1
|
Romero-Mujalli D, Fuchs LIR, Haase M, Hildebrandt JP, Weissing FJ, Revilla TA. Emergence of phenotypic plasticity through epigenetic mechanisms. Evol Lett 2024; 8:561-574. [PMID: 39100234 PMCID: PMC11291936 DOI: 10.1093/evlett/qrae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 08/06/2024] Open
Abstract
Plasticity is found in all domains of life and is particularly relevant when populations experience variable environmental conditions. Traditionally, evolutionary models of plasticity are non-mechanistic: they typically view reactions norms as the target of selection, without considering the underlying genetics explicitly. Consequently, there have been difficulties in understanding the emergence of plasticity, and in explaining its limits and costs. In this paper, we offer a novel mechanistic approximation for the emergence and evolution of plasticity. We simulate random "epigenetic mutations" in the genotype-phenotype mapping, of the kind enabled by DNA-methylations/demethylations. The frequency of epigenetic mutations at loci affecting the phenotype is sensitive to organism stress (trait-environment mismatch), but is also genetically determined and evolvable. Thus, the "random motion" of epigenetic markers enables developmental learning-like behaviors that can improve adaptation within the limits imposed by the genotypes. However, with random motion being "goal-less," this mechanism is also vulnerable to developmental noise leading to maladaptation. Our individual-based simulations show that epigenetic mutations can hide alleles that are temporarily unfavorable, thus enabling cryptic genetic variation. These alleles can be advantageous at later times, under regimes of environmental change, in spite of the accumulation of genetic loads. Simulations also demonstrate that plasticity is favored by natural selection in constant environments, but more under periodic environmental change. Plasticity also evolves under directional environmental change as long as the pace of change is not too fast and costs are low.
Collapse
Affiliation(s)
- Daniel Romero-Mujalli
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
- Institute for Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
| | - Laura I R Fuchs
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Martin Haase
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | | - Franz J Weissing
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Tomás A Revilla
- Department of Mathematics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Tawfeeq MT, Voordeckers K, van den Berg P, Govers SK, Michiels J, Verstrepen KJ. Mutational robustness and the role of buffer genes in evolvability. EMBO J 2024; 43:2294-2307. [PMID: 38719995 PMCID: PMC11183146 DOI: 10.1038/s44318-024-00109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 06/19/2024] Open
Abstract
Organisms rely on mutations to fuel adaptive evolution. However, many mutations impose a negative effect on fitness. Cells may have therefore evolved mechanisms that affect the phenotypic effects of mutations, thus conferring mutational robustness. Specifically, so-called buffer genes are hypothesized to interact directly or indirectly with genetic variation and reduce its effect on fitness. Environmental or genetic perturbations can change the interaction between buffer genes and genetic variation, thereby unmasking the genetic variation's phenotypic effects and thus providing a source of variation for natural selection to act on. This review provides an overview of our understanding of mutational robustness and buffer genes, with the chaperone gene HSP90 as a key example. It discusses whether buffer genes merely affect standing variation or also interact with de novo mutations, how mutational robustness could influence evolution, and whether mutational robustness might be an evolved trait or rather a mere side-effect of complex genetic interactions.
Collapse
Affiliation(s)
- Mohammed T Tawfeeq
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Karin Voordeckers
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Pieter van den Berg
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Jan Michiels
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Kevin J Verstrepen
- VIB-KU Leuven Center for Microbiology, Leuven, Belgium.
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium.
| |
Collapse
|
3
|
Siddiq MA, Duveau F, Wittkopp PJ. Plasticity and environment-specific relationships between gene expression and fitness in Saccharomyces cerevisiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589130. [PMID: 38659876 PMCID: PMC11042213 DOI: 10.1101/2024.04.12.589130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Phenotypic evolution is shaped by interactions between organisms and their environments. The environment influences how an organism's genotype determines its phenotype and how this phenotype affects its fitness. To better understand this dual role of the environment in the production and selection of phenotypic variation, we empirically determined and compared the genotype-phenotype-fitness relationship for mutant strains of the budding yeast Saccharomyces cerevisiae in four environments. Specifically, we measured how mutations in the promoter of the metabolic gene TDH3 modified its expression level and affected its growth on media with four different carbon sources. In each environment, we observed a clear relationship between TDH3 expression level and fitness, but this relationship differed among environments. Genetic variants with similar effects on TDH3 expression in different environments often had different effects on fitness and vice versa. Such environment-specific relationships between phenotype and fitness can shape the evolution of phenotypic plasticity. The set of mutants we examined also allowed us to compare the effects of mutations disrupting binding sites for key transcriptional regulators and the TATA box, which is part of the core promoter sequence. Mutations disrupting the binding sites for the transcription factors had more variable effects on expression among environments than mutations disrupting the TATA box, yet mutations with the most environmentally variable effects on fitness were located in the TATA box. This observation suggests that mutations affecting different molecular mechanisms are likely to contribute unequally to regulatory sequence evolution in changing environments.
Collapse
Affiliation(s)
- Mohammad A. Siddiq
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan
- Authors contributed equally to this work
| | - Fabien Duveau
- Department of Ecology and Evolutionary Biology, University of Michigan
- Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon, Université de Lyon, France
- Authors contributed equally to this work
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan
- Department of Ecology and Evolutionary Biology, University of Michigan
| |
Collapse
|
4
|
Sun B, Ding X, Ye J, Dai Y, Cheng C, Zhou J, Niu F, Tu R, Hu Q, Xie K, Qiu Y, Li H, Feng Z, Shao C, Cao L, Zhang A, Chu H. Unveiling the Genetic Basis Underlying Rice Anther Culturability via Segregation Distortion Analysis in Doubled Haploid Population. Genes (Basel) 2023; 14:2086. [PMID: 38003029 PMCID: PMC10671494 DOI: 10.3390/genes14112086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Anther culture (AC) is a valuable technique in rice breeding. However, the genetic mechanisms underlying anther culturability remain elusive, which has hindered its widespread adoption in rice breeding programs. During AC, microspores carrying favorable alleles for AC are selectively regenerated, leading to segregation distortion (SD) of chromosomal regions linked to these alleles in the doubled haploid (DH) population. Using the AC method, a DH population was generated from the japonica hybrid rice Shenyou 26. A genetic map consisting of 470 SNPs was constructed using this DH population, and SD analysis was performed at both the single- and two-locus levels to dissect the genetic basis underlying anther culturability. Five segregation distortion loci (SDLs) potentially linked to anther culturability were identified. Among these, SDL5 exhibited an overrepresentation of alleles from the female parent, while SDL1.1, SDL1.2, SDL2, and SDL7 displayed an overrepresentation of alleles from the male parent. Furthermore, six pairs of epistatic interactions (EPIs) that influenced two-locus SDs in the DH population were discovered. A cluster of genetic loci, associated with EPI-1, EPI-3, EPI-4, and EPI-5, overlapped with SDL1.1, indicating that the SDL1.1 locus may play a role in regulating anther culturability via both additive and epistatic mechanisms. These findings provide valuable insights into the genetic control of anther culturability in rice and lay the foundation for future research focused on identifying the causal genes associated with anther culturability.
Collapse
Affiliation(s)
- Bin Sun
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.S.); (J.Y.); (Y.D.); (C.C.); (J.Z.); (F.N.); (R.T.); (L.C.)
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Xiaorui Ding
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (X.D.); (Y.Q.)
| | - Junhua Ye
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.S.); (J.Y.); (Y.D.); (C.C.); (J.Z.); (F.N.); (R.T.); (L.C.)
| | - Yuting Dai
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.S.); (J.Y.); (Y.D.); (C.C.); (J.Z.); (F.N.); (R.T.); (L.C.)
| | - Can Cheng
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.S.); (J.Y.); (Y.D.); (C.C.); (J.Z.); (F.N.); (R.T.); (L.C.)
| | - Jihua Zhou
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.S.); (J.Y.); (Y.D.); (C.C.); (J.Z.); (F.N.); (R.T.); (L.C.)
| | - Fuan Niu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.S.); (J.Y.); (Y.D.); (C.C.); (J.Z.); (F.N.); (R.T.); (L.C.)
| | - Rongjian Tu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.S.); (J.Y.); (Y.D.); (C.C.); (J.Z.); (F.N.); (R.T.); (L.C.)
| | - Qiyan Hu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Q.H.); (H.L.)
| | - Kaizhen Xie
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (K.X.); (C.S.)
| | - Yue Qiu
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (X.D.); (Y.Q.)
| | - Hongyu Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Q.H.); (H.L.)
| | - Zhizun Feng
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Chenbing Shao
- MOE Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China; (K.X.); (C.S.)
| | - Liming Cao
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.S.); (J.Y.); (Y.D.); (C.C.); (J.Z.); (F.N.); (R.T.); (L.C.)
| | - Anpeng Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Huangwei Chu
- Key Laboratory of Germplasm Innovation and Genetic Improvement of Grain and Oil Crops (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (B.S.); (J.Y.); (Y.D.); (C.C.); (J.Z.); (F.N.); (R.T.); (L.C.)
| |
Collapse
|
5
|
Walter GM, Clark J, Terranova D, Cozzolino S, Cristaudo A, Hiscock SJ, Bridle J. Hidden genetic variation in plasticity provides the potential for rapid adaptation to novel environments. THE NEW PHYTOLOGIST 2023; 239:374-387. [PMID: 36651081 DOI: 10.1111/nph.18744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/02/2023] [Indexed: 06/02/2023]
Abstract
Rapid environmental change is forcing populations into environments where plasticity will no longer maintain fitness. When populations are exposed to novel environments, evolutionary theory predicts that genetic variation in fitness will increase and should be associated with genetic differences in plasticity. If true, then genetic variation in plasticity can increase adaptive potential in novel environments, and population persistence via evolutionary rescue is more likely. To test whether genetic variation in fitness increases in novel environments and is associated with plasticity, we transplanted 8149 clones of 314 genotypes of a Sicilian daisy (Senecio chrysanthemifolius) within and outside its native range, and quantified genetic variation in fitness, and plasticity in leaf traits and gene expression. Although mean fitness declined by 87% in the novel environment, genetic variance in fitness increased threefold and was correlated with plasticity in leaf traits. High fitness genotypes showed greater plasticity in gene expression, but lower plasticity in most leaf traits. Interestingly, genotypes with the highest fitness in the novel environment had the lowest fitness at the native site. These results suggest that standing genetic variation in plasticity could help populations to persist and adapt to novel environments, despite remaining hidden in native environments.
Collapse
Affiliation(s)
- Greg M Walter
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - James Clark
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Delia Terranova
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, 95128, Italy
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Naples, 80126, Italy
| | - Antonia Cristaudo
- Department of Biological, Geological and Environmental Sciences, University of Catania, Catania, 95128, Italy
| | - Simon J Hiscock
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
- Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| |
Collapse
|
6
|
Jiang P, Kreitman M, Reinitz J. The effect of mutational robustness on the evolvability of multicellular organisms and eukaryotic cells. J Evol Biol 2023; 36:906-924. [PMID: 37256290 PMCID: PMC10315174 DOI: 10.1111/jeb.14180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/29/2023] [Accepted: 04/18/2023] [Indexed: 06/01/2023]
Abstract
Canalization involves mutational robustness, the lack of phenotypic change as a result of genetic mutations. Given the large divergence in phenotype across species, understanding the relationship between high robustness and evolvability has been of interest to both theorists and experimentalists. Although canalization was originally proposed in the context of multicellular organisms, the effect of multicellularity and other classes of hierarchical organization on evolvability has not been considered by theoreticians. We address this issue using a Boolean population model with explicit representation of an environment in which individuals with explicit genotype and a hierarchical phenotype representing multicellularity evolve. Robustness is described by a single real number between zero and one which emerges from the genotype-phenotype map. We find that high robustness is favoured in constant environments, and lower robustness is favoured after environmental change. Multicellularity and hierarchical organization severely constrain robustness: peak evolvability occurs at an absolute level of robustness of about 0.99 compared with values of about 0.5 in a classical neutral network model. These constraints result in a sharp peak of evolvability in which the maximum is set by the fact that the fixation of adaptive mutations becomes more improbable as robustness decreases. When robustness is put under genetic control, robustness levels leading to maximum evolvability are selected for, but maximal relative fitness appears to require recombination.
Collapse
Affiliation(s)
- Pengyao Jiang
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Martin Kreitman
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, USA
- Institute for Genomics & Systems Biology, Chicago, Illinois, USA
| | - John Reinitz
- Department of Ecology & Evolution, University of Chicago, Chicago, Illinois, USA
- Institute for Genomics & Systems Biology, Chicago, Illinois, USA
- Department of Statistics, University of Chicago, Chicago, Illinois, USA
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Rodrigues LR, Zwoinska MK, Axel W Wiberg R, Snook RR. The genetic basis and adult reproductive consequences of developmental thermal plasticity. J Anim Ecol 2022; 91:1119-1134. [PMID: 35060127 PMCID: PMC9373847 DOI: 10.1111/1365-2656.13664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
Increasing temperature and thermal variability generate profound selection on populations. Given the fast rate of environmental change, understanding the role of plasticity and genetic adaptation in response to increasing temperatures is critical. This may be especially true for thermal effects on reproductive traits in which thermal fertility limits at high temperatures may be lower than for survival traits. Consequences of changing environments during development on adult phenotypes may be particularly problematic for core traits such as reproduction that begin early in development. Here we examine the consequences of developmental thermal plasticity on subsequent adult reproductive traits and its genetic basis. We used a panel of Drosophila melanogaster (the Drosophila Genetic Reference Panel; DGRP) in which male fertility performance was previously defined as either showing relatively little (status = ‘high’‐performing lines) or substantial (‘low’‐performing lines) decline when exposed to increasing developmental temperatures. We used a thermal reaction norm approach to quantify variation in the consequences of developmental thermal plasticity on multiple adult reproductive traits, including sex‐specific responses, and to identify candidate genes underlying such variation. Developmental thermal stress impacted the means and thermal reaction norms of all reproductive traits except offspring sex ratio. Mating success declined as temperature increased with no difference between high and low lines, whereas increasing temperature resulted in declines for both male and female fertility and productivity but depended on line status. Fertility and offspring number were positively correlated within and between the sexes across lines, but males were more affected than females. We identified 933 SNPs with significant evolved genetic differentiation between high and low lines. In all, 54 of these lie within genomic windows of overall high differentiation, have significant effects of genotype on the male thermal reaction norm for productivity and are associated with 16 genes enriched for phenotypes affecting reproduction, stress responses and autophagy in Drosophila and other organisms. Our results illustrate considerable plasticity in male thermal limits on several reproductive traits following development at high temperature, and we identify differentiated loci with relevant phenotypic effects that may contribute to this population variation. While our work is on a single population, phenotypic results align with an increasing number of studies demonstrating the potential for stronger selection of thermal stress on reproductive traits, particularly in males. Such large fitness costs may have both short‐ and long‐term consequences for the evolution of populations in response to a warming world.
Collapse
Affiliation(s)
| | | | | | - Rhonda R Snook
- Department of Zoology Stockholm University Stockholm Sweden
| |
Collapse
|
8
|
RAHIMI MEHDI, HERNANDEZ MATEOV. A SAS code to estimate phenotypic-genotypic covariance and correlation matrices based on expected value of statistical designs to use in plant breeding. AN ACAD BRAS CIENC 2022; 94:e20200001. [DOI: 10.1590/0001-3765202220200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/20/2020] [Indexed: 11/22/2022] Open
Affiliation(s)
- MEHDI RAHIMI
- Graduate University of Advanced Technology, Iran
| | | |
Collapse
|
9
|
Love A, Wagner GP. Co-option of stress mechanisms in the origin of evolutionary novelties. Evolution 2021; 76:394-413. [PMID: 34962651 PMCID: PMC9303342 DOI: 10.1111/evo.14421] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022]
Abstract
It is widely accepted that stressful conditions can facilitate evolutionary change. The mechanisms elucidated thus far accomplish this with a generic increase in heritable variation that facilitates more rapid adaptive evolution, often via plastic modifications of existing characters. Through scrutiny of different meanings of stress in biological research, and an explicit recognition that stressors must be characterized relative to their effect on capacities for maintaining functional integrity, we distinguish between: (1) previously identified stress‐responsive mechanisms that facilitate evolution by maintaining an adaptive fit with the environment, and (2) the co‐option of stress‐responsive mechanisms that are specific to stressors leading to the origin of novelties via compensation. Unlike standard accounts of gene co‐option that identify component sources of evolutionary change, our model documents the cost‐benefit trade‐offs and thereby explains how one mechanism—an immediate response to acute stress—is transformed evolutionarily into another—routine protection from recurring stressors. We illustrate our argument with examples from cell type origination as well as processes and structures at higher levels of organization. These examples suggest a general principle of evolutionary origination based on the capacity to switch between regulatory states related to reproduction and proliferation versus survival and differentiation.
Collapse
Affiliation(s)
- Alan Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT-06520.,Yale Systems Biology Institute, West Haven, CT-06516.,Department of Evolutionary Biology, University of Vienna, Austria
| |
Collapse
|
10
|
Hansen TF, Pélabon C. Evolvability: A Quantitative-Genetics Perspective. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021. [DOI: 10.1146/annurev-ecolsys-011121-021241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The concept of evolvability emerged in the early 1990s and soon became fashionable as a label for different streams of research in evolutionary biology. In evolutionary quantitative genetics, evolvability is defined as the ability of a population to respond to directional selection. This differs from other fields by treating evolvability as a property of populations rather than organisms or lineages and in being focused on quantification and short-term prediction rather than on macroevolution. While the term evolvability is new to quantitative genetics, many of the associated ideas and research questions have been with the field from its inception as biometry. Recent research on evolvability is more than a relabeling of old questions, however. New operational measures of evolvability have opened possibilities for understanding adaptation to rapid environmental change, assessing genetic constraints, and linking micro- and macroevolution.
Collapse
Affiliation(s)
- Thomas F. Hansen
- Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Christophe Pélabon
- Center for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
11
|
Janicke T, Chapuis E, Meconcelli S, Bonel N, Delahaie B, David P. Environmental effects on the genetic architecture of fitness components in a simultaneous hermaphrodite. J Anim Ecol 2021; 91:124-137. [PMID: 34652857 DOI: 10.1111/1365-2656.13607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/04/2021] [Indexed: 12/01/2022]
Abstract
Understanding how environmental change affects genetic variances and covariances of reproductive traits is key to formulate firm predictions on evolutionary responses. This is particularly true for sex-specific variance in reproductive success, which has been argued to affect how populations can adapt to environmental change. Our current knowledge on the impact of environmental stress on sex-specific genetic architecture of fitness components is still limited and restricted to separate-sexed organisms. However, hermaphroditism is widespread across animals and may entail interesting peculiarities with respect to genetic constraints imposed on the evolution of male and female reproduction. We explored how food restriction affects the genetic variance-covariance (G) matrix of body size and reproductive success of the simultaneously hermaphroditic freshwater snail Physa acuta. Our results provide strong evidence that the imposed environmental stress elevated the opportunity for selection in both sex functions. However, the G-matrix remained largely stable across the tested food treatments. Importantly, our results provide no support for cross-sex genetic correlations suggesting no strong evolutionary coupling of male and female reproductive traits. We discuss potential implications for the adaptation to changing environments and highlight the need for more quantitative genetic studies on male and female fitness components in simultaneous hermaphrodites.
Collapse
Affiliation(s)
- Tim Janicke
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Applied Zoology, Technical University Dresden, Dresden, Germany
| | - Elodie Chapuis
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Stefania Meconcelli
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Department of Life Sciences and Systems Biology, Università di Torino, Torino, Italy
| | - Nicolas Bonel
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.,Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS-CCT-CONICET Bahía Blanca), Bahía Blanca, Argentina
| | - Boris Delahaie
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Patrice David
- Centre d'Écologie Fonctionnelle et Évolutive, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| |
Collapse
|
12
|
Fisher DN, Kilgour RJ, Siracusa ER, Foote JR, Hobson EA, Montiglio PO, Saltz JB, Wey TW, Wice EW. Anticipated effects of abiotic environmental change on intraspecific social interactions. Biol Rev Camb Philos Soc 2021; 96:2661-2693. [PMID: 34212487 DOI: 10.1111/brv.12772] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022]
Abstract
Social interactions are ubiquitous across the animal kingdom. A variety of ecological and evolutionary processes are dependent on social interactions, such as movement, disease spread, information transmission, and density-dependent reproduction and survival. Social interactions, like any behaviour, are context dependent, varying with environmental conditions. Currently, environments are changing rapidly across multiple dimensions, becoming warmer and more variable, while habitats are increasingly fragmented and contaminated with pollutants. Social interactions are expected to change in response to these stressors and to continue to change into the future. However, a comprehensive understanding of the form and magnitude of the effects of these environmental changes on social interactions is currently lacking. Focusing on four major forms of rapid environmental change currently occurring, we review how these changing environmental gradients are expected to have immediate effects on social interactions such as communication, agonistic behaviours, and group formation, which will thereby induce changes in social organisation including mating systems, dominance hierarchies, and collective behaviour. Our review covers intraspecific variation in social interactions across environments, including studies in both the wild and in laboratory settings, and across a range of taxa. The expected responses of social behaviour to environmental change are diverse, but we identify several general themes. First, very dry, variable, fragmented, or polluted environments are likely to destabilise existing social systems. This occurs as these conditions limit the energy available for complex social interactions and affect dissimilar phenotypes differently. Second, a given environmental change can lead to opposite responses in social behaviour, and the direction of the response often hinges on the natural history of the organism in question. Third, our review highlights the fact that changes in environmental factors are not occurring in isolation: multiple factors are changing simultaneously, which may have antagonistic or synergistic effects, and more work should be done to understand these combined effects. We close by identifying methodological and analytical techniques that might help to study the response of social interactions to changing environments, highlight consistent patterns among taxa, and predict subsequent evolutionary change. We expect that the changes in social interactions that we document here will have consequences for individuals, groups, and for the ecology and evolution of populations, and therefore warrant a central place in the study of animal populations, particularly in an era of rapid environmental change.
Collapse
Affiliation(s)
- David N Fisher
- School of Biological Sciences, University of Aberdeen, King's College, Aberdeen, AB24 3FX, U.K
| | - R Julia Kilgour
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, U.S.A
| | - Erin R Siracusa
- Centre for Research in Animal Behaviour, School of Psychology, University of Exeter, Stocker Road, Exeter, EX4 4PY, U.K
| | - Jennifer R Foote
- Department of Biology, Algoma University, 1520 Queen Street East, Sault Ste. Marie, ON, P6A 2G4, Canada
| | - Elizabeth A Hobson
- Department of Biological Sciences, University of Cincinnati, 318 College Drive, Cincinnati, OH, 45221, U.S.A
| | - Pierre-Olivier Montiglio
- Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue Président-Kennedy, Montréal, QC, H2X 3X8, Canada
| | - Julia B Saltz
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| | - Tina W Wey
- Maelstrom Research, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montréal, QC, H3G 1A4, Canada
| | - Eric W Wice
- Department of Biosciences, Rice University, 6100 Main Street, Houston, TX, 77005-1827, U.S.A
| |
Collapse
|
13
|
Constantino JN, Charman T, Jones EJH. Clinical and Translational Implications of an Emerging Developmental Substructure for Autism. Annu Rev Clin Psychol 2021; 17:365-389. [PMID: 33577349 PMCID: PMC9014692 DOI: 10.1146/annurev-clinpsy-081219-110503] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A vast share of the population-attributable risk for autism relates to inherited polygenic risk. A growing number of studies in the past five years have indicated that inherited susceptibility may operate through a finite number of early developmental liabilities that, in various permutations and combinations, jointly predict familial recurrence of the convergent syndrome of social communication disability that defines the condition. Here, we synthesize this body of research to derive evidence for a novel developmental substructure for autism, which has profound implications for ongoing discovery efforts to elucidate its neurobiological causes, and to inform future clinical and biomarker studies, early interventions, and personalized approaches to therapy.
Collapse
Affiliation(s)
- John N Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Tony Charman
- Department of Psychology, King's College London Institute of Psychiatry, Psychology & Neuroscience, London SE5 8AF, United Kingdom
| | - Emily J H Jones
- Centre for Brain & Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|
14
|
Mitteroecker P, Stansfield E. A model of developmental canalization, applied to human cranial form. PLoS Comput Biol 2021; 17:e1008381. [PMID: 33591964 PMCID: PMC7909690 DOI: 10.1371/journal.pcbi.1008381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/26/2021] [Accepted: 01/14/2021] [Indexed: 11/26/2022] Open
Abstract
Developmental mechanisms that canalize or compensate perturbations of organismal development (targeted or compensatory growth) are widely considered a prerequisite of individual health and the evolution of complex life, but little is known about the nature of these mechanisms. It is even unclear if and how a “target trajectory” of individual development is encoded in the organism’s genetic-developmental system or, instead, emerges as an epiphenomenon. Here we develop a statistical model of developmental canalization based on an extended autoregressive model. We show that under certain assumptions the strength of canalization and the amount of canalized variance in a population can be estimated, or at least approximated, from longitudinal phenotypic measurements, even if the target trajectories are unobserved. We extend this model to multivariate measures and discuss reifications of the ensuing parameter matrix. We apply these approaches to longitudinal geometric morphometric data on human postnatal craniofacial size and shape as well as to the size of the frontal sinuses. Craniofacial size showed strong developmental canalization during the first 5 years of life, leading to a 50% reduction of cross-sectional size variance, followed by a continual increase in variance during puberty. Frontal sinus size, by contrast, did not show any signs of canalization. Total variance of craniofacial shape decreased slightly until about 5 years of age and increased thereafter. However, different features of craniofacial shape showed very different developmental dynamics. Whereas the relative dimensions of the nasopharynx showed strong canalization and a reduction of variance throughout postnatal development, facial orientation continually increased in variance. Some of the signals of canalization may owe to independent variation in developmental timing of cranial components, but our results indicate evolved, partly mechanically induced mechanisms of canalization that ensure properly sized upper airways and facial dimensions. Developmental mechanisms that canalize or compensate perturbations of organismal development are a prerequisite of individual health and the evolution of complex life. However, surprisingly little is known about these mechanisms, partly because the “target trajectories” of individual development cannot be directly observed. Here we develop a statistical model of developmental canalization that allows one to estimate the strength of canalization and the amount of canalized variance in a population even if the target trajectories are unobserved. We applied these approaches to data on human postnatal craniofacial growth. Whereas overall craniofacial size was strongly canalized during the first 5 years of age, frontal sinus size did not show any signs of canalization. The relative dimensions of the nasopharynx showed strong canalization and a reduction of variance throughout postnatal development, whereas other shape features, such as facial orientation, continually increased in variance. Our results indicate evolved, partly mechanically induced mechanisms of canalization that ensure properly sized upper airways and facial dimensions.
Collapse
Affiliation(s)
- Philipp Mitteroecker
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- * E-mail:
| | | |
Collapse
|
15
|
Alba V, Carthew JE, Carthew RW, Mani M. Global constraints within the developmental program of the Drosophila wing. eLife 2021; 10:66750. [PMID: 34180394 PMCID: PMC8257256 DOI: 10.7554/elife.66750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Organismal development is a complex process, involving a vast number of molecular constituents interacting on multiple spatio-temporal scales in the formation of intricate body structures. Despite this complexity, development is remarkably reproducible and displays tolerance to both genetic and environmental perturbations. This robustness implies the existence of hidden simplicities in developmental programs. Here, using the Drosophila wing as a model system, we develop a new quantitative strategy that enables a robust description of biologically salient phenotypic variation. Analyzing natural phenotypic variation across a highly outbred population and variation generated by weak perturbations in genetic and environmental conditions, we observe a highly constrained set of wing phenotypes. Remarkably, the phenotypic variants can be described by a single integrated mode that corresponds to a non-intuitive combination of structural variations across the wing. This work demonstrates the presence of constraints that funnel environmental inputs and genetic variation into phenotypes stretched along a single axis in morphological space. Our results provide quantitative insights into the nature of robustness in complex forms while yet accommodating the potential for evolutionary variations. Methodologically, we introduce a general strategy for finding such invariances in other developmental contexts.
Collapse
Affiliation(s)
- Vasyl Alba
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States,NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States
| | - James E Carthew
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States
| | - Richard W Carthew
- NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States,Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Madhav Mani
- Department of Engineering Sciences and Applied Mathematics, Northwestern UniversityEvanstonUnited States,NSF-Simons Center for Quantitative Biology, Northwestern UniversityEvanstonUnited States,Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
16
|
Chantepie S, Chevin L. How does the strength of selection influence genetic correlations? Evol Lett 2020; 4:468-478. [PMID: 33312683 PMCID: PMC7719553 DOI: 10.1002/evl3.201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/08/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
Genetic correlations between traits can strongly impact evolutionary responses to selection, and may thus impose constraints on adaptation. Theoretical and empirical work has made it clear that without strong linkage and with random mating, genetic correlations at evolutionary equilibrium result from an interplay of correlated pleiotropic effects of mutations, and correlational selection favoring combinations of trait values. However, it is not entirely clear how change in the overall strength of stabilizing selection across traits (breadth of the fitness peak, given its shape) influences this compromise between mutation and selection effects on genetic correlation. Here, we show that the answer to this question crucially depends on the intensity of genetic drift. In large, effectively infinite populations, genetic correlations are unaffected by the strength of selection, regardless of whether the genetic architecture involves common small-effect mutations (Gaussian regime), or rare large-effect mutations (House-of-Cards regime). In contrast in finite populations, the strength of selection does affect genetic correlations, by shifting the balance from drift-dominated to selection-dominated evolutionary dynamics. The transition between these domains depends on mutation parameters to some extent, but with a similar dependence of genetic correlation on the strength of selection. Our results are particularly relevant for understanding how senescence shapes patterns of genetic correlations across ages, and genetic constraints on adaptation during colonization of novel habitats.
Collapse
Affiliation(s)
- Stéphane Chantepie
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Muséum national d'Histoire naturelle, Centre National de la Recherche ScientifiqueSorbonne UniversitéParisFrance
| | - Luis‐Miguel Chevin
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE)University of Montpellier, CNRS, University of Paul Valéry Montpellier 3, EPHE, IRDFrance
| |
Collapse
|
17
|
Ilan Y. Second-Generation Digital Health Platforms: Placing the Patient at the Center and Focusing on Clinical Outcomes. Front Digit Health 2020; 2:569178. [PMID: 34713042 PMCID: PMC8521820 DOI: 10.3389/fdgth.2020.569178] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Artificial intelligence (AI) digital health systems have drawn much attention over the last decade. However, their implementation into medical practice occurs at a much slower pace than expected. This paper reviews some of the achievements of first-generation AI systems, and the barriers facing their implementation into medical practice. The development of second-generation AI systems is discussed with a focus on overcoming some of these obstacles. Second-generation systems are aimed at focusing on a single subject and on improving patients' clinical outcomes. A personalized closed-loop system designed to improve end-organ function and the patient's response to chronic therapies is presented. The system introduces a platform which implements a personalized therapeutic regimen and introduces quantifiable individualized-variability patterns into its algorithm. The platform is designed to achieve a clinically meaningful endpoint by ensuring that chronic therapies will have sustainable effect while overcoming compensatory mechanisms associated with disease progression and drug resistance. Second-generation systems are expected to assist patients and providers in adopting and implementing of these systems into everyday care.
Collapse
|
18
|
Signor SA. Evolution of Plasticity in Response to Ethanol between Sister Species with Different Ecological Histories ( Drosophila melanogaster and D. simulans). Am Nat 2020; 196:620-633. [PMID: 33064591 DOI: 10.1086/710763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWhen populations evolve adaptive reaction norms in response to novel environments, it can occur through a process termed genetic accommodation. Under this model, the initial response to the environment is widely variable between genotypes as a result of cryptic genetic variation, which is then refined by selection to a single adaptive response. Here, I empirically test these predictions from genetic accommodation by measuring reaction norms in individual genotypes and across several time points. I compare two species of Drosophila that differ in their adaptation to ethanol (D. melanogaster and D. simulans). Both species are human commensals with a recent cosmopolitan expansion, but only D. melanogaster is adapted to ethanol exposure. Using gene expression as a phenotype and an approach that combines information about expression and alternative splicing, I find that D. simulans exhibits cryptic genetic variation in the response to ethanol, while D. melanogaster has almost no genotype-specific variation in reaction norm. This is evidence for adaptation to ethanol through genetic accommodation, suggesting that the evolution of phenotypic plasticity could be an important contributor to the ability to exploit novel resources.
Collapse
|
19
|
Poyatos JF. Genetic buffering and potentiation in metabolism. PLoS Comput Biol 2020; 16:e1008185. [PMID: 32925942 PMCID: PMC7514045 DOI: 10.1371/journal.pcbi.1008185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/24/2020] [Accepted: 07/23/2020] [Indexed: 01/12/2023] Open
Abstract
Cells adjust their metabolism in response to mutations, but how this reprogramming depends on the genetic context is not well known. Specifically, the absence of individual enzymes can affect reprogramming, and thus the impact of mutations in cell growth. Here, we examine this issue with an in silico model of Saccharomyces cerevisiae's metabolism. By quantifying the variability in the growth rate of 10000 different mutant metabolisms that accumulated changes in their reaction fluxes, in the presence, or absence, of a specific enzyme, we distinguish a subset of modifier genes serving as buffers or potentiators of variability. We notice that the most potent modifiers refer to the glycolysis pathway and that, more broadly, they show strong pleiotropy and epistasis. Moreover, the evidence that this subset depends on the specific growing condition strengthens its systemic underpinning, a feature only observed before in a toy model of a gene-regulatory network. Some of these enzymes also modulate the effect that biochemical noise and environmental fluctuations produce in growth. Thus, the reorganization of metabolism induced by mutations has not only direct physiological implications but also transforms the influence that other mutations have on growth. This is a general result with implications in the development of cancer therapies based on metabolic inhibitors.
Collapse
Affiliation(s)
- Juan F. Poyatos
- Logic of Genomic Systems Lab (CNB-CSIC), Madrid, Spain
- Center for Genomics and Systems Biology (NYU), New York, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
New species arise as the genomes of populations diverge. The developmental 'alarm clock' of speciation sounds off when sufficient divergence in genetic control of development leads hybrid individuals to infertility or inviability, the world awoken to the dawn of new species with intrinsic post-zygotic reproductive isolation. Some developmental stages will be more prone to hybrid dysfunction due to how molecular evolution interacts with the ontogenetic timing of gene expression. Considering the ontogeny of hybrid incompatibilities provides a profitable connection between 'evo-devo' and speciation genetics to better link macroevolutionary pattern, microevolutionary process, and molecular mechanisms. Here, we explore speciation alongside development, emphasizing their mutual dependence on genetic network features, fitness landscapes, and developmental system drift. We assess models for how ontogenetic timing of reproductive isolation can be predictable. Experiments and theory within this synthetic perspective can help identify new rules of speciation as well as rules in the molecular evolution of development.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of TorontoTorontoCanada
| | - Joanna D Bundus
- Department of Integrative Biology, University of Wisconsin – MadisonMadisonUnited States
| |
Collapse
|
21
|
Abstract
Canalization refers to the evolution of populations such that the number of individuals who deviate from the optimum trait, or experience disease, is minimized. In the presence of rapid cultural, environmental, or genetic change, the reverse process of decanalization may contribute to observed increases in disease prevalence. This review starts by defining relevant concepts, drawing distinctions between the canalization of populations and robustness of individuals. It then considers evidence pertaining to three continuous traits and six domains of disease. In each case, existing genetic evidence for genotype-by-environment interactions is insufficient to support a strong inference of decanalization, but we argue that the advent of genome-wide polygenic risk assessment now makes an empirical evaluation of the role of canalization in preventing disease possible. Finally, the contributions of both rare and common variants to congenital abnormality and adult onset disease are considered in light of a new kerplunk model of genetic effects.
Collapse
Affiliation(s)
- Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| | - Kristine A Lacek
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA;
| |
Collapse
|
22
|
Pesevski M, Dworkin I. Genetic and environmental canalization are not associated among altitudinally varying populations of Drosophila melanogaster. Evolution 2020; 74:1755-1771. [PMID: 32562566 DOI: 10.1111/evo.14039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 01/23/2023]
Abstract
Organisms are exposed to environmental and mutational effects influencing both mean and variance of phenotypes. Potentially deleterious effects arising from this variation can be reduced by the evolution of buffering (canalizing) mechanisms, ultimately reducing phenotypic variability. There has been interest regarding the conditions enabling the evolution of canalization. Under some models, the circumstances under which genetic canalization evolves are limited despite apparent empirical evidence for it. It has been argued that genetic canalization evolves as a correlated response to environmental canalization (congruence model). Yet, empirical evidence has not consistently supported predictions of a correlation between genetic and environmental canalization. In a recent study, a population of Drosophila adapted to high altitude showed evidence of genetic decanalization relative to those from low altitudes. Using strains derived from these populations, we tested if they varied for multiple aspects of environmental canalization We observed the expected differences in wing size, shape, cell (trichome) density and mutational defects between high- and low-altitude populations. However, we observed little evidence for a relationship between measures of environmental canalization with population or with defect frequency. Our results do not support the predicted association between genetic and environmental canalization.
Collapse
Affiliation(s)
- Maria Pesevski
- Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Ian Dworkin
- Department of Biology, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
23
|
|
24
|
Ilan Y. Order Through Disorder: The Characteristic Variability of Systems. Front Cell Dev Biol 2020; 8:186. [PMID: 32266266 PMCID: PMC7098948 DOI: 10.3389/fcell.2020.00186] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Randomness characterizes many processes in nature, and therefore its importance cannot be overstated. In the present study, we investigate examples of randomness found in various fields, to underlie its fundamental processes. The fields we address include physics, chemistry, biology (biological systems from genes to whole organs), medicine, and environmental science. Through the chosen examples, we explore the seemingly paradoxical nature of life and demonstrate that randomness is preferred under specific conditions. Furthermore, under certain conditions, promoting or making use of variability-associated parameters may be necessary for improving the function of processes and systems.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
25
|
Crawford DL, Schulte PM, Whitehead A, Oleksiak MF. Evolutionary Physiology and Genomics in the Highly Adaptable Killifish (
Fundulus heteroclitus
). Compr Physiol 2020; 10:637-671. [DOI: 10.1002/cphy.c190004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Tam NT, Dwiyanti MS, Koide Y, Nagano AJ, Ky H, Tin HQ, Hien NL, Dung LV, Kishima Y. Profiling SNP and Nucleotide Diversity to Characterize Mekong Delta Rice Landraces in Southeast Asian Populations. THE PLANT GENOME 2019; 12:1-11. [PMID: 33016580 DOI: 10.3835/plantgenome2019.06.0042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/23/2019] [Indexed: 06/11/2023]
Abstract
Single nucleotide polymorphism (SNP) analyses are a powerful tool to examine structure of local rice population. 3000 dataset of IRRI facilitates SNP profiling of Southeast Asian rice populations. Mekong Delta population is featured by comparisons with the other populations. The low π-value SNPs well-profile unique genetic regions in their genomes. Recent analyses using single nucleotide polymorphism (SNP) are a feasible mean for local collections which potentially possess useful, but not large, genetic variations. Genomic sequences of more than 3000 accessions released by the International Rice Research Institute (IRRI) can be used to characterize various local rice (Oryza sativa) populations. The aim of this study was to develop a method to facilitate genomic characterization of local rice populations. We mainly used 99 indica rice accessions (81 landraces and 18 improved varieties) from the Mekong Delta Development Research Institute (MDI). We obtained 2301 SNPs after a genomic sequencing analysis of the 99 rice accessions and subsequent filtering. Within the IRRI's dataset, the landraces fell into a cluster consisting of accessions from Southeast Asian countries (Ind3 cluster), and the MDI improved varieties were grouped in a cluster containing IRRI improved varieties (Ind1B cluster). A principal component analysis suggested that geographical location strongly affects phylogenetic relationships, and the MDI landraces were placed into a Vietnam+Cambodia group. To detect the nucleotide diversity within a population, π-value is commonly used. We think that whole genome distribution of π-values representing the nucleotide diversity of each population can be used to characterize local populations. Our simple profiling using low π-value genomic regions was able to reveal regional characteristics of rice genomes and should be useful for identifying local rice populations.
Collapse
Affiliation(s)
- Nguyen Thanh Tam
- Mekong Delta Development Research Institute, Can Tho Univ., Vietnam
- Research Faculty of Agriculture, Hokkaido Univ., Japan
| | | | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido Univ., Japan
| | | | - Huynh Ky
- College of Agriculture, Can Tho Univ., Vietnam
| | - Huynh Quang Tin
- Mekong Delta Development Research Institute, Can Tho Univ., Vietnam
| | | | | | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido Univ., Japan
| |
Collapse
|
27
|
Péron G, Lemaître JF, Ronget V, Tidière M, Gaillard JM. Variation in actuarial senescence does not reflect life span variation across mammals. PLoS Biol 2019; 17:e3000432. [PMID: 31518381 PMCID: PMC6760812 DOI: 10.1371/journal.pbio.3000432] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/25/2019] [Accepted: 08/29/2019] [Indexed: 12/22/2022] Open
Abstract
The concept of actuarial senescence (defined here as the increase in mortality hazards with age) is often confounded with life span duration, which obscures the relative role of age-dependent and age-independent processes in shaping the variation in life span. We use the opportunity afforded by the Species360 database, a collection of individual life span records in captivity, to analyze age-specific mortality patterns in relation to variation in life span. We report evidence of actuarial senescence across 96 mammal species. We identify the life stage (juvenile, prime-age, or senescent) that contributes the most to the observed variation in life span across species. Actuarial senescence only accounted for 35%-50% of the variance in life span across species, depending on the body mass category. We computed the sensitivity and elasticity of life span to five parameters that represent the three stages of the age-specific mortality curve-namely, the duration of the juvenile stage, the mean juvenile mortality, the prime-age (i.e., minimum) adult mortality, the age at the onset of actuarial senescence, and the rate of actuarial senescence. Next, we computed the between-species variance in these five parameters. Combining the two steps, we computed the relative contribution of each of the five parameters to the variance in life span across species. Variation in life span was increasingly driven by the intensity of actuarial senescence and decreasingly driven by prime-age adult mortality from small to large species because of changes in the elasticity of life span to these parameters, even if all the adult survival parameters consistently exhibited a canalization pattern of weaker variability among long-lived species than among short-lived ones. Our work unambiguously demonstrates that life span cannot be used to measure the strength of actuarial senescence, because a substantial and variable proportion of life span variation across mammals is not related to actuarial senescence metrics.
Collapse
Affiliation(s)
- Guillaume Péron
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR5558, Villeurbanne, France
- * E-mail:
| | - Jean-François Lemaître
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR5558, Villeurbanne, France
| | - Victor Ronget
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR5558, Villeurbanne, France
| | - Morgane Tidière
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR5558, Villeurbanne, France
| | - Jean-Michel Gaillard
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR5558, Villeurbanne, France
| |
Collapse
|
28
|
Affiliation(s)
- Anne Le Maître
- Department of Theoretical Biology University of Vienna Vienna Austria
- PALEVOPRIM ‐ UMR 7262 CNRS INEE, Université de Poitiers Poitiers Cedex 9 France
| | | |
Collapse
|
29
|
Trubenová B, Krejca MS, Lehre PK, Kötzing T. Surfing on the seascape: Adaptation in a changing environment. Evolution 2019; 73:1356-1374. [PMID: 31206653 PMCID: PMC6771940 DOI: 10.1111/evo.13784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
The environment changes constantly at various time scales and, in order to survive, species need to keep adapting. Whether these species succeed in avoiding extinction is a major evolutionary question. Using a multilocus evolutionary model of a mutation-limited population adapting under strong selection, we investigate the effects of the frequency of environmental fluctuations on adaptation. Our results rely on an "adaptive-walk" approximation and use mathematical methods from evolutionary computation theory to investigate the interplay between fluctuation frequency, the similarity of environments, and the number of loci contributing to adaptation. First, we assume a linear additive fitness function, but later generalize our results to include several types of epistasis. We show that frequent environmental changes prevent populations from reaching a fitness peak, but they may also prevent the large fitness loss that occurs after a single environmental change. Thus, the population can survive, although not thrive, in a wide range of conditions. Furthermore, we show that in a frequently changing environment, the similarity of threats that a population faces affects the level of adaptation that it is able to achieve. We check and supplement our analytical results with simulations.
Collapse
Affiliation(s)
- Barbora Trubenová
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg 3400Austria
| | - Martin S. Krejca
- Hasso Plattner InstituteProf.‐Dr.‐Helmert‐Straße 2‐314482 PotsdamGermany
| | | | - Timo Kötzing
- Hasso Plattner InstituteProf.‐Dr.‐Helmert‐Straße 2‐314482 PotsdamGermany
| |
Collapse
|
30
|
Evolutionary transitions in controls reconcile adaptation with continuity of evolution. Semin Cell Dev Biol 2019; 88:36-45. [DOI: 10.1016/j.semcdb.2018.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/19/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022]
|
31
|
Ali S, Signor SA, Kozlov K, Nuzhdin SV. Novel approach to quantitative spatial gene expression uncovers genetic stochasticity in the developing Drosophila eye. Evol Dev 2019; 21:157-171. [PMID: 30756455 DOI: 10.1111/ede.12283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Robustness in development allows for the accumulation of genetically based variation in expression. However, this variation is usually examined in response to large perturbations, and examination of this variation has been limited to being spatial, or quantitative, but because of technical restrictions not both. Here we bridge these gaps by investigating replicated quantitative spatial gene expression using rigorous statistical models, in different genotypes, sexes, and species (Drosophila melanogaster and D. simulans). Using this type of quantitative approach with molecular developmental data allows for comparison among conditions, such as different genetic backgrounds. We apply this approach to the morphogenetic furrow, a wave of differentiation that patterns the developing eye disc. Within the morphogenetic furrow, we focus on four genes, hairy, atonal, hedgehog, and Delta. Hybridization chain reaction quantitatively measures spatial gene expression, co-staining for all four genes simultaneously. We find considerable variation in the spatial expression pattern of these genes in the eye between species, genotypes, and sexes. We also find that there has been evolution of the regulatory relationship between these genes, and that their spatial interrelationships have evolved between species. This variation has no phenotypic effect, and could be buffered by network thresholds or compensation from other genes. Both of these mechanisms could potentially be contributing to long term developmental systems drift.
Collapse
Affiliation(s)
- Sammi Ali
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Sarah A Signor
- Molecular and Computational Biology, University of Southern California, Los Angeles, California
| | - Konstantin Kozlov
- Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| | - Sergey V Nuzhdin
- Molecular and Computational Biology, University of Southern California, Los Angeles, California.,Department of Applied Mathematics, St. Petersburg State Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
32
|
Decoupling the Variances of Heterosis and Inbreeding Effects Is Evidenced in Yeast's Life-History and Proteomic Traits. Genetics 2018; 211:741-756. [PMID: 30509954 DOI: 10.1534/genetics.118.301635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/28/2018] [Indexed: 11/18/2022] Open
Abstract
Heterosis (hybrid vigor) and inbreeding depression, commonly considered as corollary phenomena, could nevertheless be decoupled under certain assumptions according to theoretical population genetics works. To explore this issue on real data, we analyzed the components of genetic variation in a population derived from a half-diallel cross between strains from Saccharomyces cerevisiae and S. uvarum, two related yeast species involved in alcoholic fermentation. A large number of phenotypic traits, either molecular (coming from quantitative proteomics) or related to fermentation and life history, were measured during alcoholic fermentation. Because the parental strains were included in the design, we were able to distinguish between inbreeding effects, which measure phenotypic differences between inbred and hybrids, and heterosis, which measures phenotypic differences between a specific hybrid and the other hybrids sharing a common parent. The sources of phenotypic variation differed depending on the temperature, indicating the predominance of genotype-by-environment interactions. Decomposing the total genetic variance into variances of additive (intra- and interspecific) effects, of inbreeding effects, and of heterosis (intra- and interspecific) effects, we showed that the distribution of variance components defined clear-cut groups of proteins and traits. Moreover, it was possible to cluster fermentation and life-history traits into most proteomic groups. Within groups, we observed positive, negative, or null correlations between the variances of heterosis and inbreeding effects. To our knowledge, such a decoupling had never been experimentally demonstrated. This result suggests that, despite a common evolutionary history of individuals within a species, the different types of traits have been subject to different selective pressures.
Collapse
|
33
|
Takahashi KH, Ishimori M, Iwata H. HSP90 as a global genetic modifier for male genital morphology in Drosophila melanogaster. Evolution 2018; 72:2419-2434. [PMID: 30221481 DOI: 10.1111/evo.13598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
Abstract
The molecular chaperone protein HSP90 has been proposed to modulate genotype-phenotype relationship in a broad range of organisms. We explore the proposed genetic modifier effect of HSP90 through a genomewide analysis. Here, we show that HSP90 functions as a genetic modifier of genital morphology in Drosophila melanogaster. We identified a large number of single-nucleotide polymorphisms (SNPs) with an HSP90-dependent effect by using genome wide association analysis. We classified the SNPs into the ones under capacitance effect (smaller allelic effect under HSP90 inhibition) or the ones under potentiation effect (larger allelic effect under HSP90 inhibition). Although the majority of SNPs are under capacitance, there are a large number of SNPs under potentiation. This observation provides support for a model in which Hsp90 is not described exclusively as a "genetic capacitor," but is described more broadly as a "genetic modifier." Because the majority of the candidate genes estimated from SNPs with an HSP90-dependent effect in the current study has never been reported to interact with HSP90 directly, the global genetic modifier effect of HSP90 may be exhibited through epistatic interactions in gene regulatory networks.
Collapse
Affiliation(s)
- Kazuo H Takahashi
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-si, Okayama-ken, 700-8530, Japan
| | - Motoyuki Ishimori
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| | - Hiroyoshi Iwata
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
34
|
Donnelly K, Cavers S, Cottrell JE, Ennos RA. Cryptic genetic variation and adaptation to waterlogging in Caledonian Scots pine, Pinus sylvestris L. Ecol Evol 2018; 8:8665-8675. [PMID: 30271535 PMCID: PMC6157661 DOI: 10.1002/ece3.4389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/31/2018] [Accepted: 06/17/2018] [Indexed: 12/05/2022] Open
Abstract
Local adaptation occurs as the result of differential selection among populations. Observations made under common environmental conditions may reveal phenotypic differences between populations with an underlying genetic basis; however, exposure to a contrasting novel environment can trigger release of otherwise unobservable (cryptic) genetic variation. We conducted a waterlogging experiment on a common garden trial of Scots pine, Pinus sylvestris (L.), saplings originating from across a steep rainfall gradient in Scotland. A flood treatment was maintained for approximately 1 year; physiological responses were gauged periodically in terms of photochemical capacity as measured via chlorophyll fluorescence. During the treatment, flooded individuals experienced a reduction in photochemical capacity, F v /F m, this reduction being greater for material originating from drier, eastern sites. Phenotypic variance was increased under flooding, and this increase was notably smaller in saplings originating from western sites where precipitation is substantially greater and waterlogging is more common. We conclude that local adaptation has occurred with respect to waterlogging tolerance and that, under the flooding treatment, the greater increase in variability observed in populations originating from drier sites is likely to reflect a relative absence of past selection. In view of a changing climate, we note that comparatively maladapted populations may possess considerable adaptive potential, due to cryptic genetic variation, that should not be overlooked.
Collapse
Affiliation(s)
- Kevin Donnelly
- Institute of Evolutionary BiologySchool of Biological SciencesAshworth LaboratoriesUniversity of EdinburghEdinburghUK
- NERC Centre for Ecology and Hydrology, EdinburghPenicuik, MidlothianUK
| | - Stephen Cavers
- NERC Centre for Ecology and Hydrology, EdinburghPenicuik, MidlothianUK
| | | | - Richard A. Ennos
- Institute of Evolutionary BiologySchool of Biological SciencesAshworth LaboratoriesUniversity of EdinburghEdinburghUK
| |
Collapse
|
35
|
Duan J, Göring HHH, Sanders AR, Moy W, Freda J, Drigalenko EI, Kos M, He D, Gejman PV. Transcriptomic signatures of schizophrenia revealed by dopamine perturbation in an ex vivo model. Transl Psychiatry 2018; 8:158. [PMID: 30115913 PMCID: PMC6095865 DOI: 10.1038/s41398-018-0216-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The dopaminergic hypothesis of schizophrenia (SZ) postulates that dopaminergic over activity causes psychosis, a central feature of SZ, based on the observation that blocking dopamine (DA) improves psychotic symptoms. DA is known to have both receptor- and non-receptor-mediated effects, including oxidative mechanisms that lead to apoptosis. The role of DA-mediated oxidative processes in SZ has been little studied. Here, we have used a cell perturbation approach and measured transcriptomic profiles by RNAseq to study the effect of DA exposure on transcription in B-cell transformed lymphoblastoid cell lines (LCLs) from 514 SZ cases and 690 controls. We found that DA had widespread effects on both cell growth and gene expression in LCLs. Overall, 1455 genes showed statistically significant differential DA response in SZ cases and controls. This set of differentially expressed genes is enriched for brain expression and for functions related to immune processes and apoptosis, suggesting that DA may play a role in SZ pathogenesis through modulating those systems. Moreover, we observed a non-significant enrichment of genes near genome-wide significant SZ loci and with genes spanned by SZ-associated copy number variants (CNVs), which suggests convergent pathogenic mechanisms detected by both genetic association and gene expression. The study suggests a novel role of DA in the biological processes of immune and apoptosis that may be relevant to SZ pathogenesis. Furthermore, our results show the utility of pathophysiologically relevant perturbation experiments to investigate the biology of complex mental disorders.
Collapse
Affiliation(s)
- Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio, TX, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Winton Moy
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Jessica Freda
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Eugene I Drigalenko
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Mark Kos
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, San Antonio, TX, USA
| | - Deli He
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Pablo V Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
36
|
Decanalizing thinking on genetic canalization. Semin Cell Dev Biol 2018; 88:54-66. [PMID: 29751086 DOI: 10.1016/j.semcdb.2018.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/07/2018] [Accepted: 05/07/2018] [Indexed: 02/01/2023]
Abstract
The concept of genetic canalization has had an abiding influence on views of complex-trait evolution. A genetically canalized system has evolved to become less sensitive to the effects of mutation. When a gene product that supports canalization is compromised, the phenotypic impacts of a mutation should be more pronounced. This expected increase in mutational effects not only has important consequences for evolution, but has also motivated strategies to treat disease. However, recent studies demonstrate that, when putative agents of genetic canalization are impaired, systems do not behave as expected. Here, we review the evidence that is used to infer whether particular gene products are agents of genetic canalization. Then we explain how such inferences often succumb to a converse error. We go on to show that several candidate agents of genetic canalization increase the phenotypic impacts of some mutations while decreasing the phenotypic impacts of others. These observations suggest that whether a gene product acts as a 'buffer' (lessening mutational effects) or a 'potentiator' (increasing mutational effects) is not a fixed property of the gene product but instead differs for the different mutations with which it interacts. To investigate features of genetic interactions that might predispose them toward buffering versus potentiation, we explore simulated gene-regulatory networks. Similarly to putative agents of genetic canalization, the gene products in simulated networks also modify the phenotypic effects of mutations in other genes without a strong overall tendency towards lessening or increasing these effects. In sum, these observations call into question whether complex traits have evolved to become less sensitive (i.e., are canalized) to genetic change, and the degree to which trends exist that predict how one genetic change might alter another's impact. We conclude by discussing approaches to address these and other open questions that are brought into focus by re-thinking genetic canalization.
Collapse
|
37
|
Takahashi KH. Multiple modes of canalization: Links between genetic, environmental canalizations and developmental stability, and their trait-specificity. Semin Cell Dev Biol 2018; 88:14-20. [PMID: 29787862 DOI: 10.1016/j.semcdb.2018.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/14/2018] [Accepted: 05/15/2018] [Indexed: 10/16/2022]
Abstract
The robustness of biological systems against mutational and environmental perturbations is termed canalization. Because reducing phenotypic variability under environmental and genetic perturbations can be adaptive and facilitated by natural selection, it has been suggested that once canalization mechanisms have evolved to buffer the effects of environmental perturbations, they may act to buffer any and all sources of variation. Although whether canalization mechanisms are general or specific to the types of perturbation or phenotypic traits that they buffer is often addressed, the links between different canalization mechanisms remain unclear. In this review, three major sources of phenotypic variation, associated canalization concepts and indicators of the degree of canalization are first outlined. Then, the molecular bases of canalization mechanisms based on recent empirical studies are overviewed. Finally, the links between the underlying processes of different canalization mechanisms are explored.
Collapse
Affiliation(s)
- Kazuo H Takahashi
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama-si, Okayama-ken, 700-8530, Japan.
| |
Collapse
|
38
|
Abstract
Evolutionary rescue describes a situation where adaptive evolution prevents the extinction of a population facing a stressing environment. Models of evolutionary rescue could in principle be used to predict the level of stress beyond which extinction becomes likely for species of conservation concern, or, conversely, the treatment levels most likely to limit the emergence of resistant pests or pathogens. Stress levels are known to affect both the rate of population decline (demographic effect) and the speed of adaptation (evolutionary effect), but the latter aspect has received less attention. Here, we address this issue using Fisher's geometric model of adaptation. In this model, the fitness effects of mutations depend both on the genotype and the environment in which they arise. In particular, the model introduces a dependence between the level of stress, the proportion of rescue mutants, and their costs before the onset of stress. We obtain analytic results under a strong-selection-weak-mutation regime, which we compare to simulations. We show that the effect of the environment on evolutionary rescue can be summarized into a single composite parameter quantifying the effective stress level, which is amenable to empirical measurement. We describe a narrow characteristic stress window over which the rescue probability drops from very likely to very unlikely as the level of stress increases. This drop is sharper than in previous models, as a result of the decreasing proportion of stress-resistant mutations as stress increases. We discuss how to test these predictions with rescue experiments across gradients of stress.
Collapse
|
39
|
Yadav A, Dhole K, Sinha H. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits. Genome Biol Evol 2018; 8:3559-3573. [PMID: 28172852 PMCID: PMC5381507 DOI: 10.1093/gbe/evw258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2016] [Indexed: 12/21/2022] Open
Abstract
Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.
Collapse
Affiliation(s)
- Anupama Yadav
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Kaustubh Dhole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Himanshu Sinha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
40
|
Chevin LM, Cotto O, Ashander J. Stochastic Evolutionary Demography under a Fluctuating Optimum Phenotype. Am Nat 2017; 190:786-802. [PMID: 29166162 PMCID: PMC5958996 DOI: 10.1086/694121] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Many natural populations exhibit temporal fluctuations in abundance that are consistent with external forcing by a randomly changing environment. As fitness emerges from an interaction between the phenotype and the environment, such demographic fluctuations probably include a substantial contribution from fluctuating phenotypic selection. We study the stochastic population dynamics of a population exposed to random (plus possibly directional) changes in the optimum phenotype for a quantitative trait that evolves in response to this moving optimum. We derive simple analytical predictions for the distribution of log population size over time both transiently and at stationarity under Gompertz density regulation. These predictions are well matched by population- and individual-based simulations. The log population size is approximately reverse gamma distributed, with a negative skew causing an excess of low relative to high population sizes, thus increasing extinction risk relative to a symmetric (e.g., normal) distribution with the same mean and variance. Our analysis reveals how the mean and variance of log population size change with the variance and autocorrelation of deviations of the evolving mean phenotype from the optimum. We apply our results to the analysis of evolutionary rescue in a stochastic environment and show that random fluctuations in the optimum can substantially increase extinction risk by both reducing the expected growth rate and increasing the variance of population size by several orders of magnitude.
Collapse
Affiliation(s)
- Luis-Miguel Chevin
- CEFE UMR 5175, CNRS - Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, 34293 Montpellier, CEDEX 5, France
| | - Olivier Cotto
- CEFE UMR 5175, CNRS - Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, 34293 Montpellier, CEDEX 5, France
| | - Jaime Ashander
- CPB: Center for Population Biology, University of California-Davis, Davis, CA 95616, USA and UCLA Ecology & Evolutionary Biology, 610 Charles E Young Drive East, Terasaki Life Sciences Bldg Receiving Dock, Los Angeles, CA 90095
| |
Collapse
|
41
|
Sauce B, Matzel LD. The paradox of intelligence: Heritability and malleability coexist in hidden gene-environment interplay. Psychol Bull 2017; 144:26-47. [PMID: 29083200 DOI: 10.1037/bul0000131] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intelligence can have an extremely high heritability, but also be malleable; a paradox that has been the source of continuous controversy. Here we attempt to clarify the issue, and advance a frequently overlooked solution to the paradox: Intelligence is a trait with unusual properties that create a large reservoir of hidden gene-environment (GE) networks, allowing for the contribution of high genetic and environmental influences on individual differences in IQ. GE interplay is difficult to specify with current methods, and is underestimated in standard metrics of heritability (thus inflating estimates of "genetic" effects). We describe empirical evidence for GE interplay in intelligence, with malleability existing on top of heritability. The evidence covers cognitive gains consequent to adoption/immigration, changes in IQ's heritability across life span and socioeconomic status, gains in IQ over time consequent to societal development (the Flynn effect), the slowdown of age-related cognitive decline, and the gains in intelligence from early education. The GE solution has novel implications for enduring problems, including our inability to identify intelligence-related genes (also known as IQ's "missing heritability"), and the loss of initial benefits from early intervention programs (such as "Head Start"). The GE solution can be a powerful guide to future research, and may also aid policies to overcome barriers to the development of intelligence, particularly in impoverished and underprivileged populations. (PsycINFO Database Record
Collapse
Affiliation(s)
- Bruno Sauce
- Department of Psychology, Program in Behavioral and Systems Neuroscience, Rutgers University
| | - Louis D Matzel
- Department of Psychology, Program in Behavioral and Systems Neuroscience, Rutgers University
| |
Collapse
|
42
|
San-Jose LM, Ducret V, Ducrest AL, Simon C, Roulin A. Beyond mean allelic effects: A locus at the major color gene MC1R associates also with differing levels of phenotypic and genetic (co)variance for coloration in barn owls. Evolution 2017; 71:2469-2483. [PMID: 28861897 DOI: 10.1111/evo.13343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 01/05/2023]
Abstract
The mean phenotypic effects of a discovered variant help to predict major aspects of the evolution and inheritance of a phenotype. However, differences in the phenotypic variance associated to distinct genotypes are often overlooked despite being suggestive of processes that largely influence phenotypic evolution, such as interactions between the genotypes with the environment or the genetic background. We present empirical evidence for a mutation at the melanocortin-1-receptor gene, a major vertebrate coloration gene, affecting phenotypic variance in the barn owl, Tyto alba. The white MC1R allele, which associates with whiter plumage coloration, also associates with a pronounced phenotypic and additive genetic variance for distinct color traits. Contrarily, the rufous allele, associated with a rufous coloration, relates to a lower phenotypic and additive genetic variance, suggesting that this allele may be epistatic over other color loci. Variance differences between genotypes entailed differences in the strength of phenotypic and genetic associations between color traits, suggesting that differences in variance also alter the level of integration between traits. This study highlights that addressing variance differences of genotypes in wild populations provides interesting new insights into the evolutionary mechanisms and the genetic architecture underlying the phenotype.
Collapse
Affiliation(s)
- Luis M San-Jose
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Valérie Ducret
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Badyaev AV, Potticary AL, Morrison ES. Most Colorful Example of Genetic Assimilation? Exploring the Evolutionary Destiny of Recurrent Phenotypic Accommodation. Am Nat 2017; 190:266-280. [PMID: 28731798 DOI: 10.1086/692327] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Evolution of adaptation requires both generation of novel phenotypic variation and retention of a locally beneficial subset of this variation. Such retention can be facilitated by genetic assimilation, the accumulation of genetic and molecular mechanisms that stabilize induced phenotypes and assume progressively greater control over their reliable production. A particularly strong inference into genetic assimilation as an evolutionary process requires a system where it is possible to directly evaluate the extent to which an induced phenotype is progressively incorporated into preexisting developmental pathways. Evolution of diet-dependent pigmentation in birds-where external carotenoids are coopted into internal metabolism to a variable degree before being integrated with a feather's developmental processes-provides such an opportunity. Here we combine a metabolic network view of carotenoid evolution with detailed empirical study of feather modifications to show that the effect of physical properties of carotenoids on feather structure depends on their metabolic modification, their environmental recurrence, and biochemical redundancy, as predicted by the genetic assimilation hypothesis. Metabolized carotenoids caused less stochastic variation in feather structure and were more closely integrated with feather growth than were dietary carotenoids of the same molecular weight. These patterns were driven by the recurrence of organism-carotenoid associations: commonly used dietary carotenoids and biochemically redundant derived carotenoids caused less stochastic variation in feather structure than did rarely used or biochemically unique compounds. We discuss implications of genetic assimilation processes for the evolutionary diversification of diet-dependent animal coloration.
Collapse
|
44
|
Mayer C, Hansen TF. Evolvability and robustness: A paradox restored. J Theor Biol 2017; 430:78-85. [PMID: 28709941 DOI: 10.1016/j.jtbi.2017.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/26/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022]
Abstract
Evolvability and robustness are crucial for the origin and maintenance of complex organisms, but may not be simultaneously achievable as robust traits are also hard to change. Andreas Wagner has proposed a solution to this paradox by arguing that the many-to-few aspect of genotype-phenotype maps creates neutral networks of genotypes coding for the same phenotype. Phenotypes with large networks are genetically robust, but they may also have more neighboring phenotypes and thus higher evolvability. In this paper, we explore the generality of this idea by sampling large numbers of random genotype-phenotype maps for Boolean genotypes and phenotypes. We show that there is indeed a preponderance of positive correlations between the evolvability and robustness of phenotypes within a genotype-phenotype map, but also that there are negative correlations between average evolvability and robustness across maps. We interpret this as predicting a positive correlation across the phenotypic states of a character, but a negative correlation across characters. We also argue that evolvability and robustness tend to be negatively correlated when phenotypes are measured on ordinal or higher scale types. We conclude that Wagner's conjecture of a positive relation between robustness and evolvability is based on strict and somewhat unrealistic biological assumptions.
Collapse
Affiliation(s)
- Christine Mayer
- Department of Biosciences, CEES, EvoGene & CEDE, University of Oslo, PB 1066, Blindern, 0316 Oslo, Norway.
| | - Thomas F Hansen
- Department of Biosciences, CEES, EvoGene & CEDE, University of Oslo, PB 1066, Blindern, 0316 Oslo, Norway
| |
Collapse
|
45
|
Ren J, Wu P, Tian X, Lübberstedt T, Chen S. QTL mapping for haploid male fertility by a segregation distortion method and fine mapping of a key QTL qhmf4 in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1349-1359. [PMID: 28389771 DOI: 10.1007/s00122-017-2892-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/10/2017] [Indexed: 05/18/2023]
Abstract
Four QTL related to haploid male fertility were detected by a segregation distortion method and the key QTL qhmf4 was fine mapped to an interval of ~800 kb. Doubled haploid (DH) technology enables rapid development of homozygous lines in maize breeding programs. However, haploid genome doubling is a bottleneck for the commercialization of DH technology and is limited by haploid male fertility (HMF). This is the first study reporting the quantitative trait locus (QTL) analysis of HMF in maize. Four QTL, qhmf1, qhmf2, qhmf3, and qhmf4, controlling HMF have been identified by segregation distortion (SD) loci detection in the selected haploid population derived from 'Yu87-1/Zheng58'. Three loci, qhmf1, qhmf2, and qhmf4, were also detected in the selected haploid population derived from '4F1/Zheng58'. The QTL qhmf4 showed the strongest SD in both haploid populations. Based on the sequence information of 'Yu87-1' and 'Zheng58', thirteen markers being polymorphic between the two lines were developed to saturate the qhmf4 region. A total of 8168 H1BC2 (haploid backcross generation) plants produced from 'Yu87-1' and 'Zheng58' were screened for recombinants. All the 48 recombinants were backcrossed to 'Zheng58' to develop H1BC3 progeny. The heterozygous H1BC3 individuals were crossed with CAU5 to induce haploids. In each H1BC3 progeny, haploids were genotyped and evaluated for anther emergence score (AES). Significant (or no significant) difference (P < 0.05) between haploids with or without 'Yu87-1' donor segment indicated presence or absence of qhmf4 in the donor segment. The analysis of the 48 recombinants narrowed the qhmf4 locus down to an ~800 kb interval flanked by markers IND166 and IND1668.
Collapse
Affiliation(s)
- Jiaojiao Ren
- College of Agriculture and Biotechnology, China Agricultural University, No. 2 Yuan Ming Yuan West Road, 100193, Beijing, China
| | - Penghao Wu
- College of Agronomy, Xinjiang Agriculture University, 830052, Urumqi, China
| | - Xiaolong Tian
- College of Agriculture and Biotechnology, China Agricultural University, No. 2 Yuan Ming Yuan West Road, 100193, Beijing, China
| | | | - Shaojiang Chen
- College of Agriculture and Biotechnology, China Agricultural University, No. 2 Yuan Ming Yuan West Road, 100193, Beijing, China.
| |
Collapse
|
46
|
Sieriebriennikov B, Markov GV, Witte H, Sommer RJ. The Role of DAF-21/Hsp90 in Mouth-Form Plasticity in Pristionchus pacificus. Mol Biol Evol 2017; 34:1644-1653. [PMID: 28333289 PMCID: PMC5455966 DOI: 10.1093/molbev/msx106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phenotypic plasticity is increasingly recognized to facilitate adaptive change in plants and animals, including insects, nematodes, and vertebrates. Plasticity can occur as continuous or discrete (polyphenisms) variation. In social insects, for example, in ants, some species have workers of distinct size classes while in other closely related species variation in size may be continuous. Despite the abundance of examples in nature, how discrete morphs are specified remains currently unknown. In theory, polyphenisms might require robustness, whereby the distribution of morphologies would be limited by the same mechanisms that execute buffering from stochastic perturbations, a function attributed to heat-shock proteins of the Hsp90 family. However, this possibility has never been directly tested because plasticity and robustness are considered to represent opposite evolutionary principles. Here, we used a polyphenism of feeding structures in the nematode Pristionchus pacificus to test the relationship between robustness and plasticity using geometric morphometrics of 20 mouth-form landmarks. We show that reducing heat-shock protein activity, which reduces developmental robustness, increases the range of mouth-form morphologies. Specifically, elevated temperature led to a shift within morphospace, pharmacological inhibition of all Hsp90 genes using radicicol treatment increased shape variability in both mouth-forms, and CRISPR/Cas9-induced Ppa-daf-21/Hsp90 knockout had a combined effect. Thus, Hsp90 canalizes the morphologies of plastic traits resulting in discrete polyphenism of mouth-forms.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Gabriel V. Markov
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC University of Paris 06, Roscoff, France
| | - Hanh Witte
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ralf J. Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
47
|
Nuño de la Rosa L. Computing the Extended Synthesis: Mapping the Dynamics and Conceptual Structure of the Evolvability Research Front. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2017; 328:395-411. [DOI: 10.1002/jez.b.22741] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/11/2017] [Accepted: 03/24/2017] [Indexed: 11/12/2022]
|
48
|
Rowiński PK, Rogell B. Environmental stress correlates with increases in both genetic and residual variances: A meta-analysis of animal studies. Evolution 2017; 71:1339-1351. [DOI: 10.1111/evo.13201] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 01/18/2017] [Accepted: 02/02/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Piotr K. Rowiński
- Department of Zoology; Stockholm University; Svante Arrhenius väg 18B 106 91 Stockholm Sweden
| | - Björn Rogell
- Department of Zoology; Stockholm University; Svante Arrhenius väg 18B 106 91 Stockholm Sweden
| |
Collapse
|
49
|
Second premolar agenesis is associated with mandibular form: a geometric morphometric analysis of mandibular cross-sections. Int J Oral Sci 2016; 8:254-260. [PMID: 27857074 PMCID: PMC5168418 DOI: 10.1038/ijos.2016.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 11/15/2022] Open
Abstract
The aim of this study was to compare mandibular form (i.e., size and shape) between patients with agenesis of the lower second premolar (P2) and a control group with no agenesis. Three hypotheses were tested: (H1) agenesis causes a change in mandibular morphology because of inadequate alveolar ridge development in the area of the missing tooth (mandibular plasticity); (H2) agenesis is caused by spatial limitations within the mandible (dental plasticity); and (H3) common genetic/epigenetic factors cause agenesis and affect mandibular form (pleiotropy). A geometric morphometric analysis was applied to cross-sectional images of computed tomography (CT) scans of three matched groups (n=50 each): (1) regularly erupted P2; (2) agenesis of P2 and the primary second molar in situ; and (3) agenesis of P2 and the primary second molar missing for >3 months. Cross-sections of the three areas of interest (first premolar, P2, first molar) were digitized with 23 landmarks and superimposed by a generalized Procrustes analysis. On average, the mandibular cross-sections were narrower and shorter in patients with P2 agenesis compared with that in the control group. Both agenesis groups featured a pronounced submandibular fossa. These differences extended at least one tooth beyond the agenesis-affected region. Taken together with the large interindividual variation that resulted in massively overlapping group distributions, these findings support genetic and/or epigenetic pleiotropy (H3) as the most likely origin of the observed covariation between mandibular form and odontogenesis. Clinically, reduced dimensions and greater variability of mandibular form, as well as a pronounced submandibular fossa, should be expected during the treatment planning of patients with P2 agenesis.
Collapse
|
50
|
Le Rouzic A, Álvarez-Castro JM. Epistasis-Induced Evolutionary Plateaus in Selection Responses. Am Nat 2016; 188:E134-E150. [DOI: 10.1086/688893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|