1
|
Ramos LG, de Souza KR, Júnior PAS, Câmara CC, Castelo-Branco FS, Boechat N, Carvalho SA. Tackling the challenges of human Chagas disease: A comprehensive review of treatment strategies in the chronic phase and emerging therapeutic approaches. Acta Trop 2024; 256:107264. [PMID: 38806090 DOI: 10.1016/j.actatropica.2024.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Chagas disease (CD), caused by the flagellated protozoan Trypanosoma cruzi (T. cruzi), affects approximately 7 million people worldwide and is endemic in Latin America, especially among socioeconomically disadvantaged populations. Since the 1960s, only two drugs have been commercially available for treating this illness: nifurtimox (NFX) and benznidazole (BZN). Although these drugs are effective in the acute phase (AP) of the disease, in which parasitemia is usually high, their cure rates in the chronic phase (CP) are low and often associated with several side effects. The CP is characterized by a subpatent parasitaemia and absence of clinical symptoms in the great majority of infected individuals. However, at least 30 % of the individuals will develop potentially lethal symptomatic forms, including cardiac and digestive manifestations. For such reason, in the CP the treatment is usually symptomatic and typically focuses on managing complications such as arrhythmias, heart failure, or digestive problems. Therefore, the need for new drugs or therapeutic approaches using BZN or NFX is extremely urgent. This review presents the main clinical trials, especially in the CP, which involve BZN and NFX in different treatment regimens. Additionally, other therapies using combinations of these drugs with other substances such as allopurinol, itraconazole, ravuconazole, ketoconazole, posaconazole and amiodarone are also reported. The importance of early diagnosis, especially in pediatric patients, is also discussed, emphasizing the need to identify the disease in its early stages to improve the chances of successful treatment.
Collapse
Affiliation(s)
- Laís Gomes Ramos
- Laboratorio de Sintese de Farmacos -LASFAR, Instituto de Tecnologia em Farmacos - Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21041-250, Brazil; Laboratório de Físico-Química de Materiais, Seção de Engenharia Química, Instituto Militar de Engenharia, Praça General Tibúrcio 80, Rio de Janeiro, RJ 22290-270, Brazil
| | - Kátia Regina de Souza
- Laboratório de Físico-Química de Materiais, Seção de Engenharia Química, Instituto Militar de Engenharia, Praça General Tibúrcio 80, Rio de Janeiro, RJ 22290-270, Brazil
| | - Policarpo Ademar Sales Júnior
- Laboratório de Imunopatologia e Biologia Molecular, Departamento de Imunologia, Instituto Ageu Magalhães, Fundação Oswaldo Cruz, Recife, PE 50670-420, Brazil
| | - Camila Capelini Câmara
- Laboratorio de Sintese de Farmacos -LASFAR, Instituto de Tecnologia em Farmacos - Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21041-250, Brazil; Laboratório de Físico-Química de Materiais, Seção de Engenharia Química, Instituto Militar de Engenharia, Praça General Tibúrcio 80, Rio de Janeiro, RJ 22290-270, Brazil
| | - Frederico S Castelo-Branco
- Laboratorio de Sintese de Farmacos -LASFAR, Instituto de Tecnologia em Farmacos - Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21041-250, Brazil
| | - Nubia Boechat
- Laboratorio de Sintese de Farmacos -LASFAR, Instituto de Tecnologia em Farmacos - Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21041-250, Brazil
| | - Samir Aquino Carvalho
- Laboratorio de Sintese de Farmacos -LASFAR, Instituto de Tecnologia em Farmacos - Farmanguinhos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21041-250, Brazil.
| |
Collapse
|
2
|
Silvestrini MMA, Alessio GD, Frias BED, Sales Júnior PA, Araújo MSS, Silvestrini CMA, Brito Alvim de Melo GE, Martins-Filho OA, Teixeira-Carvalho A, Martins HR. New insights into Trypanosoma cruzi genetic diversity, and its influence on parasite biology and clinical outcomes. Front Immunol 2024; 15:1342431. [PMID: 38655255 PMCID: PMC11035809 DOI: 10.3389/fimmu.2024.1342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.
Collapse
Affiliation(s)
| | - Glaucia Diniz Alessio
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Estefânia Diniz Frias
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Policarpo Ademar Sales Júnior
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Rodrigues Martins
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
3
|
Hoyos Sanchez MC, Ospina Zapata HS, Suarez BD, Ospina C, Barbosa HJ, Carranza Martinez JC, Vallejo GA, Urrea Montes D, Duitama J. A phased genome assembly of a Colombian Trypanosoma cruzi TcI strain and the evolution of gene families. Sci Rep 2024; 14:2054. [PMID: 38267502 PMCID: PMC10808112 DOI: 10.1038/s41598-024-52449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Chagas is an endemic disease in tropical regions of Latin America, caused by the parasite Trypanosoma cruzi. High intraspecies variability and genome complexity have been challenges to assemble high quality genomes needed for studies in evolution, population genomics, diagnosis and drug development. Here we present a chromosome-level phased assembly of a TcI T. cruzi strain (Dm25). While 29 chromosomes show a large collinearity with the assembly of the Brazil A4 strain, three chromosomes show both large heterozygosity and large divergence, compared to previous assemblies of TcI T. cruzi strains. Nucleotide and protein evolution statistics indicate that T. cruzi Marinkellei separated before the diversification of T. cruzi in the known DTUs. Interchromosomal paralogs of dispersed gene families and histones appeared before but at the same time have a more strict purifying selection, compared to other repeat families. Previously unreported large tandem arrays of protein kinases and histones were identified in this assembly. Over one million variants obtained from Illumina reads aligned to the primary assembly clearly separate the main DTUs. We expect that this new assembly will be a valuable resource for further studies on evolution and functional genomics of Trypanosomatids.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, 79106, USA
| | | | - Brayhan Dario Suarez
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Carlos Ospina
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Hamilton Julian Barbosa
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | | | - Gustavo Adolfo Vallejo
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Daniel Urrea Montes
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
4
|
Zingales B, Macedo AM. Fifteen Years after the Definition of Trypanosoma cruzi DTUs: What Have We Learned? Life (Basel) 2023; 13:2339. [PMID: 38137940 PMCID: PMC10744745 DOI: 10.3390/life13122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma cruzi, the protozoan causative of Chagas disease (ChD), exhibits striking genetic and phenotypic intraspecific diversity, along with ecoepidemiological complexity. Human-pathogen interactions lead to distinct clinical presentations of ChD. In 2009, an international consensus classified T. cruzi strains into six discrete typing units (DTUs), TcI to TcVI, later including TcBat, and proposed reproducible genotyping schemes for DTU identification. This article aims to review the impact of classifying T. cruzi strains into DTUs on our understanding of biological, ecoepidemiological, and pathogenic aspects of T. cruzi. We will explore the likely origin of DTUs and the intrinsic characteristics of each group of strains concerning genome organization, genomics, and susceptibility to drugs used in ChD treatment. We will also provide an overview of the association of DTUs with mammalian reservoirs, and summarize the geographic distribution, and the clinical implications, of prevalent specific DTUs in ChD patients. Throughout this review, we will emphasize the crucial roles of both parasite and human genetics in defining ChD pathogenesis and chemotherapy outcome.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Andréa M. Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| |
Collapse
|
5
|
Hakim JMC, Waltmann A, Tinajeros F, Kharabora O, Machaca EM, Calderon M, del Carmen Menduiña M, Wang J, Rueda D, Zimic M, Verástegui M, Juliano JJ, Gilman RH, Mugnier MR, Bowman NM. Amplicon Sequencing Reveals Complex Infection in Infants Congenitally Infected With Trypanosoma Cruzi and Informs the Dynamics of Parasite Transmission. J Infect Dis 2023; 228:769-776. [PMID: 37119236 PMCID: PMC10503952 DOI: 10.1093/infdis/jiad125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/08/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023] Open
Abstract
Congenital transmission of Trypanosoma cruzi is an important source of new Chagas infections worldwide. The mechanisms of congenital transmission remain poorly understood, but there is evidence that parasite factors are involved. Investigating changes in parasite strain diversity during transmission could provide insight into the parasite factors that influence the process. Here we use amplicon sequencing of a single copy T. cruzi gene to evaluate the diversity of infection in clinical samples from Chagas positive mothers and their infected infants. Several infants and mothers were infected with multiple parasite strains, mostly of the same TcV lineage, and parasite strain diversity was higher in infants than mothers. Two parasite haplotypes were detected exclusively in infant samples, while one haplotype was never found in infants. Together, these data suggest multiple parasites initiate a congenital infection and that parasite factors influence the probability of vertical transmission.
Collapse
Affiliation(s)
- Jill M C Hakim
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andreea Waltmann
- Institute for Global Health and Infectious Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Oksana Kharabora
- Institute for Global Health and Infectious Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Edith Málaga Machaca
- Asociación Benéfica PRISMA, Lima, Peru
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Maritza Calderon
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | | | - Jeremy Wang
- University of North Carolina, Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Daniel Rueda
- Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú
| | - Mirko Zimic
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Manuela Verástegui
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima, Perú
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Robert H Gilman
- Department of International Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Monica R Mugnier
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Natalie M Bowman
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
6
|
Accessing the Variability of Multicopy Genes in Complex Genomes using Unassembled Next-Generation Sequencing Reads: The Case of Trypanosoma cruzi Multigene Families. mBio 2022; 13:e0231922. [PMID: 36264102 PMCID: PMC9765020 DOI: 10.1128/mbio.02319-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repetitive elements cause assembly fragmentation in complex eukaryotic genomes, limiting the study of their variability. The genome of Trypanosoma cruzi, the parasite that causes Chagas disease, has a high repetitive content, including multigene families. Although many T. cruzi multigene families encode surface proteins that play pivotal roles in host-parasite interactions, their variability is currently underestimated, as their high repetitive content results in collapsed gene variants. To estimate sequence variability and copy number variation of multigene families, we developed a read-based approach that is independent of gene-specific read mapping and de novo assembly. This methodology was used to estimate the copy number and variability of MASP, TcMUC, and Trans-Sialidase (TS), the three largest T. cruzi multigene families, in 36 strains, including members of all six parasite discrete typing units (DTUs). We found that these three families present a specific pattern of variability and copy number among the distinct parasite DTUs. Inter-DTU hybrid strains presented a higher variability of these families, suggesting that maintaining a larger content of their members could be advantageous. In addition, in a chronic murine model and chronic Chagasic human patients, the immune response was focused on TS antigens, suggesting that targeting TS conserved sequences could be a potential avenue to improve diagnosis and vaccine design against Chagas disease. Finally, the proposed approach can be applied to study multicopy genes in any organism, opening new avenues to access sequence variability in complex genomes. IMPORTANCE Sequences that have several copies in a genome, such as multicopy-gene families, mobile elements, and microsatellites, are among the most challenging genomic segments to study. They are frequently underestimated in genome assemblies, hampering the correct assessment of these important players in genome evolution and adaptation. Here, we developed a new methodology to estimate variability and copy numbers of repetitive genomic regions and employed it to characterize the T. cruzi multigene families MASP, TcMUC, and transsialidase (TS), which are important virulence factors in this parasite. We showed that multigene families vary in sequence and content among the parasite's lineages, whereas hybrid strains have a higher sequence variability that could be advantageous to the parasite's survivability. By identifying conserved sequences within multigene families, we showed that the mammalian host immune response toward these multigene families is usually focused on the TS multigene family. These TS conserved and immunogenic peptides can be explored in future works as diagnostic targets or vaccine candidates for Chagas disease. Finally, this methodology can be easily applied to any organism of interest, which will aid in our understanding of complex genomic regions.
Collapse
|
7
|
da Silva VS, Machado CR. Sex in protists: A new perspective on the reproduction mechanisms of trypanosomatids. Genet Mol Biol 2022; 45:e20220065. [PMID: 36218381 PMCID: PMC9552303 DOI: 10.1590/1678-4685-gmb-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/07/2022] [Indexed: 11/04/2022] Open
Abstract
The Protist kingdom individuals are the most ancestral representatives of eukaryotes. They have inhabited Earth since ancient times and are currently found in the most diverse environments presenting a great heterogeneity of life forms. The unicellular and multicellular algae, photosynthetic and heterotrophic organisms, as well as free-living and pathogenic protozoa represents the protist group. The evolution of sex is directly associated with the origin of eukaryotes being protists the earliest protagonists of sexual reproduction on earth. In eukaryotes, the recombination through genetic exchange is a ubiquitous mechanism that can be stimulated by DNA damage. Scientific evidences support the hypothesis that reactive oxygen species (ROS) induced DNA damage can promote sexual recombination in eukaryotes which might have been a decisive factor for the origin of sex. The fact that some recombination enzymes also participate in meiotic sex in modern eukaryotes reinforces the idea that sexual reproduction emerged as consequence of specific mechanisms to cope with mutations and alterations in genetic material. In this review we will discuss about origin of sex and different strategies of evolve sexual reproduction in some protists such that cause human diseases like malaria, toxoplasmosis, sleeping sickness, Chagas disease, and leishmaniasis.
Collapse
Affiliation(s)
- Verônica Santana da Silva
- Universidade Federal de Minas Gerais, Departamento de Genética,
Ecologia e Evolução, Belo Horizonte, MG, Brazil
| | - Carlos Renato Machado
- Universidade Federal de Minas Gerais, Departamento de Bioquímica e
Imunologia, Belo Horizonte, MG, Brazil
| |
Collapse
|
8
|
Tibayrenc M, Ayala FJ. Microevolution and subspecific taxonomy of Trypanosoma cruzi. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105344. [PMID: 35926722 DOI: 10.1016/j.meegid.2022.105344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Trypanosoma cruzi, the agent of Chagas disease, is a highly polymorphic species, subdivided into 6 main evolutionary lineages or near-clades (formerly discrete typing units or DTUs). An additional near-clade (TC-bat) has recently been evidenced. This pattern is considered to be the result of predominant clonal evolution (PCE). PCE is compatible with occasional mating/hybridization, which do not break the prevalent pattern of clonal evolution, the main trait of it being the presence of Multigene Bifurcating Trees (MGBTs) at all evolutionary levels ("clonal frame"). The development of highly resolutive genetic (microsatellites*) and genomic (sequencing and multi-single nucleotide polymorphism {SNP}* typing) markers shows that PCE also operates at a microevolutionary* level within each of the near-clades ("Russian doll pattern"), in spite of occasional meiosis and hybridization events. Within each near-clade, one can evidence widespread clonal multilocus genotypes*, linkage disequilibrium*, Multigene Bifurcating Trees and lesser near-clades. The within near-clade population structure is like a miniature picture of that of the whole species, suggesting gradual rather than saltatory evolution. Additional data are required to evaluate the stability of these lesser near-clades in the long run and to evaluate the need for an adequate nomenclature for this microevolutionary level.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), Institut de Recherche Pour le Développement, BP 6450134394 Montpellier Cedex 5, France.
| | - Francisco J Ayala
- Catedra Francisco Jose Ayala of Science, Technology, and Religion, University of Comillas, 28015 Madrid, Spain. 2 Locke Court, Irvine, CA 92617, USA
| |
Collapse
|
9
|
Discrete Typing Units of Trypanosoma cruzi Identified by Real-Time PCR in Peripheral Blood and Dejections of Triatoma infestans Used in Xenodiagnosis Descriptive Study. Pathogens 2022; 11:pathogens11070787. [PMID: 35890030 PMCID: PMC9317341 DOI: 10.3390/pathogens11070787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023] Open
Abstract
Chagas disease (ChD) is a vector zoonosis native to the American continent caused by the protozoan parasite Trypanosoma cruzi; the biological vectors are multiple species of hematophagous insects of the family Triatominae. A relevant aspect in the host–parasite relationship is the identification of the various genotypes of T. cruzi called discrete typing units (DTU) that circulate in mammals and vectors. In Chile, it has been described that the DTUs TcI, TcII, TcV, and TcVI circulate in infected humans, vectors, and wild animals. Identifying DTUs has acquired clinical importance, since it has been suggested that different genotypes could cause distinct pathologies, circulate in different geographical areas, and present different sensitivities to trypanocidal drugs. In this study, circulating T. cruzi DTUs in peripheral blood and Triatoma infestans dejections used in xenodiagnosis (XD) were amplified by qPCR in 14 Chilean patients with chronic ChD from highly endemic areas. More positive samples were detected by XD compared to peripheral blood samples, and 64.28% of the cases were simple infections and 35.72% mixed, with a statistically significant difference in the frequency of TcV DTU. This study would suggest that T. infestans from Chile is more competent to amplify one DTU over others, probably due to a process of co-evolution.
Collapse
|
10
|
Cortez DR, Lima FM, Reis-Cunha JL, Bartholomeu DC, Villacis RAR, Rogatto SR, Costa-Martins AG, Marchiano FS, do Carmo RA, da Silveira JF, Marini MM. Trypanosoma cruzi Genomic Variability: Array Comparative Genomic Hybridization Analysis of Clone and Parental Strain. Front Cell Infect Microbiol 2022; 12:760830. [PMID: 35402315 PMCID: PMC8992781 DOI: 10.3389/fcimb.2022.760830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, exhibits extensive inter- and intrastrain genetic diversity. As we have previously described, there are some genetic differences between the parental G strain and its clone D11, which was isolated by the limiting dilution method and infection of cultured mammalian cells. Electrophoretic karyotyping and Southern blot hybridization of chromosomal bands with specific markers revealed chromosome length polymorphisms of small size with additional chromosomal bands in clone D11 and the maintenance of large syntenic groups. Both G strain and clone D11 belong to the T. cruzi lineage TcI. Here, we designed intraspecific array-based comparative genomic hybridization (aCGH) to identify chromosomal regions harboring copy-number variations between clone D11 and the G strain. DNA losses were more extensive than DNA gains in clone D11. Most alterations were flanked by repeated sequences from multigene families that could be involved in the duplication and deletion events. Several rearrangements were detected by chromoblot hybridization and confirmed by aCGH. We have integrated the information of genomic sequence data obtained by aCGH to the electrophoretic karyotype, allowing the reconstruction of possible recombination events that could have generated the karyotype of clone D11. These rearrangements may be explained by unequal crossing over between sister or homologous chromatids mediated by flanking repeated sequences and unequal homologous recombination via break-induced replication. The genomic changes detected by aCGH suggest the presence of a dynamic genome that responds to environmental stress by varying the number of gene copies and generating segmental aneuploidy.
Collapse
Affiliation(s)
- Danielle Rodrigues Cortez
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fabio Mitsuo Lima
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Centro Universitário São Camilo, Biomedicina, São Paulo, Brazil
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Silvia Regina Rogatto
- Department of Clinical Genetics, Institute of Regional Health Research, University of Southern Denmark, Vejle, Denmark
| | - André Guilherme Costa-Martins
- Department of Clinical and Toxicological Analyses, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Sycko Marchiano
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rafaela Andrade do Carmo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Jose Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Marjorie Mendes Marini, ; Jose Franco da Silveira,
| | - Marjorie Mendes Marini
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- Centro Universitário São Camilo, Biomedicina, São Paulo, Brazil
- *Correspondence: Marjorie Mendes Marini, ; Jose Franco da Silveira,
| |
Collapse
|
11
|
Souza TKMD, Westphalen EVN, Westphalen SDR, Taniguchi HH, Elias CR, Motoie G, Gava R, Pereira-Chioccola VL, Novaes CTG, Carvalho NB, Bocchi EA, Cruz FDDD, Rocha MC, Shinjo SK, Shikanai-Yasuda MA, Ortiz PA, Teixeira MMG, Tolezano JE. Genetic diversity of Trypanosoma cruzi strains isolated from chronic chagasic patients and non-human hosts in the state of São Paulo, Brazil. Mem Inst Oswaldo Cruz 2022; 117:e220125. [PMID: 36383785 PMCID: PMC9651066 DOI: 10.1590/0074-02760220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi shows an exuberant genetic diversity. Currently, seven phylogenetic lineages, called discrete typing units (DTUs), are recognised: TcI-TcVI and Tcbat. Despite advances in studies on T. cruzi and its populations, there is no consensus regarding its heterogeneity. OBJECTIVES This study aimed to perform molecular characterisation of T. cruzi strains, isolated in the state of São Paulo, to identify the DTUs involved and evaluate their genetic diversity. METHODS T. cruzi strains were isolated from biological samples of chronic chagasic patients, marsupials and triatomines through culture techniques and subjected to molecular characterisation using the fluorescent fragment length barcoding (FFLB) technique. Subsequently, the results were correlated with complementary information to enable better discrimination between the identified DTUs. FINDINGS It was possible to identify TcI in two humans and two triatomines; TcII/VI in 19 humans, two marsupials and one triatomine; and TcIII in one human host, an individual that also presented a result for TcI, which indicated the possibility of a mixed infection. Regarding the strains characterised by the TcII/VI profile, the correlation with complementary information allowed to suggest that, in general, these parasite populations indeed correspond to the TcII genotype. MAIN CONCLUSIONS The TcII/VI profile, associated with domestic cycles and patients with chronic Chagas disease, was the most prevalent among the identified DTUs. Furthermore, the correlation of the study results with complementary information made it possible to suggest that TcII is the predominant lineage of this work.
Collapse
|
12
|
Probst CM, Melo MDFAD, Pavoni DP, Toledo MJDO, Galdino TS, Brandão AA, Britto C, Krieger MA. A new Trypanosoma cruzi genotyping method enables high resolution evolutionary analyses. Mem Inst Oswaldo Cruz 2021; 116:e200538. [PMID: 34468503 PMCID: PMC8405150 DOI: 10.1590/0074-02760200538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi is an important human pathogen in Latin America with nearly seven million people infected. It has a large degree of genetic diversity, classified into six discrete typing units (DTUs), which probably influences its physiological behavior and clinical manifestations. Several genotyping methods are available, with distinct performance on easiness, cost, resolution and applicability; no method excels in all parameters. OBJECTIVES AND METHODS To devise a molecular method for T. cruzi genotyping, based on polymerase chain reaction (PCR) amplification of a single target with multiple copies in the nuclear genome by large scale sequencing. We have applied this method to 29 T. cruzi isolates, comprising all described DTUs. FINDINGS We were able to classify all samples into sub DTU level with high robustness. Evolutionary relationship between DTUs were ascertained, suggesting that TcIII and TcIV DTUs are non-hybrid, and DTU IV is more similar to the common ancestral. CONCLUSION As the TS-LSS method is based on a single PCR reaction, comprising several copies of the target, it is probably useful for clinical samples, when the amount of DNA is a limiting factor. As large scale sequencing systems become more common, the TS-LSS method can be increasingly applied for T. cruzi genotyping.
Collapse
Affiliation(s)
- Christian Macagnan Probst
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil
| | | | - Daniela Parada Pavoni
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil
| | - Max Jean de Ornelas Toledo
- Universidade Estadual de Maringá, Departamento de Ciências da Saúde, Laboratório de Doença de Chagas, Maringá, PR, Brasil
| | - Tainah Silva Galdino
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
| | - Adeilton Alves Brandão
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório Interdisciplinar de Pesquisas Médicas, Rio de Janeiro, RJ, Brasil
| | - Constança Britto
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Biologia Molecular e Doenças Endêmicas, Rio de Janeiro, RJ, Brasil
| | - Marco Aurelio Krieger
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil
| |
Collapse
|
13
|
Maldonado E, Morales-Pison S, Urbina F, Solari A. Molecular and Functional Characteristics of DNA Polymerase Beta-Like Enzymes From Trypanosomatids. Front Cell Infect Microbiol 2021; 11:670564. [PMID: 34422676 PMCID: PMC8375306 DOI: 10.3389/fcimb.2021.670564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Trypanosomatids are a group of primitive unicellular eukaryotes that can cause diseases in plants, insects, animals, and humans. Kinetoplast genome integrity is key to trypanosomatid cell survival and viability. Kinetoplast DNA (kDNA) is usually under attack by reactive oxygen and nitric species (ROS and RNS), damaging the DNA, and the cells must remove and repair those oxidatively generated lesions in order to survive and proliferate. Base excision repair (BER) is a well-conserved pathway for DNA repair after base damage, single-base loss, and single-strand breaks, which can arise from ROS, RSN, environmental genotoxic agents, and UV irradiation. A powerful BER system has been described in the T. cruzi kinetoplast and it is mainly carried out by DNA polymerase β (pol β) and DNA polymerase β-PAK (pol β-PAK), which are kinetoplast-located in T. cruzi as well as in other trypanosomatids. Both pol β and pol β-PAK belong to the X-family of DNA polymerases (pol X family), perform BER in trypanosomatids, and display intrinsic 5-deoxyribose phosphate (dRP) lyase and DNA polymerase activities. However, only Pol β-PAK is able to carry out trans-lesion synthesis (TLS) across 8oxoG lesions. T. cruzi cells overexpressing pol β are more resistant to ROS and are also more efficient to repair 8oxoG compared to control cells. Pol β seems to play a role in kDNA replication, since it associates with kinetoplast antipodal sites in those development stages in trypanosomatids which are competent for cell replication. ROS treatment of cells induces the overexpression of pol β, indicating that plays a role in kDNA repair. In this review, we will summarize the main features of trypanosomatid minicircle kDNA replication and the biochemical characteristics of pol β-like enzymes and their involvement in BER and kDNA replication. We also summarize key structural features of trypanosomatid pol β compared to their mammalian (human) counterpart.
Collapse
Affiliation(s)
- Edio Maldonado
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Sebastian Morales-Pison
- Laboratorio de Genética Molecular Humana, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fabiola Urbina
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Khan AA, Langston HC, Costa FC, Olmo F, Taylor MC, McCann CJ, Kelly JM, Lewis MD. Local association of Trypanosoma cruzi chronic infection foci and enteric neuropathic lesions at the tissue micro-domain scale. PLoS Pathog 2021; 17:e1009864. [PMID: 34424944 PMCID: PMC8412264 DOI: 10.1371/journal.ppat.1009864] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/02/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022] Open
Abstract
Digestive Chagas disease (DCD) is an enteric neuropathy caused by Trypanosoma cruzi infection. The mechanism of pathogenesis is poorly understood and the lack of a robust, predictive animal model has held back research. We screened a series of mouse models using gastrointestinal tracer assays and in vivo infection imaging systems to discover a subset exhibiting chronic digestive transit dysfunction and significant retention of faeces in both sated and fasted conditions. The colon was a specific site of both tissue parasite persistence, delayed transit and dramatic loss of myenteric neurons as revealed by whole-mount immunofluorescence analysis. DCD mice therefore recapitulated key clinical manifestations of human disease. We also exploited dual reporter transgenic parasites to home in on locations of rare chronic infection foci in the colon by ex vivo bioluminescence imaging and then used fluorescence imaging in tissue microdomains to reveal co-localisation of infection and enteric nervous system lesions. This indicates that long-term T. cruzi-host interactions in the colon drive DCD pathogenesis, suggesting that the efficacy of anti-parasitic chemotherapy against chronic disease progression warrants further pre-clinical investigation. Chagas disease (American trypanosomiasis) is caused by the protozoan parasite Trypanosoma cruzi. Chagas disease has two types, the cardiac form and the digestive form; some patients have symptoms of both. How the parasite causes digestive disease is poorly understood. It is known that damage to the gut’s nervous system is an important factor, but it has been unclear exactly where and when this damage occurs during the course of an infection and also why only a subset of infected people suffer from this outcome. We studied infections in mice and found certain combinations of strains of parasites and mice that exhibited symptoms similar to human digestive Chagas patients, including a problem with peristalsis that localised specifically to the colon. Using parasites that were genetically engineered to emit both bioluminescent and fluorescent light, we tracked infections over time and were able to analyse rare infected cells deep within the muscle tissue of the wall of the colon. We found evidence of damaged neurons in the same location as these infection foci over 6 months after initial infection. Our results show that digestive Chagas disease probably develops as a result of chronic infection and inflammation, which potentially changes approaches to treatment.
Collapse
Affiliation(s)
- Archie A. Khan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Harry C. Langston
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Fernanda C. Costa
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Martin C. Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Conor J. McCann
- Stem Cells and Regenerative Medicine, University College London, Institute of Child Health, London, United Kingdom
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Reproduction in Trypanosomatids: Past and Present. BIOLOGY 2021; 10:biology10060471. [PMID: 34071741 PMCID: PMC8230138 DOI: 10.3390/biology10060471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 01/07/2023]
Abstract
Simple Summary The reproduction of trypanosomatids is a fundamental issue for host–parasite interaction, and its biological importance lies in knowing how these species acquire new defense mechanisms against the countermeasures imposed by the host, which is consistent with the theory of the endless race or the Red Queen hypothesis for the existence of meiotic sex. Moreover, the way these species re-produce may also be at the origin of novel and more virulent clades and is relevant from a thera-peutic or vaccination point of view, as sex may contribute to increased tolerance and even to the rapid acquisition of drug resistance mechanisms. Kinetoplastids are single-celled organisms, many of them being responsible for important parasitic diseases, globally termed neglected diseases, which are endemic in low-income countries. Leishmaniasis, African (sleeping sickness) and American trypanosomiasis (Chagas disease) caused by trypanosomatids are among the most ne-glected tropical scourges related to poverty and poor health systems. The reproduction of these microorganisms has long been considered to be clonal due to population genetic observations. However, there is increasing evidence of true sex and genetic exchange events under laboratory conditions. We would like to highlight the importance of this topic in the field of host/parasite in-terplay, virulence, and drug resistance. Abstract Diseases caused by trypanosomatids (Sleeping sickness, Chagas disease, and leishmaniasis) are a serious public health concern in low-income endemic countries. These diseases are produced by single-celled parasites with a diploid genome (although aneuploidy is frequent) organized in pairs of non-condensable chromosomes. To explain the way they reproduce through the analysis of natural populations, the theory of strict clonal propagation of these microorganisms was taken as a rule at the beginning of the studies, since it partially justified their genomic stability. However, numerous experimental works provide evidence of sexual reproduction, thus explaining certain naturally occurring events that link the number of meiosis per mitosis and the frequency of mating. Recent techniques have demonstrated genetic exchange between individuals of the same species under laboratory conditions, as well as the expression of meiosis specific genes. The current debate focuses on the frequency of genomic recombination events and its impact on the natural parasite population structure. This paper reviews the results and techniques used to demonstrate the existence of sex in trypanosomatids, the inheritance of kinetoplast DNA (maxi- and minicircles), the impact of genetic exchange in these parasites, and how it can contribute to the phenotypic diversity of natural populations.
Collapse
|
16
|
Gibson W. The sexual side of parasitic protists. Mol Biochem Parasitol 2021; 243:111371. [PMID: 33872659 DOI: 10.1016/j.molbiopara.2021.111371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
Much of the vast evolutionary landscape occupied by Eukaryotes is dominated by protists. Though parasitism has arisen in many lineages, there are three main groups of parasitic protists of relevance to human and livestock health: the Apicomplexa, including the malaria parasite Plasmodium and coccidian pathogens of livestock such as Eimeria; the excavate flagellates, encompassing a diverse range of protist pathogens including trypanosomes, Leishmania, Giardia and Trichomonas; and the Amoebozoa, including pathogenic amoebae such as Entamoeba. These three groups represent separate, deep branches of the eukaryote tree, underlining their divergent evolutionary histories. Here, I explore what is known about sex in these three main groups of parasitic protists.
Collapse
Affiliation(s)
- Wendy Gibson
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, United Kingdom.
| |
Collapse
|
17
|
Mule SN, Costa-Martins AG, Rosa-Fernandes L, de Oliveira GS, Rodrigues CMF, Quina D, Rosein GE, Teixeira MMG, Palmisano G. PhyloQuant approach provides insights into Trypanosoma cruzi evolution using a systems-wide mass spectrometry-based quantitative protein profile. Commun Biol 2021; 4:324. [PMID: 33707618 PMCID: PMC7952728 DOI: 10.1038/s42003-021-01762-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/24/2021] [Indexed: 01/31/2023] Open
Abstract
The etiological agent of Chagas disease, Trypanosoma cruzi, is a complex of seven genetic subdivisions termed discrete typing units (DTUs), TcI-TcVI and Tcbat. The relevance of T. cruzi genetic diversity to the variable clinical course of the disease, virulence, pathogenicity, drug resistance, transmission cycles and ecological distribution requires understanding the parasite origin and population structure. In this study, we introduce the PhyloQuant approach to infer the evolutionary relationships between organisms based on differential mass spectrometry-based quantitative features. In particular, large scale quantitative bottom-up proteomics features (MS1, iBAQ and LFQ) were analyzed using maximum parsimony, showing a correlation between T. cruzi DTUs and closely related trypanosomes' protein expression and sequence-based clustering. Character mapping enabled the identification of synapomorphies, herein the proteins and their respective expression profiles that differentiate T. cruzi DTUs and trypanosome species. The distance matrices based on phylogenetics and PhyloQuant clustering showed statistically significant correlation highlighting the complementarity between the two strategies. Moreover, PhyloQuant allows the identification of differentially regulated and strain/DTU/species-specific proteins, and has potential application in the identification of specific biomarkers and candidate therapeutic targets.
Collapse
Affiliation(s)
- Simon Ngao Mule
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Livia Rosa-Fernandes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Carla Monadeli F Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel Quina
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Graziella E Rosein
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
18
|
Talavera-López C, Messenger LA, Lewis MD, Yeo M, Reis-Cunha JL, Matos GM, Bartholomeu DC, Calzada JE, Saldaña A, Ramírez JD, Guhl F, Ocaña-Mayorga S, Costales JA, Gorchakov R, Jones K, Nolan MS, Teixeira SMR, Carrasco HJ, Bottazzi ME, Hotez PJ, Murray KO, Grijalva MJ, Burleigh B, Grisard EC, Miles MA, Andersson B. Repeat-Driven Generation of Antigenic Diversity in a Major Human Pathogen, Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:614665. [PMID: 33747978 PMCID: PMC7966520 DOI: 10.3389/fcimb.2021.614665] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/22/2021] [Indexed: 12/18/2022] Open
Abstract
Trypanosoma cruzi, a zoonotic kinetoplastid protozoan parasite, is the causative agent of American trypanosomiasis (Chagas disease). Having a very plastic, repetitive and complex genome, the parasite displays a highly diverse repertoire of surface molecules, with pivotal roles in cell invasion, immune evasion and pathogenesis. Before 2016, the complexity of the genomic regions containing these genes impaired the assembly of a genome at chromosomal level, making it impossible to study the structure and function of the several thousand repetitive genes encoding the surface molecules of the parasite. We here describe the genome assembly of the Sylvio X10/1 genome sequence, which since 2016 has been used as a reference genome sequence for T. cruzi clade I (TcI), produced using high coverage PacBio single-molecule sequencing. It was used to analyze deep Illumina sequence data from 34 T. cruzi TcI isolates and clones from different geographic locations, sample sources and clinical outcomes. Resolution of the surface molecule gene distribution showed the unusual duality in the organization of the parasite genome, a synteny of the core genomic region with related protozoa flanked by unique and highly plastic multigene family clusters encoding surface antigens. The presence of abundant interspersed retrotransposons in these multigene family clusters suggests that these elements are involved in a recombination mechanism for the generation of antigenic variation and evasion of the host immune response on these TcI strains. The comparative genomic analysis of the cohort of TcI strains revealed multiple cases of such recombination events involving surface molecule genes and has provided new insights into T. cruzi population structure.
Collapse
Affiliation(s)
- Carlos Talavera-López
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- European Bioinformatics Institute, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Louisa A. Messenger
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Machado Matos
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal Santa Catarina, Florianópolis, Brazil
| | | | - José E. Calzada
- Departamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama
| | - Azael Saldaña
- Departamento de Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, Panama
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Felipe Guhl
- Grupo de Investigaciones en Microbiología y Parasitología Tropical (CIMPAT), Tropical Parasitology Research Center, Universidad de Los Andes, Bogotá, Colombia
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Rodion Gorchakov
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kathryn Jones
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Melissa S. Nolan
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Santuza M. R. Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hernán José Carrasco
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | - Maria Elena Bottazzi
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Peter J. Hotez
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Kristy O. Murray
- Sabin Vaccine Institute and Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine, Department of Pediatrics - Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina (CISeAL), Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Infectious and Tropical Disease Institute, Ohio University, Athens, OH, United States
| | - Barbara Burleigh
- Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, MA, United States
| | - Edmundo C. Grisard
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal Santa Catarina, Florianópolis, Brazil
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Björn Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Wang W, Peng D, Baptista RP, Li Y, Kissinger JC, Tarleton RL. Strain-specific genome evolution in Trypanosoma cruzi, the agent of Chagas disease. PLoS Pathog 2021; 17:e1009254. [PMID: 33508020 PMCID: PMC7872254 DOI: 10.1371/journal.ppat.1009254] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/09/2021] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
The protozoan Trypanosoma cruzi almost invariably establishes life-long infections in humans and other mammals, despite the development of potent host immune responses that constrain parasite numbers. The consistent, decades-long persistence of T. cruzi in human hosts arises at least in part from the remarkable level of genetic diversity in multiple families of genes encoding the primary target antigens of anti-parasite immune responses. However, the highly repetitive nature of the genome-largely a result of these same extensive families of genes-have prevented a full understanding of the extent of gene diversity and its maintenance in T. cruzi. In this study, we have combined long-read sequencing and proximity ligation mapping to generate very high-quality assemblies of two T. cruzi strains representing the apparent ancestral lineages of the species. These assemblies reveal not only the full repertoire of the members of large gene families in the two strains, demonstrating extreme diversity within and between isolates, but also provide evidence of the processes that generate and maintain that diversity, including extensive gene amplification, dispersion of copies throughout the genome and diversification via recombination and in situ mutations. Gene amplification events also yield significant copy number variations in a substantial number of genes presumably not required for or involved in immune evasion, thus forming a second level of strain-dependent variation in this species. The extreme genome flexibility evident in T. cruzi also appears to create unique challenges with respect to preserving core genome functions and gene expression that sets this species apart from related kinetoplastids.
Collapse
Affiliation(s)
- Wei Wang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Duo Peng
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Rodrigo P. Baptista
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Yiran Li
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
| | - Jessica C. Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Rick L. Tarleton
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
20
|
Kluyber D, Desbiez ALJ, Attias N, Massocato GF, Gennari SM, Soares HS, Bagagli E, Bosco SMG, Garcés HG, Ferreira JDS, Fontes ANB, Suffys PN, Meireles LR, Jansen AM, Luna EJA, Roque ALR. Zoonotic parasites infecting free-living armadillos from Brazil. Transbound Emerg Dis 2020; 68:1639-1651. [PMID: 32964690 DOI: 10.1111/tbed.13839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022]
Abstract
Armadillos are specialist diggers and their burrows are used to find food, seek shelter and protect their pups. These burrows can also be shared with dozens of vertebrate and invertebrate species and; consequently, their parasites including the zoonotics. The aim of this study was to diagnose the presence of zoonotic parasites in four wild-caught armadillo species from two different Brazilian ecosystems, the Cerrado (Brazilian savanna) and the Pantanal (wetland). The investigated parasites and their correspondent diseases were: Toxoplasma gondii (toxoplasmosis), Trypanosoma cruzi (Chagas disease), Leishmania spp., (leishmaniasis), Paracoccidioides brasiliensis (Paracoccidioidomicosis) and Mycobacterium leprae (Hansen's disease). Forty-three free-living armadillos from Pantanal and seven road-killed armadillos from the Cerrado were sampled. Trypanosoma cruzi DTU TcIII were isolated from 2 out of 43 (4.65%) armadillos, including one of them also infected with Trypanosoma rangeli. Antibodies anti-T. gondii were detected in 13 out of 43 (30.2%) armadillos. All seven armadillos from Cerrado tested positive for P. brasiliensis DNA, in the lungs, spleen, liver fragments. Also, by molecular analysis, all 43 individuals were negative for M. leprae and Leishmania spp. Armadillos were infected by T. cruzi, T. rangeli, P. brasiliensis and presented seric antibodies to T. gondii, highlighting the importance of those armadillos could have in the epidemiology of zoonotic parasites.
Collapse
Affiliation(s)
- Danilo Kluyber
- Associate Researcher, Naples Zoo at Caribbeans Gardens, Naples, FL, USA.,Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Brazil
| | - Arnaud L J Desbiez
- Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Brazil.,Associate Researcher, The Royal Zoological Society of Scotland (RZSS), Edinburgh, Scotland
| | - Nina Attias
- Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Brazil.,Programa de Pós-Graduação em Biologia Animal, Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - Gabriel F Massocato
- Instituto de Conservação de Animais Silvestres (ICAS), Campo Grande, Brazil.,Associate Researcher, Houston Zoo, Houston, TX, USA
| | - Solange M Gennari
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, USP, São Paulo, Brazil.,Programa de Pós Graduação em Saúde Única e Bem-Estar Animal, Universidade Santo Amaro, UNISA, São Paulo, Brazil
| | - Herbert S Soares
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, USP, São Paulo, Brazil.,Programa de Pós Graduação em Saúde Única e Bem-Estar Animal, Universidade Santo Amaro, UNISA, São Paulo, Brazil
| | - Eduardo Bagagli
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, UNESP, Botucatu, Brazil
| | - Sandra M G Bosco
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, UNESP, Botucatu, Brazil
| | - Hans G Garcés
- Departamento de Ciências Químicas e Biológicas, Instituto de Biociências, UNESP, Botucatu, Brazil
| | - Jessica da S Ferreira
- Laboratório Multi-user do, Departamento de Parasitologia Animal, Instituto de Medicina Veterinária, Universidade Federal do Rio de Janeiro, Seropédica, Brazil.,Laboratório de Biologia Molecular aplicada à Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Amanda N B Fontes
- Laboratório de Biologia Molecular aplicada à Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Philip N Suffys
- Laboratório de Biologia Molecular aplicada à Micobactérias, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana R Meireles
- Laboratório de Protozoologia, Instituto de Medicina Tropical de São Paulo da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana M Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Expedito J A Luna
- Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil
| | - André L R Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Herreros-Cabello A, Callejas-Hernández F, Gironès N, Fresno M. Trypanosoma Cruzi Genome: Organization, Multi-Gene Families, Transcription, and Biological Implications. Genes (Basel) 2020; 11:E1196. [PMID: 33066599 PMCID: PMC7602482 DOI: 10.3390/genes11101196] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/20/2023] Open
Abstract
Chagas disease caused by the parasite Trypanosoma cruzi affects millions of people. Although its first genome dates from 2005, its complexity hindered a complete assembly and annotation. However, the new sequencing methods have improved genome annotation of some strains elucidating the broad genetic diversity and complexity of this parasite. Here, we reviewed the genomic structure and regulation, the genetic diversity, and the analysis of the principal multi-gene families of the recent genomes for several strains. The telomeric and sub-telomeric regions are sites with high recombination events, the genome displays two different compartments, the core and the disruptive, and the genome plasticity seems to play a key role in the survival and the infection process. Trypanosoma cruzi (T. cruzi) genome is composed mainly of multi-gene families as the trans-sialidases, mucins, and mucin-associated surface proteins. Trans-sialidases are the most abundant genes in the genome and show an important role in the effectiveness of the infection and the parasite survival. Mucins and MASPs are also important glycosylated proteins of the surface of the parasite that play a major biological role in both insect and mammal-dwelling stages. Altogether, these studies confirm the complexity of T. cruzi genome revealing relevant concepts to better understand Chagas disease.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| |
Collapse
|
22
|
Genomic Organization and Generation of Genetic Variability in the RHS (Retrotransposon Hot Spot) Protein Multigene Family in Trypanosoma cruzi. Genes (Basel) 2020; 11:genes11091085. [PMID: 32957642 PMCID: PMC7563717 DOI: 10.3390/genes11091085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
Retrotransposon Hot Spot (RHS) is the most abundant gene family in Trypanosoma cruzi, with unknown function in this parasite. The aim of this work was to shed light on the organization and expression of RHS in T. cruzi. The diversity of the RHS protein family in T. cruzi was demonstrated by phylogenetic and recombination analyses. Transcribed sequences carrying the RHS domain were classified into ten distinct groups of monophyletic origin. We identified numerous recombination events among the RHS and traced the origins of the donors and target sequences. The transcribed RHS genes have a mosaic structure that may contain fragments of different RHS inserted in the target sequence. About 30% of RHS sequences are located in the subtelomere, a region very susceptible to recombination. The evolution of the RHS family has been marked by many events, including gene duplication by unequal mitotic crossing-over, homologous, as well as ectopic recombination, and gene conversion. The expression of RHS was analyzed by immunofluorescence and immunoblotting using anti-RHS antibodies. RHS proteins are evenly distributed in the nuclear region of T. cruzi replicative forms (amastigote and epimastigote), suggesting that they could be involved in the control of the chromatin structure and gene expression, as has been proposed for T. brucei.
Collapse
|
23
|
Ogunleye OO, Jatau ID, Natala AJ, Ola-Fadunsin SD. Effects of aqueous extract of fruit pulp of Adansonia digitata L. on the oxidative stress profile against Trypanosoma brucei brucei infection in albino rats. CLINICAL PHYTOSCIENCE 2020. [DOI: 10.1186/s40816-020-00203-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Background
Chemotherapy is the most widely used means of controlling trypanosomosis, however, effectiveness of the drugs available is limited by a number of factors. This study investigates the oxidative stress profile of aqueous extract of the fruit pulp of Adansonia digitata on some organs in rats infected with Trypanosoma brucei brucei.
Methods
Thirty-five male albino rats were divided into 7 groups of 5 rats each. Groups B, C, D, E, F and G were inoculated with 0.20 ml of suspension containing 106 T. b. brucei. Group A were neither infected nor treated. Group B were infected but not treated. At onset of parasitaemia, rats in group C were treated with diminazene aceturate at 3.5 mg/kg body weight once, while rats in group D were treated with vitamin C at 200 mg/kg body weight for 3 days consecutively. Rats in groups E, F and G were treated orally for 3 days with the aqueous extract of fruit pulp of A. digitata at a dosage of 40 mg/kg, 80 mg/kg and 160 mg/kg body weight respectively. Liver and kidney tissues of the rats were collected at necropsy (10 days PI) for oxidative stress analysis.
Results
There was a significant (p < 0.05) effect in the concentration levels of malondialdehyde, superoxide dismutase, glutathione peroxidase and catalase among the different groups treated with aqueous extract of fruit pulp of A. digitata.
Conclusion
The extract of A. digitata exert protective effects against tissue peroxidation in albino rats experimentally infected with T. b. brucei.
Collapse
|
24
|
Genomics and High-Resolution Typing Confirm Predominant Clonal Evolution Down to a Microevolutionary Scale in Trypanosoma cruzi. Pathogens 2020; 9:pathogens9050356. [PMID: 32397142 PMCID: PMC7281314 DOI: 10.3390/pathogens9050356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022] Open
Abstract
Trypanosoma cruzi, the agent of Chagas disease, is a paradigmatic case of the predominant clonal evolution (PCE) model, which states that the impact of genetic recombination in pathogens' natural populations is not sufficient to suppress a persistent phylogenetic signal at all evolutionary scales. In spite of indications for occasional recombination and meiosis, recent genomics and high-resolution typing data in T. cruzi reject the counterproposal that PCE does not operate at lower evolutionary scales, within the evolutionary units (=near-clades) that subdivide the species. Evolutionary patterns in the agent of Chagas disease at micro- and macroevolutionary scales are strikingly similar ("Russian doll pattern"), suggesting gradual, rather than saltatory evolution.
Collapse
|
25
|
Rusman F, Floridia-Yapur N, Ragone PG, Diosque P, Tomasini N. Evidence of hybridization, mitochondrial introgression and biparental inheritance of the kDNA minicircles in Trypanosoma cruzi I. PLoS Negl Trop Dis 2020; 14:e0007770. [PMID: 32004318 PMCID: PMC7015434 DOI: 10.1371/journal.pntd.0007770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/12/2020] [Accepted: 01/13/2020] [Indexed: 11/21/2022] Open
Abstract
Background Genetic exchange in Trypanosoma cruzi is controversial not only in relation to its frequency, but also to its mechanism. Parasexual genetic exchange has been proposed based on laboratory hybrids, but population genomics strongly suggests meiosis in T. cruzi. In addition, mitochondrial introgression has been reported several times in natural isolates although its mechanism is not fully understood yet. Moreover, hybrid T. cruzi DTUs (TcV and TcVI) have inherited at least part of the kinetoplastic DNA (kDNA = mitochondrial DNA) from both parents. Methodology/Principal findings In order to address such topics, we sequenced and analyzed fourteen nuclear DNA fragments and three kDNA maxicircle genes in three TcI stocks which are natural clones potentially involved in events of genetic exchange. We also deep-sequenced (a total of 6,146,686 paired-end reads) the minicircle hypervariable region (mHVR) of the kDNA in such three strains. In addition, we analyzed the DNA content by flow cytometry to address cell ploidy. We observed that most polymorphic sites in nuclear loci showed a hybrid pattern in one cloned strain and the other two cloned strains were compatible as parental strains (or nearly related to the true parents). The three clones had almost the same ploidy and the DNA content was similar to the reference strain Sylvio (a nearly diploid strain). Despite maxicircle genes evolve faster than nuclear housekeeping ones, we detected no polymorphisms in the sequence of three maxicircle genes showing mito-nuclear discordance. Lastly, the hybrid stock shared 66% of its mHVR clusters with one putative parent and 47% with the other one; in contrast, the putative parental stocks shared less than 30% of the mHVR clusters between them. Conclusions/significance The results suggest a reductive division, a natural hybridization, biparental inheritance of the minicircles in the hybrid and maxicircle introgression. The models including such phenomena and explaining the relationships between these three clones are discussed. Chagas disease, an important public health problem in Latin America, is caused by the parasite Trypanosoma cruzi. Despite being a widely studied parasite, several questions on the biology of genetic exchange remain unanswered. Population genomic studies have inferred meiosis in T. cruzi, but this cellular division mechanism has not been observed in laboratory yet. In addition, previous results suggest that mitochondrial DNA (called kDNA) may be inherited from both parents in hybrids. Here, we analyzed a hybrid strain and its potential parents to address the mechanisms of genetic exchange at nuclear and mitochondrial levels. We observed that the hybrid strain had heterozygous patterns and DNA content compatible with a meiosis event. Also, we observed that the evolutionary histories of nuclear DNA and kDNA maxicircles were discordant and that the three strains shared identical DNA sequences. Mitochondrial introgression of maxicircle DNA from one genotype to another may explain this observation. In addition, we demonstrated that the hybrid strain shared kDNA minicircles with both parental strains. Our results suggest that hybridization implied meiosis and biparental inheritance of the kDNA. Further research is required to address such phenomena in detail.
Collapse
Affiliation(s)
- Fanny Rusman
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Noelia Floridia-Yapur
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Paula G. Ragone
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Patricio Diosque
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
| | - Nicolás Tomasini
- Unidad de Epidemiología Molecular (UEM), Instituto de Patología Experimental, Universidad Nacional de Salta-CONICET, Salta, Salta, Argentina
- * E-mail:
| |
Collapse
|
26
|
The reservoir system for Trypanosoma (Kinetoplastida, Trypanosomatidae) species in large neotropical wetland. Acta Trop 2019; 199:105098. [PMID: 31356788 DOI: 10.1016/j.actatropica.2019.105098] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 12/31/2022]
Abstract
Distinct species of Trypanosoma have been documented sharing the same hosts in different environments in intricate transmission networks. Knowing this, this study investigated the role of different hosts in the transmission cycles of Trypanosoma species in the Pantanal biome. The mammals were sampled from November 2015 to October 2016. We sampled a total of 272 wild mammals from 27 species belonging to six orders and 15 families, and three species of triatomines (n = 7). We found high parasitemias by Hemoculture test for Trypanosoma cruzi (TcI), Trypanosoma rangeli, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, and high parasitemias by Microhematocrit Centrifuge Technique for Trypanosoma evansi. The carnivore Nasua nasua is a key host in the transmission cycles since it displayed high parasitemias for T. cruzi, T. evansi and T. rangeli. This is the first report of high parasitemias in Tamandua tetradactyla and cryptic infection in Dasypus novemcinctus by T. cruzi; cryptic infection by T. evansi in Eira barbara, Euphractus sexcinctus and Dasyprocta azarae. The collection of Panstrongylus geniculatus increased the geographic distribution of this vector species in the South America. Our results indicate that Trypanosoma species circulate in a complex reservoir system including different host species with different infective competences.
Collapse
|
27
|
Brandão EMV, Xavier SCC, Carvalhaes JG, D’Andrea PS, Lemos FG, Azevedo FC, Cássia-Pires R, Jansen AM, Roque ALR. Trypanosomatids in Small Mammals of an Agroecosystem in Central Brazil: Another Piece in the Puzzle of Parasite Transmission in an Anthropogenic Landscape. Pathogens 2019; 8:pathogens8040190. [PMID: 31615153 PMCID: PMC6963188 DOI: 10.3390/pathogens8040190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022] Open
Abstract
We surveyed infection by Trypanosoma spp. and Leishmania spp. in small wild mammals from Cumari, Goiás State aiming to investigate the diversity of trypanosomatid in a modified landscape of the Brazilian Cerrado (and possible infection overlapping with canids from the same area). Blood, skin, spleen, and liver samples were collected for parasitological, serological, and molecular assays. Gracilinanus agilis was the most abundant species (N = 70; 48.6%) and it was the only one with patent parasitemia. Characterization by mini-exon and 18SrDNA targets were achieved in 7/10 hemocultures with positive fresh blood examination, which confirmed the T. cruzi infection by Discrete Typing Units (DTU) TcI in single (N = 2) and mixed infections with other DTUs (N = 5). T. rangeli and T. dionisii were detected in skin fragments from Didelphis albiventris and Oecomys cleberi, respectively. G. agilis were found to be infected by L. braziliensis and L. guyanensis, while Leishmania sp. DNA was detected in the liver of Oligoryzomys nigripes and Calomys expulsus. Subpatent infection by T. cruzi and Leishmania sp. was serologically detected in 15% and 9% of the small mammal fauna, respectively. Small mammals from Cumari are included in T. cruzi and Leshmania spp. transmission cycles, showing a higher diversity of trypanosomatid species and/or genotypes than that observed in canids of the same agroecosystem.
Collapse
Affiliation(s)
- Elida M. V. Brandão
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040900, Brasil; (E.M.V.B.); (S.C.C.X.); (A.M.J.)
| | - Samanta C. C. Xavier
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040900, Brasil; (E.M.V.B.); (S.C.C.X.); (A.M.J.)
| | - Jeiel G. Carvalhaes
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040900, Brasil; (J.G.C.); (P.S.D.)
| | - Paulo S. D’Andrea
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040900, Brasil; (J.G.C.); (P.S.D.)
| | - Frederico G. Lemos
- Programa de Conservação Mamíferos do Cerrado (PCMC)–Unidade Acadêmica Especial de Biotecnologia, Universidade Federal de Goiás/Regional Catalão, Catalão, GO 75704020, Brasil; (F.G.L.); (F.C.A.)
| | - Fernanda C. Azevedo
- Programa de Conservação Mamíferos do Cerrado (PCMC)–Unidade Acadêmica Especial de Biotecnologia, Universidade Federal de Goiás/Regional Catalão, Catalão, GO 75704020, Brasil; (F.G.L.); (F.C.A.)
| | - Renata Cássia-Pires
- Laboratório de Biologia de Parasitos, Centro de Ciências da Saúde, Departamento de Ciências Farmacêuticas, Universidade Federal do Rio Grande do Norte, Natal, RN 59012570, Brasil;
| | - Ana M. Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040900, Brasil; (E.M.V.B.); (S.C.C.X.); (A.M.J.)
| | - André L. R. Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ 21040900, Brasil; (E.M.V.B.); (S.C.C.X.); (A.M.J.)
- Correspondence: ; Tel.: +55-21-2562-1416; Fax: +55-21-2562-1609
| |
Collapse
|
28
|
Elucidating diversity in the class composition of the minicircle hypervariable region of Trypanosoma cruzi: New perspectives on typing and kDNA inheritance. PLoS Negl Trop Dis 2019; 13:e0007536. [PMID: 31247047 PMCID: PMC6619836 DOI: 10.1371/journal.pntd.0007536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/10/2019] [Accepted: 06/10/2019] [Indexed: 12/18/2022] Open
Abstract
Background Trypanosoma cruzi, the protozoan causative of Chagas disease, is classified into six main Discrete Typing Units (DTUs): TcI-TcVI. This parasite has around 105 copies of the minicircle hypervariable region (mHVR) in their kinetoplastic DNA (kDNA). The genetic diversity of the mHVR is virtually unknown. However, cross-hybridization assays using mHVRs showed hybridization only between isolates belonging to the same genetic group. Nowadays there is no methodologic approach with a good sensibility, specificity and reproducibility for direct typing on biological samples. Due to its high copy number and apparently high diversity, mHVR becomes a good target for typing. Methodology/Principal findings Around 22 million reads, obtained by amplicon sequencing of the mHVR, were analyzed for nine strains belonging to six T. cruzi DTUs. The number and diversity of mHVR clusters was variable among DTUs and even within a DTU. However, strains of the same DTU shared more mHVR clusters than strains of different DTUs and clustered together. In addition, hybrid DTUs (TcV and TcVI) shared similar percentages (1.9–3.4%) of mHVR clusters with their parentals (TcII and TcIII). Conversely, just 0.2% of clusters were shared between TcII and TcIII suggesting biparental inheritance of the kDNA in hybrids. Sequencing at low depth (20,000–40,000 reads) also revealed 95% of the mHVR clusters for each of the analyzed strains. Finally, the method revealed good correlation in cluster identity and abundance between different replications of the experiment (r = 0.999). Conclusions/Significance Our work sheds light on the sequence diversity of mHVRs at intra and inter-DTU level. The mHVR amplicon sequencing workflow described here is a reproducible technique, that allows multiplexed analysis of hundreds of strains and results promissory for direct typing on biological samples in a future. In addition, such approach may help to gain knowledge on the mechanisms of the minicircle evolution and phylogenetic relationships among strains. Chagas disease is an important public health problem in Latin America showing a wide diversity of clinical manifestations and epidemiological patterns. It is caused by the parasite Trypanosoma cruzi. This parasite is genetically diverse and classified into six main lineages. However, the relationship between intra-specific genetic diversity and clinical or epidemiological features is not clear, mainly because low sensitivity for direct typing on biological samples. For this reason, genetic markers with high copy number are required to achieve sensitivity. Here, we deep sequenced and analyzed a DNA region present in the large mitochondria of the parasite (named as mHVR, 105 copies per parasite) from strains belonging to the six main lineages in order to analyze mHVR diversity and to evaluate its usefulness for typing. Despite the high sequence diversity, strains of the same lineage shared more sequences than strains of different lineages. Curiously, hybrid lineages shared mHVR sequences with both parents suggesting that mHVR (and DNA minicircles from the mitochondria) are inherited from both parentals. The mHVR amplicon sequencing workflow proposed here is reproducible and, potentially, it would be useful for typing hundreds of biological samples at time. It also provides a valuable approach to perform evolutionary and functional studies.
Collapse
|
29
|
Berry ASF, Salazar-Sánchez R, Castillo-Neyra R, Borrini-Mayorí K, Chipana-Ramos C, Vargas-Maquera M, Ancca-Juarez J, Náquira-Velarde C, Levy MZ, Brisson D. Sexual reproduction in a natural Trypanosoma cruzi population. PLoS Negl Trop Dis 2019; 13:e0007392. [PMID: 31107905 PMCID: PMC6544315 DOI: 10.1371/journal.pntd.0007392] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/31/2019] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background Sexual reproduction provides an evolutionary advantageous mechanism that combines favorable mutations that have arisen in separate lineages into the same individual. This advantage is especially pronounced in microparasites as allelic reassortment among individuals caused by sexual reproduction promotes allelic diversity at immune evasion genes within individuals which is often essential to evade host immune systems. Despite these advantages, many eukaryotic microparasites exhibit highly-clonal population structures suggesting that genetic exchange through sexual reproduction is rare. Evidence supporting clonality is particularly convincing in the causative agent of Chagas disease, Trypanosoma cruzi, despite equally convincing evidence of the capacity to engage in sexual reproduction. Methodology/ Principle Findings In the present study, we investigated two hypotheses that can reconcile the apparent contradiction between the observed clonal population structure and the capacity to engage in sexual reproduction by analyzing the genome sequences of 123 T. cruzi isolates from a natural population in Arequipa, Peru. The distribution of polymorphic markers within and among isolates provides clear evidence of the occurrence of sexual reproduction. Large genetic segments are rearranged among chromosomes due to crossing over during meiosis leading to a decay in the genetic linkage among polymorphic markers compared to the expectations from a purely asexually-reproducing population. Nevertheless, the population structure appears clonal due to a high level of inbreeding during sexual reproduction which increases homozygosity, and thus reduces diversity, within each inbreeding lineage. Conclusions/ Significance These results effectively reconcile the apparent contradiction by demonstrating that the clonal population structure is derived not from infrequent sex in natural populations but from high levels of inbreeding. We discuss epidemiological consequences of this reproductive strategy on genome evolution, population structure, and phenotypic diversity of this medically important parasite. The rearrangement of alleles among individuals in a population during sexual reproduction maintains high allelic diversity within individuals in a population at polymorphic genes. Allelic diversity within individuals can be particularly important for parasites as it enhances their ability to evade host immune systems. Despite the potential benefits of sexual reproduction for parasites, natural populations of the protozoan parasite—and causative agent of human Chagas disease—Trypanosoma cruzi, exhibit clonal population structures indicative of asexual reproduction. This is particularly surprising as T. cruzi has the capacity for sexual reproduction. Here, we resolve this apparent contradiction by sequencing whole genomes of 123 T. cruzi isolates from a natural population in Arequipa, Peru. Evidence of past sexual reproduction and allelic rearrangements are common in this T. cruzi population. However, the majority of sexual reproduction events occur between close relatives resulting in an apparent clonal population structure. Sexual reproduction with distant relatives in areas with greater strain diversity has the potential to affect public health by increasing diversity in immune evasion genes within individuals and enhancing within-host survival, rapidly diversifying antigens that could affect the sensitivity of serological diagnostics, and by generating diversity in pathogenicity or drug resistance.
Collapse
Affiliation(s)
- Alexander S. F. Berry
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Renzo Salazar-Sánchez
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Ricardo Castillo-Neyra
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katty Borrini-Mayorí
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Claudia Chipana-Ramos
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Melina Vargas-Maquera
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Jenny Ancca-Juarez
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - César Náquira-Velarde
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
| | - Michael Z. Levy
- Universidad Peruana Cayetano Heredia/University of Pennsylvania Chagas Disease Field Laboratory, Arequipa, Peru
- Department of Biostatistics, Epidemiology and Informatics, The Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | | |
Collapse
|
30
|
Improved subtyping affords better discrimination of Trichomonas gallinae strains and suggests hybrid lineages. INFECTION GENETICS AND EVOLUTION 2019; 73:234-241. [PMID: 31082541 DOI: 10.1016/j.meegid.2019.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/05/2023]
Abstract
Trichomonas gallinae is a protozoan pathogen that causes avian trichomonosis typically associated with columbids (canker) and birds of prey (frounce) that predate on them, and has recently emerged as an important cause of passerine disease. An archived panel of DNA from North American (USA) birds used initially to establish the ITS ribotypes was reanalysed using Iron hydrogenase (FeHyd) gene sequences to provide an alphanumeric subtyping scheme with improved resolution for strain discrimination. Thirteen novel subtypes of T. gallinae using FeHyd gene as the subtyping locus are described. Although the phylogenetic topologies derived from each single marker are complementary, they are not entirely congruent. This may reflect the complex genetic histories of the isolates analysed which appear to contain two major lineages and several that are hybrid. This new analysis consolidates much of the phylogenetic signal generated from the ITS ribotype and provides additional resolution for discrimination of T. gallinae strains. The single copy FeHyd gene provides higher resolution genotyping than ITS ribotype alone. It should be used where possible as an additional, single-marker subtyping tool for cultured isolates.
Collapse
|
31
|
Evaluation of the multispecies coalescent method to explore intra-Trypanosoma cruzi I relationships and genetic diversity. Parasitology 2019; 146:1063-1074. [PMID: 31046857 DOI: 10.1017/s0031182019000428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chagas Disease is a zoonosis caused by the parasite Trypanosoma cruzi. Several high-resolution markers have subdivided T. cruzi taxon into at least seven lineages or Discrete Typing Units (DTUs) (TcI-TcVI and TcBat). Trypanosoma cruzi I is the most diverse and geographically widespread DTU. Recently a TcI genotype related to domestic cycles was proposed and named as TcIDOM. Herein, we combined traditional markers and housekeeping genes and applied a Multispecies Coalescent method to explore intra-TcI relationships, lineage boundaries and genetic diversity in a random set of isolates and DNA sequences retrieved from Genbank from different countries in the Americas. We found further evidence supporting TcIDOM as an independent and emerging genotype of TcI at least in Colombia and Venezuela. We also found evidence of high phylogenetic incongruence between parasite's gene trees (including introgression) and embedded species trees, and a lack of genetic structure among geography and hosts, illustrating the complex dynamics and epidemiology of TcI across the Americas. These findings provide novel insights into T. cruzi systematics and epidemiology and support the need to assess parasite diversity and lineage boundaries through hypothesis testing using different approaches to those traditionally employed, including the Bayesian Multispecies coalescent method.
Collapse
|
32
|
Reis-Cunha JL, Baptista RP, Rodrigues-Luiz GF, Coqueiro-Dos-Santos A, Valdivia HO, de Almeida LV, Cardoso MS, D'Ávila DA, Dias FHC, Fujiwara RT, Galvão LMC, Chiari E, Cerqueira GC, Bartholomeu DC. Whole genome sequencing of Trypanosoma cruzi field isolates reveals extensive genomic variability and complex aneuploidy patterns within TcII DTU. BMC Genomics 2018; 19:816. [PMID: 30424726 PMCID: PMC6234542 DOI: 10.1186/s12864-018-5198-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 10/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. TcII is among the major DTUs enrolled in human infections in South America southern cone, where it is associated with severe cardiac and digestive symptoms. Despite the importance of TcII in Chagas disease epidemiology and pathology, so far, no genome-wide comparisons of the mitochondrial and nuclear genomes of TcII field isolates have been performed to track the variability and evolution of this DTU in endemic regions. RESULTS In the present work, we have sequenced and compared the whole nuclear and mitochondrial genomes of seven TcII strains isolated from chagasic patients from the central and northeastern regions of Minas Gerais, Brazil, revealing an extensive genetic variability within this DTU. A comparison of the phylogeny based on the nuclear or mitochondrial genomes revealed that the majority of branches were shared by both sequences. The subtle divergences in the branches are probably consequence of mitochondrial introgression events between TcII strains. Two T. cruzi strains isolated from patients living in the central region of Minas Gerais, S15 and S162a, were clustered in the nuclear and mitochondrial phylogeny analysis. These two strains were isolated from the other five by the Espinhaço Mountains, a geographic barrier that could have restricted the traffic of insect vectors during T. cruzi evolution in the Minas Gerais state. Finally, the presence of aneuploidies was evaluated, revealing that all seven TcII strains have a different pattern of chromosomal duplication/loss. CONCLUSIONS Analysis of genomic variability and aneuploidies suggests that there is significant genomic variability within Minas Gerais TcII strains, which could be exploited by the parasite to allow rapid selection of favorable phenotypes. Also, the aneuploidy patterns vary among T. cruzi strains and does not correlate with the nuclear phylogeny, suggesting that chromosomal duplication/loss are recent and frequent events in the parasite evolution.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo P Baptista
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,The University of Georgia, Athens, USA
| | - Gabriela F Rodrigues-Luiz
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Hugo O Valdivia
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,U.S. Naval Medical Research, Lima, Peru
| | - Laila Viana de Almeida
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Santos Cardoso
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Lúcia M C Galvão
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Egler Chiari
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniella C Bartholomeu
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
33
|
Bradwell KR, Koparde VN, Matveyev AV, Serrano MG, Alves JMP, Parikh H, Huang B, Lee V, Espinosa-Alvarez O, Ortiz PA, Costa-Martins AG, Teixeira MMG, Buck GA. Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence. BMC Genomics 2018; 19:770. [PMID: 30355302 PMCID: PMC6201504 DOI: 10.1186/s12864-018-5112-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023] Open
Abstract
Background Trypanosoma conorhini and Trypanosoma rangeli, like Trypanosoma cruzi, are kinetoplastid protist parasites of mammals displaying divergent hosts, geographic ranges and lifestyles. Largely nonpathogenic T. rangeli and T. conorhini represent clades that are phylogenetically closely related to the T. cruzi and T. cruzi-like taxa and provide insights into the evolution of pathogenicity in those parasites. T. rangeli, like T. cruzi is endemic in many Latin American countries, whereas T. conorhini is tropicopolitan. T. rangeli and T. conorhini are exclusively extracellular, while T. cruzi has an intracellular stage in the mammalian host. Results Here we provide the first comprehensive sequence analysis of T. rangeli AM80 and T. conorhini 025E, and provide a comparison of their genomes to those of T. cruzi G and T. cruzi CL, respectively members of T. cruzi lineages TcI and TcVI. We report de novo assembled genome sequences of the low-virulent T. cruzi G, T. rangeli AM80, and T. conorhini 025E ranging from ~ 21–25 Mbp, with ~ 10,000 to 13,000 genes, and for the highly virulent and hybrid T. cruzi CL we present a ~ 65 Mbp in-house assembled haplotyped genome with ~ 12,500 genes per haplotype. Single copy orthologs of the two T. cruzi strains exhibited ~ 97% amino acid identity, and ~ 78% identity to proteins of T. rangeli or T. conorhini. Proteins of the latter two organisms exhibited ~ 84% identity. T. cruzi CL exhibited the highest heterozygosity. T. rangeli and T. conorhini displayed greater metabolic capabilities for utilization of complex carbohydrates, and contained fewer retrotransposons and multigene family copies, i.e. trans-sialidases, mucins, DGF-1, and MASP, compared to T. cruzi. Conclusions Our analyses of the T. rangeli and T. conorhini genomes closely reflected their phylogenetic proximity to the T. cruzi clade, and were largely consistent with their divergent life cycles. Our results provide a greater context for understanding the life cycles, host range expansion, immunity evasion, and pathogenesis of these trypanosomatids. Electronic supplementary material The online version of this article (10.1186/s12864-018-5112-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katie R Bradwell
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Present address: Institute for Genome Sciences, University of Maryland, Baltimore, MD, USA
| | - Vishal N Koparde
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrey V Matveyev
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Myrna G Serrano
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - João M P Alves
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | - Hardik Parikh
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Bernice Huang
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Vladimir Lee
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Paola A Ortiz
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | | | - Marta M G Teixeira
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | - Gregory A Buck
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA. .,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
34
|
Maintenance of Trypanosoma cruzi, T. evansi and Leishmania spp. by domestic dogs and wild mammals in a rural settlement in Brazil-Bolivian border. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2018; 7:398-404. [PMID: 30370220 PMCID: PMC6199764 DOI: 10.1016/j.ijppaw.2018.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/30/2018] [Accepted: 10/13/2018] [Indexed: 11/05/2022]
Abstract
Domestic dogs are considered reservoirs hosts for several vector-borne parasites. This study aimed to evaluate the role of domestic dogs as hosts for Trypanosoma cruzi, Trypanosoma evansi and Leishmania spp. in single and co-infections in the Urucum settlement, near the Brazil-Bolivian border. Additionally, we evaluated the involvement of wild mammals’ in the maintenance of these parasites in the study area. Blood samples of dogs (n = 62) and six species of wild mammals (n = 36) were collected in July and August of 2015. The infections were assessed using parasitological, serological and molecular tests. Clinical examination of dogs was performed and their feeding habits were noted. Overall, 87% (54/62) of sampled dogs were positive for at least one trypanosomatid species, in single (n = 9) and co-infections (n = 45). We found that 76% of dogs were positive for T. cruzi, four of them displayed high parasitemias demonstrated by hemoculture, including one strain types TcI, two TcIII and one TcIII/TcV. Around 73% (45/62) of dogs were positive to T. evansi, three with high parasitemias as seen by positive microhematocrit centrifuge technique. Of dogs sampled, 50% (31/62) were positive for Leishmania spp. by PCR or serology. We found a positive influence of (i) T. evansi on mucous pallor, (ii) co-infection by T. cruzi and Leishmania with onychogryphosis, and (iii) all parasites to skin lesions of sampled dogs. Finally, feeding on wild mammals had a positive influence in the Leishmania spp. infection in dogs. We found that 28% (5/18) coati Nasua nasua was co-infected for all three trypanosamatids, demonstrating that it might play a key role in maintenance of these parasites. Our results showed the importance of Urucum region as a hotspot for T. cruzi, T. evansi and Leishmania spp. and demonstrated that dogs can be considered as incidental hosts. Observation of high occurrence of dogs co-infected by trypanosomatids. Dogs infected by TcI, TcIII and TcIII/TcV. Nasua nasua is a key species in the sylvatic cycles of trypanosomatids. Direct effect of trypanosomatids' infection in clinical signs of dogs. Dogs as sentinels to human infection in the Brazil-Bolivian border.
Collapse
|
35
|
Macchiaverna NP, Enriquez GF, Buscaglia CA, Balouz V, Gürtler RE, Cardinal MV. New human isolates of Trypanosoma cruzi confirm the predominance of hybrid lineages in domestic transmission cycle of the Argentinean Chaco. INFECTION GENETICS AND EVOLUTION 2018; 66:229-235. [PMID: 30296602 DOI: 10.1016/j.meegid.2018.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, was initially classified into 6 Discrete Typing Units (DTUs). The hybrid DTUs TcV and TcVI are the most frequent in domestic transmission cycles throughout the Southern Cone countries of South America. Here, we genotyped parasite isolates from human residents in Pampa del Indio municipality, Chaco, to further characterize the structure of T. cruzi populations, and to assess the degree of overlapping between the domestic and sylvatic transmission cycles. Artificial xenodiagnostic tests were performed to blood samples from 125 T. cruzi-seropositive people (age range, 3-70 years) who represented 14.3% of all seropositive residents identified. Parasites were obtained from feces of T. cruzi-infected Triatoma infestans examined 30 or 60 days after blood-feeding, and grown in vitro. The cultured parasites were genotyped by means of two PCR-based protocols. DTUs were determined from 39 (31%) patients residing in 28 dwellings. The only DTUs identified were TcV (92%) and TcVI (8-36%). Households with more than one parasite isolate consistently displayed the same DTU. Further sequencing of a fragment of the TcMK gene from selected samples argue against the occurrence of mixed TcV-TcVI infections in the study population. Sequencing data revealed an unexpected degree of genetic variability within TcV including two apparently robust subgroups of isolates. Our results for human residents confirm the predominance of hybrid lineages (TcV and to a much lesser extent TcVI) and the absence of sylvatic genotypes (TcI and TcIII) in (peri)domestic transmission cycles in the Argentinean Chaco area. 245 words.
Collapse
Affiliation(s)
- Natalia Paula Macchiaverna
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Capital Federal, Argentina
| | - Gustavo Fabián Enriquez
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Capital Federal, Argentina
| | - Carlos Andrés Buscaglia
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECh), Universidad Nacional de San Martín (UNSAM) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ricardo Esteban Gürtler
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Capital Federal, Argentina
| | - Marta Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), UBA-CONICET, Capital Federal, Argentina.
| |
Collapse
|
36
|
A systematic review of the Trypanosoma cruzi genetic heterogeneity, host immune response and genetic factors as plausible drivers of chronic chagasic cardiomyopathy. Parasitology 2018; 146:269-283. [PMID: 30210012 DOI: 10.1017/s0031182018001506] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chagas disease is a complex tropical pathology caused by the kinetoplastid Trypanosoma cruzi. This parasite displays massive genetic diversity and has been classified by international consensus in at least six Discrete Typing Units (DTUs) that are broadly distributed in the American continent. The main clinical manifestation of the disease is the chronic chagasic cardiomyopathy (CCC) that is lethal in the infected individuals. However, one intriguing feature is that only 30-40% of the infected individuals will develop CCC. Some authors have suggested that the immune response, host genetic factors, virulence factors and even the massive genetic heterogeneity of T. cruzi are responsible of this clinical pattern. To date, no conclusive data support the reason why a few percentages of the infected individuals will develop CCC. Therefore, we decided to conduct a systematic review analysing the host genetic factors, immune response, cytokine production, virulence factors and the plausible association of the parasite DTUs and CCC. The epidemiological and clinical implications are herein discussed.
Collapse
|
37
|
Zingales B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop 2018; 184:38-52. [PMID: 28941731 DOI: 10.1016/j.actatropica.2017.09.017] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/18/2017] [Accepted: 09/18/2017] [Indexed: 11/27/2022]
Abstract
The genetic diversity of Trypanosoma cruzi, the protozoan agent of Chagas disease, is widely recognized. At present, T. cruzi is partitioned into seven discrete typing units (DTUs), TcI-TcVI and Tcbat. This article reviews the present knowledge on the parasite population structure, the evolutionary relationships among DTUs and their distinct, but not exclusive ecological and epidemiological associations. Different models for the origin of hybrid DTUs are examined, which agree that genetic exchange among T. cruzi populations is frequent and has contributed to the present parasite population structure. The geographic distribution of the prevalent DTUs in humans from the southern United States to Argentina is here presented and the circumstantial evidence of a possible association between T. cruzi genotype and Chagas disease manifestations is discussed. The available information suggests that parasite strains detected in patients, regardless of the clinical presentation, reflect the principal DTU circulating in the domestic transmission cycles of a particular region. In contrast, in several orally transmitted outbreaks, sylvatic strains are implicated. As a consequence of the genotypic and phenotypic differences of T. cruzi strains and the differential geographic distribution of DTUs in humans, regional variations in the sensitivity of the serological tests are verified. The natural resistance to benznidazole and nifurtimox, verified in vivo and in vitro for some parasite stocks, is not associated with any particular DTU, and does not explain the marked difference in the anti-parasitic efficacy of both drugs in the acute and chronic phases of Chagas disease. Throughout this review, it is emphasized that the interplay between parasite and host genetics should have an important role in the definition of Chagas disease pathogenesis, anti-T. cruzi immune response and chemotherapy outcome and should be considered in future investigations.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
38
|
de Fuentes-Vicente JA, Gutiérrez-Cabrera AE, Flores-Villegas AL, Lowenberger C, Benelli G, Salazar-Schettino PM, Córdoba-Aguilar A. What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions. Acta Trop 2018; 183:23-31. [PMID: 29625091 DOI: 10.1016/j.actatropica.2018.04.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/13/2018] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
The Chagas disease is caused by the parasite Trypanosoma cruzi, which infect blood-feeding triatomine bugs to finally reach mammal hosts. Chagas disease is endemic in Latin America, and is ranked among the 13 neglected tropical diseases worldwide. Currently, an estimate of 7 million people is infected by T. cruzi, leading to about 22 000 deaths per year throughout the Americas. As occurs with other vectors, a major question towards control programs is what makes a susceptible bug. In this review, we focus on findings linked to insect gut structure and microbiota, immunity, genetics, blood sources, abiotic factors (with special reference to ambient temperature and altitude) to understand the interactions occurring between T. cruzi and triatomine bugs, under a co-evolutionary scenario. These factors lead to varying fitness benefits and costs for bugs, explaining why infection in the insect takes place and how it varies in time and space. Our analysis highlights that major factors are gut components and microbiota, blood sources and temperature. Although their close interaction has never been clarified, knowledge reviewed here may help to boost the success of triatomine control programs, reducing the use of insecticides.
Collapse
|
39
|
MacLean LM, Thomas J, Lewis MD, Cotillo I, Gray DW, De Rycker M. Development of Trypanosoma cruzi in vitro assays to identify compounds suitable for progression in Chagas' disease drug discovery. PLoS Negl Trop Dis 2018; 12:e0006612. [PMID: 30001347 PMCID: PMC6057682 DOI: 10.1371/journal.pntd.0006612] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/24/2018] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
Chagas' disease is responsible for significant mortality and morbidity in Latin America. Current treatments display variable efficacy and have adverse side effects, hence more effective, better tolerated drugs are needed. However, recent efforts have proved unsuccessful with failure of the ergosterol biosynthesis inhibitor posaconazole in phase II clinical trials despite promising in vitro and in vivo studies. The lack of translation between laboratory experiments and clinical outcome is a major issue for further drug discovery efforts. Our goal was to identify cell-based assays that could differentiate current nitro-aromatic drugs nifurtimox and benznidazole from posaconazole. Using a panel of T. cruzi strains including the six major lineages (TcI-VI), we found that strain PAH179 (TcV) was markedly less susceptible to posaconazole in vitro. Determination of parasite doubling and cycling times as well as EdU labelling experiments all indicate that this lack of sensitivity is due to the slow doubling and cycling time of strain PAH179. This is in accordance with ergosterol biosynthesis inhibition by posaconazole leading to critically low ergosterol levels only after multiple rounds of division, and is further supported by the lack of effect of posaconazole on the non-replicative trypomastigote form. A washout experiment with prolonged posaconazole treatment showed that, even for more rapidly replicating strains, this compound cannot clear all parasites, indicative of a heterogeneous parasite population in vitro and potentially the presence of quiescent parasites. Benznidazole in contrast was able to kill all parasites. The work presented here shows clear differentiation between the nitro-aromatic drugs and posaconazole in several assays, and suggests that in vitro there may be clinically relevant heterogeneity in the parasite population that can be revealed in long-term washout experiments. Based on these findings we have adjusted our in vitro screening cascade so that only the most promising compounds are progressed to in vivo experiments.
Collapse
Affiliation(s)
- Lorna M. MacLean
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (LML); (DWG)
| | - John Thomas
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael D. Lewis
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Ignacio Cotillo
- GlaxoSmithKline, Diseases of the Developing World, Tres Cantos, Madrid, Spain
| | - David W. Gray
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail: (LML); (DWG)
| | - Manu De Rycker
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
40
|
Recent advances in trypanosomatid research: genome organization, expression, metabolism, taxonomy and evolution. Parasitology 2018; 146:1-27. [PMID: 29898792 DOI: 10.1017/s0031182018000951] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Unicellular flagellates of the family Trypanosomatidae are obligatory parasites of invertebrates, vertebrates and plants. Dixenous species are aetiological agents of a number of diseases in humans, domestic animals and plants. Their monoxenous relatives are restricted to insects. Because of the high biological diversity, adaptability to dramatically different environmental conditions, and omnipresence, these protists have major impact on all biotic communities that still needs to be fully elucidated. In addition, as these organisms represent a highly divergent evolutionary lineage, they are strikingly different from the common 'model system' eukaryotes, such as some mammals, plants or fungi. A number of excellent reviews, published over the past decade, were dedicated to specialized topics from the areas of trypanosomatid molecular and cell biology, biochemistry, host-parasite relationships or other aspects of these fascinating organisms. However, there is a need for a more comprehensive review that summarizing recent advances in the studies of trypanosomatids in the last 30 years, a task, which we tried to accomplish with the current paper.
Collapse
|
41
|
Roman F, das Chagas Xavier S, Messenger LA, Pavan MG, Miles MA, Jansen AM, Yeo M. Dissecting the phyloepidemiology of Trypanosoma cruzi I (TcI) in Brazil by the use of high resolution genetic markers. PLoS Negl Trop Dis 2018; 12:e0006466. [PMID: 29782493 PMCID: PMC5983858 DOI: 10.1371/journal.pntd.0006466] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 06/01/2018] [Accepted: 04/19/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the causal agent of Chagas disease, is monophyletic but genetically heterogeneous. It is currently represented by six genetic lineages (Discrete Typing Units, DTUs) designated TcI-TcVI. TcI is the most geographically widespread and genetically heterogeneous lineage, this as is evidenced by a wide range of genetic markers applied to isolates spanning a vast geographic range in Latin America. METHODOLOGY/PRINCIPAL FINDINGS In total, 78 TcI isolated from hosts and vectors distributed in 5 different biomes of Brazil, were analyzed using 6 nuclear housekeeping genes, 25 microsatellite loci and one mitochondrial marker. Nuclear markers reveal substantial genetic diversity, significant gene flow between biomes, incongruence in phylogenies, and haplotypic analysis indicative of intra-DTU genetic exchange. Phylogenetic reconstructions based on mitochondrial and nuclear loci were incongruent, and consistent with introgression. Structure analysis of microsatellite data reveals that, amongst biomes, the Amazon is the most genetically diverse and experiences the lowest level of gene flow. Investigation of population structure based on the host species/genus, indicated that Didelphis marsupialis might play a role as the main disperser of TcI. CONCLUSIONS/SIGNIFICANCE The present work considers a large TcI sample from different hosts and vectors spanning multiple ecologically diverse biomes in Brazil. Importantly, we combine fast and slow evolving markers to contribute to the epizootiological understanding of TcI in five distinct Brazilian biomes. This constitutes the first instance in which MLST analysis was combined with the use of MLMT and maxicircle markers to evaluate the genetic diversity of TcI isolates in Brazil. Our results demonstrate the existence of substantial genetic diversity and the occurrence of introgression events. We provide evidence of genetic exchange in TcI isolates from Brazil and of the relative isolation of TcI in the Amazon biome. We observe the absence of strict associations with TcI genotypes to geographic areas and/or host species.
Collapse
Affiliation(s)
- Fabiola Roman
- Laboratório de Bleiologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Samanta das Chagas Xavier
- Laboratório de Bleiologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Louisa A. Messenger
- Faculty of Infectious and Tropical Diseases, Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Márcio G. Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michael A. Miles
- Faculty of Infectious and Tropical Diseases, Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ana María Jansen
- Laboratório de Bleiologia de Tripanossomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Matthew Yeo
- Faculty of Infectious and Tropical Diseases, Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
42
|
Roman F, Iñiguez AM, Yeo M, Jansen AM. Multilocus sequence typing: genetic diversity in Trypanosoma cruzi I (TcI) isolates from Brazilian didelphids. Parasit Vectors 2018; 11:107. [PMID: 29471851 PMCID: PMC5824584 DOI: 10.1186/s13071-018-2696-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/02/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi is a protozoan parasite characterized by extensive genetic heterogeneity. There are currently six recognised, genetically distinct, monophyletic clades designated discrete typing units (DTUs). TcI has the broadest geographical range and most genetic diversity evidenced by a wide range of genetic markers applied to isolates spanning a vast geographical range across Latin America. However, little is known of the diversity of TcI that exists within sylvatic mammals across the geographical expanse of Brazil. RESULTS Twenty-nine sylvatic TcI isolates spanning multiple ecologically diverse biomes across Brazil were analyzed by the application of multilocus sequence typing (MLST) using four nuclear housekeeping genes. Results revealed extensive genetic diversity and also incongruence among individual gene trees. There was no association of intralineage genotype with geography or with any particular biome, with the exception of isolates from Caatinga that formed a single cluster. However, haplotypic analyses of METIII and LYT1 constitutive markers provided evidence of recombination events in two isolates derived from Didelphis marsupialis and D. albiventris, respectively. For diversity studies all possible combinations of markers were assessed with the objective of selecting the combination of gene targets that are most resolutive using the minimum number of genes. A panel of just three gene fragments (DHFR-TS, LYT1 and METIII) discriminated 26 out of 35 genotypes. CONCLUSIONS These findings showed geographical association of genotypes clustering in Caatinga but more characteristically TcI genotypes widely distributed without specific association to geographical areas or biomes. Importantly, we detected the signature of recombination events at the nuclear level evidenced by haplotypic analysis and incongruence.
Collapse
Affiliation(s)
- Fabiola Roman
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | - Alena M Iñiguez
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Matthew Yeo
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ana M Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
43
|
Baptista RP, Reis-Cunha JL, DeBarry JD, Chiari E, Kissinger JC, Bartholomeu DC, Macedo AM. Assembly of highly repetitive genomes using short reads: the genome of discrete typing unit III Trypanosoma cruzi strain 231. Microb Genom 2018; 4. [PMID: 29442617 PMCID: PMC5989580 DOI: 10.1099/mgen.0.000156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Next-generation sequencing (NGS) methods are low-cost high-throughput technologies that produce thousands to millions of sequence reads. Despite the high number of raw sequence reads, their short length, relative to Sanger, PacBio or Nanopore reads, complicates the assembly of genomic repeats. Many genome tools are available, but the assembly of highly repetitive genome sequences using only NGS short reads remains challenging. Genome assembly of organisms responsible for important neglected diseases such as Trypanosoma cruzi, the aetiological agent of Chagas disease, is known to be challenging because of their repetitive nature. Only three of six recognized discrete typing units (DTUs) of the parasite have their draft genomes published and therefore genome evolution analyses in the taxon are limited. In this study, we developed a computational workflow to assemble highly repetitive genomes via a combination of de novo and reference-based assembly strategies to better overcome the intrinsic limitations of each, based on Illumina reads. The highly repetitive genome of the human-infecting parasite T. cruzi 231 strain was used as a test subject. The combined-assembly approach shown in this study benefits from the reference-based assembly ability to resolve highly repetitive sequences and from the de novo capacity to assemble genome-specific regions, improving the quality of the assembly. The acceptable confidence obtained by analyzing our results showed that our combined approach is an attractive option to assemble highly repetitive genomes with NGS short reads. Phylogenomic analysis including the 231 strain, the first representative of DTU III whose genome was sequenced, was also performed and provides new insights into T. cruzi genome evolution.
Collapse
Affiliation(s)
- Rodrigo P Baptista
- 1Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- 2Institute of Bioinformatics, University of Georgia, Athens, USA
| | - Joao Luis Reis-Cunha
- 3Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jeremy D DeBarry
- 1Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Egler Chiari
- 3Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jessica C Kissinger
- 1Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- 2Institute of Bioinformatics, University of Georgia, Athens, USA
- 4Department of Genetics, University of Georgia, Athens, USA
| | - Daniella C Bartholomeu
- 3Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andrea M Macedo
- 5Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
44
|
Tomasini N. Introgression of the Kinetoplast DNA: An Unusual Evolutionary Journey in Trypanosoma cruzi. Curr Genomics 2018; 19:133-139. [PMID: 29491741 PMCID: PMC5814961 DOI: 10.2174/1389202918666170815124832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/02/2017] [Accepted: 04/16/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Phylogenetic relationships between different lineages of Trypanosoma cruzi, the agent of Chagas disease, have been controversial for several years. However, recent phylogenetic and phylogenomic analyses clarified the nuclear relationships among such lineages. However, incongruence between nuclear and kinetoplast DNA phylogenies has emerged as a new challenge. This incongruence implies several events of mitochondrial introgression at evolutionary level. However, the mechanism that gave origin to introgressed lineages is unknown. Here, I will review and discuss how maxicircles of the kinetoplast were horizontally and vertically transferred between different lineages of T. cruzi. CONCLUSION Finally, I will discuss what we know - and what we don't - about the kDNA transference and inheritance in the context of sexual reproduction in this parasite.
Collapse
Affiliation(s)
- Nicolás Tomasini
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta, CONICET, Salta, Argentina
| |
Collapse
|
45
|
Ribeiro AR, Lima L, de Almeida LA, Monteiro J, Moreno CJG, Nascimento JD, de Araújo RF, Mello F, Martins LPA, Graminha MAS, Teixeira MMG, Silva MS, Steindel M, da Rosa JA. Biological and Molecular Characterization of Trypanosoma cruzi Strains from Four States of Brazil. Am J Trop Med Hyg 2018; 98:453-463. [PMID: 29313485 PMCID: PMC5929169 DOI: 10.4269/ajtmh.16-0200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 01/29/2017] [Indexed: 11/07/2022] Open
Abstract
Chagas disease affects between six and seven million people. Its etiological agent, Trypanosoma cruzi, is classified into six discrete typing units (DTUs). The biological study of 11 T. cruzi strains presented here included four parameters: growth kinetics, parasitemia curves, rate of macrophage infection, and serology to evaluate IgM, total IgG, IgG1, IgG2a, and IgG3. Sequencing of small subunit of ribosomal RNA (SSU rRNA)was performed and the T. cruzi strains were classified into three DTUs. When their growth in liver infusion tryptose medium was represented in curves, differences among the strains could be noted. The parasitemia profile varied among the strains from the TcI, TcII, and TcIII groups, and the 11 T. cruzi strains produced distinct parasitemia levels in infected BALB/c. The TcI group presented the highest rate of macrophage infection by amastigotes, followed by TcII and TcIII. Reactivity to immunoglobulins was observed in the TcI, TcII, and TcIII; all the animals infected with the different strains of T. cruzi showed anti-T. cruzi antibodies. The molecular study presented here resulted in the classification of the T. cruzi strains into the TcI (Bolivia, T lenti, Tm, SC90); TcII (Famema, SC96, SI8, Y); and TcIII (QMM3, QMM5, SI5) groups. These biological and molecular results from 11 T. cruzi strains clarified the factors involved in the biology of the parasite and its hosts. The collection of triatomine (vector) species, and the study of geographic distribution, as well as biological and molecular characterization of the parasite, will contribute to the reporting and surveillance measures in Brazilian states.
Collapse
Affiliation(s)
| | - Luciana Lima
- Department of Parasitology, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa Aguiar de Almeida
- Department of Biological Sciences, Faculdade de Ciências Farmacêuticas da Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| | - Joana Monteiro
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Cláudia Jassica Gonçalves Moreno
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Biociência, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | | | | | - Fernanda Mello
- Rio Grande do Sul State Health Secretariat, Porto Alegre, Brazil
| | | | - Márcia Aparecida Silva Graminha
- Department of Biological Sciences, Faculdade de Ciências Farmacêuticas da Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| | | | - Marcelo Sousa Silva
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
- Programa de Pós-graduação em Bioquímica, Departamento de Bioquímica, Centro de Biociência, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Mário Steindel
- Department of Microbiology, Immunology, and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - João Aristeu da Rosa
- Department of Biological Sciences, Faculdade de Ciências Farmacêuticas da Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| |
Collapse
|
46
|
Reis-Cunha JL, Valdivia HO, Bartholomeu DC. Gene and Chromosomal Copy Number Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids. Curr Genomics 2018; 19:87-97. [PMID: 29491737 PMCID: PMC5814966 DOI: 10.2174/1389202918666170911161311] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/14/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
Trypanosomatids are a group of kinetoplastid parasites including some of great public health importance, causing debilitating and life-long lasting diseases that affect more than 24 million people worldwide. Among the trypanosomatids, Trypanosoma cruzi, Trypanosoma brucei and species from the Leishmania genus are the most well studied parasites, due to their high prevalence in human infections. These parasites have an extreme genomic and phenotypic variability, with a massive expansion in the copy number of species-specific multigene families enrolled in host-parasite interactions that mediate cellular invasion and immune evasion processes. As most trypanosomatids are heteroxenous, and therefore their lifecycles involve the transition between different hosts, these parasites have developed several strategies to ensure a rapid adaptation to changing environments. Among these strategies, a rapid shift in the repertoire of expressed genes, genetic variability and genome plasticity are key mechanisms. Trypanosomatid genomes are organized into large directional gene clusters that are transcribed polycistronically, where genes derived from the same polycistron may have very distinct mRNA levels. This particular mode of transcription implies that the control of gene expression operates mainly at post-transcriptional level. In this sense, gene duplications/losses were already associated with changes in mRNA levels in these parasites. Gene duplications also allow the generation of sequence variability, as the newly formed copy can diverge without loss of function of the original copy. Recently, aneuploidies have been shown to occur in several Leishmania species and T. cruzi strains. Although aneuploidies are usually associated with debilitating phenotypes in superior eukaryotes, recent data shows that it could also provide increased fitness in stress conditions and generate drug resistance in unicellular eukaryotes. In this review, we will focus on gene and chromosomal copy number variations and their relevance to the evolution of trypanosomatid parasites.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Hugo O. Valdivia
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao, Peru
| | - Daniella Castanheira Bartholomeu
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao, Peru
| |
Collapse
|
47
|
Ramírez JC, Torres C, Curto MDLA, Schijman AG. New insights into Trypanosoma cruzi evolution, genotyping and molecular diagnostics from satellite DNA sequence analysis. PLoS Negl Trop Dis 2017; 11:e0006139. [PMID: 29253860 PMCID: PMC5749901 DOI: 10.1371/journal.pntd.0006139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/02/2018] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi has been subdivided into seven Discrete Typing Units (DTUs), TcI-TcVI and Tcbat. Two major evolutionary models have been proposed to explain the origin of hybrid lineages, but while it is widely accepted that TcV and TcVI are the result of genetic exchange between TcII and TcIII strains, the origin of TcIII and TcIV is still a matter of debate. T. cruzi satellite DNA (SatDNA), comprised of 195 bp units organized in tandem repeats, from both TcV and TcVI stocks were found to have SatDNA copies type TcI and TcII; whereas contradictory results were observed for TcIII stocks and no TcIV sequence has been analyzed yet. Herein, we have gone deeper into this matter analyzing 335 distinct SatDNA sequences from 19 T. cruzi stocks representative of DTUs TcI-TcVI for phylogenetic inference. Bayesian phylogenetic tree showed that all sequences were grouped in three major clusters, which corresponded to sequences from DTUs TcI/III, TcII and TcIV; whereas TcV and TcVI stocks had two sets of sequences distributed into TcI/III and TcII clusters. As expected, the lowest genetic distances were found between TcI and TcIII, and between TcV and TcVI sequences; whereas the highest ones were observed between TcII and TcI/III, and among TcIV sequences and those from the remaining DTUs. In addition, signature patterns associated to specific T. cruzi lineages were identified and new primers that improved SatDNA-based qPCR sensitivity were designed. Our findings support the theory that TcIII is not the result of a hybridization event between TcI and TcII, and that TcIV had an independent origin from the other DTUs, contributing to clarifying the evolutionary history of T. cruzi lineages. Moreover, this work opens the possibility of typing samples from Chagas disease patients with low parasitic loads and improving molecular diagnostic methods of T. cruzi infection based on SatDNA sequence amplification.
Collapse
Affiliation(s)
- Juan C. Ramírez
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
- * E-mail: (JCR); (AGS)
| | - Carolina Torres
- Departamento de Microbiología, Inmunología y Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| | - María de los A. Curto
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
| | - Alejandro G. Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), CONICET, Buenos Aires, Argentina
- * E-mail: (JCR); (AGS)
| |
Collapse
|
48
|
Rodrigues MS, Morelli KA, Jansen AM. Cytochrome c oxidase subunit 1 gene as a DNA barcode for discriminating Trypanosoma cruzi DTUs and closely related species. Parasit Vectors 2017; 10:488. [PMID: 29037251 PMCID: PMC5644147 DOI: 10.1186/s13071-017-2457-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The DNA barcoding system using the cytochrome c oxidase subunit 1 mitochondrial gene (cox1 or COI) is highly efficient for discriminating vertebrate and invertebrate species. In the present study, we examined the suitability of cox1 as a marker for Trypanosoma cruzi identification from other closely related species. Additionally, we combined the sequences of cox1 and the nuclear gene glucose-6-phosphate isomerase (GPI) to evaluate the occurrence of mitochondrial introgression and the presence of hybrid genotypes. METHODS Sixty-two isolates of Trypanosoma spp. obtained from five of the six Brazilian biomes (Amazon Forest, Atlantic Forest, Caatinga, Cerrado and Pantanal) were sequenced for cox1 and GPI gene fragments. Phylogenetic trees were reconstructed using neighbor-joining, maximum likelihood, parsimony and Bayesian inference methods. Molecular species delimitation was evaluated through pairwise intraspecific and interspecific distances, Automatic Barcode Gap Discovery, single-rate Poisson Tree Processes and multi-rate Poisson Tree Processes. RESULTS Both cox1 and GPI genes recognized and differentiated T. cruzi, Trypanosoma cruzi marinkellei, Trypanosoma dionisii and Trypanosoma rangeli. Cox1 discriminated Tcbat, TcI, TcII, TcIII and TcIV. Additionally, TcV and TcVI were identified as a single group. Cox1 also demonstrated diversity in the discrete typing units (DTUs) TcI, TcII and TcIII and in T. c. marinkellei and T. rangeli. Cox1 and GPI demonstrated TcI and TcII as the most genetically distant branches, and the position of the other T. cruzi DTUs differed according to the molecular marker. The tree reconstructed with concatenated cox1 and GPI sequences confirmed the separation of the subgenus Trypanosoma (Schizotrypanum) sp. and the T. cruzi DTUs TcI, TcII, TcIII and TcIV. The evaluation of single nucleotide polymorphisms (SNPs) was informative for DTU differentiation using both genes. In the cox1 analysis, one SNP differentiated heterozygous hybrids from TcIV sequences. In the GPI analysis one SNP discriminated Tcbat from TcI, while another SNP distinguished TcI from TcIII. CONCLUSIONS DNA barcoding using the cox1 gene is a reliable tool to distinguish T. cruzi from T. c. marinkellei, T. dionisii and T. rangeli and identify the main T. cruzi genotypes.
Collapse
Affiliation(s)
- Marina Silva Rodrigues
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Karina Alessandra Morelli
- Department of Ecology, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Jansen
- Laboratory of Trypanosomatid Biology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Barros JHS, Xavier SCC, Bilac D, Lima VS, Dario MA, Jansen AM. Identification of novel mammalian hosts and Brazilian biome geographic distribution of Trypanosoma cruzi TcIII and TcIV. Acta Trop 2017; 172:173-179. [PMID: 28499908 DOI: 10.1016/j.actatropica.2017.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/24/2017] [Accepted: 05/02/2017] [Indexed: 12/21/2022]
Abstract
Trypanosoma cruzi is a parasitic protozoan responsible for Chagas disease. Seven different Discrete Typing Units (DTUs) of T. cruzi are currently identified in nature: TcI-TcVI, and TcBat whose distribution patterns in nature, hosts/reservoirs and eco-epidemiological importance are still little known. Here, we present novel data on the geographic distribution and diversity of mammalian hosts and vectors of T. cruzi DTUs TcIII and TcIV. In this study, we analyzed 61 T. cruzi isolates obtained from 18 species of mammals (five orders) and two Hemiptera genera. Samples were collected from five Brazilian biomes (Pantanal, Caatinga, Cerrado, Atlantic Rainforest, and Amazon) previously characterized as Z3 or mixed infection (TcI-Z3) by mini-exon gene PCR. To identify TcIII and TcIV genotypes, we applied restriction fragment length polymorphism analysis to the PCR-amplified histone 3 gene. DTUs TcIII and TcIV were identified in single and mixed infections from wide dispersion throughout five Brazilian biomes studied, with TcIV being the most common. Pantanal was the biome that displayed the largest number of samples characterized as TcIII and TcIV in single and mixed infections, followed by Atlantic Rainforest and Amazon. Species from the Didelphimorphia order displayed the highest frequency of infection and were found in all five biomes. We report, for the first time, the infection of a species of the Artiodactyla order by DTU TcIII. In addition, we describe new host species: five mammals (marsupials and rodents) and two genera of Hemiptera. Our data indicate that DTUs TcIII and TcIV are more widespread and infect a larger number of mammalian species than previously thought. In addition, they are transmitted in restricted foci and cycles, but in different microhabitats and areas with distinct ecological profiles. Finally, we show that DTUs TcIII and TcIV do not present any specific association with biomes or host species.
Collapse
|
50
|
ACOSTA NIDIA, LÓPEZ ELSA, LEWIS MICHAELD, LLEWELLYN MARTINS, GÓMEZ ANA, ROMÁN FABIOLA, MILES MICHAELA, YEO MATTHEW. Hosts and vectors of Trypanosoma cruzi discrete typing units in the Chagas disease endemic region of the Paraguayan Chaco. Parasitology 2017; 144:884-898. [PMID: 28179034 PMCID: PMC5471830 DOI: 10.1017/s0031182016002663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
Active Trypanosoma cruzi transmission persists in the Gran Chaco region, which is considered hyperendemic for Chagas disease. Understanding domestic and sylvatic transmission cycles and therefore the relationship between vectors and mammalian hosts is crucial to designing and implementing improved effective control strategies. Here we describe the species of triatomine vectors and the sylvatic mammal reservoirs of T. cruzi, in different localities of the Paraguayan and Bolivian Chaco. We identify the T. cruzi genotypes discrete typing units (DTUs) and provide a map of their geographical distribution. A total of 1044 triatomines and 138 sylvatic mammals were captured. Five per cent of the triatomines were microscopically positive for T. cruzi (55 Triatoma infestans from Paraguay and one sylvatic Triatoma guasayana from Bolivia) and 17 animals (12·3%) comprising eight of 28 (28·5%) Dasypus novemcinctus, four of 27 (14·8%) Euphractus sexcinctus, three of 64 (4·7%) Chaetophractus spp. and two of 14 (14·3%) Didelphis albiventris. The most common DTU infecting domestic triatomine bugs was TcV (64%), followed by TcVI (28%), TcII (6·5%) and TcIII (1·5%). TcIII was overwhelmingly associated with armadillo species. We confirm the primary role of T. infestans in domestic transmission, armadillo species as the principal sylvatic hosts of TcIII, and consider the potential risk of TcIII as an agent of Chagas disease in the Chaco.
Collapse
Affiliation(s)
- NIDIA ACOSTA
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción – UNA, San Lorenzo CP 2160, Paraguay
| | - ELSA LÓPEZ
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción – UNA, San Lorenzo CP 2160, Paraguay
| | - MICHAEL D. LEWIS
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - MARTIN S. LLEWELLYN
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - ANA GÓMEZ
- Centro para el Desarrollo de la Investigación Científica (CEDIC)/Díaz Gill Medicina Laboratorial/Fundación Moisés Bertoni, Asunción, Paraguay
| | - FABIOLA ROMÁN
- Centro para el Desarrollo de la Investigación Científica (CEDIC)/Díaz Gill Medicina Laboratorial/Fundación Moisés Bertoni, Asunción, Paraguay
| | - MICHAEL A. MILES
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - MATTHEW YEO
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|