1
|
Omole AD, Czuppon P. Maintenance of long-term transposable element activity through regulation by nonautonomous elements. Genetics 2025; 229:iyae209. [PMID: 39810601 DOI: 10.1093/genetics/iyae209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Transposable elements are DNA sequences that can move and replicate within genomes. Broadly, there are 2 types: autonomous elements, which encode the necessary enzymes for transposition, and nonautonomous elements, which rely on the enzymes produced by autonomous elements for their transposition. Nonautonomous elements have been proposed to regulate the numbers of transposable elements, which is a possible explanation for the persistence of transposition activity over long evolutionary times. However, previous modeling studies indicate that interactions between autonomous and nonautonomous elements usually result in the extinction of one type. Here, we study a stochastic model that allows for the stable coexistence of autonomous and nonautonomous retrotransposons. We determine the conditions for this coexistence and derive an analytical expression for the stationary distribution of their copy numbers, showing that nonautonomous elements regulate stochastic fluctuations and the number of autonomous elements in stationarity. We find that the stationary variances of each element can be expressed as a function of the average copy numbers and their covariance, enabling data comparison and model validation. These results suggest that continued transposition activity of transposable elements, regulated by nonautonomous elements, is a possible evolutionary outcome that could for example explain the long coevolutionary history of autonomous LINE1 and nonautonomous Alu element transposition in the human ancestry.
Collapse
Affiliation(s)
- Adekanmi Daniel Omole
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Peter Czuppon
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| |
Collapse
|
2
|
Betancourt AJ, Wei KHC, Huang Y, Lee YCG. Causes and Consequences of Varying Transposable Element Activity: An Evolutionary Perspective. Annu Rev Genomics Hum Genet 2024; 25:1-25. [PMID: 38603565 DOI: 10.1146/annurev-genom-120822-105708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Transposable elements (TEs) are genomic parasites found in nearly all eukaryotes, including humans. This evolutionary success of TEs is due to their replicative activity, involving insertion into new genomic locations. TE activity varies at multiple levels, from between taxa to within individuals. The rapidly accumulating evidence of the influence of TE activity on human health, as well as the rapid growth of new tools to study it, motivated an evaluation of what we know about TE activity thus far. Here, we discuss why TE activity varies, and the consequences of this variation, from an evolutionary perspective. By studying TE activity in nonhuman organisms in the context of evolutionary theories, we can shed light on the factors that affect TE activity. While the consequences of TE activity are usually deleterious, some have lasting evolutionary impacts by conferring benefits on the host or affecting other evolutionary processes.
Collapse
Affiliation(s)
- Andrea J Betancourt
- Institute of Infection, Veterinary, and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Kevin H-C Wei
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| | - Yuh Chwen G Lee
- Center for Complex Biological Systems, University of California, Irvine, California, USA;
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
| |
Collapse
|
3
|
Meca E, Díez CM, Gaut BS. Modeling transposable elements dynamics during polyploidization in plants. J Theor Biol 2024; 579:111701. [PMID: 38128754 DOI: 10.1016/j.jtbi.2023.111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 11/24/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
In this work we study the proliferation of transposable elements (TEs) and the epigenetic response of plants during the process of polyploidization. Through a deterministic model, expanding on our previous work on TE proliferation under epigenetic regulation, we study the long-term TE distribution and TE stability in the subgenomes of both autopolyploids and allopolyploids. We also explore different small-interfering RNA (siRNA) action modes on the subgenomes, including a model where siRNAs are not directed to specific genomes and one where siRNAs are directed - i.e. more active - in subgenomes with higher TE loads. In the autopolyploid case, we find long-term stable equilbria that tend to equilibrate the number of active TEs between subgenomes. In the allopolyploid case, directed siRNA action is fundamental to avoid a "winner takes all" outcome of the competition between the TEs in the different subgenomes. We also show that decaying oscillations in the number of TEs occur naturally in all cases, perhaps explaining some of the observed features of 'genomic shock' after hybridization events, and that the balance in the dynamics of the different types of siRNA is determinant for the synchronization of these oscillations.
Collapse
Affiliation(s)
- Esteban Meca
- Departamento de Física Aplicada, Radiología y Medicina Física, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Albert Einstein (C2), 14014 Córdoba, Spain.
| | - Concepción M Díez
- Departamento de Agronomía, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Celestino Mutis (C4), 14014 Córdoba, Spain.
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-3875, United States of America.
| |
Collapse
|
4
|
Kelleher ES. Jack of all trades versus master of one: how generalist versus specialist strategies of transposable elements relate to their horizontal transfer between lineages. Curr Opin Genet Dev 2023; 81:102080. [PMID: 37459818 PMCID: PMC11062761 DOI: 10.1016/j.gde.2023.102080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 08/15/2023]
Abstract
Transposable elements (TEs) are obligate genomic parasites, relying on host germline cells to ensure their replication and passage to future generations. While some TEs exhibit high fidelity to their host genome, being passed from parent to offspring through vertical transmission for millions of years, others frequently invade new and distantly related hosts through horizontal transfer. In this review, I highlight how the complexity of interactions between TE and host required for transposition may be an important determinant of horizontal transfer: with TEs with more complex regulatory requirements being less able to invade new host genomes.
Collapse
Affiliation(s)
- Erin S Kelleher
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA.
| |
Collapse
|
5
|
Tomar SS, Hua-Van A, Le Rouzic A. A population genetics theory for piRNA-regulated transposable elements. Theor Popul Biol 2023; 150:1-13. [PMID: 36863578 DOI: 10.1016/j.tpb.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
Transposable elements (TEs) are self-reproducing selfish DNA sequences that can invade the genome of virtually all living species. Population genetics models have shown that TE copy numbers generally reach a limit, either because the transposition rate decreases with the number of copies (transposition regulation) or because TE copies are deleterious, and thus purged by natural selection. Yet, recent empirical discoveries suggest that TE regulation may mostly rely on piRNAs, which require a specific mutational event (the insertion of a TE copy in a piRNA cluster) to be activated - the so-called TE regulation "trap model". We derived new population genetics models accounting for this trap mechanism, and showed that the resulting equilibria differ substantially from previous expectations based on a transposition-selection equilibrium. We proposed three sub-models, depending on whether or not genomic TE copies and piRNA cluster TE copies are selectively neutral or deleterious, and we provide analytical expressions for maximum and equilibrium copy numbers, as well as cluster frequencies for all of them. In the full neutral model, the equilibrium is achieved when transposition is completely silenced, and this equilibrium does not depend on the transposition rate. When genomic TE copies are deleterious but not cluster TE copies, no long-term equilibrium is possible, and active TEs are eventually eliminated after an active incomplete invasion stage. When all TE copies are deleterious, a transposition-selection equilibrium exists, but the invasion dynamics is not monotonic, and the copy number peaks before decreasing. Mathematical predictions were in good agreement with numerical simulations, except when genetic drift and/or linkage disequilibrium dominates. Overall, the trap-model dynamics appeared to be substantially more stochastic and less repeatable than traditional regulation models.
Collapse
Affiliation(s)
- Siddharth S Tomar
- Université Paris-Saclay, CNRS, IRD, UMR EGCE, 12 Route 128, Gif-sur-Yvette, 91190, France.
| | - Aurélie Hua-Van
- Université Paris-Saclay, CNRS, IRD, UMR EGCE, 12 Route 128, Gif-sur-Yvette, 91190, France.
| | - Arnaud Le Rouzic
- Université Paris-Saclay, CNRS, IRD, UMR EGCE, 12 Route 128, Gif-sur-Yvette, 91190, France.
| |
Collapse
|
6
|
Smith RD, Puzey JR, Conradi Smith GD. Population genetics of transposable element load: A mechanistic account of observed overdispersion. PLoS One 2022; 17:e0270839. [PMID: 35834543 PMCID: PMC9282655 DOI: 10.1371/journal.pone.0270839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
In an empirical analysis of transposable element (TE) abundance within natural populations of Mimulus guttatus and Drosophila melanogaster, we found a surprisingly high variance of TE count (e.g., variance-to-mean ratio on the order of 10 to 300). To obtain insight regarding the evolutionary genetic mechanisms that underlie the overdispersed population distributions of TE abundance, we developed a mathematical model of TE population genetics that includes the dynamics of element proliferation and purifying selection on TE load. The modeling approach begins with a master equation for a birth-death process and extends the predictions of the classical theory of TE dynamics in several ways. In particular, moment-based analyses of population distributions of TE load reveal that overdispersion is likely to arise via copy-and-paste proliferation dynamics, especially when the elementary processes of proliferation and excision are approximately balanced. Parameter studies and analytic work confirm this result and further suggest that overdispersed population distributions of TE abundance are probably not a consequence of purifying selection on total element load.
Collapse
Affiliation(s)
- Ronald D. Smith
- Department of Applied Science, William & Mary, Williamsburg, VA, United States of America
| | - Joshua R. Puzey
- Department of Biology, William & Mary, Williamsburg, VA, United States of America
| | - Gregory D. Conradi Smith
- Department of Applied Science, William & Mary, Williamsburg, VA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Bertocchi NÁ, Oliveira TDD, Deprá M, Goñi B, Valente VLS. Interpopulation variation of transposable elements of the hAT superfamily in Drosophila willistoni (Diptera: Drosophilidae): in-situ approach. Genet Mol Biol 2022; 45:e20210287. [PMID: 35297941 PMCID: PMC8961557 DOI: 10.1590/1678-4685-gmb-2021-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Transposable elements are abundant and dynamic part of the genome, influencing organisms in different ways through their presence or mobilization, or by acting directly on pre- and post-transcriptional regulatory regions. We compared and evaluated the presence, structure, and copy number of three hAT superfamily transposons (hobo, BuT2, and mar) in five strains of Drosophila willistoni species. These D. willistoni strains are of different geographical origins, sampled across the north-south occurrence of this species. We used sequenced clones of the hAT elements in fluorescence in-situ hybridizations in the polytene chromosomes of three strains of D. willistoni. We also analyzed the structural characteristics and number of copies of these hAT elements in the 10 currently available sequenced genomes of the willistoni group. We found that hobo, BuT2, and mar were widely distributed in D. willistoni polytene chromosomes and sequenced genomes of the willistoni group, except for mar, which is restricted to the subgroup willistoni. Furthermore, the elements hobo, BuT2, and mar have different evolutionary histories. The transposon differences among D. willistoni strains, such as variation in the number, structure, and chromosomal distribution of hAT transposons, could reflect the genomic and chromosomal plasticity of D. willistoni species in adapting to highly variable environments.
Collapse
Affiliation(s)
- Natasha Ávila Bertocchi
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Thays Duarte de Oliveira
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Animal, Porto Alegre, RS, Brazil
| | - Maríndia Deprá
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Animal, Porto Alegre, RS, Brazil
| | - Beatriz Goñi
- Universidad de la República, Facultad de Ciencias, Montevideo, Uruguay
| | - Vera Lúcia S Valente
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Biologia Animal, Porto Alegre, RS, Brazil
| |
Collapse
|
8
|
Said I, McGurk MP, Clark AG, Barbash DA. Patterns of piRNA Regulation in Drosophila Revealed through Transposable Element Clade Inference. Mol Biol Evol 2022; 39:msab336. [PMID: 34921315 PMCID: PMC8788220 DOI: 10.1093/molbev/msab336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) are self-replicating "genetic parasites" ubiquitous to eukaryotic genomes. In addition to conflict between TEs and their host genomes, TEs of the same family are in competition with each other. They compete for the same genomic niches while experiencing the same regime of copy-number selection. This suggests that competition among TEs may favor the emergence of new variants that can outcompete their ancestral forms. To investigate the sequence evolution of TEs, we developed a method to infer clades: collections of TEs that share SNP variants and represent distinct TE family lineages. We applied this method to a panel of 85 Drosophila melanogaster genomes and found that the genetic variation of several TE families shows significant population structure that arises from the population-specific expansions of single clades. We used population genetic theory to classify these clades into younger versus older clades and found that younger clades are associated with a greater abundance of sense and antisense piRNAs per copy than older ones. Further, we find that the abundance of younger, but not older clades, is positively correlated with antisense piRNA production, suggesting a general pattern where hosts preferentially produce antisense piRNAs from recently active TE variants. Together these findings suggest a pattern whereby new TE variants arise by mutation and then increase in copy number, followed by the host producing antisense piRNAs that may be used to silence these emerging variants.
Collapse
Affiliation(s)
- Iskander Said
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Michael P McGurk
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
9
|
Stochastic Effects in Retrotransposon Dynamics Revealed by Modeling under Competition for Cellular Resources. Life (Basel) 2021; 11:life11111209. [PMID: 34833085 PMCID: PMC8625273 DOI: 10.3390/life11111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022] Open
Abstract
Transposons are genomic elements that can relocate within a host genome using a ‘cut’- or ‘copy-and-paste’ mechanism. They make up a significant part of many genomes, serve as a driving force for genome evolution, and are linked with Mendelian diseases and cancers. Interactions between two specific retrotransposon types, autonomous (e.g., LINE1/L1) and nonautonomous (e.g., Alu), may lead to fluctuations in the number of these transposons in the genome over multiple cell generations. We developed and examined a simple model of retrotransposon dynamics under conditions where transposon replication machinery competed for cellular resources: namely, free ribosomes and available energy (i.e., ATP molecules). Such competition is likely to occur in stress conditions that a malfunctioning cell may experience as a result of a malignant transformation. The modeling revealed that the number of actively replicating LINE1 and Alu elements in a cell decreases with the increasing competition for resources; however, stochastic effects interfere with this simple trend. We stochastically simulated the transposon dynamics in a cell population and showed that the population splits into pools with drastically different transposon behaviors. The early extinction of active Alu elements resulted in a larger number of LINE1 copies occurring in the first pool, as there was no competition between the two types of transposons in this pool. In the other pool, the competition process remained and the number of L1 copies was kept small. As the level of available resources reached a critical value, both types of dynamics demonstrated an increase in noise levels, and both the period and the amplitude of predator–prey oscillations rose in one of the cell pools. We hypothesized that the presented dynamical effects associated with the impact of the competition for cellular resources inflicted on the dynamics of retrotransposable elements could be used as a characteristic feature to assess a cell state, or to control the transposon activity.
Collapse
|
10
|
Genetic Diversity and Population Structures in Chinese Miniature Pigs Revealed by SINE Retrotransposon Insertion Polymorphisms, a New Type of Genetic Markers. Animals (Basel) 2021; 11:ani11041136. [PMID: 33921134 PMCID: PMC8071531 DOI: 10.3390/ani11041136] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Our previous studies suggested that the short interspersed nuclear element (SINE) retrotransposon insertion polymorphisms (RIPs), as a new type of molecular marker developed very recently, are ideal molecular markers and have the potential to be used for population genetic analysis and molecular breeding in pigs and possibly it can be extended to other livestock animals as well. However, no report is available for the application of SINE RIPs in population genetic analysis in livestock, including pigs. Here, we evaluated 30 SINE RIPs in several indigenous Chinese miniature pig breeds, including three subpopulations of Bama pigs (BM-cov, BM-clo, and BM-inb). BM-cov is a subpopulation conserved in the national conservation farm, and BM-clo is a closed population maintained over 30 years with only 2 boars and 14 sows imported from its original area, while BM-inb herd is an 18 generation continuous inbreeding line based on the BM-clo population. To our knowledge, it is the first time to report the genetic diversity, breed differentiation, and population structures for these populations by using SINE RIPs, and which suggests the feasibility of SINE RIPs in pig genetic analysis. Abstract RIPs have been developed as effective genetic markers and popularly applied for genetic analysis in plants, but few reports are available for domestic animals. Here, we established 30 new molecular markers based on the SINE RIPs, and applied them for population genetic analysis in seven Chinese miniature pigs. The data revealed that the closed herd (BM-clo), inbreeding herd (BM-inb) of Bama miniature pigs were distinctly different from the BM-cov herds in the conservation farm, and other miniature pigs (Wuzhishan, Congjiang Xiang, Tibetan, and Mingguang small ear). These later five miniature pig breeds can further be classified into two clades based on a phylogenetic tree: one included BM-cov and Wuzhishan, the other included Congjiang Xiang, Tibetan, and Mingguang small ear, which was well-supported by structure analysis. The polymorphic information contents estimated by using SINE RIPs are lower than the predictions based on microsatellites. Overall, the genetic distances and breed-relationships between these populations revealed by 30 SINE RIPs generally agree with their evolutions and geographic distributions. We demonstrated the potential of SINE RIPs as new genetic markers for genetic monitoring and population structure analysis in pigs, which can even be extended to other livestock animals.
Collapse
|
11
|
Flores-Ferrer A, Nguyen A, Glémin S, Deragon JM, Panaud O, Gourbière S. The ecology of the genome and the dynamics of the biological dark matter. J Theor Biol 2021; 518:110641. [PMID: 33640450 DOI: 10.1016/j.jtbi.2021.110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/28/2020] [Accepted: 02/11/2021] [Indexed: 11/29/2022]
Abstract
Transposable elements (TEs) are essential components of the eukaryotic genomes. While mostly deleterious, evidence is mounting that TEs provide the host with beneficial adaptations. How 'selfish' or 'parasitic' DNA persists until it helps species evolution is emerging as a major evolutionary puzzle, especially in asexual taxa where the lack of sex strongly impede the spread of TEs. Since occasional but unchecked TE proliferations would ultimately drive host lineages toward extinction, asexual genomes are typically predicted to be free of TEs, which contrasts with their persistence in asexual taxa. We designed innovative 'Eco-genomic' models that account for both host demography and within-host molecular mechanisms of transposition and silencing to analyze their impact on TE dynamics in asexual genome populations. We unraveled that the spread of TEs can be limited to a stable level by density-dependent purifying selection when TE copies are over-dispersed among lineages and the host demographic turn-over is fast. We also showed that TE silencing can protect host populations in two ways; by preventing TEs with weak effects to accumulate or by favoring the elimination of TEs with large effects. Our predictions may explain TE persistence in known asexual taxa that typically show fast demography and where TE copy number variation between lineages is expected. Such TE persistence in asexual taxa potentially has important implications for their evolvability and the preservation of sexual reproduction.
Collapse
Affiliation(s)
- Alheli Flores-Ferrer
- UMR5096 'Laboratoire Génome et Développement des Plantes', Université de Perpignan Via Domitia, Perpignan, France.
| | - Anne Nguyen
- UMR5096 'Laboratoire Génome et Développement des Plantes', Université de Perpignan Via Domitia, Perpignan, France.
| | - Sylvain Glémin
- UMR 6553 'Ecosystèmes, Biodiversité, Evolution', Université de Rennes 1, Rennes, France.
| | - Jean-Marc Deragon
- UMR5096 'Laboratoire Génome et Développement des Plantes', Université de Perpignan Via Domitia, Perpignan, France.
| | - Olivier Panaud
- UMR5096 'Laboratoire Génome et Développement des Plantes', Université de Perpignan Via Domitia, Perpignan, France.
| | - Sébastien Gourbière
- UMR5096 'Laboratoire Génome et Développement des Plantes', Université de Perpignan Via Domitia, Perpignan, France; Centre for the Study of Evolution, School of Life Sciences, University of Sussex, Brighton BN1 9QG, United Kingdom.
| |
Collapse
|
12
|
Drost HG, Sanchez DH. Becoming a Selfish Clan: Recombination Associated to Reverse-Transcription in LTR Retrotransposons. Genome Biol Evol 2020; 11:3382-3392. [PMID: 31755923 PMCID: PMC6894440 DOI: 10.1093/gbe/evz255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) are parasitic DNA bits capable of mobilization and mutagenesis, typically suppressed by host’s epigenetic silencing. Since the selfish DNA concept, it is appreciated that genomes are also molded by arms-races against natural TE inhabitants. However, our understanding of evolutionary processes shaping TEs adaptive populations is scarce. Here, we review the events of recombination associated to reverse-transcription in LTR retrotransposons, a process shuffling their genetic variants during replicative mobilization. Current evidence may suggest that recombinogenic retrotransposons could beneficially exploit host suppression, where clan behavior facilitates their speciation and diversification. Novel refinements to retrotransposons life-cycle and evolution models thus emerge.
Collapse
Affiliation(s)
- Hajk-Georg Drost
- The Sainsbury Laboratory, University of Cambridge, United Kingdom.,Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Diego H Sanchez
- IFEVA (CONICET-UBA), Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| |
Collapse
|
13
|
Iwasaki WM, Kijima TE, Innan H. Population Genetics and Molecular Evolution of DNA Sequences in Transposable Elements. II. Accumulation of Variation and Evolution of a New Subfamily. Mol Biol Evol 2020; 37:355-364. [PMID: 31580443 DOI: 10.1093/molbev/msz220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In order to understand how DNA sequences of transposable elements (TEs) evolve, extensive simulations were carried out. We first used our previous model, in which the copy number of TEs is mainly controlled by selection against ectopic recombination. It was found that along a simulation run, the shape of phylogeny changes quite much, from monophyletic trees to dimorphic trees with two clusters. Our results demonstrated that the change of the phase is usually slow from a monomorphic phase to a dimorphic phase, accompanied with a growth of an internal branch by accumulation of variation between two types. Then, the phase immediately changes back to a monomorphic phase when one group gets extinct. Under this condition, monomorphic and dimorphic phases arise repeatedly, and it is very difficult to maintain two or more different types of TEs for a long time. Then, how a new subfamily can evolve? To solve this, we developed a new model, in which ectopic recombination is restricted between two types under some condition, for example, accumulation of mutations between them. Under this model, because selection works on the copy number of each types separately, two types can be maintained for a long time. As expected, our simulations demonstrated that a new type arises and persists quite stably, and that it will be recognized as a new subfamily followed by further accumulation of mutations. It is indicated that how ectopic recombination is regulated in a genome is an important factor for the evolution of a new subfamily.
Collapse
Affiliation(s)
- Watal M Iwasaki
- SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | - T E Kijima
- SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| | - Hideki Innan
- SOKENDAI, The Graduate University for Advanced Studies, Hayama, Kanagawa, Japan
| |
Collapse
|
14
|
Zhang L, wang X, Chen C, Wang W, Yang K, Shen D, Wang S, gao B, Guo Y, Mao J, song C. Development of retrotransposons insertion polymorphic markers and application in the genetic variation evaluation of Chinese Bama miniature pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retrotransposons are genetic elements that can amplify themselves in a genome and are abundant in many eukaryotic organisms. In this study, we established some new short interspersed nuclear elements (SINE) and endogenous retroviruses (ERV) retrotransposons insertion polymorphism (RTIP) markers based on BLAT alignment tool strategy, and followed by PCR evaluation. We investigated the genetic variations among four subpopulations of Chinese Bama miniature pigs (BM), including BM in national conservation farm (BM-cov), BM inbreeding population (BM-inb) and BM closed Herd (BM-clo) in Guangxi University, and BM in the Experimental pig farm of Yangzhou University (BM-yzu). Genetic distance, polymorphism information content (PIC) and heterozygosity (He) of these markers in four of BM subpopulations were measured. Twelve SINE and twenty-eight ERV polymorphic molecular markers were identified in the four subpopulations. The BM-cov pigs represented the highest He and PIC, which indicated that BM-cov pigs maintain relatively highly genetic diversity. BM-inb pigs represented the lowest He and PIC indicating less variation and a high degree of inbreeding. Microsatellites polymorphism in four BM populations also well supported the results of these RTIP markers. In summary, retrotransposons insertion polymorphic markers could be a useful tool for population genetic variation analysis. Current SINE and ERV variation data may also provide a reference guide for the conservation and utilization of the BM miniature pig resource.
Collapse
|
15
|
Roessler K, Bousios A, Meca E, Gaut BS. Modeling Interactions between Transposable Elements and the Plant Epigenetic Response: A Surprising Reliance on Element Retention. Genome Biol Evol 2018; 10:803-815. [PMID: 29608716 PMCID: PMC5841382 DOI: 10.1093/gbe/evy043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/16/2022] Open
Abstract
Transposable elements (TEs) compose the majority of angiosperm DNA. Plants counteract TE activity by silencing them epigenetically. One form of epigenetic silencing requires 21-22 nt small interfering RNAs that act to degrade TE mRNA and may also trigger DNA methylation. DNA methylation is reinforced by a second mechanism, the RNA-dependent DNA methylation (RdDM) pathway. RdDM relies on 24 nt small interfering RNAs and ultimately establishes TEs in a quiescent state. These host factors interact at a systems level, but there have been no system level analyses of their interactions. Here, we define a deterministic model that represents the propagation of active TEs, aspects of the host response and the accumulation of silenced TEs. We describe general properties of the model and also fit it to biological data in order to explore two questions. The first is why two overlapping pathways are maintained, given that both are likely energetically expensive. Under our model, RdDM silenced TEs effectively even when the initiation of silencing was weak. This relationship implies that only a small amount of RNAi is needed to initiate TE silencing, but reinforcement by RdDM is necessary to efficiently counter TE propagation. Second, we investigated the reliance of the host response on rates of TE deletion. The model predicted that low levels of deletion lead to few active TEs, suggesting that silencing is most efficient when methylated TEs are retained in the genome, thereby providing one explanation for the large size of plant genomes.
Collapse
Affiliation(s)
- Kyria Roessler
- Department of Ecology and Evolutionary Biology, UC Irvine
| | | | - Esteban Meca
- Departamento de Agronomia, Universidad de Cordoba, Spain
| | - Brandon S Gaut
- Department of Ecology and Evolutionary Biology, UC Irvine
| |
Collapse
|
16
|
Banuelos M, Sindi S. Modeling transposable element dynamics with fragmentation equations. Math Biosci 2018; 302:46-66. [DOI: 10.1016/j.mbs.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/02/2018] [Accepted: 05/11/2018] [Indexed: 12/16/2022]
|
17
|
Bertocchi NA, Torres FP, Garnero ADV, Gunski RJ, Wallau GL. Evolutionary history of the mariner element galluhop in avian genomes. Mob DNA 2017; 8:11. [PMID: 28814978 PMCID: PMC5556988 DOI: 10.1186/s13100-017-0094-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/21/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Transposable elements (TEs) are highly abundant genomic parasites in eukaryote genomes. Although several genomes have been screened for TEs, so far very limited information is available regarding avian TEs and their evolutionary histories. Taking advantage of the rich genomic data available for birds, we characterized the evolutionary history of the galluhop element, originally described in Gallus gallus, through the use of several bioinformatic analyses. RESULTS galluhop homologous sequences were found in 6 of 72 genomes analyzed: 5 species of Galliformes (Gallus gallus, Meleagris gallopavo, Coturnix japonica, Colinus virginianus, Lyrurus tetrix) and one Buceritiformes (Buceros rhinoceros). The copy number ranged from 5 to 10,158, in the genomes of C. japonica and G. gallus respectively. All 6 species possessed short elements, suggesting the presence of Miniature Inverted repeats Transposable Elements (MITEs), which underwent an ancient massive amplification in the G. gallus and M. gallopavo genomes. Only 4 species showed potential MITE full-length partners, although no potential coding copies were detected. Phylogenetic analysis of reconstructed coding sequences showed that galluhop homolog sequences form a new mariner subfamily, which we termed Gallus. Inter-species and intragenomic galluhop distance analyses indicated a high identity between the consensus of B. rhinoceros and the other 5 related species, and different emergence ages of the element between the Galliformes species and B. rhinocerus, suggesting that horizontal transfer took place from Galliformes to a Buceritiformes ancestor, probably through an intermediate species. CONCLUSIONS Overall, our results showed that mariner elements have amplified to high copy numbers in some avian species, and that this transposition burst probably occurred in the common ancestor of G. gallus and M. gallopavo. In addition, although no coding sequences could be found currently, they probably existed, allowing an ancient massive MITE amplification in these 2 species. The other 4 species also have MITEs, suggesting that this new mariner family is prone to give rise to such non-autonomous derivatives. Last, our results suggest that a horizontal transfer event of a galluhop element occurred between Galliformes and Buceritiformes.
Collapse
Affiliation(s)
- Natasha Avila Bertocchi
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
| | - Fabiano Pimentel Torres
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
| | - Analía del Valle Garnero
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
| | - Ricardo José Gunski
- Programa de Pós-graduação em Ciências Biológicas, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
- Laboratório de Diversidade Genética Animal, Universidade Federal do Pampa (Unipampa), São Gabriel, Rio Grande do sul 97300-000 Brazil
| | - Gabriel Luz Wallau
- Departamento de Entomologia, Instituto Aggeu Magalhães – FIOCRUZ-CPqAM, Recife, Pernambuco Brazil
| |
Collapse
|
18
|
Paz RC, Kozaczek ME, Rosli HG, Andino NP, Sanchez-Puerta MV. Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum. Genetica 2017; 145:417-430. [PMID: 28776161 DOI: 10.1007/s10709-017-9977-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Transposable elements are the most abundant components of plant genomes and can dramatically induce genetic changes and impact genome evolution. In the recently sequenced genome of tomato (Solanum lycopersicum), the estimated fraction of elements corresponding to retrotransposons is nearly 62%. Given that tomato is one of the most important vegetable crop cultivated and consumed worldwide, understanding retrotransposon dynamics can provide insight into its evolution and domestication processes. In this study, we performed a genome-wide in silico search of full-length LTR retroelements in the tomato nuclear genome and annotated 736 full-length Gypsy and Copia retroelements. The dispersion level across the 12 chromosomes, the diversity and tissue-specific expression of those elements were estimated. Phylogenetic analysis based on the retrotranscriptase region revealed the presence of 12 major lineages of LTR retroelements in the tomato genome. We identified 97 families, of which 77 and 20 belong to the superfamilies Copia and Gypsy, respectively. Each retroelement family was characterized according to their element size, relative frequencies and insertion time. These analyses represent a valuable resource for comparative genomics within the Solanaceae, transposon-tagging and for the design of cultivar-specific molecular markers in tomato.
Collapse
Affiliation(s)
- Rosalía Cristina Paz
- CIGEOBIO (FCEFyN, UNSJ/CONICET), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina.
| | - Melisa Eliana Kozaczek
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Hernán Guillermo Rosli
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Natalia Pilar Andino
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, San Juan, Argentina
| | - Maria Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, FCA and FCEN, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
| |
Collapse
|
19
|
Venner S, Miele V, Terzian C, Biémont C, Daubin V, Feschotte C, Pontier D. Ecological networks to unravel the routes to horizontal transposon transfers. PLoS Biol 2017; 15:e2001536. [PMID: 28199335 PMCID: PMC5331948 DOI: 10.1371/journal.pbio.2001536] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transposable elements (TEs) represent the single largest component of numerous eukaryotic genomes, and their activity and dispersal constitute an important force fostering evolutionary innovation. The horizontal transfer of TEs (HTT) between eukaryotic species is a common and widespread phenomenon that has had a profound impact on TE dynamics and, consequently, on the evolutionary trajectory of many species' lineages. However, the mechanisms promoting HTT remain largely unknown. In this article, we argue that network theory combined with functional ecology provides a robust conceptual framework and tools to delineate how complex interactions between diverse organisms may act in synergy to promote HTTs.
Collapse
Affiliation(s)
- Samuel Venner
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
- LabEx ECOFECT (Eco-Evolutionary Dynamics of Infectious Diseases), Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| | - Vincent Miele
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| | - Christophe Terzian
- LabEx ECOFECT (Eco-Evolutionary Dynamics of Infectious Diseases), Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
- UMR754 INRA, Université Claude Bernard Lyon 1, Lyon, France
- Ecole Pratique des Hautes Etudes, Paris, France
| | - Christian Biémont
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| | - Vincent Daubin
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
- LabEx ECOFECT (Eco-Evolutionary Dynamics of Infectious Diseases), Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah, School of Medicine, Salt Lake City, Utah, United States of America
| | - Dominique Pontier
- Laboratoire de Biométrie et Biologie Evolutive UMR5558-CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
- LabEx ECOFECT (Eco-Evolutionary Dynamics of Infectious Diseases), Université Claude Bernard Lyon 1, Villeurbanne, Lyon, France
| |
Collapse
|
20
|
Robillard É, Le Rouzic A, Zhang Z, Capy P, Hua-Van A. Experimental evolution reveals hyperparasitic interactions among transposable elements. Proc Natl Acad Sci U S A 2016; 113:14763-14768. [PMID: 27930288 PMCID: PMC5187678 DOI: 10.1073/pnas.1524143113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transposable elements (TEs) are repeated DNA sequences that can constitute a substantial part of genomes. Studying TEs' activity, interactions, and accumulation dynamics is thus of major interest to understand genome evolution. Here, we describe the transposition dynamics of cut-and-paste mariner elements during experimental (short- and longer-term) evolution in Drosophila melanogaster Flies with autonomous and nonautonomous mariner copies were introduced in populations containing no active mariner, and TE accumulation was tracked by quantitative PCR for up to 100 generations. Our results demonstrate that (i) active mariner elements are highly invasive and characterized by an elevated transposition rate, confirming their capacity to spread in populations, as predicted by the "selfish-DNA" mechanism; (ii) nonautonomous copies act as parasites of autonomous mariner elements by hijacking the transposition machinery produced by active mariner, which can be considered as a case of hyperparasitism; (iii) this behavior resulted in a failure of active copies to amplify which systematically drove the whole family to extinction in less than 100 generations. This study nicely illustrates how the presence of transposition-competitive variants can deeply impair TE dynamics and gives clues to the extraordinary diversity of TE evolutionary histories observed in genomes.
Collapse
Affiliation(s)
- Émilie Robillard
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Zheng Zhang
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Pierre Capy
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Aurélie Hua-Van
- Évolution, Génomes, Comportement, Écologie, CNRS, Institut de Recherche pour le Développement, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| |
Collapse
|
21
|
Xue C, Goldenfeld N. Stochastic Predator-Prey Dynamics of Transposons in the Human Genome. PHYSICAL REVIEW LETTERS 2016; 117:208101. [PMID: 27886494 DOI: 10.1103/physrevlett.117.208101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Indexed: 06/06/2023]
Abstract
Transposable elements, or transposons, are DNA sequences that can jump from site to site in the genome during the life cycle of a cell, usually encoding the very enzymes which perform their excision. However, some transposons are parasitic, relying on the enzymes produced by the regular transposons. In this case, we show that a stochastic model, which takes into account the small copy numbers of the active transposons in a cell, predicts noise-induced predator-prey oscillations with a characteristic time scale that is much longer than the cell replication time, indicating that the state of the predator-prey oscillator is stored in the genome and transmitted to successive generations. Our work demonstrates the important role of the number fluctuations in the expression of mobile genetic elements, and shows explicitly how ecological concepts can be applied to the dynamics and fluctuations of living genomes.
Collapse
Affiliation(s)
- Chi Xue
- Department of Physics, and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
- Institute for Universal Biology, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Nigel Goldenfeld
- Department of Physics, and Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 61801-3080, USA
- Institute for Universal Biology, and Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
22
|
Warren IA, Naville M, Chalopin D, Levin P, Berger CS, Galiana D, Volff JN. Evolutionary impact of transposable elements on genomic diversity and lineage-specific innovation in vertebrates. Chromosome Res 2016; 23:505-31. [PMID: 26395902 DOI: 10.1007/s10577-015-9493-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
Collapse
Affiliation(s)
- Ian A Warren
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.,Department of Genetics, University of Georgia, Athens, Georgia, 30602, USA
| | - Perrine Levin
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Chloé Suzanne Berger
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
23
|
Comparison of molecular genetic utilities of TD, AFLP, and MSAP among the accessions of japonica, indica, and Tongil of Oryza sativa L. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Characterization of irritans mariner-like elements in the olive fruit fly Bactrocera oleae (Diptera: Tephritidae): evolutionary implications. Naturwissenschaften 2016; 103:64. [DOI: 10.1007/s00114-016-1391-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 11/25/2022]
|
25
|
Xiong TL, Xiao JH, Li YX, Bian SN, Huang DW. Diversity and evolution of Ty1-copia retroelements within Chalcidoidea by reverse transcriptase domain analysis. INSECT MOLECULAR BIOLOGY 2015; 24:503-516. [PMID: 26079156 DOI: 10.1111/imb.12167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Ty1-copia retrotransposons are widespread and diverse in insects. Some features of their hosts, such as mating and genetic systems, are predicted to influence the spread of selfish genetic elements like Ty1-copia. Using part of the reverse transcriptase gene as a reference, we experimentally surveyed Ty1-copia elements in eight species of fig wasps (Hymenoptera: Chalcidoidea), and performed an in silico analysis of six available genomes of chalcid wasps. Contrary to initial expectations that selfish elements such as Ty1-copia would be purged from the genomes of these species because of inbreeding and haplodiploidy, almost all of these wasps harbour an abundance of diverse Ty1-copia elements. Phylogenetic analyses suggest that the families of Ty1-copia elements found in these species have had a long association with their chalcid hosts. These results suggest an evolutionary scenario in which there was ancestral polymorphism followed by some taxa-specific events including stochastic loss and further diversification. Furthermore, estimating natural selection within the internal and terminal portions of the Ty1-copia phylogenies demonstrated that the elements are under strong evolutionary constraints for their long-term survival, but evolve like pseudogenes in the short term, accompanied by the rise and fall of parasitic elements in the history of wasp lineage.
Collapse
Affiliation(s)
- T-L Xiong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - J-H Xiao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Y-X Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - S-N Bian
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - D-W Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
26
|
Chalopin D, Naville M, Plard F, Galiana D, Volff JN. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol 2015; 7:567-80. [PMID: 25577199 PMCID: PMC4350176 DOI: 10.1093/gbe/evv005] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are major components of vertebrate genomes, with major roles in genome architecture and evolution. In order to characterize both common patterns and lineage-specific differences in TE content and TE evolution, we have compared the mobilomes of 23 vertebrate genomes, including 10 actinopterygian fish, 11 sarcopterygians, and 2 nonbony vertebrates. We found important variations in TE content (from 6% in the pufferfish tetraodon to 55% in zebrafish), with a more important relative contribution of TEs to genome size in fish than in mammals. Some TE superfamilies were found to be widespread in vertebrates, but most elements showed a more patchy distribution, indicative of multiple events of loss or gain. Interestingly, loss of major TE families was observed during the evolution of the sarcopterygian lineage, with a particularly strong reduction in TE diversity in birds and mammals. Phylogenetic trends in TE composition and activity were detected: Teleost fish genomes are dominated by DNA transposons and contain few ancient TE copies, while mammalian genomes have been predominantly shaped by nonlong terminal repeat retrotransposons, along with the persistence of older sequences. Differences were also found within lineages: The medaka fish genome underwent more recent TE amplification than the related platyfish, as observed for LINE retrotransposons in the mouse compared with the human genome. This study allows the identification of putative cases of horizontal transfer of TEs, and to tentatively infer the composition of the ancestral vertebrate mobilome. Taken together, the results obtained highlight the importance of TEs in the structure and evolution of vertebrate genomes, and demonstrate their major impact on genome diversity both between and within lineages.
Collapse
Affiliation(s)
- Domitille Chalopin
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard Lyon 1, Lyon Cedex 07, France
| | - Magali Naville
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard Lyon 1, Lyon Cedex 07, France
| | - Floriane Plard
- Laboratoire "Biométrie et Biologie Évolutive," Unité Mixte de Recherche 5558, Université Claude Bernard Lyon 1, Lyon, France
| | - Delphine Galiana
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard Lyon 1, Lyon Cedex 07, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique UMR5242, Université Claude Bernard Lyon 1, Lyon Cedex 07, France
| |
Collapse
|
27
|
Wallau GL, Capy P, Loreto E, Hua-Van A. Genomic landscape and evolutionary dynamics of mariner transposable elements within the Drosophila genus. BMC Genomics 2014; 15:727. [PMID: 25163909 PMCID: PMC4161770 DOI: 10.1186/1471-2164-15-727] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/01/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mariner family of transposable elements is one of the most widespread in the Metazoa. It is subdivided into several subfamilies that do not mirror the phylogeny of these species, suggesting an ancient diversification. Previous hybridization and PCR studies allowed a partial survey of mariner diversity in the Metazoa. In this work, we used a comparative genomics approach to access the genus-wide diversity and evolution of mariner transposable elements in twenty Drosophila sequenced genomes. RESULTS We identified 36 different mariner lineages belonging to six distinct subfamilies, including a subfamily not described previously. Wide variation in lineage abundance and copy number were observed among species and among mariner lineages, suggesting continuous turn-over. Most mariner lineages are inactive and contain a high proportion of damaged copies. We showed that, in addition to substitutions that rapidly inactivate copies, internal deletion is a major mechanism contributing to element decay and the generation of non-autonomous sublineages. Hence, 23% of copies correspond to several Miniature Inverted-repeat Transposable Elements (MITE) sublineages, the first ever described in Drosophila for mariner. In the most successful MITEs, internal deletion is often associated with internal rearrangement, which sheds light on the process of MITE origin. The estimation of the transposition rates over time revealed that all lineages followed a similar progression consisting of a rapid amplification burst followed by a rapid decrease in transposition. We detected some instances of multiple or ongoing transposition bursts. Different amplification times were observed for mariner lineages shared by different species, a finding best explained by either horizontal transmission or a reactivation process. Different lineages within one species have also amplified at different times, corresponding to successive invasions. Finally, we detected a preference for insertion into short TA-rich regions, which appears to be specific to some subfamilies. CONCLUSIONS This analysis is the first comprehensive survey of this family of transposable elements at a genus scale. It provides precise measures of the different evolutionary processes that were hypothesized previously for this family based on PCR data analysis. mariner lineages were observed at almost all "life cycle" stages: recent amplification, subsequent decay and potential (re)-invasion or invasion of genomes.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Pós-Graduaíão em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brasil.
| | | | | | | |
Collapse
|
28
|
Population genetics and molecular evolution of DNA sequences in transposable elements. I. A simulation framework. Genetics 2013; 195:957-67. [PMID: 24002643 DOI: 10.1534/genetics.113.150292] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A population genetic simulation framework is developed to understand the behavior and molecular evolution of DNA sequences of transposable elements. Our model incorporates random transposition and excision of transposable element (TE) copies, two modes of selection against TEs, and degeneration of transpositional activity by point mutations. We first investigated the relationships between the behavior of the copy number of TEs and these parameters. Our results show that when selection is weak, the genome can maintain a relatively large number of TEs, but most of them are less active. In contrast, with strong selection, the genome can maintain only a limited number of TEs but the proportion of active copies is large. In such a case, there could be substantial fluctuations of the copy number over generations. We also explored how DNA sequences of TEs evolve through the simulations. In general, active copies form clusters around the original sequence, while less active copies have long branches specific to themselves, exhibiting a star-shaped phylogeny. It is demonstrated that the phylogeny of TE sequences could be informative to understand the dynamics of TE evolution.
Collapse
|
29
|
Startek M, Le Rouzic A, Capy P, Grzebelus D, Gambin A. Genomic parasites or symbionts? Modeling the effects of environmental pressure on transposition activity in asexual populations. Theor Popul Biol 2013; 90:145-51. [PMID: 23948701 DOI: 10.1016/j.tpb.2013.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 07/17/2013] [Accepted: 07/25/2013] [Indexed: 11/17/2022]
Abstract
Transposable elements are DNA segments capable of persisting in host genomes by self-replication in spite of deleterious mutagenic effects. The theoretical dynamics of these elements within genomes has been studied extensively, and population genetic models predict that they can invade and maintain as a result of both intra-genomic and inter-individual selection in sexual species. In asexuals, the success of selfish DNA is more difficult to explain. However, most theoretical work assumes constant environment. Here, we analyze the impact of environmental change on the dynamics of transposition activity when horizontal DNA exchange is absent, based on a stochastic computational model of transposable element proliferation. We argue that repeated changes in the phenotypic optimum in a multidimensional fitness landscape may induce explosive bursts of transposition activity associated with faster adaptation. However, long-term maintenance of transposition activity is unlikely. This could contribute to the significant variation in the transposable element copy number among closely related species.
Collapse
Affiliation(s)
- Michał Startek
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Poland
| | | | | | | | | |
Collapse
|
30
|
Bleykasten-Grosshans C, Friedrich A, Schacherer J. Genome-wide analysis of intraspecific transposon diversity in yeast. BMC Genomics 2013; 14:399. [PMID: 23768249 PMCID: PMC4022208 DOI: 10.1186/1471-2164-14-399] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/06/2013] [Indexed: 02/02/2023] Open
Abstract
Background In the model organism Saccharomyces cerevisiae, the transposable elements (TEs) consist of LTR (Long Terminal Repeat) retrotransposons called Ty elements belonging to five families, Ty1 to Ty5. They take the form of either full-length coding elements or non-coding solo-LTRs corresponding to remnants of former transposition events. Although the biological features of Ty elements have been studied in detail in S. cerevisiae and the Ty content of the reference strain (S288c) was accurately annotated, the Ty-related intra-specific diversity has not been closely investigated so far. Results In this study, we investigated the Ty contents of 41 available genomes of isolated S. cerevisiae strains of diverse geographical and ecological origins. The strains were compared in terms of the number of Ty copies, the content of the potential transpositionally active elements and the genomic insertion maps. The strain repertoires were also investigated in the closely related Ty1 and Ty2 families and subfamilies. Conclusions This is the first genome-wide analysis of the diversity associated to the Ty elements, carried out for a large set of S. cerevisiae strains. The results of the present analyses suggest that the current Ty-related polymorphism has resulted from multiple causes such as differences between strains, between Ty families and over time, in the recent transpositional activity of Ty elements. Some new Ty1 variants were also identified, and we have established that Ty1 variants have different patterns of distribution among strains, which further contributes to the strain diversity.
Collapse
Affiliation(s)
- Claudine Bleykasten-Grosshans
- CNRS, Department of Genetics, Genomics and Microbiology, University of Strasbourg, UMR 7156, 28, rue Goethe, Strasbourg, 67083, France.
| | | | | |
Collapse
|
31
|
Menconi G, Battaglia G, Grossi R, Pisanti N, Marangoni R. Mobilomics in Saccharomyces cerevisiae strains. BMC Bioinformatics 2013; 14:102. [PMID: 23514613 PMCID: PMC3684551 DOI: 10.1186/1471-2105-14-102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/11/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mobile Genetic Elements (MGEs) are selfish DNA integrated in the genomes. Their detection is mainly based on consensus-like searches by scanning the investigated genome against the sequence of an already identified MGE. Mobilomics aims at discovering all the MGEs in a genome and understanding their dynamic behavior: The data for this kind of investigation can be provided by comparative genomics of closely related organisms. The amount of data thus involved requires a strong computational effort, which should be alleviated. RESULTS Our approach proposes to exploit the high similarity among homologous chromosomes of different strains of the same species, following a progressive comparative genomics philosophy. We introduce a software tool based on our new fast algorithm, called regender, which is able to identify the conserved regions between chromosomes. Our case study is represented by a unique recently available dataset of 39 different strains of S.cerevisiae, which regender is able to compare in few minutes. By exploring the non-conserved regions, where MGEs are mainly retrotransposons called Tys, and marking the candidate Tys based on their length, we are able to locate a priori and automatically all the already known Tys and map all the putative Tys in all the strains. The remaining putative mobile elements (PMEs) emerging from this intra-specific comparison are sharp markers of inter-specific evolution: indeed, many events of non-conservation among different yeast strains correspond to PMEs. A clustering based on the presence/absence of the candidate Tys in the strains suggests an evolutionary interconnection that is very similar to classic phylogenetic trees based on SNPs analysis, even though it is computed without using phylogenetic information. CONCLUSIONS The case study indicates that the proposed methodology brings two major advantages: (a) it does not require any template sequence for the wanted MGEs and (b) it can be applied to infer MGEs also for low coverage genomes with unresolved bases, where traditional approaches are largely ineffective.
Collapse
Affiliation(s)
- Giulia Menconi
- Istituto Nazionale di Alta Matematica, Città Universitaria, Roma, Italia
| | | | | | | | | |
Collapse
|
32
|
Wang X, Weigel D, Smith LM. Transposon variants and their effects on gene expression in Arabidopsis. PLoS Genet 2013; 9:e1003255. [PMID: 23408902 PMCID: PMC3567156 DOI: 10.1371/journal.pgen.1003255] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 12/03/2012] [Indexed: 02/01/2023] Open
Abstract
Transposable elements (TEs) make up the majority of many plant genomes. Their transcription and transposition is controlled through siRNAs and epigenetic marks including DNA methylation. To dissect the interplay of siRNA–mediated regulation and TE evolution, and to examine how TE differences affect nearby gene expression, we investigated genome-wide differences in TEs, siRNAs, and gene expression among three Arabidopsis thaliana accessions. Both TE sequence polymorphisms and presence of linked TEs are positively correlated with intraspecific variation in gene expression. The expression of genes within 2 kb of conserved TEs is more stable than that of genes next to variant TEs harboring sequence polymorphisms. Polymorphism levels of TEs and closely linked adjacent genes are positively correlated as well. We also investigated the distribution of 24-nt-long siRNAs, which mediate TE repression. TEs targeted by uniquely mapping siRNAs are on average farther from coding genes, apparently because they more strongly suppress expression of adjacent genes. Furthermore, siRNAs, and especially uniquely mapping siRNAs, are enriched in TE regions missing in other accessions. Thus, targeting by uniquely mapping siRNAs appears to promote sequence deletions in TEs. Overall, our work indicates that siRNA–targeting of TEs may influence removal of sequences from the genome and hence evolution of gene expression in plants. Transposable elements (TEs) are selfish DNA sequences. Together with their immobilized derivatives, they account for a large fraction of eukaryotic genomes. TEs can affect nearby gene activity, either directly by disrupting regulatory sequences or indirectly through the host mechanisms used to prevent TE proliferation. A comparison of Arabidopsis thaliana genomes reveals rapid TE degeneration. We asked what drives TE degeneration and how often TE variation affects nearby gene expression. To answer these questions, we studied the interplay between TEs, DNA sequence variation, and short interfering RNAs (siRNAs) in three A. thaliana strains. We find sequence variation in genes and adjacent TEs to be correlated, from which we conclude either that TEs insert more often near polymorphic genes or that TEs next to polymorphic genes are less efficiently purged from the genome. We also noticed that processes that cause deletions within TEs and ones that silence TEs appear to be linked, because siRNA targeting is a predictor of sequence loss in accessions. Our work provides insight into the contribution of TEs to gene expression plasticity, and it links TE silencing mechanisms to the evolution of TE variation between genomes, thereby linking TE silencing mechanisms to expression plasticity.
Collapse
Affiliation(s)
- Xi Wang
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail: (DW); (LMS)
| | - Lisa M. Smith
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail: (DW); (LMS)
| |
Collapse
|
33
|
Marzo M, Bello X, Puig M, Maside X, Ruiz A. Striking structural dynamism and nucleotide sequence variation of the transposon Galileo in the genome of Drosophila mojavensis. Mob DNA 2013; 4:6. [PMID: 23374229 PMCID: PMC3573991 DOI: 10.1186/1759-8753-4-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/26/2012] [Indexed: 01/25/2023] Open
Abstract
Background Galileo is a transposable element responsible for the generation of three chromosomal inversions in natural populations of Drosophila buzzatii. Although the most characteristic feature of Galileo is the long internally-repetitive terminal inverted repeats (TIRs), which resemble the Drosophila Foldback element, its transposase-coding sequence has led to its classification as a member of the P-element superfamily (Class II, subclass 1, TIR order). Furthermore, Galileo has a wide distribution in the genus Drosophila, since it has been found in 6 of the 12 Drosophila sequenced genomes. Among these species, D. mojavensis, the one closest to D. buzzatii, presented the highest diversity in sequence and structure of Galileo elements. Results In the present work, we carried out a thorough search and annotation of all the Galileo copies present in the D. mojavensis sequenced genome. In our set of 170 Galileo copies we have detected 5 Galileo subfamilies (C, D, E, F, and X) with different structures ranging from nearly complete, to only 2 TIR or solo TIR copies. Finally, we have explored the structural and length variation of the Galileo copies that point out the relatively frequent rearrangements within and between Galileo elements. Different mechanisms responsible for these rearrangements are discussed. Conclusions Although Galileo is a transposable element with an ancient history in the D. mojavensis genome, our data indicate a recent transpositional activity. Furthermore, the dynamism in sequence and structure, mainly affecting the TIRs, suggests an active exchange of sequences among the copies. This exchange could lead to new subfamilies of the transposon, which could be crucial for the long-term survival of the element in the genome.
Collapse
Affiliation(s)
- Mar Marzo
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Catalunya, 08193, Spain.
| | | | | | | | | |
Collapse
|
34
|
Le Rouzic A, Payen T, Hua-Van A. Reconstructing the evolutionary history of transposable elements. Genome Biol Evol 2013; 5:77-86. [PMID: 23275488 PMCID: PMC3595040 DOI: 10.1093/gbe/evs130] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 01/03/2023] Open
Abstract
The impact of transposable elements (TEs) on genome structure, plasticity, and evolution is still not well understood. The recent availability of complete genome sequences makes it possible to get new insights on the evolutionary dynamics of TEs from the phylogenetic analysis of their multiple copies in a wide range of species. However, this source of information is not always fully exploited. Here, we show how the history of transposition activity may be qualitatively and quantitatively reconstructed by considering the distribution of transposition events in the phylogenetic tree, along with the tree topology. Using statistical models developed to infer speciation and extinction rates in species phylogenies, we demonstrate that it is possible to estimate the past transposition rate of a TE family, as well as how this rate varies with time. This methodological framework may not only facilitate the interpretation of genomic data, but also serve as a basis to develop new theoretical and statistical models.
Collapse
Affiliation(s)
- Arnaud Le Rouzic
- Laboratoire Évolution, Génomes, Spéciation, CNRS-LEGS-UPR9034, CNRS-IDEEV-FR3284, Gif sur Yvette, France.
| | | | | |
Collapse
|
35
|
Wallau GL, Ortiz MF, Loreto ELS. Horizontal transposon transfer in eukarya: detection, bias, and perspectives. Genome Biol Evol 2012; 4:689-99. [PMID: 22798449 PMCID: PMC3516303 DOI: 10.1093/gbe/evs055] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genetic similarity observed among species is normally attributed to the existence of
a common ancestor. However, a growing body of evidence suggests that the exchange of
genetic material is not limited to the transfer from parent to offspring but can also
occur through horizontal transfer (HT). Transposable elements (TEs) are DNA fragments with
an innate propensity for HT; they are mobile and possess parasitic characteristics that
allow them to exist and proliferate within host genomes. However, horizontal transposon
transfer (HTT) is not easily detected, primarily because the complex TE life cycle can
generate phylogenetic patterns similar to those expected for HTT events. The increasingly
large number of new genome projects, in all branches of life, has provided an
unprecedented opportunity to evaluate the TE content and HTT events in these species,
although a standardized method of HTT detection is required before trends in the HTT rates
can be evaluated in a wide range of eukaryotic taxa and predictions about these events can
be made. Thus, we propose a straightforward hypothesis test that can be used by TE
specialists and nonspecialists alike to discriminate between HTT events and natural TE
life cycle patterns. We also discuss several plausible explanations and predictions for
the distribution and frequency of HTT and for the inherent biases of HTT detection.
Finally, we discuss some of the methodological concerns for HTT detection that may result
in the underestimation and overestimation of HTT rates during eukaryotic genome
evolution.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- Programa de Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Brazil.
| | | | | |
Collapse
|
36
|
Pagán HJT, Macas J, Novák P, McCulloch ES, Stevens RD, Ray DA. Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats. Genome Biol Evol 2012; 4:575-85. [PMID: 22491057 PMCID: PMC3342881 DOI: 10.1093/gbe/evs038] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The repetitive landscapes of mammalian genomes typically display high Class I (retrotransposon) transposable element (TE) content, which usually comprises around half of the genome. In contrast, the Class II (DNA transposon) contribution is typically small (<3% in model mammals). Most mammalian genomes exhibit a precipitous decline in Class II activity beginning roughly 40 Ma. The first signs of more recently active mammalian Class II TEs were obtained from the little brown bat, Myotis lucifugus, and are reflected by higher genome content (∼5%). To aid in determining taxonomic limits and potential impacts of this elevated Class II activity, we performed 454 survey sequencing of a second Myotis species as well as four additional taxa within the family Vespertilionidae and an outgroup species from Phyllostomidae. Graph-based clustering methods were used to reconstruct the major repeat families present in each species and novel elements were identified in several taxa. Retrotransposons remained the dominant group with regard to overall genome mass. Elevated Class II TE composition (3–4%) was observed in all five vesper bats, while less than 0.5% of the phyllostomid reads were identified as Class II derived. Differences in satellite DNA and Class I TE content are also described among vespertilionid taxa. These analyses present the first cohesive description of TE evolution across closely related mammalian species, revealing genome-scale differences in TE content within a single family.
Collapse
Affiliation(s)
- Heidi J T Pagán
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, MS, USA
| | | | | | | | | | | |
Collapse
|
37
|
Boutin TS, Le Rouzic A, Capy P. How does selfing affect the dynamics of selfish transposable elements? Mob DNA 2012; 3:5. [PMID: 22394388 PMCID: PMC3395816 DOI: 10.1186/1759-8753-3-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/07/2012] [Indexed: 02/02/2023] Open
Abstract
Background Many theoretical models predicting the dynamics of transposable elements (TEs) in genomes, populations, and species have already been proposed. However, most of them only focus on populations of sexual diploid individuals, and TE dynamics in populations partly composed by autogamous individuals remains poorly investigated. To estimate the impact of selfing on TE dynamics, the short- and long-term evolution of TEs was simulated in outcrossing populations with various proportions of selfing individuals. Results Selfing has a deep impact on TE dynamics: the higher the selfing rate, the lower the probability of invasion. Already known non-equilibrium dynamics (complete loss, domestication, cyclical invasion of TEs) can all be described whatever the mating system. However, their pattern and their respective frequencies greatly depend on the selfing rate. For instance, in cyclical dynamics resulting from interactions between autonomous and non-autonomous copies, cycles are faster when the selfing rate increases. Interestingly, an abrupt change in the mating system from sexuality to complete asexuality leads to the loss of all the elements over a few hundred generations. In general, for intermediate selfing rates, the transposition activity remains maintained. Conclusions Our theoretical results evidence that a clear and systematic contrast in TE content according to the mating system is expected, with a smooth transition for intermediate selfing rates. Several parameters impact the TE copy number, and all dynamics described in allogamous populations can be also observed in partly autogamous species. This study thus provides new insights to understand the complex signal from empirical comparison of closely related species with different mating systems.
Collapse
Affiliation(s)
- Thibaud S Boutin
- LEGS, CNRS UPR9034, IDEEV FR3284, Avenue de la terrasse, Bat 13, 91198 Gif-sur-Yvette, France.
| | | | | |
Collapse
|
38
|
Bleykasten-Grosshans C, Neuvéglise C. Transposable elements in yeasts. C R Biol 2011; 334:679-86. [PMID: 21819950 DOI: 10.1016/j.crvi.2011.05.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 03/31/2011] [Indexed: 11/19/2022]
Abstract
With the development of new sequencing technologies in the past decade, yeast genomes have been extensively sequenced and their structures investigated. Transposable elements (TEs) are ubiquitous in eukaryotes and constitute a limited part of yeast genomes. However, due to their ability to move in genomes and generate dispersed repeated sequences, they contribute to modeling yeast genomes and thereby induce plasticity. This review assesses the TE contents of yeast genomes investigated so far. Their diversity and abundance at the inter- and intraspecific levels are presented, and their effects on gene expression and genome stability is considered. Recent results concerning TE-host interactions are also analyzed.
Collapse
Affiliation(s)
- Claudine Bleykasten-Grosshans
- CNRS UMR 7156, Laboratoire Génétique Moléculaire Génomique Microbiologie, Université de Strasbourg, 28 rue Goethe, 67083 Strasbourg cedex, France.
| | | |
Collapse
|
39
|
Bleykasten-Grosshans C, Jung PP, Fritsch ES, Potier S, de Montigny J, Souciet JL. The Ty1 LTR-retrotransposon population in Saccharomyces cerevisiae genome: dynamics and sequence variations during mobility. FEMS Yeast Res 2011; 11:334-44. [DOI: 10.1111/j.1567-1364.2011.00721.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
40
|
Coates BS, Kroemer JA, Sumerford DV, Hellmich RL. A novel class of miniature inverted repeat transposable elements (MITEs) that contain hitchhiking (GTCY)(n) microsatellites. INSECT MOLECULAR BIOLOGY 2011; 20:15-27. [PMID: 20977507 DOI: 10.1111/j.1365-2583.2010.01046.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The movement of miniature inverted repeat transposable elements (MITEs) modifies genome structure and function. We describe the microsatellite-associated interspersed nuclear element 2 (MINE-2), that integrates at consensus WTTTT target sites, creates dinucleotide TT target site duplications (TSDs), and forms predicted MITE-like secondary structures; a 5' subterminal inverted repeat (SIR; AGGGTTCCGTAG) that is partially complementary to a 5' inverted repeat (IR; ACGAAGCCCT) and 3'-SIRs (TTACGGAACCCT). A (GTCY)(n) microsatellite is hitchhiking downstream of conserved 5'MINE-2 secondary structures, causing flanking sequence similarity amongst mobile microsatellite loci. Transfection of insect cell lines indicates that MITE-like secondary structures are sufficient to mediate genome integration, and provides insight into the transposition mechanism used by MINE-2s.
Collapse
Affiliation(s)
- B S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50010, USA.
| | | | | | | |
Collapse
|
41
|
Novick PA, Smith JD, Floumanhaft M, Ray DA, Boissinot S. The evolution and diversity of DNA transposons in the genome of the Lizard Anolis carolinensis. Genome Biol Evol 2010; 3:1-14. [PMID: 21127169 PMCID: PMC3014272 DOI: 10.1093/gbe/evq080] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2010] [Indexed: 01/19/2023] Open
Abstract
DNA transposons have considerably affected the size and structure of eukaryotic genomes and have been an important source of evolutionary novelties. In vertebrates, DNA transposons are discontinuously distributed due to the frequent extinction and recolonization of these genomes by active elements. We performed a detailed analysis of the DNA transposons in the genome of the lizard Anolis carolinensis, the first non-avian reptile to have its genome sequenced. Elements belonging to six of the previously recognized superfamilies of elements (hAT, Tc1/Mariner, Helitron, PIF/Harbinger, Polinton/Maverick, and Chapaev) were identified. However, only four (hAT, Tc1/Mariner, Helitron, and Chapaev) of these superfamilies have successfully amplified in the anole genome, producing 67 distinct families. The majority (57/67) are nonautonomous and demonstrate an extraordinary diversity of structure, resulting from frequent interelement recombination and incorporation of extraneous DNA sequences. The age distribution of transposon families differs among superfamilies and reveals different dynamics of amplification. Chapaev is the only superfamily to be extinct and is represented only by old copies. The hAT, Tc1/Mariner, and Helitron superfamilies show different pattern of amplification, yet they are predominantly represented by young families, whereas divergent families are exceedingly rare. Although it is likely that some elements, in particular long ones, are subjected to purifying selection and do not reach fixation, the majority of families are neutral and accumulate in the anole genome in large numbers. We propose that the scarcity of old copies in the anole genome results from the rapid decay of elements, caused by a high rate of DNA loss.
Collapse
Affiliation(s)
- Peter A. Novick
- Department of Biology, Queens College, the City University of New York
- Graduate School and University Center, the City University of New York
| | - Jeremy D. Smith
- Department of Biochemistry and Molecular Biology, Mississippi State University
| | - Mark Floumanhaft
- Department of Biology, Queens College, the City University of New York
| | - David A. Ray
- Department of Biochemistry and Molecular Biology, Mississippi State University
| | - Stéphane Boissinot
- Department of Biology, Queens College, the City University of New York
- Graduate School and University Center, the City University of New York
| |
Collapse
|
42
|
Lu J, Clark AG. Population dynamics of PIWI-interacting RNAs (piRNAs) and their targets in Drosophila. Genome Res 2009; 20:212-27. [PMID: 19948818 DOI: 10.1101/gr.095406.109] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Transposable elements (TEs) are mobile DNA sequences that make up a large fraction of eukaryotic genomes. Recently it was discovered that PIWI-interacting RNAs (piRNAs), a class of small RNA molecules that are mainly generated from transposable elements, are crucial repressors of active TEs in the germline of fruit flies. By quantifying expression levels of 32 TE families in piRNA pathway mutants relative to wild-type fruit flies, we provide evidence that piRNAs can severely silence the activities of retrotransposons. We incorporate piRNAs into a population genetic framework for retrotransposons and perform forward simulations to model the population dynamics of piRNA loci and their targets. Using parameters optimized for Drosophila melanogaster, our simulation results indicate that (1) piRNAs can significantly reduce the fitness cost of retrotransposons; (2) retrotransposons that generate piRNAs (piRTs) are selectively more advantageous, and such retrotransposon insertions more easily attain high frequency or fixation; (3) retrotransposons that are repressed by piRNAs (targetRTs), however, also have an elevated probability of reaching high frequency or fixation in the population because their deleterious effects are attenuated. By surveying the polymorphisms of piRT and targetRT insertions across nine strains of D. melanogaster, we verified these theoretical predictions with population genomic data. Our theoretical and empirical analysis suggests that piRNAs can significantly increase the fitness of individuals that bear them; however, piRNAs may provide a shelter or Trojan horse for retrotransposons, allowing them to increase in frequency in a population by shielding the host from the deleterious consequences of retrotransposition.
Collapse
Affiliation(s)
- Jian Lu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
43
|
Struchiner CJ, Massad E, Tu Z, Ribeiro JMC. The tempo and mode of evolution of transposable elements as revealed by molecular phylogenies reconstructed from mosquito genomes. Evolution 2009; 63:3136-46. [PMID: 19656180 DOI: 10.1111/j.1558-5646.2009.00788.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although many mathematical models exist predicting the dynamics of transposable elements (TEs), there is a lack of available empirical data to validate these models and inherent assumptions. Genomes can provide a snapshot of several TE families in a single organism, and these could have their demographics inferred by coalescent analysis, allowing for the testing of theories on TE amplification dynamics. Using the available genomes of the mosquitoes Aedes aegypti and Anopheles gambiae, we indicate that such an approach is feasible. Our analysis follows four steps: (1) mining the two mosquito genomes currently available in search of TE families; (2) fitting, to selected families found in (1), a phylogeny tree under the general time-reversible (GTR) nucleotide substitution model with an uncorrelated lognormal (UCLN) relaxed clock and a nonparametric demographic model; (3) fitting a nonparametric coalescent model to the tree generated in (2); and (4) fitting parametric models motivated by ecological theories to the curve generated in (3).
Collapse
Affiliation(s)
- Claudio J Struchiner
- ENSP/FIOCRUZ and IMS/UERJ, Av. Brasil, 4365, Rio de Janeiro, Braxil 21040 360, Brazil.
| | | | | | | |
Collapse
|
44
|
Venner S, Feschotte C, Biémont C. Dynamics of transposable elements: towards a community ecology of the genome. Trends Genet 2009; 25:317-23. [PMID: 19540613 PMCID: PMC2945704 DOI: 10.1016/j.tig.2009.05.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 12/13/2022]
Abstract
Like ecological communities, which vary in species composition, eukaryote genomes differ in the amount and diversity of transposable elements (TEs) that they harbor. Given that TEs have a considerable impact on the biology of their host species, we need to better understand whether their dynamics reflects some form of organization or is primarily driven by stochastic processes. Here, we borrow ecological concepts on species diversity to explore how interactions between TEs can contribute to structure TE communities within their genomic ecosystem. Whereas the niche theory predicts a stable diversity of TEs because of their divergent characteristics, the neutral theory of biodiversity predicts the assembly of TE communities from stochastic processes acting at the level of the individual TE. Contrary to ecological communities, however, TE communities are shaped by selection at the level of their ecosystem (i.e. the host individual). Developing ecological models specific to the genome will thus be a prerequisite for modeling the dynamics of TEs.
Collapse
|
45
|
Zeh DW, Zeh JA, Ishida Y. Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays 2009; 31:715-26. [DOI: 10.1002/bies.200900026] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Venner S, Feschotte C, Biémont C. Dynamics of transposable elements: towards a community ecology of the genome. Trends Genet 2009. [PMID: 19540613 DOI: 10.1016/j.tig.2009.05.003.epub] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Like ecological communities, which vary in species composition, eukaryote genomes differ in the amount and diversity of transposable elements (TEs) that they harbor. Given that TEs have a considerable impact on the biology of their host species, we need to better understand whether their dynamics reflects some form of organization or is primarily driven by stochastic processes. Here, we borrow ecological concepts on species diversity to explore how interactions between TEs can contribute to structure TE communities within their genomic ecosystem. Whereas the niche theory predicts a stable diversity of TEs because of their divergent characteristics, the neutral theory of biodiversity predicts the assembly of TE communities from stochastic processes acting at the level of the individual TE. Contrary to ecological communities, however, TE communities are shaped by selection at the level of their ecosystem (i.e. the host individual). Developing ecological models specific to the genome will thus be a prerequisite for modeling the dynamics of TEs.
Collapse
|
47
|
Conserved motifs and dynamic aspects of the terminal inverted repeat organization within Bari-like transposons. Mol Genet Genomics 2008; 279:451-61. [PMID: 18247055 DOI: 10.1007/s00438-008-0324-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
In this work the structural variations of Terminal Inverted Repeats (TIR) of Bari like transposons in Drosophila species has been studied. The aim is to try and assess the relevance of different variants in the evolutionary distribution of Bari elements. Bari is a member of the widespread Tc1 superfamily of transposable elements that has colonized most species of the Drosophila genus. We previously reported the structure of two related elements that differ in their TIR organization: Bari1 harbouring 26-bp TIR (short TIRs) and Bari2 with about 250-bp TIR (long TIIR). While elements with short TIRs are complete and potentially autonomous, long ones are invariably composed of defective copies. The results show that in D. pseudobscura, D. persimilis and D. mojavensis, there is a third class of Bari elements, Bari3, that exhibit a long TIR structure and are not defective. Phylogenetic relationships among reconstructed transposases are consistent with the three subfamilies sharing a common origin. However, the final TIR organization into long or short structure is not related by descent but appears to be lineage-specific. Furthermore, we show that, independently of origin and organization, within the 250-bp terminal sequences there are three regions that are conserved in both sequence and position suggesting they are under functional constraint.
Collapse
|
48
|
García Guerreiro MP, Chávez-Sandoval BE, Balanyà J, Serra L, Fontdevila A. Distribution of the transposable elements bilbo and gypsy in original and colonizing populations of Drosophila subobscura. BMC Evol Biol 2008; 8:234. [PMID: 18702820 PMCID: PMC2533020 DOI: 10.1186/1471-2148-8-234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 08/14/2008] [Indexed: 01/23/2023] Open
Abstract
Background Transposable elements (TEs) constitute a substantial amount of all eukaryotic genomes. They induce an important proportion of deleterious mutations by insertion into genes or gene regulatory regions. However, their mutational capabilities are not always adverse but can contribute to the genetic diversity and evolution of organisms. Knowledge of their distribution and activity in the genomes of populations under different environmental and demographic regimes, is important to understand their role in species evolution. In this work we study the chromosomal distribution of two TEs, gypsy and bilbo, in original and colonizing populations of Drosophila subobscura to reveal the putative effect of colonization on their insertion profile. Results Chromosomal frequency distribution of two TEs in one original and three colonizing populations of D. subobscura, is different. Whereas the original population shows a low insertion frequency in most TE sites, colonizing populations have a mixture of high (frequency ≥ 10%) and low insertion sites for both TEs. Most highly occupied sites are coincident among colonizing populations and some of them are correlated to chromosomal arrangements. Comparisons of TE copy number between the X chromosome and autosomes show that gypsy occupancy seems to be controlled by negative selection, but bilbo one does not. Conclusion These results are in accordance that TEs in Drosophila subobscura colonizing populations are submitted to a founder effect followed by genetic drift as a consequence of colonization. This would explain the high insertion frequencies of bilbo and gypsy in coincident sites of colonizing populations. High occupancy sites would represent insertion events prior to colonization. Sites of low frequency would be insertions that occurred after colonization and/or copies from the original population whose frequency is decreasing in colonizing populations. This work is a pioneer attempt to explain the chromosomal distribution of TEs in a colonizing species with high inversion polymorphism to reveal the putative effect of arrangements in TE insertion profiles. In general no associations between arrangements and TE have been found, except in a few cases where the association is very strong. Alternatively, founder drift effects, seem to play a leading role in TE genome distribution in colonizing populations.
Collapse
Affiliation(s)
- María Pilar García Guerreiro
- Grup de Biología Evolutiva, Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Transposable elements are mobile genetic units that exhibit broad diversity in their structure and transposition mechanisms. Transposable elements occupy a large fraction of many eukaryotic genomes and their movement and accumulation represent a major force shaping the genes and genomes of almost all organisms. This review focuses on DNA-mediated or class 2 transposons and emphasizes how this class of elements is distinguished from other types of mobile elements in terms of their structure, amplification dynamics, and genomic effect. We provide an up-to-date outlook on the diversity and taxonomic distribution of all major types of DNA transposons in eukaryotes, including Helitrons and Mavericks. We discuss some of the evolutionary forces that influence their maintenance and diversification in various genomic environments. Finally, we highlight how the distinctive biological features of DNA transposons have contributed to shape genome architecture and led to the emergence of genetic innovations in different eukaryotic lineages.
Collapse
Affiliation(s)
- Cédric Feschotte
- Department of Biology, University of Texas, Arlington, TX 76019, USA.
| | | |
Collapse
|
50
|
Abstract
Mariner transposable elements are widespread and diverse in insects. We screened 10 species of fig wasps (Hymenoptera: Agaonidae) for mariner elements. All 10 species harbour a large diversity of mariner elements, most of which have interrupted reading frames in the transposase gene region, suggesting that they are inactive and ancient. We sequenced two full-length mariner elements and found evidence to suggest that they are inserted in the genome at a conserved region shared by other hymenopteran taxa. The association between mariner elements and fig wasps is old and dominated by vertical transmission, suggesting that these 'selfish genetic elements' have evolved to impart only very low costs to their hosts.
Collapse
Affiliation(s)
- E R Haine
- Division of Biology, Imperial College London, Silwood Park, Ascot, Berkshire, UK.
| | | | | |
Collapse
|