1
|
Mahilkar A, Nagendra P, Alugoju P, E R, Saini S. Public good-driven release of heterogeneous resources leads to genotypic diversification of an isogenic yeast population. Evolution 2022; 76:2811-2828. [PMID: 36181481 PMCID: PMC7614384 DOI: 10.1111/evo.14646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/22/2022] [Indexed: 01/22/2023]
Abstract
Understanding the basis of biological diversity remains a central problem in evolutionary biology. Using microbial systems, adaptive diversification has been studied in (a) spatially heterogeneous environments, (b) temporally segregated resources, and (c) resource specialization in a homogeneous environment. However, it is not well understood how adaptive diversification can take place in a homogeneous environment containing a single resource. Starting from an isogenic population of yeast Saccharomyces cerevisiae, we report rapid adaptive diversification, when propagated in an environment containing melibiose as the carbon source. The diversification is driven due to a public good enzyme α-galactosidase, which hydrolyzes melibiose into glucose and galactose. The diversification is driven by mutations at a single locus, in the GAL3 gene in the S. cerevisiae GAL/MEL regulon. We show that metabolic co-operation involving public resources could be an important mode of generating biological diversity. Our study demonstrates sympatric diversification of yeast starting from an isogenic population and provides detailed mechanistic insights into the factors and conditions responsible for generating and maintaining the population diversity.
Collapse
Affiliation(s)
- Anjali Mahilkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Prachitha Nagendra
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Phaniendra Alugoju
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rajeshkannan E
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
2
|
Endalur Gopinarayanan V, Nair NU. Pentose Metabolism in Saccharomyces cerevisiae: The Need to Engineer Global Regulatory Systems. Biotechnol J 2019; 14:e1800364. [PMID: 30171750 PMCID: PMC6452637 DOI: 10.1002/biot.201800364] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/27/2018] [Indexed: 12/13/2022]
Abstract
Extending the host substrate range of industrially relevant microbes, such as Saccharomyces cerevisiae, has been a highly-active area of research since the conception of metabolic engineering. Yet, rational strategies that enable non-native substrate utilization in this yeast without the need for combinatorial and/or evolutionary techniques are underdeveloped. Herein, this review focuses on pentose metabolism in S. cerevisiae as a case study to highlight the challenges in this field. In the last three decades, work has focused on expressing exogenous pentose metabolizing enzymes as well as endogenous enzymes for effective pentose assimilation, growth, and biofuel production. The engineering strategies that are employed for pentose assimilation in this yeast are reviewed, and compared with metabolism and regulation of native sugar, galactose. In the case of galactose metabolism, multiple signals regulate and aid growth in the presence of the sugar. However, for pentoses that are non-native, it is unclear if similar growth and regulatory signals are activated. Such a comparative analysis aids in identifying missing links in xylose and arabinose utilization. While research on pentose metabolism have mostly concentrated on pathway level optimization, recent transcriptomics analyses highlight the need to consider more global regulatory, structural, and signaling components.
Collapse
Affiliation(s)
| | - Nikhil U Nair
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, 02155, U.S.A
| |
Collapse
|
3
|
Fukuda N, Honda S. Artificial Mating-Type Conversion and Repetitive Mating for Polyploid Generation. ACS Synth Biol 2018; 7:1413-1423. [PMID: 29641187 DOI: 10.1021/acssynbio.8b00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The yeast Saccharomyces cerevisiae is one of the best-understood biological systems and can produce numerous useful compounds. Sexual hybridization (mating) can drive dramatic evolution of yeasts by the inheritance of half of the parental genomic information from each cell. Unfortunately, half of the parental genomic information is lost in individual cells in the next generation. Additionally, recombination of homologous chromosomes during meiosis gives rise to diversity in the next generation; hence, it is commonly employed to identify targets from diverse cell populations, based on the mating machinery. Here, we established a system for generating polyploids that inherit all genetic information from the parental strains via artificial mating-type conversion and repetitive mating. We prepared α-type haploid strains whose chromosomes were tagged with genes encoding fluorescent proteins or transcriptional factors. Only the mating-type locus was successfully converted from α-type to a-type sequence by the endonuclease Ho, and the resultant a-type cells mated with each α-type haploid to yield an a/α-type diploid strain with all genetic information from both parental strains. Importantly, we repeatedly converted the mating-type of polyploid cells to obtain a-type cells capable of mating with α-type cells. This approach can potentially facilitate yeast-strain development with unparalleled versatility, utilizing vast available resources.
Collapse
Affiliation(s)
- Nobuo Fukuda
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi 1-1-1 , Tsukuba, Ibaraki 305-8566 , Japan
| | - Shinya Honda
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Higashi 1-1-1 , Tsukuba, Ibaraki 305-8566 , Japan
| |
Collapse
|
4
|
Das Adhikari AK, Qureshi MT, Kar RK, Bhat PJ. Perturbation of the interaction between Gal4p and Gal80p of the Saccharomyces cerevisiae GAL switch results in altered responses to galactose and glucose. Mol Microbiol 2014; 94:202-17. [PMID: 25135592 DOI: 10.1111/mmi.12757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2014] [Indexed: 11/30/2022]
Abstract
In S. cerevisiae, following the Whole Genome Duplication (WGD), GAL1-encoded galactokinase retained its signal transduction function but lost basal expression. On the other hand, its paralogue GAL3, lost kinase activity but retained its signalling function and basal expression, thus making it indispensable for the rapid induction of the S. cerevisiae GAL switch. However, a gal3Δ strain exhibits delayed growth kinetics due to the redundant signalling function of GAL1. The subfunctionalization between the paralogues GAL1 and GAL3 is due to expression divergence and is proposed to be due to the alteration in the Upstream Activating Sequences (UASG ). We demonstrate that the GAL switch becomes independent of GAL3 by altering the interaction between Gal4p and Gal80p without altering the configuration of UASG . In addition to the above, the altered switch of S. cerevisiae loses ultrasensitivity and stringent glucose repression. These changes caused an increase in fitness in the disaccharide melibiose at the expense of a decrease in fitness in galactose. The above altered features of the ScGAL switch are similar to the features of the GAL switch of K. lactis that diverged from S. cerevisiae before the WGD.
Collapse
Affiliation(s)
- Akshay Kumar Das Adhikari
- Laboratory of Molecular Genetics, Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | | | | | | |
Collapse
|
5
|
Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM. Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2014; 38:254-99. [PMID: 24483210 PMCID: PMC4238866 DOI: 10.1111/1574-6976.12065] [Citation(s) in RCA: 419] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/23/2013] [Accepted: 01/22/2014] [Indexed: 02/04/2023] Open
Abstract
The yeast Saccharomyces cerevisiae has been a favorite organism for pioneering studies on nutrient-sensing and signaling mechanisms. Many specific nutrient responses have been elucidated in great detail. This has led to important new concepts and insight into nutrient-controlled cellular regulation. Major highlights include the central role of the Snf1 protein kinase in the glucose repression pathway, galactose induction, the discovery of a G-protein-coupled receptor system, and role of Ras in glucose-induced cAMP signaling, the role of the protein synthesis initiation machinery in general control of nitrogen metabolism, the cyclin-controlled protein kinase Pho85 in phosphate regulation, nitrogen catabolite repression and the nitrogen-sensing target of rapamycin pathway, and the discovery of transporter-like proteins acting as nutrient sensors. In addition, a number of cellular targets, like carbohydrate stores, stress tolerance, and ribosomal gene expression, are controlled by the presence of multiple nutrients. The protein kinase A signaling pathway plays a major role in this general nutrient response. It has led to the discovery of nutrient transceptors (transporter receptors) as nutrient sensors. Major shortcomings in our knowledge are the relationship between rapid and steady-state nutrient signaling, the role of metabolic intermediates in intracellular nutrient sensing, and the identity of the nutrient sensors controlling cellular growth.
Collapse
Affiliation(s)
- Michaela Conrad
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Joep Schothorst
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Harish Nag Kankipati
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Griet Van Zeebroeck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Marta Rubio-Texeira
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU LeuvenLeuven-Heverlee, Flanders, Belgium
- Department of Molecular Microbiology, VIBLeuven-Heverlee, Flanders, Belgium
| |
Collapse
|
6
|
Upadhyay SK, Sasidhar YU. Molecular simulation and docking studies of Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose: implication for transcriptional activation of GAL genes. J Comput Aided Mol Des 2012; 26:847-64. [PMID: 22639079 DOI: 10.1007/s10822-012-9579-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
The Gal4p mediated transcriptional activation of GAL genes requires the interaction between Gal3p bound with ATP and galactose and Gal80p. Though numerous studies suggest that galactose and ATP activate Gal3p/Gal1p interaction with Gal80p, neither the mechanism of activation nor the interacting surface that binds to Gal80p is well understood. In this study we investigated the dynamics of Gal3p and Gal1p in the presence and absence of ligands ATP and galactose to understand the role played by dynamics in the function of these proteins through molecular dynamics simulation and protein-protein docking studies. We performed simulations totaling to 510 ns on both Gal1p and Gal3p proteins in the presence and absence of ligands ATP and galactose. We find that, while binding of ligands ATP and galactose to Gal3p/Gal1p do not affect the global conformation of proteins, some local conformational changes around upper-lip helix including insertion domain are observed. We observed that only in the presence of ATP and galactose, Gal3p displays opening and closing motion between the two domains. And because of this motion, a binding interface, which is largely hydrophobic, opens up on the surface of Gal3p and this surface can bind to Gal80p. From our simulation studies we infer probable docking sites for Gal80p on Gal3p/Gal1p, which were further ascertained by the docking of Gal80p on to ligand bound Gal1p and Gal3p proteins, and the residues at the interface between Gal3p and Gal80p are identified. Our results correlate quite well with the existing body of literature on functional and dynamical aspects of Gal1p and Gal3p proteins.
Collapse
Affiliation(s)
- Sanjay K Upadhyay
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | |
Collapse
|
7
|
Transplantation of the GAL regulon into G-protein signaling circuitry in yeast. Anal Biochem 2012; 424:27-31. [DOI: 10.1016/j.ab.2012.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 02/03/2012] [Indexed: 12/21/2022]
|
8
|
Barnard E, Timson DJ. The GAL genetic switch: visualisation of the interacting proteins by split-EGFP bimolecular fluorescence complementation. J Basic Microbiol 2011; 51:312-7. [PMID: 21298679 DOI: 10.1002/jobm.201000198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/09/2010] [Indexed: 11/08/2022]
Abstract
A split-EGFP bimolecular fluorescence complementation assay was used to visualise and locate three interacting pairs of proteins from the GAL genetic switch of the budding yeast, Saccharomyces cerevisiae. Both the Gal4p-Gal80p and Gal80p-Gal3p pairs were found to be located in the nucleus under inducing conditions. However, the Gal80p-Gal1p complex was located throughout the cell. These results support recent work establishing an initial interaction between Gal3p and Gal80p occurring in the nucleus. Labelling of all three protein pairs impaired the growth of the yeast strains and resulted in reduced galactokinase activity in cell extracts. The most likely cause of this impairment is decreased dissociation rates of the complexes, caused by the essentially irreversible reassembly of the EGFP fragments. This suggests that a fully functional GAL genetic switch requires dynamic interactions between the protein components. These results also highlight the need for caution in the interpretation of in vivo split-EGFP experiments.
Collapse
Affiliation(s)
- Emma Barnard
- School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, UK
| | | |
Collapse
|
9
|
Sellick CA, Jowitt TA, Reece RJ. The effect of ligand binding on the galactokinase activity of yeast Gal1p and its ability to activate transcription. J Biol Chem 2008; 284:229-236. [PMID: 18957435 DOI: 10.1074/jbc.m807878200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The galactokinase from Saccharomyces cerevisiae (ScGal1p) is a bifunctional protein. It is an enzyme responsible for the conversion of alpha-D-galactose into galactose 1-phosphate at the expense of ATP but can also function as a transcriptional inducer of the yeast GAL genes. For both of these activities, the protein requires two ligands; a sugar (galactose) and a nucleotide (ATP). Here we investigate the effect of these ligands on the stability and conformation of ScGal1p to determine how the ligands alter protein function. We show that nucleotide binding increases the thermal stability of ScGal1p, whereas binding of galactose alone had no effect on the stability of the protein. This nucleotide stabilization effect is also observed for the related proteins S. cerevisiae Gal3p and Kluyveromyces lactis Gal1p and suggests that nucleotide binding results in the formation of, or the unmasking of, the galactose-binding site. We also show that the increase in stability of ScGal1p does not result from a large conformational change but is instead the result of a smaller more energetically favorable stabilization event. Finally, we have used mutant versions of ScGal1p to show that the galactokinase and transcriptional induction functions of the protein are distinct and separable. Mutations resulting in constitutive induction do not function by mimicking the more stable active conformation but have highlighted a possible site of interaction between ScGal1p and ScGal80p. These data give significant insights into the mechanism of action of both a galactokinase and a transcriptional inducer.
Collapse
Affiliation(s)
- Christopher A Sellick
- Faculty of Life Sciences, The University of Manchester, Michael Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom
| | - Thomas A Jowitt
- Faculty of Life Sciences, The University of Manchester, Michael Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom
| | - Richard J Reece
- Faculty of Life Sciences, The University of Manchester, Michael Smith Bldg., Oxford Rd., Manchester M13 9PT, United Kingdom.
| |
Collapse
|
10
|
Genetic evidence for sites of interaction between the Gal3 and Gal80 proteins of the Saccharomyces cerevisiae GAL gene switch. Genetics 2008; 178:725-36. [PMID: 18245852 DOI: 10.1534/genetics.107.074799] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Galactose-activated transcription of the Saccharomyces cerevisiae GAL genes occurs when Gal3 binds the Gal4 inhibitor, Gal80. Noninteracting variants of Gal3 or Gal80 render the GAL genes noninducible. To identify the binding determinants for Gal3's interaction with Gal80 we carried out GAL3-GAL80 intergenic suppression analyses and selected for new GAL3 mutations that impair the Gal3-Gal80 interaction. We show that a GAL3(C)-D368V mutation can suppress the noninducibility due to a GAL80(S-1)-G323R mutation, and a GAL80-M350C mutation can suppress the noninducibility due to a gal3-D111C mutation. A reverse two-hybrid selection for GAL3 mutations that impair the Gal3-Gal80 interaction yielded 12 single-amino-acid substitutions at residues that are predicted to be surface exposed on Gal3. The majority of the affected Gal3 residues localized to a composite surface that includes D111 and a sequence motif containing D368, which has been implicated in interaction with Gal80. The striking colocalization of intergenic suppressor residues and Gal80 nonbinder residues identifies a Gal3 surface that likely interacts with Gal80.
Collapse
|
11
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Lemmens K, Dhollander T, De Bie T, Monsieurs P, Engelen K, Smets B, Winderickx J, De Moor B, Marchal K. Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biol 2006; 7:R37. [PMID: 16677396 PMCID: PMC1779513 DOI: 10.1186/gb-2006-7-5-r37] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 12/21/2005] [Accepted: 04/10/2006] [Indexed: 12/29/2022] Open
Abstract
'ReMoDiscovery' is an intuitive algorithm to correlate regulatory programs with regulators and corresponding motifs to a set of co-expressed genes. It exploits in a concurrent way three independent data sources: ChIP-chip data, motif information and gene expression profiles. When compared to published module discovery algorithms, ReMoDiscovery is fast and easily tunable. We evaluated our method on yeast data, where it was shown to generate biologically meaningful findings and allowed the prediction of potential novel roles of transcriptional regulators.
Collapse
Affiliation(s)
- Karen Lemmens
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Thomas Dhollander
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Tijl De Bie
- Research Group on Quantitative Psychology, Department of Psychology, KU Leuven, Tiensestraat, B-3000 Leuven, Belgium
| | - Pieter Monsieurs
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Kristof Engelen
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Bart Smets
- Molecular Physiology of Plants and Micro-organisms Section, Biology Department, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Joris Winderickx
- Molecular Physiology of Plants and Micro-organisms Section, Biology Department, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Bart De Moor
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| | - Kathleen Marchal
- BIOI@SCD, Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
- CMPG, Department of Microbial and Molecular Systems, KU Leuven, Kasteelpark Arenberg, B-3001 Heverlee, Belgium
| |
Collapse
|