1
|
Ghosh S, Vashisth K, Ghosh S, Han SS, Bhaskar R, Sinha JK. From sleep to cancer to neurodegenerative disease: the crucial role of Hsp70 in maintaining cellular homeostasis and potential therapeutic implications. J Biomol Struct Dyn 2024; 42:9812-9823. [PMID: 37643058 DOI: 10.1080/07391102.2023.2252509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Sleep is a fundamental process essential for reparatory and restorative mechanisms in all organisms. Recent research has linked sleep to various pathological conditions, including cancer and neurodegeneration, which are associated with various molecular changes in different cellular environments. Despite the potential significance of various molecules, the HSPA1A or Hsp70 protein, which has possible connections with sleep and different neuropsychological and pathological disorders, has been explored the least. This paper explores the potential for manipulating and discovering drugs related to the Hsp70 protein to alleviate sleep problems and improve the prognosis for various other health issues. This paper discusses the critical role of Hsp70 in cancer, neurodegeneration, apoptosis, sleep, and its regulation at the structural level through allosteric mechanisms and different substrates. The significant impact of Hsp70's connection to various conditions suggests that existing sleep medicine could be used to improve such conditions, leading to improved outcomes, minimized research costs, and a new direction for current research. Overall, this paper highlights the potential of Hsp70 protein as a key therapeutic target for developing new drugs for the treatment of sleep disorders, cancer, neurodegeneration, and other related pathological conditions. Further research into the molecular mechanisms of Hsp70 regulation and its interactions with other cellular pathways is necessary to develop targeted treatments for these conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, India
- ICMR - National Institute of Nutrition, Tarnaka, Hyderabad, India
| | | | - Soumya Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | | |
Collapse
|
2
|
Zou F, Wu MMH, Tan Z, Lu G, Kwok KWH, Leng Z. Ecotoxicological risk of asphalt pavements to aquatic animals associated with pollutant leaching. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173985. [PMID: 38876354 DOI: 10.1016/j.scitotenv.2024.173985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Contaminants such as heavy metals and polycyclic aromatic hydrocarbons (PAHs) can be released from asphalt pavement and transported through stormwater runoff to nearby water bodies, leading to water pollution and potential harm to living aquatic animals. This study characterizes the heavy metal and PAH leaching from various asphalt paving materials and their potential ecotoxicological effects on zebrafish Danio rerio. Artificial runoffs were prepared in the laboratory concerning the effects of water, temperature, and traffic. The concentrations of heavy metals and PAHs in the leachates were quantified, while the toxicity assessment encompassed mortality, metal stress, PAH toxicity, inflammation, carcinogenicity, and oxidative damage. Gene expressions of related proteins or transcription factors were assessed, including metallothionines, aryl hydrocarbon receptors, interleukin-1β, interleukin-10, nuclear factor-κB, tumor necrosis factor-α, tumor suppressor p53, heat shock protein 70, and reactive oxygen species (ROS). The findings demonstrate that leachates from asphalt pavements containing waste bottom ash, crumb rubber, or specific chemicals could induce notable stress and inflammation responses in zebrafish. In addition, potential carcinogenic effects and the elevation of ROS were identified within certain treatment groups. This study represents the first attempt to assess the ecotoxicity of pavement leachates employing a live fish model, thereby improving the current understanding of the environmental impact of asphalt pavements.
Collapse
Affiliation(s)
- Fuliao Zou
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Margaret M H Wu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zhifei Tan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Guoyang Lu
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong
| | - Kevin W H Kwok
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Research Institute for Future Food, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Zhen Leng
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Research Centre for Resources Engineering towards Carbon Neutrality, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Haddadi M, Haghi M, Rezaei N, Kiani Z, Akkülah T, Celik A. APOE and Alzheimer's disease: Pathologic clues from transgenic Drosophila melanogaster. Arch Gerontol Geriatr 2024; 123:105420. [PMID: 38537387 DOI: 10.1016/j.archger.2024.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 06/06/2024]
Abstract
Alzheimer's disease (AD) is one of the most common forms of neurodegenerative diseases. Apolipoprotein E4 (ApoE4) is the main genetic risk factor in the development of late-onset AD. However, the exact mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We utilized Drosophila melanogaster to examine the neurotoxic effects of various human APOE isoforms when expressed specifically in glial and neural cells. We assessed impacts on mitochondrial dynamics, ER stress, lipid metabolism, and bio-metal ion concentrations in the central nervous system (CNS) of the transgenic flies. Dachshund antibody staining revealed a reduction in the number of Kenyon cells. Behavioral investigations including ethanol tolerance and learning and memory performance demonstrated neuronal dysfunction in APOE4-expressing larvae and adult flies. Transcription level of marf and drp-1 were found to be elevated in APOE4 flies, while atf4, atf6, and xbp-1 s showed down regulation. Enhanced concentrations of triglyceride and cholesterol in the CNS were observed in APOE4 transgenic flies, with especially pronounced effects upon glial-specific expression of the gene. Spectrophotometry of brain homogenate revealed enhanced Fe++ and Zn++ ion levels in conjunction with diminished Cu++ levels upon APOE4 expression. To explore therapeutic strategies, we subjected the flies to heat-shock treatment, aiming to activate heat-shock proteins (HSPs) and assess their potential to mitigate the neurotoxic effects of APOE isoforms. The results showed potential therapeutic benefits for APOE4-expressing flies, hinting at an ability to attenuate memory deterioration. Overall, our findings suggest that APOE4 can alter lipid metabolism, bio metal ion homeostasis, and disrupt the harmonious fission-fusion balance of neuronal and glial mitochondria, ultimately inducing ER stress. These alterations mirror the main clinical manifestations of AD in patients. Therefore, our work underscores the suitability of Drosophila as a fertile model for probing the pathological roles of APOE and furthering our understanding of diverse isoform-specific functions.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran; Genetics and Non-communicable Diseases Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mehrnaz Haghi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Niloofar Rezaei
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Zahra Kiani
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Taha Akkülah
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| | - Arzu Celik
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| |
Collapse
|
4
|
Catalani E, Brunetti K, Del Quondam S, Bongiorni S, Picchietti S, Fausto AM, Lupidi G, Marcantoni E, Perrotta C, Achille G, Buonanno F, Ortenzi C, Cervia D. Exposure to the Natural Compound Climacostol Induces Cell Damage and Oxidative Stress in the Fruit Fly Drosophila melanogaster. TOXICS 2024; 12:102. [PMID: 38393197 PMCID: PMC10891975 DOI: 10.3390/toxics12020102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
The ciliate Climacostomum virens produces the metabolite climacostol that displays antimicrobial activity and cytotoxicity on human and rodent tumor cells. Given its potential as a backbone in pharmacological studies, we used the fruit fly Drosophila melanogaster to evaluate how the xenobiotic climacostol affects biological systems in vivo at the organismal level. Food administration with climacostol demonstrated its harmful role during larvae developmental stages but not pupation. The midgut of eclosed larvae showed apoptosis and increased generation of reactive oxygen species (ROS), thus demonstrating gastrointestinal toxicity. Climacostol did not affect enteroendocrine cell proliferation, suggesting moderate damage that does not initiate the repairing program. The fact that climacostol increased brain ROS and inhibited the proliferation of neural cells revealed a systemic (neurotoxic) role of this harmful substance. In this line, we found lower expression of relevant antioxidant enzymes in the larvae and impaired mitochondrial activity. Adult offsprings presented no major alterations in survival and mobility, as well the absence of abnormal phenotypes. However, mitochondrial activity and oviposition behavior was somewhat affected, indicating the chronic toxicity of climacostol, which continues moderately until adult stages. These results revealed for the first time the detrimental role of ingested climacostol in a non-target multicellular organism.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (K.B.); (S.D.Q.); (S.P.); (A.M.F.)
| | - Kashi Brunetti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (K.B.); (S.D.Q.); (S.P.); (A.M.F.)
| | - Simona Del Quondam
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (K.B.); (S.D.Q.); (S.P.); (A.M.F.)
| | - Silvia Bongiorni
- Department of Ecological and Biological Sciences (DEB), Università degli Studi della Tuscia, 01100 Viterbo, Italy;
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (K.B.); (S.D.Q.); (S.P.); (A.M.F.)
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (K.B.); (S.D.Q.); (S.P.); (A.M.F.)
| | - Gabriele Lupidi
- School of Science and Technology, Section of Chemistry, Università degli Studi di Camerino, 62032 Camerino, Italy; (G.L.); (E.M.)
| | - Enrico Marcantoni
- School of Science and Technology, Section of Chemistry, Università degli Studi di Camerino, 62032 Camerino, Italy; (G.L.); (E.M.)
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences (DIBIC), Università degli Studi di Milano, 20157 Milano, Italy;
| | - Gabriele Achille
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100 Macerata, Italy; (G.A.); (F.B.); (C.O.)
| | - Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100 Macerata, Italy; (G.A.); (F.B.); (C.O.)
| | - Claudio Ortenzi
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100 Macerata, Italy; (G.A.); (F.B.); (C.O.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (K.B.); (S.D.Q.); (S.P.); (A.M.F.)
| |
Collapse
|
5
|
Rokusek B, Cheku S, Rokusek M, Waples CJ, Harshman L, Carlson KA. HoTDAM! An easy-to-use automated assay expands the inducible thermotolerance phenotype in Drosophila melanogaster: Heat hardening reduces motility. Comp Biochem Physiol A Mol Integr Physiol 2023; 286:111522. [PMID: 37742820 PMCID: PMC10593110 DOI: 10.1016/j.cbpa.2023.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
To quantify heat tolerance in insects, two manual observation measures are typically implemented: the time to physiological collapse at a static noxious temperature (time to knockdown; TKD) or the temperature at which collapse occurs as temperature increases (critical thermal maximum; CTmax). Both assay modalities focus on physiological collapse, neglecting the prior behavioral processes. In this study, the locomotion response of Drosophila melanogaster to relatively high temperature (39 and 40.5 °C) was quantified using the TriKinetics Drosophila Activity Monitor (DAM2 system). The absence of locomotion was defined as the state of physiological collapse resulting from extended exposure to high temperature. An easy-to-use executable application that allows the user to automatically extract individual TKD from the activity data was developed. For validation, manual TKD assays were performed in parallel to automated assays across multiple factors, including sex, hardening, recovery time after hardening, and assay temperature, which gave similar results. In terms of behavioral aspects, heat hardening consistently led to reduced activity during a subsequent heat stress, irrespective of assay temperature, sex, or recovery time after hardening. Our automated heat tolerance assay utilizing the DAM2 system is one way to expand the scope of the heat tolerance phenotype to include a behavioral component in conjunction with the traditional TKD measure.
Collapse
Affiliation(s)
- Blase Rokusek
- Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Sunayn Cheku
- Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Matthew Rokusek
- School of Computing, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Christopher J Waples
- Department of Psychology, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Lawrence Harshman
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Kimberly A Carlson
- Department of Biology, University of Nebraska at Kearney, Kearney, NE 68849, USA.
| |
Collapse
|
6
|
Jahan H, Khudr MS, Arafeh A, Hager R. Exposure to heat stress leads to striking clone-specific nymph deformity in pea aphid. PLoS One 2023; 18:e0282449. [PMID: 37883483 PMCID: PMC10602343 DOI: 10.1371/journal.pone.0282449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/15/2023] [Indexed: 10/28/2023] Open
Abstract
Climatic changes, such as heatwaves, pose unprecedented challenges for insects, as escalated temperatures above the thermal optimum alter insect reproductive strategies and energy metabolism. While thermal stress responses have been reported in different insect species, thermo-induced developmental abnormalities in phloem-feeding pests are largely unknown. In this laboratory study, we raised two groups of first instar nymphs belonging to two clones of the pea aphid Acyrthosiphon pisum, on fava beans Vicia faba. The instars developed and then asexually reproduced under constant exposure to a sub-lethal heatwave (27°C) for 14 days. Most mothers survived but their progenies showed abnormalities, as stillbirths and appendageless or weak nymphs with folded appendages were delivered. Clone N116 produced more deceased and appendageless embryos, contrary to N127, which produced fewer dead and more malformed premature embryos. Interestingly, the expression of the HSP70 and HSP83 genes differed in mothers between the clones. Moreover, noticeable changes in metabolism, e.g., lipids, were also detected and that differed in response to stress. Deformed offspring production after heat exposure may be due to heat injury and differential HSP gene expression, but may also be indicative of a conflict between maternal and offspring fitness. Reproductive altruism might have occurred to ensure some of the genetically identical daughters survive. This is because maintaining homeostasis and complete embryogenesis could not be simultaneously fulfilled due to the high costs of stress. Our findings shine new light on pea aphid responses to heatwaves and merit further examination across different lineages and species.
Collapse
Affiliation(s)
- Hawa Jahan
- Faculty of Biology, Medicine and Health, Division of Evolution, Infection and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Faculty of Biological Sciences, Department of Zoology, University of Dhaka, Dhaka, Bangladesh
| | - Mouhammad Shadi Khudr
- Faculty of Biology, Medicine and Health, Division of Evolution, Infection and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Ali Arafeh
- Faculty of Science and Engineering, Chemical Engineering, James Chadwick Building, The University of Manchester, Manchester, United Kingdom
| | - Reinmar Hager
- Faculty of Biology, Medicine and Health, Division of Evolution, Infection and Genomics, School of Biological Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
7
|
Liu J, Liu Y, Li Q, Lu Y. Heat shock protein 70 and Cathepsin B genes are involved in the thermal tolerance of Aphis gossypii. PEST MANAGEMENT SCIENCE 2023; 79:2075-2086. [PMID: 36700477 DOI: 10.1002/ps.7384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Elevated temperature can directly affect the insect pest population dynamics. Many experimental studies have indicated that high temperatures affect the biological and ecological characteristics of the widely distributed crop pest Aphis gossypii, but the molecular mechanisms underlying its response to heat stress remain unstudied. Here, we used transcriptomic analysis to explore the key genes and metabolic pathways involved in the regulation of thermotolerance in A. gossypii at 29 °C, 32 °C, and 35 °C. RESULTS The results of bioinformatics analysis show that few genes were consistently differentially expressed among the higher temperature treatments compared to 29 °C, and a moderate temperature increase of 3 °C can elicit gene expression changes that help A. gossypii adapt to warmer temperatures. Based on KEGG pathway enrichment analysis, we found that genes encoding four heat shock protein 70 s (Hsp70s) and nine cathepsin B (CathB) proteins were significantly upregulated at 35 °C compared with 32 °C. Genes related to glutathione production were also highly enriched between 32 °C and 29 °C. Silencing of two Hsp70s (ApHsp70A1-1 and ApHsp68) and two CathBs (ApCathB01 and ApCathB02) with RNA interference using a nanocarrier-based transdermal dsRNA delivery system significantly increased sensitivity of A. gossypii to high temperatures. CONCLUSION A. gossypii is able to fine-tune its response across a range of temperatures, and Hsp70 and CathB genes are essential for adaption of A. gossypii to warmer temperatures. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jinping Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Balakrishnan KN, Ramiah SK, Zulkifli I. Heat Shock Protein Response to Stress in Poultry: A Review. Animals (Basel) 2023; 13:ani13020317. [PMID: 36670857 PMCID: PMC9854570 DOI: 10.3390/ani13020317] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Compared to other animal species, production has dramatically increased in the poultry sector. However, in intensive production systems, poultry are subjected to stress conditions that may compromise their well-being. Much like other living organisms, poultry respond to various stressors by synthesising a group of evolutionarily conserved polypeptides named heat shock proteins (HSPs) to maintain homeostasis. These proteins, as chaperones, play a pivotal role in protecting animals against stress by re-establishing normal protein conformation and, thus, cellular homeostasis. In the last few decades, many advances have been made in ascertaining the HSP response to thermal and non-thermal stressors in poultry. The present review focuses on what is currently known about the HSP response to thermal and non-thermal stressors in poultry and discusses the factors that modulate its induction and regulatory mechanisms. The development of practical strategies to alleviate the detrimental effects of environmental stresses on poultry will benefit from detailed studies that describe the mechanisms of stress resilience and enhance our understanding of the nature of heat shock signalling proteins and gene expression.
Collapse
Affiliation(s)
- Krishnan Nair Balakrishnan
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Suriya Kumari Ramiah
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Idrus Zulkifli
- Laboratory of Sustainable Animal Production and Biodiversity, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
- Correspondence: ; Tel.: +603-9769-4882
| |
Collapse
|
9
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
10
|
Scutigliani EM, Lobo-Cerna F, Mingo Barba S, Scheidegger S, Krawczyk PM. The Effects of Heat Stress on the Transcriptome of Human Cancer Cells: A Meta-Analysis. Cancers (Basel) 2022; 15:cancers15010113. [PMID: 36612111 PMCID: PMC9817844 DOI: 10.3390/cancers15010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Hyperthermia is clinically applied cancer treatment in conjunction with radio- and/or chemotherapy, in which the tumor volume is exposed to supraphysiological temperatures. Since cells can effectively counteract the effects of hyperthermia by protective measures that are commonly known as the heat stress response, the identification of cellular processes that are essential for surviving hyperthermia could lead to novel treatment strategies that improve its therapeutic effects. Here, we apply a meta-analytic approach to 18 datasets that capture hyperthermia-induced transcriptome alterations in nine different human cancer cell lines. We find, in line with previous reports, that hyperthermia affects multiple processes, including protein folding, cell cycle, mitosis, and cell death, and additionally uncover expression changes of genes involved in KRAS signaling, inflammatory responses, TNF-a signaling and epithelial-to-mesenchymal transition (EMT). Interestingly, however, we also find a considerable inter-study variability, and an apparent absence of a 'universal' heat stress response signature, which is likely caused by the differences in experimental conditions. Our results suggest that gene expression alterations after heat stress are driven, to a large extent, by the experimental context, and call for a more extensive, controlled study that examines the effects of key experimental parameters on global gene expression patterns.
Collapse
Affiliation(s)
- Enzo M. Scutigliani
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Treatment and Quality of Life, 1081HV Amsterdam, The Netherlands
- Correspondence: (E.M.S.); (P.M.K.)
| | - Fernando Lobo-Cerna
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Treatment and Quality of Life, 1081HV Amsterdam, The Netherlands
| | - Sergio Mingo Barba
- ZHAW School of Engineering, University of Applied Sciences, CH 8401 Winterthur, Switzerland
- Chemistry Department, University of Fribourg, 1700 Fribourg, Switzerland
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Stephan Scheidegger
- ZHAW School of Engineering, University of Applied Sciences, CH 8401 Winterthur, Switzerland
| | - Przemek M. Krawczyk
- Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Treatment and Quality of Life, 1081HV Amsterdam, The Netherlands
- Correspondence: (E.M.S.); (P.M.K.)
| |
Collapse
|
11
|
Tian J, Dewer Y, Qu C, Li F, Luo C. Heat-shock protein 70-a hub gene-underwent adaptive evolution involved in whitefly-wild tomato interaction. PEST MANAGEMENT SCIENCE 2022; 78:4471-4479. [PMID: 35796079 DOI: 10.1002/ps.7065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The whitefly Bemisia tabaci causes severe damage to cultivated tomato plants, but actively avoids the wild tomato Solanum habrochaites. Moreover, the mortality of whitefly increases significantly after feeding with the wild tomato. However, additional experiments are warranted to more carefully elucidate the specific molecular elements underlying the interaction between whitefly and wild tomato. RESULTS Our results showed that S. habrochaites significantly increases the mortality of whitefly adults and decreases both their fertility and fecundity. In addition, the expression of stress-response genes in whitefly after exposure to S. habrochaites was analyzed using RNA sequencing. Weighted gene co-expression network analysis was conducted to identify the hub genes to determine their potential associations with the mortality of whitefly. These results suggested that the expression of heat-shock protein (HSP), multicopper oxidase, and 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase genes were induced in whitefly. To validate the gene associations with whitefly mortality, a high-throughput in vivo model system and RNAi-based gene silencing were used. The results revealed that the RNAi-mediated depletion of the HSP gene, which belongs to the HSP70 subfamily, increased the mortality of whitefly. Furthermore, the selection pressure analysis showed that a total of five amino acid sites of positive selection were identified, three of which were located in the nucleotide-binding domain and the other two in the substrate-binding domain. CONCLUSIONS This is the first report on the potential implication of HSPs in whitefly-wild plant interactions. This study could more precisely identify the molecular mechanisms of whitefly in response to wild tomatoes. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiahui Tian
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Cheng Qu
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengqi Li
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chen Luo
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
12
|
Huang Y, Cai P, Su X, Zheng M, Chi W, Lin S, Huang Z, Qin S, Zeng S. Hsian-Tsao ( Mesona chinensis Benth.) Extract Improves the Thermal Tolerance of Drosophila melanogaster. Front Nutr 2022; 9:819319. [PMID: 35614980 PMCID: PMC9124935 DOI: 10.3389/fnut.2022.819319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Global warming has prompted scientific communities to consider how to alleviate thermal stress in humans and animals. The present study assessed the supplementation of hsian-tsao extract (HTE) on thermal stress in Drosophila melanogaster and preliminarily explicated its possible physiological and molecular mechanisms. Our results indicated that the lethal time for 50% of female flies fed on HTE was significantly longer than that of male flies at the same heat stress temperature. Under thermal stress, the survival time of females was remarkably increased in the HTE addition groups compared to the non-addition group. Thermal hardening by acute exposure to 36°C for 30 min (9:00 to 9:30 a.m.) every day could significantly prolong the longevity of females. Without thermal hardening, HTE increased the antioxidant capacity of females under heat stress, accompanied by an increment of catalase (CAT) activity, and the inhibition for hydroxyl radicals (OH⋅) and superoxide anions (⋅O2 -). Superoxide dismutase (SOD) activity and the inhibition for ⋅O2 - was significantly affected by thermal hardening in the non-HTE addition groups, and significant differences were shown in CAT and SOD activities, and the inhibition for ⋅O2 - among groups with thermal hardening. After heat exposure, heat shock protein 70 (Hsp70) was only up-regulated in the group with high levels of added HTE compared with the group without and this was similar in the thermal hardening group. It was concluded that the heat stress-relieving ability of HTE might be partly due to the enhancement of enzymatic activities of SOD and CAT, and the inhibition for OH⋅ and ⋅O2 -. However, the expression levels of Hsp70 were not well related to thermal tolerance or heat survival.
Collapse
Affiliation(s)
- Yan Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Tea and Food Science, Wuyi University, Wuyishan, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pumo Cai
- College of Tea and Food Science, Wuyi University, Wuyishan, China
| | - Xinxin Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingjing Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Wenwen Chi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoling Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiwei Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Si Qin
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Isaacson JR, Berg MD, Charles B, Jagiello J, Villén J, Brandl CJ, Moehring AJ. A novel mistranslating tRNA model in Drosophila melanogaster has diverse, sexually dimorphic effects. G3 GENES|GENOMES|GENETICS 2022; 12:6526391. [PMID: 35143655 PMCID: PMC9073681 DOI: 10.1093/g3journal/jkac035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Transfer RNAs (tRNAs) are the adaptor molecules required for reading the genetic code and producing proteins. Transfer RNA variants can lead to genome-wide mistranslation, the misincorporation of amino acids not specified by the standard genetic code into nascent proteins. While genome sequencing has identified putative mistranslating transfer RNA variants in human populations, little is known regarding how mistranslation affects multicellular organisms. Here, we create a multicellular model of mistranslation by integrating a serine transfer RNA variant that mistranslates serine for proline (tRNAUGG,G26ASer) into the Drosophila melanogaster genome. We confirm mistranslation via mass spectrometry and find that tRNAUGG,G26ASer misincorporates serine for proline at a frequency of ∼0.6% per codon. tRNAUGG,G26ASer extends development time and decreases the number of flies that reach adulthood. While both sexes of adult flies containing tRNAUGG,G26ASer present with morphological deformities and poor climbing performance, these effects are more pronounced in female flies and the impact on climbing performance is exacerbated by age. This model will enable studies into the synergistic effects of mistranslating transfer RNA variants and disease-causing alleles.
Collapse
Affiliation(s)
- Joshua R Isaacson
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Matthew D Berg
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Brendan Charles
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jessica Jagiello
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Judit Villén
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christopher J Brandl
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Amanda J Moehring
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
14
|
Singh A, Kandi AR, Jayaprakashappa D, Thuery G, Purohit DJ, Huelsmeier J, Singh R, Pothapragada SS, Ramaswami M, Bakthavachalu B. The transcriptional response to oxidative stress is independent of stress-granule formation. Mol Biol Cell 2022; 33:ar25. [PMID: 34985933 PMCID: PMC9250384 DOI: 10.1091/mbc.e21-08-0418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 11/11/2022] Open
Abstract
Cells respond to stress with translational arrest, robust transcriptional changes, and transcription-independent formation of mRNP assemblies termed stress granules (SGs). Despite considerable interest in the role of SGs in oxidative, unfolded protein and viral stress responses, whether and how SGs contribute to stress-induced transcription have not been rigorously examined. To address this, we characterized transcriptional changes in Drosophila S2 cells induced by acute oxidative-stress and assessed how these were altered under conditions that disrupted SG assembly. Oxidative stress for 3 h predominantly resulted in induction or up-regulation of stress-responsive mRNAs whose levels peaked during recovery after stress cessation. The stress transcriptome is enriched in mRNAs coding for chaperones including HSP70s, small heat shock proteins, glutathione transferases, and several noncoding RNAs. Oxidative stress also induced cytoplasmic SGs that disassembled 3 h after stress cessation. As expected, RNAi-mediated knockdown of the conserved G3BP1/Rasputin protein inhibited SG assembly. However, this disruption had no significant effect on the stress-induced transcriptional response or stress-induced translational arrest. Thus SG assembly and stress-induced gene expression alterations appear to be driven by distinctive signaling processes. We suggest that while SG assembly represents a fast, transient mechanism, the transcriptional response enables a slower, longer-lasting mechanism for adaptation to and recovery from cell stress.
Collapse
Affiliation(s)
- Amanjot Singh
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Arvind Reddy Kandi
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore 560065, India
| | | | - Guillaume Thuery
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | - Devam J Purohit
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | - Joern Huelsmeier
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | - Rashi Singh
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
| | | | - Mani Ramaswami
- National Centre for Biological Sciences, TIFR, Bangalore 560065, India
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin-2, Ireland
| | - Baskar Bakthavachalu
- Tata Institute for Genetics and Society Centre at inStem, Bellary Road, Bangalore 560065, India
- School of Basic Sciences, Indian Institute of Technology, Mandi 175005, India
| |
Collapse
|
15
|
Super-resolution microscopy reveals stochastic initiation of replication in Drosophila polytene chromosomes. Chromosome Res 2022; 30:361-383. [PMID: 35226231 PMCID: PMC9771856 DOI: 10.1007/s10577-021-09679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/25/2023]
Abstract
Studying the probability distribution of replication initiation along a chromosome is a huge challenge. Drosophila polytene chromosomes in combination with super-resolution microscopy provide a unique opportunity for analyzing the probabilistic nature of replication initiation at the ultrastructural level. Here, we developed a method for synchronizing S-phase induction among salivary gland cells. An analysis of the replication label distribution in the first minutes of S phase and in the following hours after the induction revealed the dynamics of replication initiation. Spatial super-resolution structured illumination microscopy allowed identifying multiple discrete replication signals and to investigate the behavior of replication signals in the first minutes of the S phase at the ultrastructural level. We identified replication initiation zones where initiation occurs stochastically. These zones differ significantly in the probability of replication initiation per time unit. There are zones in which initiation occurs on most strands of the polytene chromosome in a few minutes. In other zones, the initiation on all strands takes several hours. Compact bands are free of replication initiation events, and the replication runs from outer edges to the middle, where band shapes may alter.
Collapse
|
16
|
Heat Shock Factors in Protein Quality Control and Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:181-199. [PMID: 36472823 DOI: 10.1007/978-3-031-12966-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proper regulation of cellular protein quality control is crucial for cellular health. It appears that the protein quality control machinery is subjected to distinct regulation in different cellular contexts such as in somatic cells and in germ cells. Heat shock factors (HSFs) play critical role in the control of quality of cellular proteins through controlling expression of many genes encoding different proteins including those for inducible protein chaperones. Mammalian cells exert distinct mechanism of cellular functions through maintenance of tissue-specific HSFs. Here, we have discussed different HSFs and their functions including those during spermatogenesis. We have also discussed the different heat shock proteins induced by the HSFs and their activities in those contexts. We have also identified several small molecule activators and inhibitors of HSFs from different sources reported so far.
Collapse
|
17
|
Yusof NA, Charles J, Wan Mahadi WNS, Abdul Murad AM, Mahadi NM. Characterization of Inducible HSP70 Genes in an Antarctic Yeast, Glaciozyma antarctica PI12, in Response to Thermal Stress. Microorganisms 2021; 9:microorganisms9102069. [PMID: 34683390 PMCID: PMC8540855 DOI: 10.3390/microorganisms9102069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
The induction of highly conserved heat shock protein 70 (HSP70) is often related to a cellular response due to harmful stress or adverse life conditions. In this study, we determined the expression of Hsp70 genes in the Antarctic yeast, Glaciozyma antarctica, under different several thermal treatments for several exposure periods. The main aims of the present study were (1) to determine if stress-induced Hsp70 could be used to monitor the exposure of the yeast species G. antarctica to various types of thermal stress; (2) to analyze the structures of the G. antarctica HSP70 proteins using comparative modeling; and (3) to evaluate the relationship between the function and structure of HSP70 in G. antarctica. In this study, we managed to amplify and clone 2 Hsp70 genes from G. antarctica named GaHsp70-1 and GaHsp70-2. The cells of G. antarctica expressed significantly inducible Hsp70 genes after the heat and cold shock treatments. Interestingly, GaHsp70-1 showed 2–6-fold higher expression than GaHsp70-2 after the heat and cold exposure. ATP hydrolysis analysis on both G. antarctica HSP70s proved that these psychrophilic chaperones can perform activities in a wide range of temperatures, such as at 37, 25, 15, and 4 °C. The 3D structures of both HSP70s revealed several interesting findings, such as the substitution of a β-sheet to loop in the N-terminal ATPase binding domain and some modest residue substitutions, which gave the proteins the flexibility to function at low temperatures and retain their functional activity at ambient temperatures. In conclusion, both analyzed HSP70s played important roles in the physiological adaptation of G. antarctica.
Collapse
Affiliation(s)
- Nur Athirah Yusof
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.C.); (W.N.S.W.M.)
- Correspondence: ; Tel.: +60-19-605-1219
| | - Jennifer Charles
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.C.); (W.N.S.W.M.)
| | - Wan Nur Shuhaida Wan Mahadi
- Biotechnology Research Institute, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia; (J.C.); (W.N.S.W.M.)
| | - Abdul Munir Abdul Murad
- Faculty of Science and Technology, School of Biosciences and Biotechnology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | | |
Collapse
|
18
|
Salekeen R, Diaconeasa AG, Billah MM, Islam KMD. Energy Metabolism Focused Analysis of Sexual Dimorphism in Biological Aging and Hypothesized Sex-specificity in Sirtuin Dependency. Mitochondrion 2021; 60:85-100. [PMID: 34332101 DOI: 10.1016/j.mito.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 01/09/2023]
Abstract
The process of biological aging or senescence refers to the gradual loss of homeostasis and subsequent loss of function - leading to higher chances of mortality. Many mechanisms and driving forces have been suggested to facilitate the evolution of a molecular circuit acting as a trade-off between survival and proliferation, resulting in senescence. A major observation on biological aging and longevity in humans and model organisms is the prevalence of significant sexual divergence in the onset, mechanisms and effects of aging associated processes. In the current account, we describe possible mechanisms by which aging, sex and reproduction are evolutionarily intertwined in order to maintain systemic energy homeostasis. We also interrogate existing literature on the sexual dimorphism of genetic, cellular, metabolic, endocrine and epigenetic processes driving cellular and systemic aging. Subsequently, based on available evidence, we propose a hypothetic model of sex-limited decoupling of female longevity from sirtuins, a major family of regulator proteins of the survival-proliferation trade-off. We also provide necessary considerations to be made in order to test the hypothesis and explore the physiological and therapeutic implications of this decoupling event in male and female longevity after reaching reproductive maturity. HYPOTHESIS STATEMENT: Sirtuins provide survival benefits in a sex-nonspecific manner but the dependency on sirtuins in driving metabolic networks after reaching reproductive maturity is evolutionarily decoupled from female longevity.
Collapse
Affiliation(s)
- Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Amalia Gabriela Diaconeasa
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania.
| | - Md Morsaline Billah
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh.
| |
Collapse
|
19
|
Gorenskaya OV, Gavrilov AB, Zatsepina OG, Shckorbatov YG, Evgen’ev MB. The Role of Hsp70 Genes in Promoting Control of Viability in Drosophila melanogaster Subjected to Microwave Irradiation. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
20
|
Tsakiri EN, Gumeni S, Manola MS, Trougakos IP. Amyloid toxicity in a Drosophila Alzheimer's model is ameliorated by autophagy activation. Neurobiol Aging 2021; 105:137-147. [PMID: 34062489 DOI: 10.1016/j.neurobiolaging.2021.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease (AD) is the prevailing form of dementia. Protein degradation and antioxidant pathways have a critical role in preventing the accumulation of protein aggregation; thus, failure of proteostasis in neurons along with redox imbalance mark AD. Herein, we exploited an AD Drosophila model expressing human amyloid precursor (hAPP) and beta-secretase 1 (hBACE1) proteins, to better understand the role of proteostatic or antioxidant pathways in AD. Ubiquitous expression of hAPP, hBACE1 in flies caused more severe degenerative phenotypes versus neuronal targeted expression; it also, suppressed proteasome activity, increased oxidative stress and significantly enhanced stress-sensitivity. Overexpression of Prosβ5 proteasomal subunit or Nrf2 transcription factor in AD Drosophila flies partially restored proteasomal activity but did not rescue hAPP, hBACE1 induced neurodegeneration. On the other hand, expression of autophagy-related Atg8a in AD flies decelerated neurodegeneration, increased stress-resistance, and improved flies' health-/lifespan. Overall, our data suggest that the noxious effects of amyloid-beta aggregates can be alleviated by enhanced autophagy, thus dietary or pharmacological interventions that target autophagy should be considered in AD therapeutic approaches.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Maria S Manola
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, Athens 15784, Greece.
| |
Collapse
|
21
|
Lin YH, Maaroufi HO, Kucerova L, Rouhova L, Filip T, Zurovec M. Adenosine Receptor and Its Downstream Targets, Mod(mdg4) and Hsp70, Work as a Signaling Pathway Modulating Cytotoxic Damage in Drosophila. Front Cell Dev Biol 2021; 9:651367. [PMID: 33777958 PMCID: PMC7994771 DOI: 10.3389/fcell.2021.651367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Adenosine (Ado) is an important signaling molecule involved in stress responses. Studies in mammalian models have shown that Ado regulates signaling mechanisms involved in “danger-sensing” and tissue-protection. Yet, little is known about the role of Ado signaling in Drosophila. In the present study, we observed lower extracellular Ado concentration and suppressed expression of Ado transporters in flies expressing mutant huntingtin protein (mHTT). We altered Ado signaling using genetic tools and found that the overexpression of Ado metabolic enzymes, as well as the suppression of Ado receptor (AdoR) and transporters (ENTs), were able to minimize mHTT-induced mortality. We also identified the downstream targets of the AdoR pathway, the modifier of mdg4 (Mod(mdg4)) and heat-shock protein 70 (Hsp70), which modulated the formation of mHTT aggregates. Finally, we showed that a decrease in Ado signaling affects other Drosophila stress reactions, including paraquat and heat-shock treatments. Our study provides important insights into how Ado regulates stress responses in Drosophila.
Collapse
Affiliation(s)
- Yu-Hsien Lin
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Houda Ouns Maaroufi
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Lucie Kucerova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia
| | - Lenka Rouhova
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Tomas Filip
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Michal Zurovec
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czechia.,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
22
|
Bajusz C, Kristó I, Abonyi C, Venit T, Vedelek V, Lukácsovich T, Farkas A, Borkúti P, Kovács Z, Bajusz I, Marton A, Vizler C, Lipinszki Z, Sinka R, Percipalle P, Vilmos P. The nuclear activity of the actin-binding Moesin protein is necessary for gene expression in Drosophila. FEBS J 2021; 288:4812-4832. [PMID: 33606336 DOI: 10.1111/febs.15779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Ezrin-Radixin-Moesin (ERM) proteins play an essential role in the cytoplasm by cross-linking actin filaments with plasma membrane proteins. Research has identified the nuclear localization of ERMs, as well as the involvement of a single Drosophila ERM protein, Moesin, in nuclear mRNA exports. However, the question of how important the nuclear activity of ERM proteins are for the life of an organism has so far not been explored. Here, we present the first attempt to reveal the in vivo relevance of nuclear localization of Moesin in Drosophila. With the help of a nuclear export signal, we decreased the amount of Moesin in the nuclei of the animals. Furthermore, we observed various developmental defects, demonstrating the importance of ERM function in the nucleus for the first time. Transcriptome analysis of the mutant flies revealed that the lack of nuclear Moesin function leads to expression changes in nearly 700 genes, among them heat-shock genes. This result together with additional findings revealed that in Drosophila the expression of protein chaperones requires the nuclear functions of Moesin. DATABASE: GEO accession number: GSE155778.
Collapse
Affiliation(s)
- Csaba Bajusz
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Hungary
| | - Ildikó Kristó
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Csilla Abonyi
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Tomáš Venit
- Biology Program, Science Division, New York University Abu Dhabi, UAE
| | | | | | - Attila Farkas
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Péter Borkúti
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Hungary
| | - Zoltán Kovács
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary.,Doctoral School of Multidisciplinary Medical Science, University of Szeged, Hungary
| | - Izabella Bajusz
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Annamária Marton
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Csaba Vizler
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| | - Zoltán Lipinszki
- Lendület Laboratory of Cell Cycle Regulation, ELKH, Biological Research Centre, Szeged, Hungary
| | - Rita Sinka
- Department of Genetics, University of Szeged, Hungary
| | - Piergiorgio Percipalle
- Biology Program, Science Division, New York University Abu Dhabi, UAE.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Sweden
| | - Péter Vilmos
- Eötvös Loránd Research Network (ELKH), Biological Research Centre, Szeged, Hungary
| |
Collapse
|
23
|
Schoville SD, Simon S, Bai M, Beethem Z, Dudko RY, Eberhard MJB, Frandsen PB, Küpper SC, Machida R, Verheij M, Willadsen PC, Zhou X, Wipfler B. Comparative transcriptomics of ice-crawlers demonstrates cold specialization constrains niche evolution in a relict lineage. Evol Appl 2021; 14:360-382. [PMID: 33664782 PMCID: PMC7896716 DOI: 10.1111/eva.13120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/25/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Key changes in ecological niche space are often critical to understanding how lineages diversify during adaptive radiations. However, the converse, or understanding why some lineages are depauperate and relictual, is more challenging, as many factors may constrain niche evolution. In the case of the insect order Grylloblattodea, highly conserved thermal breadth is assumed to be closely tied to their relictual status, but has not been formerly tested. Here, we investigate whether evolutionary constraints in the physiological tolerance of temperature can help explain relictualism in this lineage. Using a comparative transcriptomics approach, we investigate gene expression following acute heat and cold stress across members of Grylloblattodea and their sister group, Mantophasmatodea. We additionally examine patterns of protein evolution, to identify candidate genes of positive selection. We demonstrate that cold specialization in Grylloblattodea has been accompanied by the loss of the inducible heat shock response under both acute heat and cold stress. Additionally, there is widespread evidence of selection on protein-coding genes consistent with evolutionary constraints due to cold specialization. This includes positive selection on genes involved in trehalose transport, metabolic function, mitochondrial function, oxygen reduction, oxidative stress, and protein synthesis. These patterns of molecular adaptation suggest that Grylloblattodea have undergone evolutionary trade-offs to survive in cold habitats and should be considered highly vulnerable to climate change. Finally, our transcriptomic data provide a robust backbone phylogeny for generic relationships within Grylloblattodea and Mantophasmatodea. Major phylogenetic splits in each group relate to arid conditions driving biogeographical patterns, with support for a sister-group relationship between North American Grylloblatta and Altai-Sayan Grylloblattella, and a range disjunction in Namibia splitting major clades within Mantophasmatodea.
Collapse
Affiliation(s)
| | - Sabrina Simon
- Biosystematics GroupWageningen University & ResearchPB WageningenThe Netherlands
| | - Ming Bai
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zachary Beethem
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Department of Biomedical SciencesSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roman Y. Dudko
- Institute of Systematics and Ecology of AnimalsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
- Tomsk State UniversityTomskRussia
| | - Monika J. B. Eberhard
- Zoological Institute and MuseumGeneral Zoology and Zoological SystematicsUniversity of GreifswaldGreifswaldGermany
| | - Paul B. Frandsen
- Department of Plant & Wildlife SciencesBrigham Young UniversityProvoUTUSA
- Data Science LabOffice of the Chief Information OfficerSmithsonian InstitutionWashingtonDCU.S.A
| | - Simon C. Küpper
- Zoological Institute and MuseumGeneral Zoology and Zoological SystematicsUniversity of GreifswaldGreifswaldGermany
| | - Ryuichiro Machida
- Sugadaira Research StationMountain Science CenterUniversity of TsukubaUeda, NaganoJapan
| | - Max Verheij
- Biosystematics GroupWageningen University & ResearchPB WageningenThe Netherlands
| | - Peter C. Willadsen
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Department of Entomology and Plant PathologyNorth Carolina State UniversityCampus Box 7613RaleighNCUSA
| | - Xin Zhou
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | | |
Collapse
|
24
|
Moutaoufik MT, Tanguay RM. Analysis of insect nuclear small heat shock proteins and interacting proteins. Cell Stress Chaperones 2021; 26:265-274. [PMID: 32888179 PMCID: PMC7736433 DOI: 10.1007/s12192-020-01156-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 10/23/2022] Open
Abstract
The small heat shock proteins (sHsps) are a ubiquitous family of ATP-independent stress proteins found in all domains of life. Drosophila melanogaster Hsp27 (DmHsp27) is the only known nuclear sHsp in insect. Here analyzing sequences from HMMER, we identified 56 additional insect sHsps with conserved arginine-rich nuclear localization signal (NLS) in the N-terminal region. At this time, the exact role of nuclear sHsps remains unknown. DmHsp27 protein-protein interaction analysis from iRefIndex database suggests that this protein, in addition to a putative role of molecular chaperone, is likely involved in other nuclear processes (i.e., chromatin remodeling and transcription). Identification of DmHsp27 interactors should provide key insights on the cellular and molecular functions of this nuclear chaperone.
Collapse
Affiliation(s)
- Mohamed Taha Moutaoufik
- Lab of Cell & Developmental Genetics, Department of Cellular and Molecular Biology, Medical Biochemistry & Pathology, Medical School, Université Laval, Quebec, G1K 7P4, Canada
- Department of Biochemistry, University of Regina, Regina, SK, S4S 0A2, Canada
| | - Robert M Tanguay
- Lab of Cell & Developmental Genetics, Department of Cellular and Molecular Biology, Medical Biochemistry & Pathology, Medical School, Université Laval, Quebec, G1K 7P4, Canada.
| |
Collapse
|
25
|
Zhao X, Li Y, Zhao Z, Du J. Extra sex combs buffers sleep-related stresses through regulating Heat shock proteins. FASEB J 2020; 35:e21190. [PMID: 33220007 DOI: 10.1096/fj.202001303rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/11/2022]
Abstract
The impact of global warming on the life of the earth is increasingly concerned. Previous studies indicated that temperature changes have a serious impact on insect sleep. Sleep is critical for animals as it has many important physiological functions. It is of great significance to study the regulation mechanism of temperature-induced sleep changes for understanding the impact of global warming on insects. More importantly, understanding how these pressures regulate sleep can provide insights into improving sleep. In this study, we found that extra sex combs (ESC) are a regulatory factor in this process. Our data showed that ESC was an upstream negative regulatory factor of Heat shock proteins (Hsps), and it could regulate sleep in mushroom and ellipsoid of Drosophila. ESC mutation exaggerates the sleep change caused by temperature, while buffering the shortening of life caused by sleep deprivation. These phenotypes can be rescued by Hsps mutants. Therefore, we concluded that the ESC buffers sleep-related stresses through regulating Hsps.
Collapse
Affiliation(s)
- Xianguo Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yahong Li
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juan Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
26
|
Tonione MA, Bi K, Tsutsui ND. Transcriptomic signatures of cold adaptation and heat stress in the winter ant (Prenolepis imparis). PLoS One 2020; 15:e0239558. [PMID: 33002025 PMCID: PMC7529264 DOI: 10.1371/journal.pone.0239558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Climate change is a serious threat to biodiversity; it is therefore important to understand how animals will react to this stress. Ectotherms, such as ants, are especially sensitive to the climate as the environmental temperature influences myriad aspects of their biology, from optimal foraging time to developmental rate. In this study, we conducted an RNA-seq analysis to identify stress-induced genes in the winter ant (Prenolepis imparis). We quantified gene expression during heat and cold stress relative to a control temperature. From each of our conditions, we sequenced the transcriptome of three individuals. Our de novo assembly included 13,324 contigs that were annotated against the nr and SwissProt databases. We performed gene ontology and enrichment analyses to gain insight into the physiological processes involved in the stress response. We identified a total of 643 differentially expressed genes across both treatments. Of these, only seven genes were differentially expressed in the cold-stressed ants, which could indicate that the temperature we chose for trials did not induce a strong stress response, perhaps due to the cold adaptations of this species. Conversely, we found a strong response to heat: 426 upregulated genes and 210 downregulated genes. Of these, ten were expressed at a greater than ten-fold change relative to the control. The transcripts we could identify included those encoding for protein folding genes, heat shock proteins, histones, and Ca2+ ion transport. One of these transcripts, hsc70-4L was found to be under positive selection. We also characterized the functional categories of differentially expressed genes. These candidate genes may be functionally conserved and relevant for related species that will deal with rapid climate change.
Collapse
Affiliation(s)
- Maria Adelena Tonione
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, United States of America
| | - Ke Bi
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, California, United States of America
- Computational Genomics Resource Laboratory (CGRL), California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, California, United States of America
| | - Neil Durie Tsutsui
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
27
|
Puig Giribets M, Santos M, García Guerreiro MP. Basal hsp70 expression levels do not explain adaptive variation of the warm- and cold-climate O 3 + 4 + 7 and O ST gene arrangements of Drosophila subobscura. BMC Evol Biol 2020; 20:17. [PMID: 32005133 PMCID: PMC6995229 DOI: 10.1186/s12862-020-1584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Drosophila subobscura exhibits a rich inversion polymorphism, with some adaptive inversions showing repeatable spatiotemporal patterns in frequencies related to temperature. Previous studies reported increased basal HSP70 protein levels in homokaryotypic strains for a warm-climate arrangement compared to a cold-climate one. These findings do not match the similar hsp70 genomic organization between arrangements, where gene expression levels are expected to be similar. In order to test this hypothesis and understand the molecular basis for hsp70 expression, we compared basal hsp70 mRNA levels in males and females, and analysed the 5′ and 3′ regulatory regions of hsp70 genes in warm- and cold-climate isochromosomal O3 + 4 + 7 and OST lines of D. subobscura. Results We observed comparable mRNA levels between the two arrangements and a sex-biased hsp70 gene expression. The number of heat-shock elements (HSEs) and GAGA sites on the promoters were identical amongst the OST and O3 + 4 + 7 lines analysed. This is also true for 3′ AU-rich elements where most A and B copies of hsp70 have, respectively, two and one element in both arrangements. Beyond the regulatory elements, the only notable difference between both arrangements is the presence in 3′ UTR of a 14 bp additional fragment after the stop codon in the hsp70A copy in five O3 + 4 + 7 lines, which was not found in any of the six OST lines. Conclusions The equivalent hsp70 mRNA amounts in OST and O3 + 4 + 7 arrangements provide the first evidence of a parallelism between gene expression and genetic organization in D. subobscura lines having these arrangements. This is reinforced by the lack of important differential features in the number and structure of regulatory elements between both arrangements, despite the genetic differentiation observed when the complete 5′ and 3′ regulatory regions were considered. Therefore, the basal levels of hsp70 mRNA cannot account, in principle, for the adaptive variation of the two arrangements studied. Consequently, further studies are necessary to understand the intricate molecular mechanisms of hsp70 gene regulation in D. subobscura.
Collapse
Affiliation(s)
- Marta Puig Giribets
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - Mauro Santos
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain
| | - María Pilar García Guerreiro
- Grup de Genòmica, Bioinformàtica i Biologia Evolutiva (GGBE), Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Spain.
| |
Collapse
|
28
|
Xu L, Gao J, Guo L, Yu H. Heat shock protein 70 (HmHsp70) from Hypsizygus marmoreus confers thermotolerance to tobacco. AMB Express 2020; 10:12. [PMID: 31955280 PMCID: PMC6969874 DOI: 10.1186/s13568-020-0947-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022] Open
Abstract
The 70-kD heat shock proteins (Hsp70s) have been proved to be important for stress tolerance and protein folding and unfolding in almost all organisms. However, the functions of Hsp70s in mushroom are not well understood. In the present study, a hsp70 gene from Hypsizygus marmoreus, hmhsp70, was cloned and transferred to tobacco (Nicotiana tabacum) to evaluate its function in thermotolerance. Sequence alignments and phylogenetic analysis revealed that HmHsp70 may be located in the mitochondria region. qPCR analysis revealed that the transcription level of hmhsp70 in H. marmoreus mycelia increased after heat shock treatment in high temperature (42 °C) compared with untreated mycelia (at 25 °C). Transgenic tobaccos expressing hmhsp70 gene showed enhanced resistance to lethal temperature compared with the wild type (WT) plants. Nearly 30% of the transgenic tobaccos survived after treated at a high temperature (50 °C and 52 °C for 4 h); however, almost all the WT tobaccos died after treated at 50 °C and no WT tobacco survived after heat shock at 52 °C. This study firstly showed the function of a hsp70 gene from H. marmoreus.
Collapse
|
29
|
Expression of Heat Shock Protein 70 Is Insufficient To Extend Drosophila melanogaster Longevity. G3-GENES GENOMES GENETICS 2019; 9:4197-4207. [PMID: 31624139 PMCID: PMC6893204 DOI: 10.1534/g3.119.400782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It has been known for over 20 years that Drosophila melanogaster flies with twelve additional copies of the hsp70 gene encoding the 70 kD heat shock protein lives longer after a non-lethal heat treatment. Since the heat treatment also induces the expression of additional heat shock proteins, the biological effect can be due either to HSP70 acting alone or in combination. This study used the UAS/GAL4 system to determine whether hsp70 is sufficient to affect the longevity and the resistance to thermal, oxidative or desiccation stresses of the whole organism. We observed that HSP70 expression in the nervous system or muscles has no effect on longevity or stress resistance but ubiquitous expression reduces the life span of males. We also observed that the down-regulation of hsp70 using RNAi did not affect longevity.
Collapse
|
30
|
Des Marteaux LE, Hůla P, Koštál V. Transcriptional analysis of insect extreme freeze tolerance. Proc Biol Sci 2019; 286:20192019. [PMID: 31640516 PMCID: PMC6834040 DOI: 10.1098/rspb.2019.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022] Open
Abstract
Few invertebrates can survive cryopreservation in liquid nitrogen, and the mechanisms by which some species do survive are underexplored, despite high application potential. Here, we turn to the drosophilid Chymomyza costata to strengthen our fundamental understanding of extreme freeze tolerance and gain insights about potential avenues for cryopreservation of biological materials. We first use RNAseq to generate transcriptomes of three C. costata larval phenotypic variants: those warm-acclimated in early or late diapause (weak capacity to survive cryopreservation), and those undergoing cold acclimation after diapause entry (extremely freeze tolerant, surviving cryopreservation). We identify mRNA transcripts representing genes and processes that accompany the physiological transition to extreme freeze tolerance and relate cryopreservation survival to the transcriptional profiles of select candidate genes using extended sampling of phenotypic variants. Enhanced capacity for protein folding, refolding and processing appears to be a central theme of extreme freeze tolerance and may allow cold-acclimated larvae to repair or eliminate proteins damaged by freezing (thus mitigating the toxicity of denatured proteins, endoplasmic reticulum stress and subsequent apoptosis). We also find a number of candidate genes (including both known and potentially novel, unannotated sequences) whose expression profiles tightly mirror the change in extreme freeze tolerance status among phenotypic variants.
Collapse
Affiliation(s)
- Lauren E. Des Marteaux
- Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic
| | - Petr Hůla
- Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - Vladimír Koštál
- Institute of Entomology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice 370 05, Czech Republic
| |
Collapse
|
31
|
Garbuz DG, Zatsepina OG, Evgen’ev MB. The Major Human Stress Protein Hsp70 as a Factor of Protein Homeostasis and a Cytokine-Like Regulator. Mol Biol 2019. [DOI: 10.1134/s0026893319020055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Weighill D, Jones P, Bleker C, Ranjan P, Shah M, Zhao N, Martin M, DiFazio S, Macaya-Sanz D, Schmutz J, Sreedasyam A, Tschaplinski T, Tuskan G, Jacobson D. Multi-Phenotype Association Decomposition: Unraveling Complex Gene-Phenotype Relationships. Front Genet 2019; 10:417. [PMID: 31134130 PMCID: PMC6522845 DOI: 10.3389/fgene.2019.00417] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/16/2019] [Indexed: 01/18/2023] Open
Abstract
Various patterns of multi-phenotype associations (MPAs) exist in the results of Genome Wide Association Studies (GWAS) involving different topologies of single nucleotide polymorphism (SNP)-phenotype associations. These can provide interesting information about the different impacts of a gene on closely related phenotypes or disparate phenotypes (pleiotropy). In this work we present MPA Decomposition, a new network-based approach which decomposes the results of a multi-phenotype GWAS study into three bipartite networks, which, when used together, unravel the multi-phenotype signatures of genes on a genome-wide scale. The decomposition involves the construction of a phenotype powerset space, and subsequent mapping of genes into this new space. Clustering of genes in this powerset space groups genes based on their detailed MPA signatures. We show that this method allows us to find multiple different MPA and pleiotropic signatures within individual genes and to classify and cluster genes based on these SNP-phenotype association topologies. We demonstrate the use of this approach on a GWAS analysis of a large population of 882 Populus trichocarpa genotypes using untargeted metabolomics phenotypes. This method should prove invaluable in the interpretation of large GWAS datasets and aid in future synthetic biology efforts designed to optimize phenotypes of interest.
Collapse
Affiliation(s)
- Deborah Weighill
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Piet Jones
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Carissa Bleker
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Priya Ranjan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Plant Sciences, The University of Tennessee Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
| | - Manesh Shah
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Nan Zhao
- Department of Plant Sciences, The University of Tennessee Institute of Agriculture, University of Tennessee, Knoxville, TN, United States
| | - Madhavi Martin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Stephen DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, CA, United States.,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | | | - Timothy Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Gerald Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel Jacobson
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States.,Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
33
|
Yeh PA, Liu YH, Chu WC, Liu JY, Sun YH. Glial expression of disease-associated poly-glutamine proteins impairs the blood-brain barrier in Drosophila. Hum Mol Genet 2019; 27:2546-2562. [PMID: 29726932 DOI: 10.1093/hmg/ddy160] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
Expansion of poly-glutamine (polyQ) stretches in several proteins has been linked to neurodegenerative diseases. The effects of polyQ-expanded proteins on neurons have been extensively studied, but their effects on glia remain unclear. We found that expression of distinct polyQ proteins exclusively in all glia or specifically in the blood-brain barrier (BBB) and blood-retina barrier (BRB) glia caused cell-autonomous impairment of BBB/BRB integrity, suggesting that BBB/BRB glia are most vulnerable to polyQ-expanded proteins. Furthermore, we also found that BBB/BRB leakage in Drosophila is reflected in reversed waveform polarity on the basis of electroretinography (ERG), making ERG a sensitive method to detect BBB/BRB leakage. The polyQ-expanded protein Atxn3-84Q forms aggregates, induces BBB/BRB leakage, restricts Drosophila lifespan and reduces the level of Repo (a pan-glial transcriptional factor required for glial differentiation). Expression of Repo in BBB/BRB glia can rescue BBB/BRB leakage, suggesting that the reduced expression of Repo is important for the effect of polyQ on BBB/BRB impairment. Coexpression of the chaperon HSP40 and HSP70 effectively rescues the effects of Atxn3-84Q, indicating that polyQ protein aggregation in glia is deleterious. Intriguingly, coexpression of wild-type Atxn3-27Q can also rescue BBB/BRB impairment, suggesting that normal polyQ protein may have a protective function.
Collapse
Affiliation(s)
- Po-An Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Department of Bioscience Technology, Chung Yuan Christian University, Chung Li, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chen Chu
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Chuou-ku, Kobe, Japan
| | - Jia-Yu Liu
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Y Henry Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
34
|
Al-Zghoul M. Thermal manipulation during broiler chicken embryogenesis increases basal mRNA levels and alters production dynamics of heat shock proteins 70 and 60 and heat shock factors 3 and 4 during thermal stress. Poult Sci 2018; 97:3661-3670. [DOI: 10.3382/ps/pey225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/08/2018] [Indexed: 11/20/2022] Open
|
35
|
Prasad V, Wasser Y, Hans F, Goswami A, Katona I, Outeiro TF, Kahle PJ, Schulz JB, Voigt A. Monitoring α-synuclein multimerization in vivo. FASEB J 2018; 33:2116-2131. [PMID: 30252534 DOI: 10.1096/fj.201800148rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The pathophysiology of Parkinson's disease is characterized by the abnormal accumulation of α-synuclein (α-Syn), eventually resulting in the formation of Lewy bodies and neurites in surviving neurons in the brain. Although α-Syn aggregation has been extensively studied in vitro, there is limited in vivo knowledge on α-Syn aggregation. Here, we used the powerful genetics of Drosophila melanogaster and developed an in vivo assay to monitor α-Syn accumulation by using a bimolecular fluorescence complementation assay. We found that both genetic and pharmacologic manipulations affected α-Syn accumulation. Interestingly, we also found that alterations in the cellular protein degradation mechanisms strongly influenced α-Syn accumulation. Administration of compounds identified as risk factors for Parkinson's disease, such as rotenone or heavy metal ions, had only mild or even no impact on α-Syn accumulation in vivo. Finally, we show that increasing phosphorylation of α-Syn at serine 129 enhances the accumulation and toxicity of α-Syn. Altogether, our study establishes a novel model to study α-Syn accumulation and illustrates the complexity of manipulating proteostasis in vivo.-Prasad, V., Wasser, Y., Hans, F., Goswami, A., Katona, I., Outeiro, T. F., Kahle, P. J., Schulz, J. B., Voigt, A. Monitoring α-synuclein multimerization in vivo.
Collapse
Affiliation(s)
- Vibha Prasad
- Department of Neurology, University Medical Center, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Yasmine Wasser
- Department of Neurology, University Medical Center, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Friederike Hans
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Anand Goswami
- Institute of Neuropathology, University Medical Center, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, University Medical Center, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center of Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom; and
| | - Philipp J Kahle
- Laboratory of Functional Neurogenetics, Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Jörg B Schulz
- Department of Neurology, University Medical Center, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA)-Brain Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Aaron Voigt
- Department of Neurology, University Medical Center, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA)-Brain Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH and Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
36
|
Chen B, Feder ME, Kang L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol 2018; 27:3040-3054. [PMID: 29920826 DOI: 10.1111/mec.14769] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/03/2018] [Accepted: 06/07/2018] [Indexed: 12/27/2022]
Abstract
Heat-shock proteins (Hsps) and their cognates are primary mitigators of cell stress. With increasingly severe impacts of climate change and other human modifications of the biosphere, the ability of the heat-shock system to affect evolutionary fitness in environments outside the laboratory and to evolve in response is topic of growing importance. Since the last major reviews, several advances have occurred. First, demonstrations of the heat-shock response outside the laboratory now include many additional taxa and environments. Many of these demonstrations are only correlative, however. More importantly, technical advances in "omic" quantification of nucleic acids and proteins, genomewide association analysis, and manipulation of genes and their expression have enabled the field to move beyond correlation. Several consequent advances are already evident: The pathway from heat-shock gene expression to stress tolerance in nature can be extremely complex, mediated through multiple biological processes and systems, and even multiple species. The underlying genes are more numerous, diverse and variable than previously appreciated, especially with respect to their regulatory variation and epigenetic changes. The impacts and limitations (e.g., due to trade-offs) of natural selection on these genes have become more obvious and better established. At last, as evolutionary capacitors, Hsps may have distinctive impacts on the evolution of other genes and ecological consequences.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Martin E Feder
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Efficient Expression of Genes in the Drosophila Germline Using a UAS Promoter Free of Interference by Hsp70 piRNAs. Genetics 2018; 209:381-387. [PMID: 29669732 PMCID: PMC5972414 DOI: 10.1534/genetics.118.300874] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/12/2018] [Indexed: 11/23/2022] Open
Abstract
Using the yeast GAL4 transcription factor to control expression in Drosophila melanogaster has long been ineffective in female germ cells during oogenesis. Here, DeLuca and Spradling show that the expression problem of most Drosophila molecular tools... Controlling the expression of genes using a binary system involving the yeast GAL4 transcription factor has been a mainstay of Drosophila developmental genetics for nearly 30 years. However, most existing GAL4 expression constructs only function effectively in somatic cells, but not in germ cells during oogenesis, for unknown reasons. A special upstream activation sequence (UAS) promoter, UASp was created that does express during oogenesis, but the need to use different constructs for somatic and female germline cells has remained a significant technical limitation. Here, we show that the expression problem of UASt and many other Drosophila molecular tools in germline cells is caused by their core Hsp70 promoter sequences, which are targeted in female germ cells by Hsp70-directed Piwi-interacting RNAs (piRNAs) generated from endogenous Hsp70 gene sequences. In a genetic background lacking genomic Hsp70 genes and associated piRNAs, UASt-based constructs function effectively during oogenesis. By reducing Hsp70 sequences targeted by piRNAs, we created UASz, which functions better than UASp in the germline and like UASt in somatic cells.
Collapse
|
38
|
Hess K, Oliverio R, Nguyen P, Le D, Ellis J, Kdeiss B, Ord S, Chalkia D, Nikolaidis N. Concurrent action of purifying selection and gene conversion results in extreme conservation of the major stress-inducible Hsp70 genes in mammals. Sci Rep 2018; 8:5082. [PMID: 29572464 PMCID: PMC5865164 DOI: 10.1038/s41598-018-23508-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/14/2018] [Indexed: 12/28/2022] Open
Abstract
Several evolutionary mechanisms alter the fate of mutations and genes within populations based on their exhibited functional effects. To understand the underlying mechanisms involved in the evolution of the cellular stress response, a very conserved mechanism in the course of organismal evolution, we studied the patterns of natural genetic variation and functional consequences of polymorphisms of two stress-inducible Hsp70 genes. These genes, HSPA1A and HSPA1B, are major orchestrators of the cellular stress response and are associated with several human diseases. Our phylogenetic analyses revealed that the duplication of HSPA1A and HSPA1B originated in a lineage proceeding to placental mammals, and henceforth they remained in conserved synteny. Additionally, analyses of synonymous and non-synonymous changes suggest that purifying selection shaped the HSPA1 gene diversification, while gene conversion resulted in high sequence conservation within species. In the human HSPA1-cluster, the vast majority of mutations are synonymous and specific genic regions are devoid of mutations. Furthermore, functional characterization of several human polymorphisms revealed subtle differences in HSPA1A stability and intracellular localization. Collectively, the observable patterns of HSPA1A-1B variation describe an evolutionary pattern, in which purifying selection and gene conversion act simultaneously and conserve a major orchestrator of the cellular stress response.
Collapse
Affiliation(s)
- Kyle Hess
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University, Fullerton, Fullerton, CA, 92834, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ryan Oliverio
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University, Fullerton, Fullerton, CA, 92834, USA
| | - Peter Nguyen
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University, Fullerton, Fullerton, CA, 92834, USA
| | - Dat Le
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University, Fullerton, Fullerton, CA, 92834, USA
| | - Jacqueline Ellis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University, Fullerton, Fullerton, CA, 92834, USA
| | - Brianna Kdeiss
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University, Fullerton, Fullerton, CA, 92834, USA
| | - Sara Ord
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University, Fullerton, Fullerton, CA, 92834, USA
| | - Dimitra Chalkia
- UCLA Center for Systems Biomedicine, Division of Digestive Diseases, School of Medicine, Los Angeles, CA, USA
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University, Fullerton, Fullerton, CA, 92834, USA.
| |
Collapse
|
39
|
Abstract
Temperature has a major impact on gene expression in ectotherms. But until recently, it was not clear in which way, if any, small non-coding RNAs such as miRNAs or piRNAs contribute to thermosensitive gene regulation. We have recently shown that temperature-responsive miRNAs in Drosophila drive adaptation to different ambient temperatures on the transcriptome level. Moreover, we demonstrated that higher temperatures lead to a more efficient piRNA-dependent transposon silencing, possibly due to heat-induced unfolding of RNA secondary structures. In this commentary, we will dwell upon particular interesting aspects connected to our findings, hoping that our point of view may encourage other scientists to address some of the questions raised here. We will particularly focus on aspects related to climate-dependent transposon propagation in evolution and putative transgenerational epigenetic effects of altered small RNA transcriptomes. We further briefly indicate how temperature-responsive miRNAs may confound the interpretation of data obtained from experiments comprising heat-shock treatment which is a widely used technique not only in Drosophila genetics.
Collapse
Affiliation(s)
- Isabel Fast
- a Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| | - David Rosenkranz
- a Institute of Organismic and Molecular Evolution, Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
40
|
Shilova VY, Zatsepina OG, Garbuz DG, Funikov SY, Zelentsova ES, Schostak NG, Kulikov AM, Evgen'ev MB. Heat shock protein 70 from a thermotolerant Diptera species provides higher thermoresistance to Drosophila larvae than correspondent endogenous gene. INSECT MOLECULAR BIOLOGY 2018; 27:61-72. [PMID: 28796386 DOI: 10.1111/imb.12339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Heat shock proteins (Hsp70s) from two Diptera species that drastically differ in their heat shock response and longevity were investigated. Drosophila melanogaster is characterized by the absence of Hsp70 and other hsps under normal conditions and the dramatic induction of hsp synthesis after temperature elevation. The other Diptera species examined belongs to the Stratiomyidae family (Stratiomys singularior) and exhibits high levels of inducible Hsp70 under normal conditions coupled with a thermotolerant phenotype and much longer lifespan. To evaluate the impact of hsp70 genes on thermotolerance and longevity, we made use of a D. melanogaster strain that lacks all hsp70 genes. We introduced single copies of either S. singularior or D. melanogaster hsp70 into this strain and monitored the obtained transgenic flies in terms of thermotolerance and longevity. We developed transgenic strains containing the S. singularior hsp70 gene under control of a D. melanogaster hsp70 promoter. Although these adult flies did synthesize the corresponding mRNA after heat shock, they were not superior to the flies containing a single copy of D. melanogaster hsp70 in thermotolerance and longevity. By contrast, Stratiomyidae Hsp70 provided significantly higher thermotolerance at the larval stage in comparison with endogenous Hsp70.
Collapse
Affiliation(s)
- V Y Shilova
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
- Institute of Cell Biophysics, RAS, Pushchino, Moscow, Russia
| | - O G Zatsepina
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - D G Garbuz
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - S Y Funikov
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - E S Zelentsova
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - N G Schostak
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
| | - A M Kulikov
- Institute of Developmental Biology, RAS, Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia
- Institute of Cell Biophysics, RAS, Pushchino, Moscow, Russia
| |
Collapse
|
41
|
Pomatto LCD, Tower J, Davies KJA. Sexual Dimorphism and Aging Differentially Regulate Adaptive Homeostasis. J Gerontol A Biol Sci Med Sci 2018; 73:141-149. [PMID: 28525535 PMCID: PMC5861879 DOI: 10.1093/gerona/glx083] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/26/2017] [Indexed: 11/13/2022] Open
Abstract
External and internal stimuli cause modifications to gene and biochemical pathways. In turn, demonstrating that biological systems continuously make short-term adaptations both to set-points, and to the range of "normal" capacity, due to mild conditional changes, or to subtoxic, nondamaging levels of chemical agents. This is termed as "Adaptive Homeostasis," defined with the following: "The transient expansion or contraction of the homeostatic range in response to exposure to sub-toxic, nondamaging, signaling molecules or events, or the removal or cessation of such molecules or events." Research from several laboratories, including our own, found that adaptive homeostasis declines with age in organisms as diverse as worms, flies, and mammals, and decreases with senescence in mammalian cell cultures. We suggest that diminishing adaptive homeostasis may play a causal role as a factor responsible for the aging phenotype. Furthermore, although studies of humans, animals, and model organisms are often limited to a single sex, and cell culture studies may even be conducted with lines whose donor's sex was unknown, studies reveal distinct sexual dimorphism in adaptive homeostasis. Interestingly, although young males and females may exhibit dramatic differences in adaptive capacities and/or preferences, these distinctions are lost with age as adaptive homeostasis patterns converge.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center
| | - John Tower
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center
- Molecular and Computational Biology Program, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
| |
Collapse
|
42
|
Funikov SY, Ryazansky SS, Kanapin AA, Logacheva MD, Penin AA, Snezhkina AV, Shilova VY, Garbuz DG, Evgen'ev MB, Zatsepina OG. Interplay between RNA interference and heat shock response systems in Drosophila melanogaster. Open Biol 2017; 6:rsob.160224. [PMID: 27805906 PMCID: PMC5090062 DOI: 10.1098/rsob.160224] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/26/2016] [Indexed: 12/20/2022] Open
Abstract
The genome expression pattern is strongly modified during the heat shock response (HSR) to form an adaptive state. This may be partly achieved by modulating microRNA levels that control the expression of a great number of genes that are embedded within the gene circuitry. Here, we investigated the cross-talk between two highly conserved and universal house-keeping systems, the HSR and microRNA machinery, in Drosophila melanogaster We demonstrated that pronounced interstrain differences in the microRNA levels are alleviated after heat shock (HS) to form a uniform microRNA pattern. However, individual strains exhibit different patterns of microRNA expression during the course of recovery. Importantly, HS-regulated microRNAs may target functionally similar HS-responsive genes involved in the HSR. Despite the observed general downregulation of primary microRNA precursor expression as well as core microRNA pathway genes after HS, the levels of many mature microRNAs are upregulated. This indicates that the regulation of miRNA expression after HS occurs at transcriptional and post-transcriptional levels. It was also shown that deletion of all hsp70 genes had no significant effect on microRNA biogenesis but might influence the dynamics of microRNA expression during the HSR.
Collapse
Affiliation(s)
- S Yu Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - S S Ryazansky
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russian Federation
| | | | - M D Logacheva
- Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - A A Penin
- Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Institute for Information Transmission Problems of the Russian Academy of Sciences, Moscow 127051, Russian Federation
| | - A V Snezhkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - V Yu Shilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - D G Garbuz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - O G Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russian Federation
| |
Collapse
|
43
|
Lashmanova E, Zemskaya N, Proshkina E, Kudryavtseva A, Volosnikova M, Marusich E, Leonov S, Zhavoronkov A, Moskalev A. The Evaluation of Geroprotective Effects of Selected Flavonoids in Drosophila melanogaster and Caenorhabditis elegans. Front Pharmacol 2017; 8:884. [PMID: 29375370 PMCID: PMC5770640 DOI: 10.3389/fphar.2017.00884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/16/2017] [Indexed: 01/13/2023] Open
Abstract
Flavonoids is an intensively studied group of natural compounds with antioxidant, antineoplastic, antihyperglycemic, cardioprotective, and neuroprotective properties. The present study intends to investigate the geroprotective action of three selected flavonoids (naringin, luteolin, chrysin) in two model organisms, Caenorhabditis elegans and Drosophila melanogaster. Luteolin and chrysin were shown to improve lifespan parameters when administered to both model organisms. The observed positive effects of these flavonoids in D. melanogaster were limited to females and were not associated with reduced fecundity or locomotor impairment. The life-extending effects of flavonoids were observed in N2 wild-type worms but absent in aak-2(gt33) mutants implying that these effects can be associated with AMP-activated protein kinase activity. Naringin improved lifespan parameters of C. elegans, but had no effect on D. melanogaster females; in some cases, naringin was found to decrease the lifespan of males. Compared to chrysin and luteolin, however, naringin more effectively activates Nrf2 target genes (particularly, GstD1) under oxidative stress. Then we compared molecular mechanisms of studied compounds and a well-known geroprotector rapamycin, using software tool GeroScope. There are no transcriptomic data on luteolin or chrysin provided by LINCS Project database. The bioinformatics comparison of transcriptomics data for A549 and MCF7 human cell lines treated with rapamycin or naringin revealed that these compounds share just a few common signaling pathways and quite distinct in their geroprotective action. Thus, based on C. elegans effects of naringin, luteolin, chrysin on lifespan we have revealed new potential geroprotectors.
Collapse
Affiliation(s)
- Ekaterina Lashmanova
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nadezhda Zemskaya
- Institute of Biology, Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia
| | - Ekaterina Proshkina
- Institute of Biology, Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia.,Department of Ecology, Syktyvkar State University, Syktyvkar, Russia
| | - Anna Kudryavtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Volosnikova
- Insilico Medicine, Inc., Johns Hopkins University, Baltimore, MD, United States
| | - Elena Marusich
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Leonov
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alex Zhavoronkov
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Insilico Medicine, Inc., Johns Hopkins University, Baltimore, MD, United States
| | - Alexey Moskalev
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Biology, Komi Scientific Center of Ural Branch of RAS, Syktyvkar, Russia.,Department of Ecology, Syktyvkar State University, Syktyvkar, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
44
|
Xu X, Jiao L, Feng X, Ran J, Liang X, Zhao R. Heterogeneous expression of DnaK gene from Alicyclobacillus acidoterrestris improves the resistance of Escherichia coli against heat and acid stress. AMB Express 2017; 7:36. [PMID: 28194744 PMCID: PMC5307391 DOI: 10.1186/s13568-017-0337-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/02/2017] [Indexed: 11/10/2022] Open
Abstract
Alicyclobacillus acidoterrestris, an acidophilic and thermophilic bacteria, is an important microbial resource for stress resistance genes screening. In this study, DnaK gene from A. acidoterrestris was subcloned to construct the recombinant plasmid pET28a-DnaK. The successful construction of the plasmid was verified by double-enzyme digestion and sequencing analysis. The recombinant plasmid was transformed into Escherichia coli BL21 and isopropy-β-D-thiogalactoside (IPTG) was used to induce recombinant E. coli to express DnaK gene. A 70 kD fusion protein was identified by SDS-PAGE, which suggested that DnaK gene from A. acidoterrestris was successfully expressed. The recombinant and wild BL21 were treated with high temperatures of 54, 56 and 58 °C at pH values of 5.0-7.0 to compare the effects of heterogeneous expression of the DnaK gene from A. acidoterrestris on the stress resistance. The experimental results showed that survival rate of recombinant BL21-DnaK has been improved considerably under heat and acid stresses in contrast with the wild BL21, and D-values of recombinant BL21 were 14.7-72% higher than that of wild BL21, which demonstrated that heterogeneous expression of DnaK gene from A. acidoterrestris could significantly enhance the resistance of host bacteria E. coli against heat and acid stresses.
Collapse
Affiliation(s)
- Xixi Xu
- School of Food Science, Henan Institute of Science and Technology, Hualan Road, Xinxiang City, 453003 Henan Province China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Hualan Road, Xinxiang City, 453003 Henan Province China
| | - Xin Feng
- School of Food Science, Henan Institute of Science and Technology, Hualan Road, Xinxiang City, 453003 Henan Province China
| | - Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Hualan Road, Xinxiang City, 453003 Henan Province China
| | - Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Hualan Road, Xinxiang City, 453003 Henan Province China
| | - Ruixiang Zhao
- School of Food Science, Henan Institute of Science and Technology, Hualan Road, Xinxiang City, 453003 Henan Province China
| |
Collapse
|
45
|
Yang D, Lian T, Tu J, Gaur U, Mao X, Fan X, Li D, Li Y, Yang M. LncRNA mediated regulation of aging pathways in Drosophila melanogaster during dietary restriction. Aging (Albany NY) 2017; 8:2182-2203. [PMID: 27687893 PMCID: PMC5076457 DOI: 10.18632/aging.101062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/12/2016] [Indexed: 12/25/2022]
Abstract
Dietary restriction (DR) extends lifespan in many species which is a well-known phenomenon. Long non-coding RNAs (lncRNAs) play an important role in regulation of cell senescence and important age-related signaling pathways. Here, we profiled the lncRNA and mRNA transcriptome of fruit flies at 7 day and 42 day during DR and fully-fed conditions, respectively. In general, 102 differentially expressed lncRNAs and 1406 differentially expressed coding genes were identified. Most informatively we found a large number of differentially expressed lncRNAs and their targets enriched in GO and KEGG analysis. We discovered some new aging related signaling pathways during DR, such as hippo signaling pathway-fly, phototransduction-fly and protein processing in endoplasmic reticulum etc. Novel lncRNAs XLOC_092363 and XLOC_166557 are found to be located in 10 kb upstream sequences of hairy and ems promoters, respectively. Furthermore, tissue specificity of some novel lncRNAs had been analyzed at 7 day of DR in fly head, gut and fat body. Also the silencing of lncRNA XLOC_076307 resulted in altered expression level of its targets including Gadd45 (involved in FoxO signaling pathway). Together, the results implicated many lncRNAs closely associated with dietary restriction, which could provide a resource for lncRNA in aging and age-related disease field.
Collapse
Affiliation(s)
- Deying Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R.China
| | - Ting Lian
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R.China
| | - Jianbo Tu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R.China
| | - Uma Gaur
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R.China
| | - Xueping Mao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R.China
| | - Xiaolan Fan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R.China
| | - Diyan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R.China
| | - Ying Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R.China
| | - Mingyao Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, P.R.China
| |
Collapse
|
46
|
Bentley SJ, Boshoff A. Hsp70/J-protein machinery from Glossina morsitans morsitans, vector of African trypanosomiasis. PLoS One 2017; 12:e0183858. [PMID: 28902917 PMCID: PMC5597180 DOI: 10.1371/journal.pone.0183858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/11/2017] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies (Glossina spp.) are the sole vectors of the protozoan parasites of the genus Trypanosoma, the causative agents of African Trypanosomiasis. Species of Glossina differ in vector competence and Glossina morsitans morsitans is associated with transmission of Trypanosoma brucei rhodesiense, which causes an acute and often fatal form of African Trypanosomiasis. Heat shock proteins are evolutionarily conserved proteins that play critical roles in proteostasis. The activity of heat shock protein 70 (Hsp70) is regulated by interactions with its J-protein (Hsp40) co-chaperones. Inhibition of these interactions are emerging as potential therapeutic targets. The assembly and annotation of the G. m. morsitans genome provided a platform to identify and characterize the Hsp70s and J-proteins, and carry out an evolutionary comparison to its well-studied eukaryotic counterparts, Drosophila melanogaster and Homo sapiens, as well as Stomoxys calcitrans, a comparator species. In our study, we identified 9 putative Hsp70 proteins and 37 putative J-proteins in G. m. morsitans. Phylogenetic analyses revealed three evolutionarily distinct groups of Hsp70s, with a closer relationship to orthologues from its blood-feeding dipteran relative Stomoxys calcitrans. G. m. morsitans also lacked the high number of heat inducible Hsp70s found in D. melanogaster. The potential localisations, functions, domain organisations and Hsp70/J-protein partnerships were also identified. A greater understanding of the heat shock 70 (Hsp70) and J-protein (Hsp40) families in G. m. morsitans could enhance our understanding of the cell biology of the tsetse fly.
Collapse
Affiliation(s)
- Stephen J. Bentley
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
| | - Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Grahamstown, South Africa
- * E-mail:
| |
Collapse
|
47
|
Kumar A, Tiwari AK. Molecular Chaperone Hsp70 and Its Constitutively Active Form Hsc70 Play an Indispensable Role During Eye Development of Drosophila melanogaster. Mol Neurobiol 2017. [PMID: 28634860 DOI: 10.1007/s12035-017-0650-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the present study, we demonstrate that molecular chaperone Hsp70 and Hsc70 is essential for normal organization and development of ommatidial cells in Drosophila melanogaster eye. An exogenously expressed dominant negative mutant of Hsp70 (K71E) and Hsc70.4 (K71S and D206S) in an eye-specific manner resulted in eye degeneration that includes loss of eye pigment, disorganized ommatidia, abnormality in bristle cell arrangement and reduction in the eye size. The developmental organization of ommatidial cells (cone, photoreceptor, pigment, and bristle cell complex) was disturbed in Hsp70 and Hsc70 mutants. Acridine orange (AO) and caspase 3 staining showed an increased cell death in Hsp70 and Hsc70 mutant eyes. Genetic interaction study of Hsp70 and Hsc70 mutants with candidate genes of JNK signaling pathway and immunocytochemistry study using phospho-JNK antibody suggested that mutation in Hsp70 and Hsc70 results in ectopic activation of JNK signaling in fly eye. Further, anti-PH3 staining in Hsp70 and Hsc70 mutant eyes revealed a reduced number of mitotic cells in second mitotic wave (SMW) of developing eye and anti-Rh1 staining showed reduced Rh1 expression, accumulation of Rh1 in the cytoplasm, and rhabdomere degeneration. Thus, on the basis of results, it was concluded that molecular chaperone Hsp70 and Hsc70 play an indispensable role during Drosophila eye development.
Collapse
Affiliation(s)
- Ajay Kumar
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India
| | - Anand K Tiwari
- Genetics & Developmental Biology Laboratory, School of Biological Sciences & Biotechnology, Indian Institute of Advanced Research/IAR, Koba Institutional Area, Gandhinagar, Gujarat, 382007, India.
| |
Collapse
|
48
|
Klepsatel P, Gáliková M, Xu Y, Kühnlein RP. Thermal stress depletes energy reserves in Drosophila. Sci Rep 2016; 6:33667. [PMID: 27641694 PMCID: PMC5027548 DOI: 10.1038/srep33667] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/30/2016] [Indexed: 01/03/2023] Open
Abstract
Understanding how environmental temperature affects metabolic and physiological functions is of crucial importance to assess the impacts of climate change on organisms. Here, we used different laboratory strains and a wild-caught population of the fruit fly Drosophila melanogaster to examine the effect of temperature on the body energy reserves of an ectothermic organism. We found that permanent ambient temperature elevation or transient thermal stress causes significant depletion of body fat stores. Surprisingly, transient thermal stress induces a lasting "memory effect" on body fat storage, which also reduces survivorship of the flies upon food deprivation later after stress exposure. Functional analyses revealed that an intact heat-shock response is essential to protect flies from temperature-dependent body fat decline. Moreover, we found that the temperature-dependent body fat reduction is caused at least in part by apoptosis of fat body cells, which might irreversibly compromise the fat storage capacity of the flies. Altogether, our results provide evidence that thermal stress has a significant negative impact on organismal energy reserves, which in turn might affect individual fitness.
Collapse
Affiliation(s)
- Peter Klepsatel
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077 Göttingen, Germany
| | - Martina Gáliková
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077 Göttingen, Germany
| | - Yanjun Xu
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077 Göttingen, Germany
| | - Ronald P. Kühnlein
- Max-Planck-Institut für biophysikalische Chemie, Research Group Molecular Physiology, Am Faβberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
49
|
Kawasaki F, Koonce NL, Guo L, Fatima S, Qiu C, Moon MT, Zheng Y, Ordway RW. Small heat shock proteins mediate cell-autonomous and -nonautonomous protection in a Drosophila model for environmental-stress-induced degeneration. Dis Model Mech 2016; 9:953-64. [PMID: 27483356 PMCID: PMC5047692 DOI: 10.1242/dmm.026385] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
Cell and tissue degeneration, and the development of degenerative diseases, are influenced by genetic and environmental factors that affect protein misfolding and proteotoxicity. To better understand the role of the environment in degeneration, we developed a genetic model for heat shock (HS)-stress-induced degeneration in Drosophila. This model exhibits a unique combination of features that enhance genetic analysis of degeneration and protection mechanisms involving environmental stress. These include cell-type-specific failure of proteostasis and degeneration in response to global stress, cell-nonautonomous interactions within a simple and accessible network of susceptible cell types, and precise temporal control over the induction of degeneration. In wild-type flies, HS stress causes selective loss of the flight ability and degeneration of three susceptible cell types comprising the flight motor: muscle, motor neurons and associated glia. Other motor behaviors persist and, accordingly, the corresponding cell types controlling leg motor function are resistant to degeneration. Flight motor degeneration was preceded by a failure of muscle proteostasis characterized by diffuse ubiquitinated protein aggregates. Moreover, muscle-specific overexpression of a small heat shock protein (HSP), HSP23, promoted proteostasis and protected muscle from HS stress. Notably, neurons and glia were protected as well, indicating that a small HSP can mediate cell-nonautonomous protection. Cell-autonomous protection of muscle was characterized by a distinct distribution of ubiquitinated proteins, including perinuclear localization and clearance of protein aggregates associated with the perinuclear microtubule network. This network was severely disrupted in wild-type preparations prior to degeneration, suggesting that it serves an important role in muscle proteostasis and protection. Finally, studies of resistant leg muscles revealed that they sustain proteostasis and the microtubule cytoskeleton after HS stress. These findings establish a model for genetic analysis of degeneration and protection mechanisms involving contributions of environmental factors, and advance our understanding of the protective functions and therapeutic potential of small HSPs. Summary: A Drosophila model for environmental-stress-induced degeneration exhibits key features for genetic analysis of degenerative disease mechanisms and reveals new forms of protection mediated by small heat shock proteins.
Collapse
Affiliation(s)
- Fumiko Kawasaki
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Noelle L Koonce
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Linda Guo
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Shahroz Fatima
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Catherine Qiu
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Mackenzie T Moon
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yunzhen Zheng
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| | - Richard W Ordway
- Department of Biology and Center for Molecular Investigation of Neurological Disorders, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
50
|
Identification, genomic organization and expression profiles of four heat shock protein genes in the western flower thrips, Frankliniella occidentalis. J Therm Biol 2016; 57:110-8. [PMID: 27033046 DOI: 10.1016/j.jtherbio.2016.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 11/21/2022]
Abstract
The western flower thrips, Frankliniella occidentalis, is an important invasive pest with a strong tolerance for extreme temperatures; however, the molecular mechanisms that regulate thermotolerance in this insect remain unclear. In this study, four heat shock protein genes were cloned from F. occidentalis and named Fohsp90, Fohsc701, Fohsc702 and Fohsp60. These four Hsps exhibited typical characteristics of heat shock proteins. Subcellular localization signals and phylogenetic analysis indicated that FoHsp90 and FoHsc701 localize to the cytosol, whereas FoHsc702 and FoHsp60 were located in the endoplasmic reticulum and mitochondria, respectively. Analysis of genomic sequences revealed the presence of introns in the four genes (three, four, seven, and five introns for Fohsp90, Fohsc701, Fohsc702 and Fohsp60, respectively). Both the number and position of introns in these four genes were quite different from analogous genes in other species. qRT-PCR indicated that the four Fohsps were detected in second-stage larvae, one-day-old pupae, and one-day-old adults, and mRNA expression levels were lowest in larvae and highest in pupae. Fohsc701 and Fohsc702 possessed similar expression patterns and were not induced by cold or heat stress. Expression of Fohsp60 was significantly elevated by heat, and Fohsp90 was rapidly up-regulated after exposure to both cold and heat stress. Exposure to -8°C had no effect on expression of the four Fohsps; however, expression of Fohsp90 and Fohsp60 was highest after a 2-h incubation at 39°C. Furthermore, cold and heat hardening led to significant up-regulation of the four Fohsps compared to their respective controls. Collectively, our results indicate that the four FoHsps contribute to insect development and also function in rapid cold or heat hardening; furthermore, FoHsp90 and FoHsp60 contribute to thermotolerance in F. occidentalis.
Collapse
|