1
|
Stephan OOH. Effects of environmental stress factors on the actin cytoskeleton of fungi and plants: Ionizing radiation and ROS. Cytoskeleton (Hoboken) 2023; 80:330-355. [PMID: 37066976 DOI: 10.1002/cm.21758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Actin is an abundant and multifaceted protein in eukaryotic cells that has been detected in the cytoplasm as well as in the nucleus. In cooperation with numerous interacting accessory-proteins, monomeric actin (G-actin) polymerizes into microfilaments (F-actin) which constitute ubiquitous subcellular higher order structures. Considering the extensive spatial dimensions and multifunctionality of actin superarrays, the present study analyses the issue if and to what extent environmental stress factors, specifically ionizing radiation (IR) and reactive oxygen species (ROS), affect the cellular actin-entity. In that context, this review particularly surveys IR-response of fungi and plants. It examines in detail which actin-related cellular constituents and molecular pathways are influenced by IR and related ROS. This comprehensive survey concludes that the general integrity of the total cellular actin cytoskeleton is a requirement for IR-tolerance. Actin's functions in genome organization and nuclear events like chromatin remodeling, DNA-repair, and transcription play a key role. Beyond that, it is highly significant that the macromolecular cytoplasmic and cortical actin-frameworks are affected by IR as well. In response to IR, actin-filament bundling proteins (fimbrins) are required to stabilize cables or patches. In addition, the actin-associated factors mediating cellular polarity are essential for IR-survivability. Moreover, it is concluded that a cellular homeostasis system comprising ROS, ROS-scavengers, NADPH-oxidases, and the actin cytoskeleton plays an essential role here. Consequently, besides the actin-fraction which controls crucial genome-integrity, also the portion which facilitates orderly cellular transport and polarized growth has to be maintained in order to survive IR.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, 91058, Germany
| |
Collapse
|
2
|
Geng Q, Li H, Wang D, Sheng RC, Zhu H, Klosterman SJ, Subbarao KV, Chen JY, Chen FM, Zhang DD. The Verticillium dahliae Spt-Ada-Gcn5 Acetyltransferase Complex Subunit Ada1 Is Essential for Conidia and Microsclerotia Production and Contributes to Virulence. Front Microbiol 2022; 13:852571. [PMID: 35283850 PMCID: PMC8905346 DOI: 10.3389/fmicb.2022.852571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Verticillium dahliae is a destructive soil-borne pathogen of many economically important dicots. The genetics of pathogenesis in V. dahliae has been extensively studied. Spt-Ada-Gcn5 acetyltransferase complex (SAGA) is an ATP-independent multifunctional chromatin remodeling complex that contributes to diverse transcriptional regulatory functions. As members of the core module in the SAGA complex in Saccharomyces cerevisiae, Ada1, together with Spt7 and Spt20, play an important role in maintaining the integrity of the complex. In this study, we identified homologs of the SAGA complex in V. dahliae and found that deletion of the Ada1 subunit (VdAda1) causes severe defects in the formation of conidia and microsclerotia, and in melanin biosynthesis and virulence. The effect of VdAda1 on histone acetylation in V. dahliae was confirmed by western blot analysis. The deletion of VdAda1 resulted in genome-wide alteration of the V. dahliae transcriptome, including genes encoding transcription factors and secreted proteins, suggesting its prominent role in the regulation of transcription and virulence. Overall, we demonstrated that VdAda1, a member of the SAGA complex, modulates multiple physiological processes by regulating global gene expression that impinge on virulence and survival in V. dahliae.
Collapse
Affiliation(s)
- Qi Geng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dan Wang
- Team of Crop Verticillium Wilt, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruo-Cheng Sheng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - He Zhu
- National Cotton Industry Technology System Liaohe Comprehensive Experimental Station, The Cotton Research Center of Liaoning Academy of Agricultural Sciences, Liaoning Provincial Institute of Economic Crops, Liaoyang, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, United States
| | - Krishna V Subbarao
- Department of Plant Pathology, c/o U.S. Agricultural Research Station, University of California, Davis, Salinas, CA, United States
| | - Jie-Yin Chen
- Team of Crop Verticillium Wilt, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng-Mao Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dan-Dan Zhang
- Team of Crop Verticillium Wilt, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
3
|
Legartová S, Svobodová Kovaříková A, Běhalová Suchánková J, Polášek-Sedláčková H, Bártová E. Early recruitment of PARP-dependent m 8A RNA methylation at DNA lesions is subsequently accompanied by active DNA demethylation. RNA Biol 2022; 19:1153-1171. [PMID: 36382943 PMCID: PMC9673957 DOI: 10.1080/15476286.2022.2139109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
RNA methylation, especially 6-methyladenosine (m6A)-modified RNAs, plays a specific role in DNA damage response (DDR). Here, we also observe that RNA modified at 8-methyladenosine (m8A) is recruited to UVA-damaged chromatin immediately after microirradiation. Interestingly, the level of m8A RNA at genomic lesions was reduced after inhibition of histone deacetylases and DNA methyltransferases. It appears in later phases of DNA damage response, accompanied by active DNA demethylation. Also, PARP inhibitor (PARPi), Olaparib, prevented adenosine methylation at microirradiated chromatin. PARPi abrogated not only m6A and m8A RNA positivity at genomic lesions, but also XRCC1, the factor of base excision repair (BER), did not recognize lesions in DNA. To this effect, Olaparib enhanced the genome-wide level of γH2AX. This histone modification interacted with m8A RNAs to a similar extent as m8A RNAs with DNA. Pronounced interaction properties we did not observe for m6A RNAs and DNA; however, m6A RNA interacted with XRCC1 with the highest efficiency, especially in microirradiated cells. Together, we show that the recruitment of m6A RNA and m8A RNA to DNA lesions is PARP dependent. We suggest that modified RNAs likely play a role in the BER mechanism accompanied by active DNA demethylation. In this process, γH2AX stabilizes m6A/m8A-positive RNA-DNA hybrid loops via its interaction with m8A RNAs. R-loops could represent basic three-stranded structures recognized by PARP-dependent non-canonical m6A/m8A-mediated DNA repair pathway.
Collapse
Affiliation(s)
- Soňa Legartová
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Alena Svobodová Kovaříková
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Jana Běhalová Suchánková
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Hana Polášek-Sedláčková
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| | - Eva Bártová
- Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic,CONTACT Eva Bártová Department of Cell Biology and Epigenetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65, Brno, Czech Republic
| |
Collapse
|
4
|
A 300-fold enhancement of imino nucleic acid resonances by hyperpolarized water provides a new window for probing RNA refolding by 1D and 2D NMR. Proc Natl Acad Sci U S A 2020; 117:2449-2455. [PMID: 31949004 DOI: 10.1073/pnas.1916956117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
NMR sensitivity-enhancement methods involving hyperpolarized water could be of importance for solution-state biophysical investigations. Hyperpolarized water (HyperW) can enhance the 1H NMR signals of exchangeable sites by orders of magnitude over their thermal counterparts, while providing insight into chemical exchange and solvent accessibility at a site-resolved level. As HyperW's enhancements are achieved by exploiting fast solvent exchanges associated with minimal interscan delays, possibilities for the rapid monitoring of chemical reactions and biomolecular (re)folding are opened. HyperW NMR can also accommodate heteronuclear transfers, facilitating the rapid acquisition of 2-dimensional (2D) 15N-1H NMR correlations, and thereby combining an enhanced spectral resolution with speed and sensitivity. This work demonstrates how these qualities can come together for the study of nucleic acids. HyperW injections were used to target the guanine-sensing riboswitch aptamer domain (GSRapt) of the xpt-pbuX operon in Bacillus subtilis Unlike what had been observed in proteins, where residues benefited of HyperW NMR only if/when sufficiently exposed to water, these enhancements applied to every imino resonance throughout the RNA. The >300-fold enhancements observed in the resulting 1H NMR spectra allowed us to monitor in real time the changes that GSRapt undergoes upon binding hypoxanthine, a high-affinity interaction leading to conformational refolding on a ∼1-s timescale at 36 °C. Structural responses could be identified for several nucleotides by 1-dimensional (1D) imino 1H NMR as well as by 2D HyperW NMR spectra acquired upon simultaneous injection of hyperpolarized water and hypoxanthine. The folding landscape revealed by this HyperW strategy for GSRapt, is briefly discussed.
Collapse
|
5
|
Noguchi C, Singh T, Ziegler MA, Peake JD, Khair L, Aza A, Nakamura TM, Noguchi E. The NuA4 acetyltransferase and histone H4 acetylation promote replication recovery after topoisomerase I-poisoning. Epigenetics Chromatin 2019; 12:24. [PMID: 30992049 PMCID: PMC6466672 DOI: 10.1186/s13072-019-0271-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 04/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone acetylation plays an important role in DNA replication and repair because replicating chromatin is subject to dynamic changes in its structures. However, its precise mechanism remains elusive. In this report, we describe roles of the NuA4 acetyltransferase and histone H4 acetylation in replication fork protection in the fission yeast Schizosaccharomyces pombe. RESULTS Downregulation of NuA4 subunits renders cells highly sensitive to camptothecin, a compound that induces replication fork breakage. Defects in NuA4 function or mutations in histone H4 acetylation sites lead to impaired recovery of collapsed replication forks and elevated levels of Rad52 DNA repair foci, indicating the role of histone H4 acetylation in DNA replication and fork repair. We also show that Vid21 interacts with the Swi1-Swi3 replication fork protection complex and that Swi1 stabilizes Vid21 and promotes efficient histone H4 acetylation. Furthermore, our genetic analysis demonstrates that loss of Swi1 further sensitizes NuA4 and histone H4 mutant cells to replication fork breakage. CONCLUSION Considering that Swi1 plays a critical role in replication fork protection, our results indicate that NuA4 and histone H4 acetylation promote repair of broken DNA replication forks.
Collapse
Affiliation(s)
- Chiaki Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Tanu Singh
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.,Fox Chase Cancer Center, Philadelphia, USA
| | - Melissa A Ziegler
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Jasmine D Peake
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Lyne Khair
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, 60607, USA.,University of Massachusetts Medical School, Worcester, USA
| | - Ana Aza
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Toru M Nakamura
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
6
|
Ljungman M, Parks L, Hulbatte R, Bedi K. The role of H3K79 methylation in transcription and the DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 780:48-54. [PMID: 31395348 DOI: 10.1016/j.mrrev.2017.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/19/2017] [Accepted: 11/15/2017] [Indexed: 12/16/2022]
Abstract
Chromatin plays a critical role in organizing and protecting DNA. However, chromatin acts as an impediment for transcription and DNA repair. Histone modifications, such as H3K79 methylation, promote transcription and genomic stability by enhancing transcription elongation and by serving as landing sites for proteins involved in the DNA damage response. This review summarizes the current understanding of the role of H3K79 methylation in transcription, how it affects genome stability and opportunities to develop impactful therapeutic interventions for cancer.
Collapse
Affiliation(s)
- Mats Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, United States.
| | - Luke Parks
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States; Department of Cell and Molecular Biology, Uppsala University, Box 256, 75105 Uppsala, Sweden
| | - Radhika Hulbatte
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States
| | - Karan Bedi
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Langford ST, Wiggins CS, Santos R, Hauser M, Becker JM, Ruggles AE. Three-dimensional spatiotemporal tracking of fluorine-18 radiolabeled yeast cells via positron emission particle tracking. PLoS One 2017; 12:e0180503. [PMID: 28683074 PMCID: PMC5500330 DOI: 10.1371/journal.pone.0180503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/18/2017] [Indexed: 01/15/2023] Open
Abstract
A method for Positron Emission Particle Tracking (PEPT) based on optical feature point identification techniques is demonstrated for use in low activity tracking experiments. A population of yeast cells of approximately 125,000 members is activated to roughly 55 Bq/cell by 18F uptake. An in vitro particle tracking experiment is performed with nearly 20 of these cells after decay to 32 Bq/cell. These cells are successfully identified and tracked simultaneously in this experiment. This work extends the applicability of PEPT as a cell tracking method by allowing a number of cells to be tracked together, and demonstrating tracking for very low activity tracers.
Collapse
Affiliation(s)
- Seth T. Langford
- Department of Nuclear Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee, United States of America
| | - Cody S. Wiggins
- Department of Physics and Astronomy, University of Tennessee-Knoxville, Knoxville, Tennessee, United States of America
- * E-mail:
| | - Roque Santos
- Department of Nuclear Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee, United States of America
- Departamento de Ciencias Nucleares, Escuela Politécnica Nacional, Quito, Ecuador
| | - Melinda Hauser
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, Tennessee, United States of America
| | - Jeffrey M. Becker
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, Tennessee, United States of America
| | - Arthur E. Ruggles
- Department of Nuclear Engineering, University of Tennessee-Knoxville, Knoxville, Tennessee, United States of America
| |
Collapse
|
8
|
van der Schot G, Svenda M, Maia FRNC, Hantke MF, DePonte DP, Seibert MM, Aquila A, Schulz J, Kirian RA, Liang M, Stellato F, Bari S, Iwan B, Andreasson J, Timneanu N, Bielecki J, Westphal D, Nunes de Almeida F, Odić D, Hasse D, Carlsson GH, Larsson DSD, Barty A, Martin AV, Schorb S, Bostedt C, Bozek JD, Carron S, Ferguson K, Rolles D, Rudenko A, Epp SW, Foucar L, Rudek B, Erk B, Hartmann R, Kimmel N, Holl P, Englert L, Loh ND, Chapman HN, Andersson I, Hajdu J, Ekeberg T. Open data set of live cyanobacterial cells imaged using an X-ray laser. Sci Data 2016; 3:160058. [PMID: 27479514 PMCID: PMC4968219 DOI: 10.1038/sdata.2016.58] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/18/2016] [Indexed: 01/20/2023] Open
Abstract
Structural studies on living cells by conventional methods are limited to low resolution because radiation damage kills cells long before the necessary dose for high resolution can be delivered. X-ray free-electron lasers circumvent this problem by outrunning key damage processes with an ultra-short and extremely bright coherent X-ray pulse. Diffraction-before-destruction experiments provide high-resolution data from cells that are alive when the femtosecond X-ray pulse traverses the sample. This paper presents two data sets from micron-sized cyanobacteria obtained at the Linac Coherent Light Source, containing a total of 199,000 diffraction patterns. Utilizing this type of diffraction data will require the development of new analysis methods and algorithms for studying structure and structural variability in large populations of cells and to create abstract models. Such studies will allow us to understand living cells and populations of cells in new ways. New X-ray lasers, like the European XFEL, will produce billions of pulses per day, and could open new areas in structural sciences.
Collapse
Affiliation(s)
- Gijs van der Schot
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Max F Hantke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Daniel P DePonte
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - M Marvin Seibert
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Andrew Aquila
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Joachim Schulz
- European XFEL, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - Richard A Kirian
- Arizona State University, Physics Department, PO Box 871504, Tempe, Arizona 85287-1504, USA
| | - Mengning Liang
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Francesco Stellato
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,I.N.F.N. and Physics Department, University of Rome 'Tor Vergata', Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sadia Bari
- European XFEL, Albert-Einstein-Ring 19, 22761 Hamburg, Germany.,Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Bianca Iwan
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Jakob Andreasson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden.,ELI beamlines, Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 18221 Prague, Czech Republic
| | - Nicusor Timneanu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden.,Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, Box 516, SE-751 20 Uppsala, Sweden
| | - Johan Bielecki
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | | | - Duško Odić
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden.,Center for Technology Transfer and Innovation, Jozef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana, Slovenia
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Gunilla H Carlsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Daniel S D Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Anton Barty
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Andrew V Martin
- ARC Centre of Excellence for Advanced Molecular Imaging, School of Physics, The University of Melbourne, Victoria 3010, Australia
| | - Sebastian Schorb
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Christoph Bostedt
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - John D Bozek
- Synchrotron SOLEIL, L'orme des Merisiers roundabout of St Aubin, 91190 Saint Aubin, France
| | - Sebastian Carron
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Ken Ferguson
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Daniel Rolles
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany.,Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Artem Rudenko
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany.,Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Sascha W Epp
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany.,Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Lutz Foucar
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany.,Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Benedikt Rudek
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany.,Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Benjamin Erk
- Max Planck Advanced Study Group, Center for Free Electron Laser Science, Notkestrasse 85, 22607 Hamburg, Germany.,Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | | - Nils Kimmel
- Max-Planck-Institut Halbleiterlabor, Otto-Hahn-Ring 6, 81739 München, Germany.,Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany
| | - Peter Holl
- PNSensor GmbH, Otto-Hahn-Ring 6, 81739 Munich, Germany
| | - Lars Englert
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstrasse, 85741 Garching, Germany.,Ultrafast Coherent Dynamics Group, University Oldenburg, Carl-von-Ossietzky Strasse 9-11, 26129 Oldenburg, Germany
| | - N Duane Loh
- Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4 Blk S1 A, Singapore 117546, Singapore
| | - Henry N Chapman
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany.,University of Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden.,European XFEL, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - Tomas Ekeberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| |
Collapse
|
9
|
Kozhina TN, Evstiukhina TA, Peshekhonov VT, Chernenkov AY, Korolev VG. Dot1 and Set2 histone methylases control the spontaneous and UV-induced mutagenesis levels in the Saccharomyces cerevisiae yeasts. RUSS J GENET+ 2016. [DOI: 10.1134/s102279541602006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
van der Schot G, Svenda M, Maia FRNC, Hantke M, DePonte DP, Seibert MM, Aquila A, Schulz J, Kirian R, Liang M, Stellato F, Iwan B, Andreasson J, Timneanu N, Westphal D, Almeida FN, Odic D, Hasse D, Carlsson GH, Larsson DSD, Barty A, Martin AV, Schorb S, Bostedt C, Bozek JD, Rolles D, Rudenko A, Epp S, Foucar L, Rudek B, Hartmann R, Kimmel N, Holl P, Englert L, Duane Loh NT, Chapman HN, Andersson I, Hajdu J, Ekeberg T. Imaging single cells in a beam of live cyanobacteria with an X-ray laser. Nat Commun 2015; 6:5704. [PMID: 25669616 DOI: 10.1038/ncomms6704] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 10/29/2014] [Indexed: 01/01/2023] Open
Abstract
There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.
Collapse
Affiliation(s)
- Gijs van der Schot
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Filipe R N C Maia
- 1] Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden [2] Lawrence Berkeley National Lab, 1 Cyclotron Road Mail Stop 943-256, Berkeley, California 94720, USA
| | - Max Hantke
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Daniel P DePonte
- 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - M Marvin Seibert
- 1] Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden [2] LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Andrew Aquila
- 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] The European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - Joachim Schulz
- 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] The European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - Richard Kirian
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Mengning Liang
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Francesco Stellato
- 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] I.N.F.N. and Physics Department, University of Rome 'Tor Vergata', Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Bianca Iwan
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Jakob Andreasson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Nicusor Timneanu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Daniel Westphal
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - F Nunes Almeida
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Dusko Odic
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Dirk Hasse
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Gunilla H Carlsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Daniel S D Larsson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Anton Barty
- Lawrence Berkeley National Lab, 1 Cyclotron Road Mail Stop 943-256, Berkeley, California 94720, USA
| | - Andrew V Martin
- 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] ARC Centre of Excellence for Coherent X-ray Science, School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sebastian Schorb
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Christoph Bostedt
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - John D Bozek
- LCLS, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Daniel Rolles
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Artem Rudenko
- 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] Department of Physics, Kansas State University, 331 Cardwell Hall, Manhattan, Kansas 66506, USA
| | - Sascha Epp
- Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Lutz Foucar
- Max-Planck-Institut für medizinische Forschung, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Benedikt Rudek
- Physikalisch-Technische Bundesanstalt (PTB) Bundesallee 100, 38116 Braunschweig, Germany
| | | | - Nils Kimmel
- 1] PNSensor GmbH, Römerstrasse 28, 80803 München, Germany [2] Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, 85741 Garching, Germany
| | - Peter Holl
- PNSensor GmbH, Römerstrasse 28, 80803 München, Germany
| | - Lars Englert
- Institute of Physics, Carl von Ossietzky Universitaet Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - Ne-Te Duane Loh
- Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - Henry N Chapman
- 1] Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany [2] University of Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Inger Andersson
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| | - Janos Hajdu
- 1] Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden [2] The European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - Tomas Ekeberg
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden
| |
Collapse
|
11
|
House NCM, Koch MR, Freudenreich CH. Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet 2014; 5:296. [PMID: 25250043 PMCID: PMC4155812 DOI: 10.3389/fgene.2014.00296] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 08/08/2014] [Indexed: 12/28/2022] Open
Abstract
DNA repair must take place in the context of chromatin, and chromatin modifications and DNA repair are intimately linked. The study of double-strand break repair has revealed numerous histone modifications that occur after induction of a DSB, and modification of the repair factors themselves can also occur. In some cases the function of the modification is at least partially understood, but in many cases it is not yet clear. Although DSB repair is a crucial activity for cell survival, DSBs account for only a small percentage of the DNA lesions that occur over the lifetime of a cell. Repair of single-strand gaps, nicks, stalled forks, alternative DNA structures, and base lesions must also occur in a chromatin context. There is increasing evidence that these repair pathways are also regulated by histone modifications and chromatin remodeling. In this review, we will summarize the current state of knowledge of chromatin modifications that occur during non-DSB repair, highlighting similarities and differences to DSB repair as well as remaining questions.
Collapse
Affiliation(s)
| | - Melissa R Koch
- Department of Biology, Tufts University Medford, MA, USA
| | - Catherine H Freudenreich
- Department of Biology, Tufts University Medford, MA, USA ; Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University Boston, MA, USA
| |
Collapse
|
12
|
Rossodivita AA, Boudoures AL, Mecoli JP, Steenkiste EM, Karl AL, Vines EM, Cole AM, Ansbro MR, Thompson JS. Histone H3 K79 methylation states play distinct roles in UV-induced sister chromatid exchange and cell cycle checkpoint arrest in Saccharomyces cerevisiae. Nucleic Acids Res 2014; 42:6286-99. [PMID: 24748660 PMCID: PMC4041417 DOI: 10.1093/nar/gku242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Histone post-translational modifications have been shown to contribute to DNA damage repair. Prior studies have suggested that specific H3K79 methylation states play distinct roles in the response to UV-induced DNA damage. To evaluate these observations, we examined the effect of altered H3K79 methylation patterns on UV-induced G1/S checkpoint response and sister chromatid exchange (SCE). We found that the di- and trimethylated states both contribute to activation of the G1/S checkpoint to varying degrees, depending on the synchronization method, although methylation is not required for checkpoint in response to high levels of UV damage. In contrast, UV-induced SCE is largely a product of the trimethylated state, which influences the usage of gene conversion versus popout mechanisms. Regulation of H3K79 methylation by H2BK123 ubiquitylation is important for both checkpoint function and SCE. H3K79 methylation is not required for the repair of double-stranded breaks caused by transient HO endonuclease expression, but does play a modest role in survival from continuous exposure. The overall results provide evidence for the participation of H3K79 methylation in UV-induced recombination repair and checkpoint activation, and further indicate that the di- and trimethylation states play distinct roles in these DNA damage response pathways.
Collapse
Affiliation(s)
| | - Anna L Boudoures
- Department of Biology, Denison University, Granville, OH 43023, USA
| | | | | | - Andrea L Karl
- Department of Biology, Denison University, Granville, OH 43023, USA
| | - Eudora M Vines
- Department of Biology, Denison University, Granville, OH 43023, USA
| | - Arron M Cole
- Department of Biology, Denison University, Granville, OH 43023, USA
| | - Megan R Ansbro
- Department of Biology, Denison University, Granville, OH 43023, USA
| | | |
Collapse
|
13
|
Kim W, Choi M, Kim JE. The histone methyltransferase Dot1/DOT1L as a critical regulator of the cell cycle. Cell Cycle 2014; 13:726-38. [PMID: 24526115 PMCID: PMC3979909 DOI: 10.4161/cc.28104] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dot1/DOT1L catalyzes the methylation of histone H3 lysine 79 (H3K79), which regulates diverse cellular processes, such as development, reprogramming, differentiation, and proliferation. In regards to these processes, studies of Dot1/DOT1L-dependent H3K79 methylation have mainly focused on the transcriptional regulation of specific genes. Although the gene transcription mediated by Dot1/DOT1L during the cell cycle is not fully understood, H3K79 methylation plays a critical role in the progression of G 1 phase, S phase, mitosis, and meiosis. This modification may contribute to the chromatin structure that controls gene expression, replication initiation, DNA damage response, microtubule reorganization, chromosome segregation, and heterochromatin formation. Overall, Dot1/DOT1L is required to maintain genomic and chromosomal stability. This review summarizes the several functions of Dot1/DOT1L and highlights its role in cell cycle regulation.
Collapse
Affiliation(s)
- Wootae Kim
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| | - Minji Choi
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| | - Ja-Eun Kim
- Department of Pharmacology; School of Medicine; Kyung Hee University; Seoul, Republic of Korea; Department of Biomedical Science; Graduate School; Kyung Hee University; Seoul, Republic of Korea
| |
Collapse
|
14
|
Yamaguchi K, Yamaguchi R, Takahashi N, Ikenoue T, Fujii T, Shinozaki M, Tsurita G, Hata K, Niida A, Imoto S, Miyano S, Nakamura Y, Furukawa Y. Overexpression of cohesion establishment factor DSCC1 through E2F in colorectal cancer. PLoS One 2014; 9:e85750. [PMID: 24465681 PMCID: PMC3894995 DOI: 10.1371/journal.pone.0085750] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 11/30/2013] [Indexed: 02/06/2023] Open
Abstract
Ctf18-replication factor C complex including Dscc1 (DNA replication and sister chromatid cohesion 1) is implicated in sister chromatid cohesion, DNA replication, and genome stability in S. cerevisiae and C. elegans. We previously performed gene expression profiling in primary colorectal cancer cells in order to identify novel molecular targets for the treatment of colorectal cancer. A feature of the cancer-associated transcriptional signature revealed from this effort is the elevated expression of the proto-oncogene DSCC1. Here, we have interrogated the molecular basis for deviant expression of human DSCC1 in colorectal cancer and its ability to promote survival of cancer cells. Quantitative PCR and immunohistochemical analyses corroborated that the expression level of DSCC1 is elevated in 60-70% of colorectal tumors compared to their matched noncancerous colonic mucosa. An in silico evaluation of the presumptive DSCC1 promoter region for consensus DNA transcriptional regulatory elements revealed a potential role for the E2F family of DNA-binding proteins in controlling DSCC1 expression. RNAi-mediated reduction of E2F1 reduced expression of DSCC1 in colorectal cancer cells. Gain- and loss-of-function experiments demonstrated that DSCC1 is involved in the viability of cancer cells in response to genotoxic stimuli. We reveal that E2F-dependent expression of DSCC1 confers anti-apoptotic properties in colorectal cancer cells, and that its suppression may be a useful option for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Kiyoshi Yamaguchi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- * E-mail:
| | - Rui Yamaguchi
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Norihiko Takahashi
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tsuneo Ikenoue
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoaki Fujii
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masaru Shinozaki
- Department of Surgery, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Giichiro Tsurita
- Department of Surgery, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Keisuke Hata
- Department of Surgery, Research Hospital, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Niida
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seiya Imoto
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, Advanced Clinical Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
A multistep genomic screen identifies new genes required for repair of DNA double-strand breaks in Saccharomyces cerevisiae. BMC Genomics 2013; 14:251. [PMID: 23586741 PMCID: PMC3637596 DOI: 10.1186/1471-2164-14-251] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Efficient mechanisms for rejoining of DNA double-strand breaks (DSBs) are vital because misrepair of such lesions leads to mutation, aneuploidy and loss of cell viability. DSB repair is mediated by proteins acting in two major pathways, called homologous recombination and nonhomologous end-joining. Repair efficiency is also modulated by other processes such as sister chromatid cohesion, nucleosome remodeling and DNA damage checkpoints. The total number of genes influencing DSB repair efficiency is unknown. RESULTS To identify new yeast genes affecting DSB repair, genes linked to gamma radiation resistance in previous genome-wide surveys were tested for their impact on repair of site-specific DSBs generated by in vivo expression of EcoRI endonuclease. Eight members of the RAD52 group of DNA repair genes (RAD50, RAD51, RAD52, RAD54, RAD55, RAD57, MRE11 and XRS2) and 73 additional genes were found to be required for efficient repair of EcoRI-induced DSBs in screens utilizing both MATa and MATα deletion strain libraries. Most mutants were also sensitive to the clastogenic chemicals MMS and bleomycin. Several of the non-RAD52 group genes have previously been linked to DNA repair and over half of the genes affect nuclear processes. Many proteins encoded by the protective genes have previously been shown to associate physically with each other and with known DNA repair proteins in high-throughput proteomics studies. A majority of the proteins (64%) share sequence similarity with human proteins, suggesting that they serve similar functions. CONCLUSIONS We have used a genetic screening approach to detect new genes required for efficient repair of DSBs in Saccharomyces cerevisiae. The findings have spotlighted new genes that are critical for maintenance of genome integrity and are therefore of greatest concern for their potential impact when the corresponding gene orthologs and homologs are inactivated or polymorphic in human cells.
Collapse
|
16
|
Mathiasen DP, Gallina I, Germann SM, Hamou W, Eléouët M, Thodberg S, Eckert-Boulet N, Game J, Lisby M. Physical mapping and cloning of RAD56. Gene X 2013; 519:182-6. [DOI: 10.1016/j.gene.2013.01.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 01/22/2013] [Accepted: 01/25/2013] [Indexed: 11/16/2022] Open
|
17
|
Sadli N, Ackland ML, De Mel D, Sinclair AJ, Suphioglu C. Effects of zinc and DHA on the epigenetic regulation of human neuronal cells. Cell Physiol Biochem 2012; 29:87-98. [PMID: 22415078 DOI: 10.1159/000337590] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2011] [Indexed: 12/14/2022] Open
Abstract
Dietary intake of zinc and omega-3 fatty acids (DHA) have health benefits for a number of human diseases. However, the molecular basis of these health benefits remains unclear. Recently, we reported that zinc and DHA affect expression levels of histones H3 and H4 in human neuronal M17 cells. Here, using immunoblotting and densitometric analysis, we aimed to investigate the effect of zinc and DHA on post-translational modifications of histone H3 in M17 cells. In response to increase in zinc concentration, we observed increase in deacetylation, methylation and phosphorylation of H3 and decrease in acetylation. We also investigated the role of zinc in apoptosis, and found that zinc reduced the levels of the anti-apoptotic marker Bcl-2 while increasing the apoptotic marker caspase-3 levels, correlating with cell viability assays. Conversely, DHA treatment resulted in increase in acetylation of H3 and Bcl-2 levels and decrease in deacetylation, methylation, phosphorylation of H3 and caspase-3 levels, suggesting that DHA promotes gene expression and neuroprotection. Our novel findings show the opposing effects of zinc and DHA on the epigenetic regulation of human neuronal cells and highlight the potential benefit of dietary intake of DHA for management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Sadli
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | | | | | | | | |
Collapse
|
18
|
Hansen L, Kim NK, Mariño-Ramírez L, Landsman D. Analysis of biological features associated with meiotic recombination hot and cold spots in Saccharomyces cerevisiae. PLoS One 2011; 6:e29711. [PMID: 22242140 PMCID: PMC3248464 DOI: 10.1371/journal.pone.0029711] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 12/01/2011] [Indexed: 01/19/2023] Open
Abstract
Meiotic recombination is not distributed uniformly throughout the genome. There are regions of high and low recombination rates called hot and cold spots, respectively. The recombination rate parallels the frequency of DNA double-strand breaks (DSBs) that initiate meiotic recombination. The aim is to identify biological features associated with DSB frequency. We constructed vectors representing various chromatin and sequence-based features for 1179 DSB hot spots and 1028 DSB cold spots. Using a feature selection approach, we have identified five features that distinguish hot from cold spots in Saccharomyces cerevisiae with high accuracy, namely the histone marks H3K4me3, H3K14ac, H3K36me3, and H3K79me3; and GC content. Previous studies have associated H3K4me3, H3K36me3, and GC content with areas of mitotic recombination. H3K14ac and H3K79me3 are novel predictions and thus represent good candidates for further experimental study. We also show nucleosome occupancy maps produced using next generation sequencing exhibit a bias at DSB hot spots and this bias is strong enough to obscure biologically relevant information. A computational approach using feature selection can productively be used to identify promising biological associations. H3K14ac and H3K79me3 are novel predictions of chromatin marks associated with meiotic DSBs. Next generation sequencing can exhibit a bias that is strong enough to lead to incorrect conclusions. Care must be taken when interpreting high throughput sequencing data where systematic biases have been documented.
Collapse
Affiliation(s)
- Loren Hansen
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- Boston University, Bioinformatics Program, Boston, Massachusetts, United States of America
| | - Nak-Kyeong Kim
- Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia, United States of America
| | - Leonardo Mariño-Ramírez
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- PanAmerican Bioinformatics Institute, Santa Marta, Magdalena, Colombia
- * E-mail:
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
19
|
The double-bromodomain proteins Bdf1 and Bdf2 modulate chromatin structure to regulate S-phase stress response in Schizosaccharomyces pombe. Genetics 2011; 190:487-500. [PMID: 22095079 DOI: 10.1534/genetics.111.135459] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Bromodomain proteins bind acetylated histones to regulate transcription. Emerging evidence suggests that histone acetylation plays an important role in DNA replication and repair, although its precise mechanisms are not well understood. Here we report studies of two double bromodomain-containing proteins, Bdf1 and Bdf2, in fission yeast. Loss of Bdf1 or Bdf2 led to a reduction in the level of histone H4 acetylation. Both bdf1Δ and bdf2Δ cells showed sensitivity to DNA damaging agents, including camptothecin, that cause replication fork breakage. Consistently, Bdf1 and Bdf2 were important for recovery of broken replication forks and suppression of DNA damage. Surprisingly, deletion of bdf1 or bdf2 partially suppressed sensitivity of various checkpoint mutants including swi1Δ, mrc1Δ, cds1Δ, crb2Δ, chk1Δ, and rad3Δ, to hydroxyurea, a compound that stalls replication forks and activates the Cds1-dependent S-phase checkpoint. This suppression was not due to reactivation of Cds1. Instead, we found that bdf2 deletion alleviates DNA damage accumulation caused by defects in the DNA replication checkpoint. We also show that hydroxyurea sensitivity of mrc1Δ and swi1Δ was suppressed by mutations in histone H4 acetyltransferase subunits or histone H4. These results suggest that the double bromodomain-containing proteins modulate chromatin structure to coordinate DNA replication and S-phase stress response.
Collapse
|
20
|
Fink M, Thompson JS, Thoma F. Contributions of histone H3 nucleosome core surface mutations to chromatin structures, silencing and DNA repair. PLoS One 2011; 6:e26210. [PMID: 22053185 PMCID: PMC3203891 DOI: 10.1371/journal.pone.0026210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/22/2011] [Indexed: 11/18/2022] Open
Abstract
Histone H3 mutations in residues that cluster in a discrete region on the nucleosome surface around lysine 79 of H3 affect H3-K79 methylation, impair transcriptional silencing in subtelomeric chromatin, and reveal distinct contributions of histone H3 to various DNA-damage response and repair pathways. These residues might act by recruitment of silencing and DNA-damage response factors. Alternatively, their location on the nucleosome surface suggests a possible involvement in nucleosome positioning, stability and nucleosome interactions. Here, we show that the yeast H3 mutants hht2-T80A, hht2-K79E, hht2-L70S, and hht2-E73D show normal nucleosome positioning and stability in minichromosomes. However, loss of silencing in a subtelomeric URA3 gene correlates with a shift of the promoter nucleosome, while nucleosome positions and stability in the coding region are maintained. Moreover, the H3 mutants show normal repair of UV lesions by photolyase and nucleotide excision repair in minichromosomes and slightly enhanced repair in the subtelomeric region. Thus, these results support a role of those residues in the recruitment of silencing proteins and argue against a general role in nucleosome organization.
Collapse
Affiliation(s)
- Michel Fink
- Department of Biology, Institute of Cell Biology, ETH Zurich, Zurich, Switzerland
| | - Jeffrey S. Thompson
- Department of Biology, Denison University, Granville, Ohio, United States of America
| | - Fritz Thoma
- Department of Biology, Institute of Cell Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Lévesque N, Leung GP, Fok AK, Schmidt TI, Kobor MS. Loss of H3 K79 trimethylation leads to suppression of Rtt107-dependent DNA damage sensitivity through the translesion synthesis pathway. J Biol Chem 2010; 285:35113-22. [PMID: 20810656 DOI: 10.1074/jbc.m110.116855] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Genomic integrity is maintained by the coordinated interaction of many DNA damage response pathways, including checkpoints, DNA repair processes, and cell cycle restart. In Saccharomyces cerevisiae, the BRCA1 C-terminal domain-containing protein Rtt107/Esc4 is required for restart of DNA replication after successful repair of DNA damage and for cellular resistance to DNA-damaging agents. Rtt107 and its interaction partner Slx4 are phosphorylated during the initial phase of DNA damage response by the checkpoint kinases Mec1 and Tel1. Because the natural chromatin template plays an important role during the DNA damage response, we tested whether chromatin modifications affected the requirement for Rtt107 and Slx4 during DNA damage repair. Here, we report that the sensitivity to DNA-damaging agents of rtt107Δ and slx4Δ mutants was rescued by inactivation of the chromatin regulatory pathway leading to H3 K79 trimethylation. Further analysis revealed that lack of Dot1, the H3 K79 methyltransferase, led to activation of the translesion synthesis pathway, thereby allowing the survival in the presence of DNA damage. The DNA damage-induced phosphorylation of Rtt107 and Slx4, which was mutually dependent, was not restored in the absence of Dot1. The antagonistic relationship between Rtt107 and Dot1 was specific for DNA damage-induced phenotypes, whereas the genomic instability caused by loss of Rtt107 was not rescued. These data revealed a multifaceted functional relationship between Rtt107 and Dot1 in the DNA damage response and maintenance of genome integrity.
Collapse
Affiliation(s)
- Nancy Lévesque
- Department of Medical Genetics, University of British Columbia, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | | | | | |
Collapse
|
22
|
Chernikova SB, Dorth JA, Razorenova OV, Game JC, Brown JM. Deficiency in Bre1 impairs homologous recombination repair and cell cycle checkpoint response to radiation damage in mammalian cells. Radiat Res 2010; 174:558-65. [PMID: 20738173 DOI: 10.1667/rr2184.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The pathway involving Bre1-dependent monoubiquitination of histone H2B lysine 123, which leads to Dot1-dependent methylation of histone H3 lysine 79 (H3K79me2), has been implicated in survival after exposure to ionizing radiation in Saccharomyces cerevisiae. We found that depletion of mammalian homologs of Bre1 compromises the response to ionizing radiation, leading to increased radiosensitivity and a G(2)/M checkpoint defect. The deficiency in Bre1a/b function was also associated with increased sensitivity to crosslinking drugs and defective formation of Rad51 foci in mouse cells, suggesting a defect in homologous recombinational repair analogous to that seen in Saccharomyces. In budding yeast, H3K79me2 is important for the recruitment of the checkpoint signaling protein Rad9 to sites of double-strand breaks (DSBs). However, in mammalian cells, 53BP1 (the Rad9 ortholog) in addition to H3K79me2 recognizes a different residue, H4K20me2, and some studies argue that it is H4K20me2 and not H3K79me2 that is the preferred target for 53BP1. We show here that depletion of Bre1b specifically reduced dimethylation of H3K79 without affecting dimethylation of H4K20. Thus our data suggest that the observed defects in the radiation response of Bre1a/b-deficient cells are associated with reduced H3K79me2 and not with H4K20me2.
Collapse
Affiliation(s)
- Sophia B Chernikova
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305-5152, USA
| | | | | | | | | |
Collapse
|
23
|
Conde F, Ontoso D, Acosta I, Gallego-Sánchez A, Bueno A, San-Segundo PA. Regulation of tolerance to DNA alkylating damage by Dot1 and Rad53 in Saccharomyces cerevisiae. DNA Repair (Amst) 2010; 9:1038-49. [PMID: 20674515 DOI: 10.1016/j.dnarep.2010.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/24/2010] [Accepted: 07/05/2010] [Indexed: 10/19/2022]
Abstract
To maintain genomic integrity cells have to respond properly to a variety of exogenous and endogenous factors that produce genome injuries and interfere with DNA replication. DNA integrity checkpoints coordinate this response by slowing cell cycle progression to provide time for the cell to repair the damage, stabilizing replication forks and stimulating DNA repair to restore the original DNA sequence and structure. In addition, there are also mechanisms of damage tolerance, such as translesion synthesis (TLS), which are important for survival after DNA damage. TLS allows replication to continue without removing the damage, but results in a higher frequency of mutagenesis. Here, we investigate the functional contribution of the Dot1 histone methyltransferase and the Rad53 checkpoint kinase to TLS regulation in Saccharomyces cerevisiae. We demonstrate that the Dot1-dependent status of H3K79 methylation modulates the resistance to the alkylating agent MMS, which depends on PCNA ubiquitylation at lysine 164. Strikingkly, either the absence of DOT1, which prevents full activation of Rad53, or the expression of an HA-tagged version of RAD53, which produces low amounts of the kinase, confer increased MMS resistance. However, the dot1Δ rad53-HA double mutant is hypersensitive to MMS and shows barely detectable amounts of activated kinase. Furthermore, moderate overexpression of RAD53 partially suppresses the MMS resistance of dot1Δ. In addition, we show that MMS-treated dot1Δ and rad53-HA cells display increased number of chromosome-associated Rev1 foci. We propose that threshold levels of Rad53 activity exquisitely modulate the tolerance to alkylating damage at least by controlling the abundance of the key TLS factor Rev1 bound to chromatin.
Collapse
Affiliation(s)
- Francisco Conde
- Instituto de Microbiología Bioquímica, Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
24
|
Cui L, Li W. Role of ubiquitination in meiotic recombination repair. SCIENCE CHINA-LIFE SCIENCES 2010; 53:447-54. [PMID: 20596910 DOI: 10.1007/s11427-010-0052-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/04/2010] [Indexed: 11/28/2022]
Abstract
Programmed and unprogrammed double-strand breaks (DSBs) often arise from such physiological requirements as meiotic recombination, and exogenous insults, such as ionizing radiation (IR). Due to deleterious impacts on genome stability, DSBs must be appropriately processed and repaired in a regulatory manner. Recent investigations have indicated that ubiquitination is a critical factor in DNA damage response and meiotic recombination repair. This review summarizes the effects of proteins and complexes associated with ubiquitination with regard to homologous recombination (HR)-dependent DSB repair.
Collapse
Affiliation(s)
- Li Cui
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | |
Collapse
|
25
|
Park G, Gong Z, Chen J, Kim JE. Characterization of the DOT1L Network: Implications of Diverse Roles for DOT1L. Protein J 2010; 29:213-23. [DOI: 10.1007/s10930-010-9242-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Erkmann JA, Kaufman PD. A negatively charged residue in place of histone H3K56 supports chromatin assembly factor association but not genotoxic stress resistance. DNA Repair (Amst) 2009; 8:1371-9. [PMID: 19796999 DOI: 10.1016/j.dnarep.2009.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/04/2009] [Accepted: 09/08/2009] [Indexed: 12/17/2022]
Abstract
In fungal species, lysine 56 of newly synthesized histone H3 molecules is modified by the acetyltransferase Rtt109, which promotes resistance to genotoxic agents. To further explore how H3 K56ac contributes to genome stability, we conducted screens for suppressors of the DNA damage sensitivity of budding yeast rtt109 Delta mutants. We recovered a single extragenic suppressor mutation that efficiently restored damage resistance. The suppressor is a point mutation in the histone H3 gene HHT2, and converts lysine 56 to glutamic acid. In some ways, K56E mimics K56ac, because it suppresses other mutations that interfere with the production of H3 K56ac and restores histone binding to chromatin assembly proteins CAF-1 and Rtt106. Therefore, we demonstrate that enhanced association with chromatin assembly factors can be accomplished not only by acetylation-mediated charge neutralization of H3K56 but also by the replacement of the positively charged lysine with an acidic residue. These data suggest that removal of the positive charge on lysine 56 is the functionally important consequence of H3K56 acetylation. Additionally, the suppressive function of K56E requires the presence of a second H3 allele, because K56E impairs growth when it is the sole source of histones, even more so than does constitutive H3K56 acetylation. Our studies therefore emphasize how H3 K56ac not only promotes chromatin assembly but also leads to chromosomal malfunction if not removed following histone deposition.
Collapse
Affiliation(s)
- Judith A Erkmann
- Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation St. #506, Worcester, MA 01605, USA
| | | |
Collapse
|
27
|
Holterhus PM, Bebermeier JH, Werner R, Demeter J, Richter-Unruh A, Cario G, Appari M, Siebert R, Riepe F, Brooks JD, Hiort O. Disorders of sex development expose transcriptional autonomy of genetic sex and androgen-programmed hormonal sex in human blood leukocytes. BMC Genomics 2009; 10:292. [PMID: 19570224 PMCID: PMC2713997 DOI: 10.1186/1471-2164-10-292] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 07/01/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gender appears to be determined by independent programs controlled by the sex-chromosomes and by androgen-dependent programming during embryonic development. To enable experimental dissection of these components in the human, we performed genome-wide profiling of the transcriptomes of peripheral blood mononuclear cells (PBMC) in patients with rare defined "disorders of sex development" (DSD, e.g., 46, XY-females due to defective androgen biosynthesis) compared to normal 46, XY-males and 46, XX-females. RESULTS A discrete set of transcripts was directly correlated with XY or XX genotypes in all individuals independent of male or female phenotype of the external genitalia. However, a significantly larger gene set in the PBMC only reflected the degree of external genital masculinization independent of the sex chromosomes and independent of concurrent post-natal sex steroid hormone levels. Consequently, the architecture of the transcriptional PBMC-"sexes" was either male, female or even "intersex" with a discordant alignment of the DSD individuals' genetic and hormonal sex signatures. CONCLUSION A significant fraction of gene expression differences between males and females in the human appears to have its roots in early embryogenesis and is not only caused by sex chromosomes but also by long-term sex-specific hormonal programming due to presence or absence of androgen during the time of external genital masculinization. Genetic sex and the androgen milieu during embryonic development might therefore independently modulate functional traits, phenotype and diseases associated with male or female gender as well as with DSD conditions.
Collapse
|
28
|
List O, Togawa T, Tsuda M, Matsuo T, Elard L, Aigaki T. Overexpression of grappa encoding a histone methyltransferase enhances stress resistance in Drosophila. Hereditas 2009; 146:19-28. [PMID: 19348653 DOI: 10.1111/j.1601-5223.2008.02080.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Histone deacetylases, such as silent information regulator 2 (Sir2) and Rpd3 are involved in chromatin silencing and implicated in lifespan determination in several organisms. The yeast Dot1 gene encoding a histone methyltransferase affects localization of silencing proteins including Sir2, and plays an essential role in the repair of damaged DNA. However, it is not known whether an alteration of a histone methyltransferase activity influences lifespan or stress resistance, which is often associated with extended lifespan. Here we investigated whether the Drosophilagrappa (gpp) gene, a Dot1 homolog influences lifespan and stress resistance using transgenic flies overexpressing gpp and those bearing a partial loss-of-function mutation. Overexpression of gpp throughout the adult stage did not extend the lifespan, but significantly enhanced resistances when they were kept on medium containing 1% H(2)O(2), or those with poor nutrients. As well, gpp-overexpressing flies were behaviourally more active than control flies. We investigated whether gpp overexpression induced anti-oxidant genes, Catalase, Sod, Sod2, GstD2, dhd, TrxT and Trx-2. However, none of these genes was induced. A partial loss-of-function mutations in gpp dramatically reduced the lifespan under oxidative and caloric stresses. Taken together, these results demonstrated that gpp is required for normal lifespan and stress resistance, and that its overexpression increases stress resistance in Drosophila, without obvious induction of representative anti-oxidant genes.
Collapse
Affiliation(s)
- Olivier List
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Global reduction of the epigenetic H3K79 methylation mark and increased chromosomal instability in CALM-AF10-positive leukemias. Blood 2009; 114:651-8. [PMID: 19443658 DOI: 10.1182/blood-2009-03-209395] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chromosomal translocations generating fusion proteins are frequently found in human leukemias. The fusion proteins play an important role in leukemogenesis by subverting the function of one or both partner proteins. The leukemogenic CALM-AF10 fusion protein is capable of interacting with the histone H3 lysine 79 (H3K79)-specific methyltransferase hDOT1L through the fused AF10 moiety. This interaction leads to local H3K79 hypermethylation on Hoxa5 loci, which up-regulates the expression of Hoxa5 and contributes to leukemogenesis. However, the long latency of leukemogenesis of CALM-AF10 transgenic mice suggests that the direct effects of fusion oncogene are not sufficient for the induction of leukemia. In this study, we show that the CALM-AF10 fusion protein can also greatly reduce global H3K79 methylation in both human and murine leukemic cells by disrupting the AF10-mediated association of hDOT1L with chromatin. Cells with reduced H3K79 methylation are more sensitive to gamma-irradiation and display increased chromosomal instability. Consistently, leukemia patients harboring CALM-AF10 fusion have more secondary chromosomal aberrations. These findings suggest that chromosomal instability associated with global epigenetic alteration contributes to malignant transformation in certain leukemias, and that leukemias with this type of epigenetic alteration might benefit from treatment regimens containing DNA-damaging agents. This study is registered with www.clinicaltrials.gov as NCT00266136.
Collapse
|
30
|
Song S, McCann KE, Brown JM. Radiosensitization of yeast cells by inhibition of histone h4 acetylation. Radiat Res 2008; 170:618-627. [PMID: 18959465 DOI: 10.1667/rr1420.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 07/22/2008] [Indexed: 01/25/2023]
Abstract
Deletion of genes for proteins involved in histone H4 acetylation produces sensitivity to DNA-damaging agents in both Saccharomyces cerevisiae and mammalian cells. In the present studies, we show that treating wild-type yeast cells with histone acetyl transferase (HAT) inhibitors, which are chemicals that cause a global decrease in histone H4 acetylation, sensitizes the cells to ionizing radiation. Using HAT inhibitors, we have placed histone H4 acetylation into the RAD51-mediated homologous recombination repair pathway. We further show that yeast cells with functionally defective HAT proteins have normal phospho-H2A (gamma-H2A) induction after irradiation but a reduced rate of loss of gamma-H2A. This argues that HAT-defective cells are able to detect DNA double-strand breaks normally but have a defect in the repair of these lesions. We also show that cells treated with HAT inhibitors have intact G1 and G2 checkpoints after exposure to ionizing radiation, suggesting that G1 and G2 checkpoint activation is independent of histone H4 acetylation.
Collapse
Affiliation(s)
- Suisui Song
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University of School of Medicine, Stanford, California
| | - Kelly E McCann
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University of School of Medicine, Stanford, California
| | - J Martin Brown
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University of School of Medicine, Stanford, California
| |
Collapse
|
31
|
Role of Dot1 in the response to alkylating DNA damage in Saccharomyces cerevisiae: regulation of DNA damage tolerance by the error-prone polymerases Polzeta/Rev1. Genetics 2008; 179:1197-210. [PMID: 18562671 DOI: 10.1534/genetics.108.089003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Maintenance of genomic integrity relies on a proper response to DNA injuries integrated by the DNA damage checkpoint; histone modifications play an important role in this response. Dot1 methylates lysine 79 of histone H3. In Saccharomyces cerevisiae, Dot1 is required for the meiotic recombination checkpoint as well as for chromatin silencing and the G(1)/S and intra-S DNA damage checkpoints in vegetative cells. Here, we report the analysis of the function of Dot1 in the response to alkylating damage. Unexpectedly, deletion of DOT1 results in increased resistance to the alkylating agent methyl methanesulfonate (MMS). This phenotype is independent of the dot1 silencing defect and does not result from reduced levels of DNA damage. Deletion of DOT1 partially or totally suppresses the MMS sensitivity of various DNA repair mutants (rad52, rad54, yku80, rad1, rad14, apn1, rad5, rad30). However, the rev1 dot1 and rev3 dot1 mutants show enhanced MMS sensitivity and dot1 does not attenuate the MMS sensitivity of rad52 rev3 or rad52 rev1. In addition, Rev3-dependent MMS-induced mutagenesis is increased in dot1 cells. We propose that Dot1 inhibits translesion synthesis (TLS) by Polzeta/Rev1 and that the MMS resistance observed in the dot1 mutant results from the enhanced TLS activity.
Collapse
|
32
|
Synthetic lethal screens identify gene silencing processes in yeast and implicate the acetylated amino terminus of Sir3 in recognition of the nucleosome core. Mol Cell Biol 2008; 28:3861-72. [PMID: 18391024 DOI: 10.1128/mcb.02050-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dot1 methylates histone H3 lysine 79 (H3K79) on the nucleosome core and is involved in Sir protein-mediated silencing. Previous studies suggested that H3K79 methylation within euchromatin prevents nonspecific binding of the Sir proteins, which in turn facilitates binding of the Sir proteins in unmethylated silent chromatin. However, the mechanism by which the Sir protein binding is influenced by this modification is unclear. We performed genome-wide synthetic genetic array (SGA) analysis and identified interactions of DOT1 with SIR1 and POL32. The synthetic growth defects found by SGA analysis were attributed to the loss of mating type identity caused by a synthetic silencing defect. By using epistasis analysis, DOT1, SIR1, and POL32 could be placed in different pathways of silencing. Dot1 shared its silencing phenotypes with the NatA N-terminal acetyltransferase complex and the conserved N-terminal bromo adjacent homology (BAH) domain of Sir3 (a substrate of NatA). We classified all of these as affecting a common silencing process, and we show that mutations in this process lead to nonspecific binding of Sir3 to chromatin. Our results suggest that the BAH domain of Sir3 binds to histone H3K79 and that acetylation of the BAH domain is required for the binding specificity of Sir3 for nucleosomes unmethylated at H3K79.
Collapse
|
33
|
UV sensitive mutations in histone H3 in Saccharomyces cerevisiae that alter specific K79 methylation states genetically act through distinct DNA repair pathways. Curr Genet 2008; 53:259-74. [PMID: 18327589 DOI: 10.1007/s00294-008-0182-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 12/30/2022]
Abstract
Chromatin serves as a regulator of various nuclear processes, with post-translational modifications of histone proteins serving as modulators to influence chromatin function. We have previously shown that histone H3 K79 methylation is important for repair of UV-induced DNA damage in Saccharomyces cerevisiae, acting through multiple repair pathways. To evaluate the potential role of distinct K79 methylation states in DNA repair, we identified four mutations in histone H3 that confer sensitivity to UV, each of which also has a distinct effect on specific K79 methylation states. Epistasis analyses indicate that each mutation exerts its phenotypic effects through distinct subsets of the various DNA damage response pathways, suggesting the existence of discrete roles for histone H3 in DNA damage checkpoint and repair pathways. Furthermore, we find that the distribution of K79 methylation states is altered by mutation of the acetylatable N terminal lysines in histone H4. The combined results suggest that K79 methylation states may be modulated in response to UV damage via a trans-histone regulatory pathway, and that distinct methylation states may provide a means of coordinating specific DNA repair and damage checkpoint pathways.
Collapse
|
34
|
Abstract
Radionuclides in the environment are one of the major concerns to human health and ecotoxicology. The explosion at the Chernobyl nuclear power plant renewed interest in the role played by fungi in mediating radionuclide movement in ecosystems. As a result of these studies, our knowledge of the importance of fungi, especially in their mycorrhizal habit, in long-term accumulation of radionuclides, transfer up the food chain and regulation of accumulation by their host plants was increased. Micro-fungi have been found to be highly resilient to exposure to ionizing radiation, with fungi having been isolated from within and around the Chernobyl plant. Radioresistance of some fungal species has been linked to the presence of melanin, which has been shown to have emerging properties of acting as an energy transporter for metabolism and has been implicated in enhancing hyphal growth and directed growth of sensitized hyphae towards sources of radiation. Using this recently acquired knowledge, we may be in a better position to suggest the use of fungi in bioremediation of radioactively contaminated sites and cleanup of industrial effluent.
Collapse
Affiliation(s)
- John Dighton
- Rutgers University Pinelands Field Station, New Lisbon, NJ 08064, USA.
| | | | | |
Collapse
|
35
|
Towards understanding the extreme radiation resistance of Ustilago maydis. Trends Microbiol 2007; 15:525-9. [DOI: 10.1016/j.tim.2007.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 10/12/2007] [Accepted: 10/12/2007] [Indexed: 12/11/2022]
|
36
|
Jordan PW, Klein F, Leach DRF. Novel roles for selected genes in meiotic DNA processing. PLoS Genet 2007; 3:e222. [PMID: 18069899 PMCID: PMC2134943 DOI: 10.1371/journal.pgen.0030222] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/16/2007] [Indexed: 12/21/2022] Open
Abstract
High-throughput studies of the 6,200 genes of Saccharomyces cerevisiae have provided valuable data resources. However, these resources require a return to experimental analysis to test predictions. An in-silico screen, mining existing interaction, expression, localization, and phenotype datasets was developed with the aim of selecting minimally characterized genes involved in meiotic DNA processing. Based on our selection procedure, 81 deletion mutants were constructed and tested for phenotypic abnormalities. Eleven (13.6%) genes were identified to have novel roles in meiotic DNA processes including DNA replication, recombination, and chromosome segregation. In particular, this analysis showed that Def1, a protein that facilitates ubiquitination of RNA polymerase II as a response to DNA damage, is required for efficient synapsis between homologues and normal levels of crossover recombination during meiosis. These characteristics are shared by a group of proteins required for Zip1 loading (ZMM proteins). Additionally, Soh1/Med31, a subunit of the RNA pol II mediator complex, Bre5, a ubiquitin protease cofactor and an uncharacterized protein, Rmr1/Ygl250w, are required for normal levels of gene conversion events during meiosis. We show how existing datasets may be used to define gene sets enriched for specific roles and how these can be evaluated by experimental analysis.
Collapse
Affiliation(s)
- Philip W Jordan
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
- Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - Franz Klein
- Department of Chromosome Biology, University of Vienna, Vienna, Austria
| | - David R. F Leach
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Abstract
DNA double-strand breaks (DSBs) produce a number of cellular responses, some mutually exclusive. Depending on where on the chromosome it occurs, a DSB may become preserved inside a telomere or eliminated by repair. A cell may arrest division via checkpoint activation to fix DSBs or commit suicide by apoptosis. What determines the outcome: to bury, fix, or succumb to DNA DSBs? With this question in mind, we review recent data on cellular responses to DSBs.
Collapse
Affiliation(s)
- Tin Tin Su
- Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| |
Collapse
|
38
|
Abstract
DNA is under constant attack from intracellular and external mutagens. Sites of DNA damage need to be pinpointed so that the DNA repair machinery can be mobilized to the proper location. The identification of damaged sites, recruitment of repair factors, and assembly of repair "factories" is orchestrated by posttranslational modifications (PTMs). These PTMs include phosphorylation, ubiquitination, sumoylation, acetylation, and methylation. Here we discuss recent data surrounding the roles of arginine and lysine methylation in DNA repair processes.
Collapse
Affiliation(s)
- Aimee N Lake
- The University of Texas MD Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA.
| | | |
Collapse
|
39
|
Grenon M, Costelloe T, Jimeno S, O'Shaughnessy A, Fitzgerald J, Zgheib O, Degerth L, Lowndes NF. Docking onto chromatin via theSaccharomyces cerevisiae Rad9 Tudor domain. Yeast 2007; 24:105-19. [PMID: 17243194 DOI: 10.1002/yea.1441] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
An integrated cellular response to DNA damage is essential for the maintenance of genome integrity. Recently, post-translational modifications to histone proteins have been implicated in DNA damage responses involving the Rad9 family of checkpoint proteins. In budding yeast, methylation of histone H3 on lysine 79 (H3-K79me) has been shown to be required for efficient checkpoint signalling and Rad9 localization on chromatin. Here, we have used a rad9 Tudor mutant allele and cells mutated for Dot1, the H3-K79 methylase, to analyse the epistatic relationship between RAD9 and DOT1 genes regarding the DNA damage resistance and checkpoint activation pathways. Our results show that RAD9 is epistatic to DOT1 and suggest that it acts downstream of the Dot1 methylase in the damage resistance and checkpoint response. We have also found that the Tudor domain of Rad9 is necessary for in vitro binding to H3-K79me as well as Rad9 focal accumulation in response to DNA damage in vivo. In summary, our study demonstrates that the interaction between Rad9, via its Tudor domain, and methylated H3-K79 is required at two different steps of the DNA damage response, an early step corresponding to checkpoint activation, and a late step corresponding to DNA repair. The study further shows that the function of this interaction is cell cycle-regulated; the role in checkpoint activation is restricted to the G(1) phase and its role in DNA repair is restricted to G(2).
Collapse
Affiliation(s)
- Muriel Grenon
- Genome Stability Laboratory, Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Janzen CJ, Hake SB, Lowell JE, Cross GAM. Selective di- or trimethylation of histone H3 lysine 76 by two DOT1 homologs is important for cell cycle regulation in Trypanosoma brucei. Mol Cell 2006; 23:497-507. [PMID: 16916638 DOI: 10.1016/j.molcel.2006.06.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 05/16/2006] [Accepted: 06/27/2006] [Indexed: 01/15/2023]
Abstract
DOT1 is an evolutionarily conserved histone H3 lysine 79 (H3K79) methyltransferase. K79 methylation is associated with transcriptional activation, meiotic checkpoint control, and DNA double-strand break (DSB) responses. Trypanosoma brucei has two homologs, DOT1A and DOT1B, which are responsible for dimethylation and trimethylation of H3K76, respectively (K76 in T. brucei is synonymous to K79 in other organisms). K76 dimethylation is only detectable during mitosis, whereas trimethylation occurs throughout the cell cycle. Deletion of DOT1B resulted in dimethylation of K76 throughout the cell cycle and caused subtle defects in cell cycle regulation and impaired differentiation. RNAi-mediated depletion of DOT1A appears to disrupt a mitotic checkpoint, resulting in premature progression through mitosis without DNA replication, generating a high proportion of cells with a haploid DNA content, an unprecedented state for trypanosomes. We propose that DOT1A and DOT1B influence the trypanosome cell cycle by regulating the degree of H3K76 methylation.
Collapse
Affiliation(s)
- Christian J Janzen
- Laboratory of Molecular Parasitology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | |
Collapse
|
41
|
Du LL, Nakamura TM, Russell P. Histone modification-dependent and -independent pathways for recruitment of checkpoint protein Crb2 to double-strand breaks. Genes Dev 2006; 20:1583-96. [PMID: 16778077 PMCID: PMC1482479 DOI: 10.1101/gad.1422606] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular responses to DNA damage involve the relocalization of checkpoint proteins to DNA double-strand breaks (DSBs). The fission yeast checkpoint mediator protein Crb2, a homolog of mammalian 53BP1, forms ionizing radiation-induced nuclear foci (IRIF). The IRIF formation by Crb2 requires histone H2A C-terminal phosphorylation and H4-K20 methylation. However, the relevance of Crb2 relocalization is uncertain, because neither histone modification is required for a checkpoint response. Here we show that these histone modifications cooperate in the same Crb2 recruitment pathway, which also requires the Tudor and BRCT motifs in Crb2. In the absence of these histone modifications, an alternative recruitment pathway is sufficient for checkpoint activation and accumulation of Crb2 at a persistent DSB generated by HO endonuclease. This parallel pathway requires a cyclin-dependent kinase phosphorylation site in Crb2 that mediates an association with another BRCT protein Cut5 (the TopBP1 homolog), which also accumulates at HO-induced DSBs. We propose that such dual recruitment mechanisms may be a common feature of DNA damage checkpoint mediators.
Collapse
Affiliation(s)
- Li-Lin Du
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
42
|
Game JC, Williamson MS, Spicakova T, Brown JM. The RAD6/BRE1 histone modification pathway in Saccharomyces confers radiation resistance through a RAD51-dependent process that is independent of RAD18. Genetics 2006; 173:1951-68. [PMID: 16783014 PMCID: PMC1569736 DOI: 10.1534/genetics.106.057794] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We examine ionizing radiation (IR) sensitivity and epistasis relationships of several Saccharomyces mutants affecting post-translational modifications of histones H2B and H3. Mutants bre1Delta, lge1Delta, and rtf1Delta, defective in histone H2B lysine 123 ubiquitination, show IR sensitivity equivalent to that of the dot1Delta mutant that we reported on earlier, consistent with published findings that Dot1p requires H2B K123 ubiquitination to fully methylate histone H3 K79. This implicates progressive K79 methylation rather than mono-methylation in IR resistance. The set2Delta mutant, defective in H3 K36 methylation, shows mild IR sensitivity whereas mutants that abolish H3 K4 methylation resemble wild type. The dot1Delta, bre1Delta, and lge1Delta mutants show epistasis for IR sensitivity. The paf1Delta mutant, also reportedly defective in H2B K123 ubiquitination, confers no sensitivity. The rad6Delta, rad51null, rad50Delta, and rad9Delta mutations are epistatic to bre1Delta and dot1Delta, but rad18Delta and rad5Delta show additivity with bre1Delta, dot1Delta, and each other. The bre1Delta rad18Delta double mutant resembles rad6Delta in sensitivity; thus the role of Rad6p in ubiquitinating H2B accounts for its extra sensitivity compared to rad18Delta. We conclude that IR resistance conferred by BRE1 and DOT1 is mediated through homologous recombinational repair, not postreplication repair, and confirm findings of a G1 checkpoint role for the RAD6/BRE1/DOT1 pathway.
Collapse
Affiliation(s)
- John C Game
- Life Sciences Division, Lawrence Berkeley National Laboratory, CA 94720, USA.
| | | | | | | |
Collapse
|
43
|
de Mayolo AA, Lisby M, Erdeniz N, Thybo T, Mortensen UH, Rothstein R. Multiple start codons and phosphorylation result in discrete Rad52 protein species. Nucleic Acids Res 2006; 34:2587-97. [PMID: 16707661 PMCID: PMC1463902 DOI: 10.1093/nar/gkl280] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The sequence of the Saccharomyces cerevisiae RAD52 gene contains five potential translation start sites and protein-blot analysis typically detects multiple Rad52 species with different electrophoretic mobilities. Here we define the gene products encoded by RAD52. We show that the multiple Rad52 protein species are due to promiscuous choice of start codons as well as post-translational modification. Specifically, Rad52 is phosphorylated both in a cell cycle-independent and in a cell cycle-dependent manner. Furthermore, phosphorylation is dependent on the presence of the Rad52 C terminus, but not dependent on its interaction with Rad51. We also show that the Rad52 protein can be translated from the last three start sites and expression from any one of them is sufficient for spontaneous recombination and the repair of gamma-ray-induced double-strand breaks.
Collapse
Affiliation(s)
| | - Michael Lisby
- Department of Genetics, Institute of Molecular Biology and Physiology, University of CopenhagenØster Farimagsgade 2A, DK-1353 Copenhagen K, Denmark
| | - Naz Erdeniz
- Department of Molecular and Medical Genetics, Oregon Health Sciences University3181 SW Sam Jackson Park Road, Mail Code L103, Portland, OR 97201, USA
| | - Tanja Thybo
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of DenmarkBuilding 223, DK-2800 Lyngby, Denmark
| | - Uffe H. Mortensen
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of DenmarkBuilding 223, DK-2800 Lyngby, Denmark
| | - Rodney Rothstein
- To whom correspondence should be addressed. Tel: +1 212 305 1733; Fax: +1 212 923 2090;
| |
Collapse
|
44
|
Caesar R, Warringer J, Blomberg A. Physiological importance and identification of novel targets for the N-terminal acetyltransferase NatB. EUKARYOTIC CELL 2006; 5:368-78. [PMID: 16467477 PMCID: PMC1405896 DOI: 10.1128/ec.5.2.368-378.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The N-terminal acetyltransferase NatB in Saccharomyces cerevisiae consists of the catalytic subunit Nat3p and the associated subunit Mdm20p. We here extend our present knowledge about the physiological role of NatB by a combined proteomics and phenomics approach. We found that strains deleted for either NAT3 or MDM20 displayed different growth rates and morphologies in specific stress conditions, demonstrating that the two NatB subunits have partly individual functions. Earlier reported phenotypes of the nat3Delta strain have been associated with altered functionality of actin cables. However, we found that point mutants of tropomyosin that suppress the actin cable defect observed in nat3Delta only partially restores wild-type growth and morphology, indicating the existence of functionally important acetylations unrelated to actin cable function. Predicted NatB substrates were dramatically overrepresented in a distinct set of biological processes, mainly related to DNA processing and cell cycle progression. Three of these proteins, Cac2p, Pac10p, and Swc7p, were identified as true NatB substrates. To identify N-terminal acetylations potentially important for protein function, we performed a large-scale comparative phenotypic analysis including nat3Delta and strains deleted for the putative NatB substrates involved in cell cycle regulation and DNA processing. By this procedure we predicted functional importance of the N-terminal acetylation for 31 proteins.
Collapse
Affiliation(s)
- Robert Caesar
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, Medicinaregatan 9c, 413 90 Göteborg, Sweden.
| | | | | |
Collapse
|
45
|
Toh GWL, O'Shaughnessy AM, Jimeno S, Dobbie IM, Grenon M, Maffini S, O'Rorke A, Lowndes NF. Histone H2A phosphorylation and H3 methylation are required for a novel Rad9 DSB repair function following checkpoint activation. DNA Repair (Amst) 2006; 5:693-703. [PMID: 16650810 DOI: 10.1016/j.dnarep.2006.03.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 12/22/2022]
Abstract
In budding yeast, the Rad9 protein is an important player in the maintenance of genomic integrity and has a well-characterised role in DNA damage checkpoint activation. Recently, roles for different post-translational histone modifications in the DNA damage response, including H2A serine 129 phosphorylation and H3 lysine 79 methylation, have also been demonstrated. Here, we show that Rad9 recruitment to foci and bulk chromatin occurs specifically after ionising radiation treatment in G2 cells. This stable recruitment correlates with late stages of double strand break (DSB) repair and, surprisingly, it is the hypophosphorylated form of Rad9 that is retained on chromatin rather than the hyperphosphorylated, checkpoint-associated, form. Stable Rad9 accumulation in foci requires the Mec1 kinase and two independently regulated histone modifications, H2A phosphorylation and Dot1-dependent H3 methylation. In addition, Rad9 is selectively recruited to a subset of Rad52 repair foci. These results, together with the observation that rad9Delta cells are defective in repair of IR breaks in G2, strongly indicate a novel post checkpoint activation role for Rad9 in promoting efficient repair of DNA DSBs by homologous recombination.
Collapse
Affiliation(s)
- Geraldine W-L Toh
- Genome Stability Laboratory, Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, University Road, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The posttranslational modification of histone proteins via methylation has important functions in gene activation, transcriptional silencing, establishment of chromatin states, and likely many aspects of DNA metabolism. The identification of numerous effector protein domains with the capability of binding methylated histones has significantly advanced our understanding of how such histone modifications may exert their biological effects. Here, we summarize aspects of the generation of arginine and lysine methylation marks on core histones, the characterization of the protein modules that interact with them, and how histone methylation cross-talks with other modifications.
Collapse
Affiliation(s)
- Michael S Torok
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
47
|
Wurtele H, Verreault A. Histone post-translational modifications and the response to DNA double-strand breaks. Curr Opin Cell Biol 2006; 18:137-44. [PMID: 16487697 DOI: 10.1016/j.ceb.2006.02.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 02/09/2006] [Indexed: 01/26/2023]
Abstract
The packaging of DNA into chromatin creates a number of significant barriers to the detection of DNA lesions and their timely and accurate repair. Eukaryotic cells have evolved a number of enzymes that modulate chromatin structure and facilitate DNA repair. Recent research illustrates how nucleosome remodelling enzymes cooperate with both DNA-damage-inducible and constitutive histone modifications to promote many facets of the cellular response to DNA damage.
Collapse
Affiliation(s)
- Hugo Wurtele
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Pavillon Marcelle-Coutu, 2950 Chemin Polytechnique, Montreal H3T 1J4, Canada
| | | |
Collapse
|
48
|
Osley MA, Fleming AB, Kao CF. Histone Ubiquitylation and the Regulation of Transcription. Results Probl Cell Differ 2006; 41:47-75. [PMID: 16909890 DOI: 10.1007/400_006] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
The small (76 amino acids) and highly conserved ubiquitin protein plays key roles in the physiology of eukaryotic cells. Protein ubiquitylation has emerged as one of the most important intracellular signaling mechanisms, and in 2004 the Nobel Prize was awarded to Aaron Ciechanower, Avram Hersko, and Irwin Rose for their pioneering studies of the enzymology of ubiquitin attachment. One of the most common features of protein ubiquitylation is the attachment of polyubiquitin chains (four or more ubiquitin moieties attached to each other), which is a widely used mechanism to target proteins for degradation via the 26S proteosome. However, it is noteworthy that the first ubiquitylated protein to be identified was histone H2A, to which a single ubiquitin moiety is most commonly attached. Following this discovery, other histones (H2B, H3, H1, H2A.Z, macroH2A), as well as many nonhistone proteins, have been found to be monoubiquitylated. The role of monoubiquitylation is still elusive because a single ubiquitin moiety is not sufficient to target proteins for turnover, and has been hypothesized to control the assembly or disassembly of multiprotein complexes by providing a protein-binding site. Indeed, a number of ubiquitin-binding domains have now been identified in both polyubiquitylated and monoubiquitylated proteins. Despite the early discovery of ubiquitylated histones, it has only been in the last five or so years that we have begun to understand how histone ubiquitylation is regulated and what roles it plays in the cell. This review will discuss current research on the factors that regulate the attachment and removal of ubiquitin from histones, describe the relationship of histone ubiquitylation to histone methylation, and focus on the roles of ubiquitylated histones in gene expression.
Collapse
Affiliation(s)
- Mary Ann Osley
- Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| | | | | |
Collapse
|
49
|
Wysocki R, Javaheri A, Allard S, Sha F, Côté J, Kron SJ. Role of Dot1-dependent histone H3 methylation in G1 and S phase DNA damage checkpoint functions of Rad9. Mol Cell Biol 2005; 25:8430-43. [PMID: 16166626 PMCID: PMC1265753 DOI: 10.1128/mcb.25.19.8430-8443.2005] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We screened radiation-sensitive yeast mutants for DNA damage checkpoint defects and identified Dot1, the conserved histone H3 Lys 79 methyltransferase. DOT1 deletion mutants (dot1Delta) are G1 and intra-S phase checkpoint defective after ionizing radiation but remain competent for G2/M arrest. Mutations that affect Dot1 function such as Rad6-Bre1/Paf1 pathway gene deletions or mutation of H2B Lys 123 or H3 Lys 79 share dot1Delta checkpoint defects. Whereas dot1Delta alone confers minimal DNA damage sensitivity, combining dot1Delta with histone methyltransferase mutations set1Delta and set2Delta markedly enhances lethality. Interestingly, set1Delta and set2Delta mutants remain G1 checkpoint competent, but set1Delta displays a mild S phase checkpoint defect. In human cells, H3 Lys 79 methylation by hDOT1L likely mediates recruitment of the signaling protein 53BP1 via its paired tudor domains to double-strand breaks (DSBs). Consistent with this paradigm, loss of Dot1 prevents activation of the yeast 53BP1 ortholog Rad9 or Chk2 homolog Rad53 and decreases binding of Rad9 to DSBs after DNA damage. Mutation of Rad9 to alter tudor domain binding to methylated Lys 79 phenocopies the dot1Delta checkpoint defect and blocks Rad53 phosphorylation. These results indicate a key role for chromatin and methylation of histone H3 Lys 79 in yeast DNA damage signaling.
Collapse
Affiliation(s)
- Robert Wysocki
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Exposure of living cells to intracellular or external mutagens results in DNA damage. Accumulation of DNA damage can lead to serious consequences because of the deleterious mutation rate resulting in genomic instability, cellular senescence, and cell death. To counteract genotoxic stress, cells have developed several strategies to detect defects in DNA structure. The eukaryotic genomic DNA is packaged through histone and nonhistone proteins into a highly condensed structure termed chromatin. Therefore the cellular enzymatic machineries responsible for DNA replication, recombination, and repair must circumvent this natural barrier in order to gain access to the DNA. Several studies have demonstrated that histone/chromatin modifications such as acetylation, methylation, and phosphorylation play crucial roles in DNA repair processes. This review will summarize the recent data that suggest a regulatory role of the epigenetic code in DNA repair processes. We will mainly focus on different covalent reversible modifications of histones as an initial step in early response to DNA damage and subsequent DNA repair. Special focus on a potential epigenetic histone code for these processes will be given in the last section. We also discuss new technologies and strategies to elucidate the putative epigenetic code for each of the DNA repair processes discussed.
Collapse
Affiliation(s)
- Paul O Hassa
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, Switzerland
| | | |
Collapse
|