mandian Abbottabad, Abbottabad, Pakistan
| | - Sajid Khan
- Department of Bioinformatics, Govt. Post Graduate College Mandian Abbottabad, Abbottabad, Pakistan
| | - Azhar Mehmood
- Department of Bioinformatics, Govt. Post Graduate College Mandian Abbottabad, Abbottabad, Pakistan
| | - Anum Munir
- Department of Bioinformatics, Govt. Post Graduate College Mandian Abbottabad, Abbottabad, Pakistan
| |
Collapse
|
22
|
Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L. BHLH IRIDOID SYNTHESIS 3 is a member of a bHLH gene cluster regulating terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PLANT DIRECT 2021; 5:e00305. [PMID: 33532692 PMCID: PMC7833464 DOI: 10.1002/pld3.305] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/30/2020] [Accepted: 01/01/2021] [Indexed: 05/02/2023]
Abstract
Basic helix-loop-helix (bHLH) transcription factors (TFs) are key regulators of plant specialized metabolites, including terpenoid indole alkaloids (TIAs) in Catharanthus roseus. Two previously characterized subgroup-IVa bHLH TFs, BIS1 (bHLH Iridoid Synthesis 1) and BIS2 regulate iridoid biosynthesis in the TIA pathway. We reanalyzed the recently updated C. roseus genome sequence and discovered that BIS1 and BIS2 are clustered on the same genomic scaffold with a previously uncharacterized bHLH gene, designated as BIS3. Only a few bHLH gene clusters have been studied to date. Comparative analysis of 49 genome sequences from different plant lineages revealed the presence of analogous bHLH clusters in core angiosperms, including the medicinal plants Calotropis gigantea (giant milkweed) and Gelsemium sempervirens (yellow jessamine), but not in the analyzed basal angiosperm and lower plants. Similar to the iridoid pathway genes, BIS3 is highly expressed in roots and induced by methyl jasmonate. BIS3 activates the promoters of iridoid branch genes, geraniol synthase (GES), geraniol 10-hydroxylase (G10H), 8-hydroxygeraniol oxidoreductase (8HGO), iridoid synthase (IS), 7-deoxyloganetic acid glucosyl transferase (7-DLGT), and 7-deoxyloganic acid hydroxylase (7DLH), but not iridoid oxidase (IO). Transactivation of the promoters was abolished when BIS3 is converted to a dominant repressor by fusing with the ERF-associated amphiphilic repression (EAR) sequence. In addition, BIS3 acts synergistically with BIS1 and BIS2 to activate the G10H promoter in tobacco cells. Mutation of the known bHLH TF binding motif, G-box (CACGTG) in the G10H promoter significantly reduced but did not abolish the transactivation by BIS3. Promoter deletion analysis of G10H suggests that the sequences adjacent to the G-box are also involved in the regulation by BIS3. Overexpression of BIS3 in C. roseus flower petals significantly upregulated the expression of iridoid biosynthetic genes and increased loganic acid accumulation. BIS2 expression was significantly induced by BIS3 although BIS3 did not directly activate the BIS2 promoter. Our results advance our understanding of the regulation of plant specialized metabolites by bHLH TF clusters.
Collapse
Affiliation(s)
- Sanjay Kumar Singh
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
| | - Barunava Patra
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
| | - Priyanka Paul
- Department of Plant and Soil SciencesUniversity of KentuckyLexingtonKYUSA
| | - Yongliang Liu
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
- South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Sitakanta Pattanaik
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
| | - Ling Yuan
- Kentucky Tobacco Research & Development CenterUniversity of KentuckyLexingtonKYUSA
- Department of Plant and Soil SciencesUniversity of KentuckyLexingtonKYUSA
- South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| |
Collapse
|
23
|
Cheng QQ, Ouyang Y, Tang ZY, Lao CC, Zhang YY, Cheng CS, Zhou H. Review on the Development and Applications of Medicinal Plant Genomes. FRONTIERS IN PLANT SCIENCE 2021; 12:791219. [PMID: 35003182 PMCID: PMC8732986 DOI: 10.3389/fpls.2021.791219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/23/2021] [Indexed: 05/04/2023]
Abstract
With the development of sequencing technology, the research on medicinal plants is no longer limited to the aspects of chemistry, pharmacology, and pharmacodynamics, but reveals them from the genetic level. As the price of next-generation sequencing technology becomes affordable, and the long-read sequencing technology is established, the medicinal plant genomes with large sizes have been sequenced and assembled more easily. Although the review of plant genomes has been reported several times, there is no review giving a systematic and comprehensive introduction about the development and application of medicinal plant genomes that have been reported until now. Here, we provide a historical perspective on the current situation of genomes in medicinal plant biology, highlight the use of the rapidly developing sequencing technologies, and conduct a comprehensive summary on how the genomes apply to solve the practical problems in medicinal plants, like genomics-assisted herb breeding, evolution history revelation, herbal synthetic biology study, and geoherbal research, which are important for effective utilization, rational use and sustainable protection of medicinal plants.
Collapse
Affiliation(s)
- Qi-Qing Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yue Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Zi-Yu Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Chi-Chou Lao
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Yan-Yu Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Chun-Song Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- Joint Laboratory for Translational Cancer Research of Chinese Medicine, The Ministry of Education of the People’s Republic of China, Macau University of Science and Technology, Taipa, Macao SAR, China
- *Correspondence: Hua Zhou,
| |
Collapse
|
24
|
Arias T, Riaño‐Pachón DM, Di Stilio VS. Genomic and transcriptomic resources for candidate gene discovery in the Ranunculids. APPLICATIONS IN PLANT SCIENCES 2021; 9:e11407. [PMID: 33552749 PMCID: PMC7845765 DOI: 10.1002/aps3.11407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
PREMISE Multiple transitions from insect to wind pollination are associated with polyploidy and unisexual flowers in Thalictrum (Ranunculaceae), yet the underlying genetics remains unknown. We generated a draft genome of Thalictrum thalictroides, a representative of a clade with ancestral floral traits (diploid, hermaphrodite, and insect pollinated) and a model for functional studies. Floral transcriptomes of T. thalictroides and of wind-pollinated, andromonoecious T. hernandezii are presented as a resource to facilitate candidate gene discovery in flowers with different sexual and pollination systems. METHODS A draft genome of T. thalictroides and two floral transcriptomes of T. thalictroides and T. hernandezii were obtained from HiSeq 2000 Illumina sequencing and de novo assembly. RESULTS The T. thalictroides de novo draft genome assembly consisted of 44,860 contigs (N50 = 12,761 bp, 243 Mbp total length) and contained 84.5% conserved embryophyte single-copy genes. Floral transcriptomes contained representatives of most eukaryotic core genes, and most of their genes formed orthogroups. DISCUSSION To validate the utility of these resources, potential candidate genes were identified for the different floral morphologies using stepwise data set comparisons. Single-copy gene analysis and simple sequence repeat markers were also generated as a resource for population-level and phylogenetic studies.
Collapse
Affiliation(s)
- Tatiana Arias
- School of Biological SciencesThe University of Hong KongPokfulamHong Kong
- Department of BiologyUniversity of Washington, SeattleWashington98195‐1800USA
- Present address:
Tecnológico de AntioquiaCalle 78B No. 72A220MedellínColombia
| | - Diego Mauricio Riaño‐Pachón
- Laboratory of Computational, Evolutionary and Systems BiologyCenter for Nuclear Energy in AgricultureUniversity of São PauloPiracicabaSão Paulo13416‐000Brazil
| | | |
Collapse
|
25
|
Matveeva T, Khafizova G, Sokornova S. In Search of Herbal Anti-SARS-Cov2 Compounds. FRONTIERS IN PLANT SCIENCE 2020; 11:589998. [PMID: 33304368 PMCID: PMC7701093 DOI: 10.3389/fpls.2020.589998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 05/14/2023]
Abstract
On March 11, 2020, the World Health Organization (WHO) announced that the spread of the new coronavirus had reached the stage of a pandemic. To date (23.10.2020), there are more than 40 million confirmed cases of the disease in the world, at the same time there is still no effective treatment for the disease. For management and treatment of SARS-Cov2, the development of an antiviral drug is needed. Since the representatives of all human cultures have used medicinal plants to treat viral diseases throughout their history, plants can be considered as sources of new antiviral drug compounds against emerging viruses. The huge metabolic potential of plants allows us to expect discovery of plant compounds for the prevention and treatment of coronavirus infection. This idea is supported by number of papers on the anti-SARS-Cov2 activity of plant extracts and specific compounds in the experiments in silico, in vitro, and in vivo. Here, we summarize information on methods and approaches aimed to search for anti-SARS-Cov2 compounds including cheminformatics, bioinformatics, genetic engineering of viral targets, interacting with drugs, biochemical approaches etc. Our mini-review may be useful for better planning future experiments (including rapid methods for screening compounds for antiviral activity, the initial assessment of the antiviral potential of various plant species in relation to certain pathogens, etc.) and giving a hand to those who are making first steps in this field.
Collapse
Affiliation(s)
- Tatiana Matveeva
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Galina Khafizova
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia
| | - Sofia Sokornova
- Department of Toxicology and Biotechnology, All-Russian Institute of Plant Protection, St. Petersburg, Russia
| |
Collapse
|
26
|
Elucidation of the mechanism of anti-herpes action of two novel semisynthetic cardenolide derivatives. Arch Virol 2020; 165:1385-1396. [PMID: 32346764 PMCID: PMC7188521 DOI: 10.1007/s00705-020-04562-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
Human herpesviruses are among the most prevalent pathogens worldwide and have become an important public health issue. Recurrent infections and the emergence of resistant viral strains reinforce the need of searching new drugs to treat herpes virus infections. Cardiac glycosides are used clinically to treat cardiovascular disturbances, such as congestive heart failure and atrial arrhythmias. In recent years, they have sparked new interest in their potential anti-herpes action. It has been previously reported by our research group that two new semisynthetic cardenolides, namely C10 (3β-[(N-(2-hydroxyethyl)aminoacetyl]amino-3-deoxydigitoxigenin) and C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin), exhibited potential anti-HSV-1 and anti-HSV-2 with selectivity index values > 1,000, comparable with those of acyclovir. This work reports the mechanism investigation of anti-herpes action of these derivatives. The results demonstrated that C10 and C11 interfere with the intermediate and final steps of HSV replication, but not with the early stages, since they completely abolished the expression of the UL42 (β) and gD (γ) proteins and partially reduced that of ICP27 (α). Additionally, they were not virucidal and had no prophylactic effects. Both compounds inhibited HSV replication at nanomolar concentrations, but cardenolide C10 was more active than C11 and can be considered as an anti-herpes drug candidate including against acyclovir-resistant HSV-1 strains.
Collapse
|
27
|
Singh SK, Patra B, Paul P, Liu Y, Pattanaik S, Yuan L. Revisiting the ORCA gene cluster that regulates terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 293:110408. [PMID: 32081258 DOI: 10.1016/j.plantsci.2020.110408] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Transcription factor (TF) gene clusters in plants, such as tomato, potato, petunia, tobacco, and almond, have been characterized for their roles in the biosynthesis of diverse array of specialized metabolites. In Catharanthus roseus, three AP2/ERF TFs, ORCA3, ORCA4, and ORCA5, have been shown to be present on the same genomic scaffold, forming a cluster that regulates the biosynthesis of pharmaceutically important terpenoid indole alkaloids (TIAs). Our analysis of the recently updated C. roseus genome sequence revealed that the ORCA cluster comprises two additional AP2/ERFs, the previously characterized ORCA2 and a newly identified member designated as ORCA6. Transcriptomic analysis revealed that the ORCAs are highly expressed in stems, followed by leaves, roots and flowers. Expression of ORCAs was differentially induced in response to methyl-jasmonate and ethylene treatment. In addition, ORCA6 activated the strictosidine synthase (STR) promoter in tobacco cells. Activation of the STR promoter was significantly higher when ORCA2 or ORCA6 was coexpressed with the mitogen-activated protein kinase kinase, CrMPKK1. Furthermore, transient overexpression of ORCA6 in C. roseus flower petals activated TIA pathway gene expression and TIA accumulation. The results described here advance our understanding of regulation of TIA pathway by the ORCA gene cluster and the evolution for plant ERF gene clusters.
Collapse
Affiliation(s)
- Sanjay Kumar Singh
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA
| | - Barunava Patra
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA
| | - Priyanka Paul
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences and the Kentucky Tobacco Research and Development Center, University of Kentucky, 1401 University Drive, Lexington, KY 40546 USA; South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
28
|
Liu Y, Tang Q, Cheng P, Zhu M, Zhang H, Liu J, Zuo M, Huang C, Wu C, Sun Z, Liu Z. Whole-genome sequencing and analysis of the Chinese herbal plant Gelsemium elegans. Acta Pharm Sin B 2020; 10:374-382. [PMID: 32082980 PMCID: PMC7016290 DOI: 10.1016/j.apsb.2019.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Gelsemium elegans (G. elegans) (2n = 2x = 16) is genus of flowering plants belonging to the Gelsemicaeae family. METHOD Here, a high-quality genome assembly using the Oxford Nanopore Technologies (ONT) platform and high-throughput chromosome conformation capture techniques (Hi-C) were used. RESULTS A total of 56.11 Gb of raw GridION X5 platform ONT reads (6.23 Gb per cell) were generated. After filtering, 53.45 Gb of clean reads were obtained, giving 160 × coverage depth. The de novo genome assemblies 335.13 Mb, close to the 338 Mb estimated by k-mer analysis, was generated with contig N50 of 10.23 Mb. The vast majority (99.2%) of the G. elegans assembled sequence was anchored onto 8 pseudo-chromosomes. The genome completeness was then evaluated and 1338 of the 1440 conserved genes (92.9%) could be found in the assembly. Genome annotation revealed that 43.16% of the G. elegans genome is composed of repetitive elements and 23.9% is composed of long terminal repeat elements. We predicted 26,768 protein-coding genes, of which 84.56% were functionally annotated. CONCLUSION The genomic sequences of G. elegans could be a valuable source for comparative genomic analysis in the Gelsemicaeae family and will be useful for understanding the phylogenetic relationships of the indole alkaloid metabolism.
Collapse
|
29
|
Weitemier K, Straub SC, Fishbein M, Bailey CD, Cronn RC, Liston A. A draft genome and transcriptome of common milkweed ( Asclepias syriaca) as resources for evolutionary, ecological, and molecular studies in milkweeds and Apocynaceae. PeerJ 2019; 7:e7649. [PMID: 31579586 PMCID: PMC6756140 DOI: 10.7717/peerj.7649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/09/2019] [Indexed: 02/06/2023] Open
Abstract
Milkweeds (Asclepias) are used in wide-ranging studies including floral development, pollination biology, plant-insect interactions and co-evolution, secondary metabolite chemistry, and rapid diversification. We present a transcriptome and draft nuclear genome assembly of the common milkweed, Asclepias syriaca. This reconstruction of the nuclear genome is augmented by linkage group information, adding to existing chloroplast and mitochondrial genomic resources for this member of the Apocynaceae subfamily Asclepiadoideae. The genome was sequenced to 80.4× depth and the draft assembly contains 54,266 scaffolds ≥1 kbp, with N50 = 3,415 bp, representing 37% (156.6 Mbp) of the estimated 420 Mbp genome. A total of 14,474 protein-coding genes were identified based on transcript evidence, closely related proteins, and ab initio models, and 95% of genes were annotated. A large proportion of gene space is represented in the assembly, with 96.7% of Asclepias transcripts, 88.4% of transcripts from the related genus Calotropis, and 90.6% of proteins from Coffea mapping to the assembly. Scaffolds covering 75 Mbp of the Asclepias assembly formed 11 linkage groups. Comparisons of these groups with pseudochromosomes in Coffea found that six chromosomes show consistent stability in gene content, while one may have a long history of fragmentation and rearrangement. The progesterone 5β-reductase gene family, a key component of cardenolide production, is likely reduced in Asclepias relative to other Apocynaceae. The genome and transcriptome of common milkweed provide a rich resource for future studies of the ecology and evolution of a charismatic plant family.
Collapse
Affiliation(s)
- Kevin Weitemier
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR, USA
| | | | - Mark Fishbein
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK, USA
| | - C. Donovan Bailey
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Richard C. Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, OR, USA
| | - Aaron Liston
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
30
|
Zhong Z, Liu S, Zhu W, Ou Y, Yamaguchi H, Hitachi K, Tsuchida K, Tian J, Komatsu S. Phosphoproteomics Reveals the Biosynthesis of Secondary Metabolites in Catharanthus roseus under Ultraviolet-B Radiation. J Proteome Res 2019; 18:3328-3341. [PMID: 31356092 DOI: 10.1021/acs.jproteome.9b00267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ultraviolet (UV)-B radiation acts as an elicitor to enhance the production of secondary metabolites in medicinal plants. To investigate the mechanisms, which lead to secondary metabolites in Catharanthus roseus under UVB radiation, a phosphoproteomic technique was used. ATP content increased in the leaves of C. roseus under UVB radiation. Phosphoproteins related to calcium such as calmodulin, calcium-dependent kinase, and heat shock proteins increased. Phosphoproteins related to protein synthesis/modification/degradation and signaling intensively changed. Metabolomic analysis indicated that the metabolites classified with pentoses, aromatic amino acids, and phenylpropanoids accumulated under UVB radiation. Phosphoproteomic and immunoblot analyses indicated that proteins related to glycolysis and the reactive-oxygen species scavenging system were changed under UVB radiation. These results suggest that UVB radiation activates the calcium-related pathway and reactive-oxygen species scavenging system in C. roseus. These changes lead to the upregulation of proteins, which are responsible for the redox reactions in secondary metabolism and are important for the accumulation of secondary metabolites in C. roseus under UVB radiation.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310027 , P. R. China.,Faculty of Life and Environmental and Information Sciences , Fukui University of Technology , Fukui 910-8505 , Japan
| | - Shengzhi Liu
- College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Yuting Ou
- College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Hisateru Yamaguchi
- Institute for Comprehensive Medical Science , Fujita Health University , Toyoake 470-1192 , Japan
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science , Fujita Health University , Toyoake 470-1192 , Japan
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science , Fujita Health University , Toyoake 470-1192 , Japan
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Setsuko Komatsu
- Faculty of Life and Environmental and Information Sciences , Fukui University of Technology , Fukui 910-8505 , Japan
| |
Collapse
|
31
|
Lee J, Jang HJ, Chun H, Pham TH, Bak Y, Shin JW, Jin H, Kim YI, Ryu HW, Oh SR, Yoon DY. Calotropis gigantea extract induces apoptosis through extrinsic/intrinsic pathways and reactive oxygen species generation in A549 and NCI-H1299 non-small cell lung cancer cells. Altern Ther Health Med 2019; 19:134. [PMID: 31215445 PMCID: PMC6582476 DOI: 10.1186/s12906-019-2561-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/11/2019] [Indexed: 12/25/2022]
Abstract
Background Calotropis gigantea (CG) is a tall and waxy flower that is used as a traditional remedy for fever, indigestion, rheumatism, leprosy, and leukoderma. However, the precise mechanisms of its anticancer effects have not yet been examined in human non-small cell lung cancer (NSCLC) cells. In this study, we investigated whether CG extract exerted an apoptotic effect in A549 and NCI-H1299 NSCLC cells. Methods The ethanol extract of CG was prepared, and its apoptotic effects on A549 and NCI-H1299 NSCLC cells were assessed by using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxy methoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining, cell cycle analysis, real-time polymerase chain reaction (RT-PCR), western blotting, JC-1 staining, and ROS detection assay. Results The CG extract induced apoptosis through the stimulation of intrinsic and extrinsic signaling pathways in A549 and NCI-H1299 lung cancer cells. Cell cycle arrest was induced by the CG extract in both cell lines. Reactive oxygen species (ROS), which can induce cell death, were also generated in the CG-treated A549 and NCI-H1299 cells. Conclusions These data confirmed that CG caused apoptosis through the activation of extrinsic and intrinsic pathways, cell cycle arrest, and ROS generation in A549 and NCI-H1299 lung cancer cells. Thus, CG can be suggested as a potential agent for lung cancer therapy. Electronic supplementary material The online version of this article (10.1186/s12906-019-2561-1) contains supplementary material, which is available to authorized users.
Collapse
|