1
|
Dridi H, Forrester F, Umanskaya A, Xie W, Reiken S, Lacampagne A, Marks A. Role of oxidation of excitation-contraction coupling machinery in age-dependent loss of muscle function in C. elegans. eLife 2022; 11:75529. [PMID: 35506650 PMCID: PMC9113742 DOI: 10.7554/elife.75529] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Age-dependent loss of body wall muscle function and impaired locomotion occur within 2 weeks in C. elegans; however, the underlying mechanism has not been fully elucidated. In humans, age-dependent loss of muscle function occurs at about 80 years of age and has been linked to dysfunction of ryanodine receptor (RyR)/intracellular calcium (Ca2+) release channels on the sarcoplasmic reticulum (SR). Mammalian skeletal muscle RyR1 channels undergo age-related remodeling due to oxidative overload, leading to loss of the stabilizing subunit calstabin1 (FKBP12) from the channel macromolecular complex. This destabilizes the closed state of the channel resulting in intracellular Ca2+ leak, reduced muscle function, and impaired exercise capacity. We now show that the C. elegans RyR homolog, UNC-68, exhibits a remarkable degree of evolutionary conservation with mammalian RyR channels and similar age-dependent dysfunction. Like RyR1 in mammals UNC-68 encodes a protein that comprises a macromolecular complex which includes the calstabin1 homolog FKB-2 and is immunoreactive with antibodies raised against the RyR1 complex. Further, as in aged mammals, UNC-68 is oxidized and depleted of FKB-2 in an age-dependent manner, resulting in 'leaky' channels, depleted SR Ca2+ stores, reduced body wall muscle Ca2+ transients, and age-dependent muscle weakness. FKB-2 (ok3007)-deficient worms exhibit reduced exercise capacity. Pharmacologically induced oxidization of UNC-68 and depletion of FKB-2 from the channel independently caused reduced body wall muscle Ca2+ transients. Preventing FKB-2 depletion from the UNC-68 macromolecular complex using the Rycal drug S107 improved muscle Ca2+ transients and function. Taken together, these data suggest that UNC-68 oxidation plays a role in age-dependent loss of muscle function. Remarkably, this age-dependent loss of muscle function induced by oxidative overload, which takes ~2 years in mice and ~80 years in humans, occurs in less than 2-3 weeks in C. elegans, suggesting that reduced antioxidant capacity may contribute to the differences in life span amongst species.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Frances Forrester
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Alisa Umanskaya
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Wenjun Xie
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| | - Alain Lacampagne
- U1046, Montpellier University, INSERM, CNRS, Montpellier, France
| | - Andrew Marks
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, United States
| |
Collapse
|
2
|
Hoffman CS. Use of a Fission Yeast Platform to Identify and Characterize Small Molecule PDE Inhibitors. Front Pharmacol 2022; 12:833156. [PMID: 35111072 PMCID: PMC8802716 DOI: 10.3389/fphar.2021.833156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) have been proven to be targets for which highly selective and potent drugs can be developed. Mammalian genomes possess 21 genes whose products are pharmacologically grouped into 11 families; however related genes from pathogenic organisms display sufficient divergence from the mammalian homologs such that PDE inhibitors to these enzymes could be used to treat parasitic infections without acting on the related human PDEs. We have developed a platform for expressing cloned PDEs in the fission yeast Schizosaccharomyces pombe, allowing for inexpensive, but robust screening for small molecule inhibitors that are cell permeable. Such compounds typically display the expected biological activity when tested in cell culture, including anti-inflammatory properties for PDE4 and PDE7 inhibitors. The genetic pliability of S. pombe also allows for molecular genetic screens to identify mutations in target PDE genes that confer some resistance to these inhibitors as a way of investigating the PDE-inhibitor interaction. This screening method is readily accessible to academic laboratories as it does not require the purification of large quantities of a target protein. This allows for the discovery and profiling of PDE inhibitors to treat inflammation or of inhibitors of targets such as pathogen PDEs for which there may not be a sufficient financial motivation for pharmaceutical companies to identify selective PDE inhibitors using more traditional in vitro enzyme-based screening methods.
Collapse
Affiliation(s)
- Charles S Hoffman
- Biology Department, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
3
|
Fernandez-Abascal J, Johnson CK, Graziano B, Wang L, Encalada N, Bianchi L. A glial ClC Cl - channel mediates nose touch responses in C. elegans. Neuron 2022; 110:470-485.e7. [PMID: 34861150 PMCID: PMC8813913 DOI: 10.1016/j.neuron.2021.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/28/2021] [Accepted: 11/09/2021] [Indexed: 02/04/2023]
Abstract
In touch receptors, glia and accessory cells play a key role in mechanosensation. However, the mechanisms underlying such regulation are poorly understood. We show, for the first time, that the chloride channel CLH-1 is needed in glia of C. elegans nose touch receptors for touch responses and for regulation of excitability. Using in vivo Ca2+ and Cl- imaging, behavioral assays, and combined genetic and pharmacological manipulations, we show that CLH-1 mediates Cl- flux needed for glial GABA inhibition of ASH sensory neuron function and for regulation of cyclic AMP levels in ASH neurons. Finally, we show that the rat ClC-2 channel rescues the clh-1 nose-touch-insensitive phenotype, underscoring conservation of function across species. Our work identifies a glial Cl- channel as a novel regulator of touch sensitivity. We propose that glial CLH-1 regulates the interplay between Ca2+ and cAMP signaling in ASH neurons to control the sensitivity of the worm's nose touch receptors.
Collapse
|
4
|
Ravi B, Zhao J, Chaudhry I, Signorelli R, Bartole M, Kopchock RJ, Guijarro C, Kaplan JM, Kang L, Collins KM. Presynaptic Gαo (GOA-1) signals to depress command neuron excitability and allow stretch-dependent modulation of egg laying in Caenorhabditis elegans. Genetics 2021; 218:6284136. [PMID: 34037773 DOI: 10.1093/genetics/iyab080] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/18/2021] [Indexed: 12/29/2022] Open
Abstract
Egg laying in the nematode worm Caenorhabditis elegans is a two-state behavior modulated by internal and external sensory input. We have previously shown that homeostatic feedback of embryo accumulation in the uterus regulates bursting activity of the serotonergic HSN command neurons that sustains the egg-laying active state. How sensory feedback of egg release signals to terminate the egg-laying active state is less understood. We find that Gαo, a conserved Pertussis Toxin-sensitive G protein, signals within HSN to inhibit egg-laying circuit activity and prevent entry into the active state. Gαo signaling hyperpolarizes HSN, reducing HSN Ca2+ activity and input onto the postsynaptic vulval muscles. Loss of inhibitory Gαo signaling uncouples presynaptic HSN activity from a postsynaptic, stretch-dependent homeostat, causing precocious entry into the egg-laying active state when only a few eggs are present in the uterus. Feedback of vulval opening and egg release activates the uv1 neuroendocrine cells which release NLP-7 neuropeptides which signal to inhibit egg laying through Gαo-independent mechanisms in the HSNs and Gαo-dependent mechanisms in cells other than the HSNs. Thus, neuropeptide and inhibitory Gαo signaling maintains a bi-stable state of electrical excitability that dynamically controls circuit activity in response to both external and internal sensory input to drive a two-state behavior output.
Collapse
Affiliation(s)
- Bhavya Ravi
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL USA 33136.,Department of Biology, University of Miami, Coral Gables, FL USA 33146
| | - Jian Zhao
- Department of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA 02114
| | - I Chaudhry
- Department of Biology, University of Miami, Coral Gables, FL USA 33146
| | | | - Mattingly Bartole
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL USA 33136.,Department of Biology, University of Miami, Coral Gables, FL USA 33146
| | | | | | - Joshua M Kaplan
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA 02114
| | - Lijun Kang
- Department of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kevin M Collins
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL USA 33136.,Department of Biology, University of Miami, Coral Gables, FL USA 33146
| |
Collapse
|
5
|
Synapsin Is Required for Dense Core Vesicle Capture and cAMP-Dependent Neuropeptide Release. J Neurosci 2021; 41:4187-4201. [PMID: 33820857 DOI: 10.1523/jneurosci.2631-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/11/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
Release of neuropeptides from dense core vesicles (DCVs) is essential for neuromodulation. Compared with the release of small neurotransmitters, much less is known about the mechanisms and proteins contributing to neuropeptide release. By optogenetics, behavioral analysis, electrophysiology, electron microscopy, and live imaging, we show that synapsin SNN-1 is required for cAMP-dependent neuropeptide release in Caenorhabditis elegans hermaphrodite cholinergic motor neurons. In synapsin mutants, behaviors induced by the photoactivated adenylyl cyclase bPAC, which we previously showed to depend on ACh and neuropeptides (Steuer Costa et al., 2017), are altered as in animals with reduced cAMP. Synapsin mutants have slight alterations in synaptic vesicle (SV) distribution; however, a defect in SV mobilization was apparent after channelrhodopsin-based photostimulation. DCVs were largely affected in snn-1 mutants: DCVs were ∼30% reduced in synaptic terminals, and their contents not released following bPAC stimulation. Imaging axonal DCV trafficking, also in genome-engineered mutants in the serine-9 protein kinase A phosphorylation site, showed that synapsin captures DCVs at synapses, making them available for release. SNN-1 colocalized with immobile, captured DCVs. In synapsin deletion mutants, DCVs were more mobile and less likely to be caught at release sites, and in nonphosphorylatable SNN-1B(S9A) mutants, DCVs traffic less and accumulate, likely by enhanced SNN-1 dependent tethering. Our work establishes synapsin as a key mediator of neuropeptide release.SIGNIFICANCE STATEMENT Little is known about mechanisms that regulate how neuropeptide-containing dense core vesicles (DCVs) traffic along the axon, how neuropeptide release is orchestrated, and where it occurs. We found that one of the longest known synaptic proteins, required for the regulation of synaptic vesicles and their storage in nerve terminals, synapsin, is also essential for neuropeptide release. By electrophysiology, imaging, and electron microscopy in Caenorhabditis elegans, we show that synapsin regulates this process by tethering the DCVs to the cytoskeleton in axonal regions where neuropeptides are to be released. Without synapsin, DCVs cannot be captured at the release sites and, consequently, cannot fuse with the membrane, and neuropeptides are not released. We suggest that synapsin fulfills this role also in vertebrates, including humans.
Collapse
|
6
|
Rombaut B, Kessels S, Schepers M, Tiane A, Paes D, Solomina Y, Piccart E, Hove DVD, Brône B, Prickaerts J, Vanmierlo T. PDE inhibition in distinct cell types to reclaim the balance of synaptic plasticity. Theranostics 2021; 11:2080-2097. [PMID: 33500712 PMCID: PMC7797685 DOI: 10.7150/thno.50701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Synapses are the functional units of the brain. They form specific contact points that drive neuronal communication and are highly plastic in their strength, density, and shape. A carefully orchestrated balance between synaptogenesis and synaptic pruning, i.e., the elimination of weak or redundant synapses, ensures adequate synaptic density. An imbalance between these two processes lies at the basis of multiple neuropathologies. Recent evidence has highlighted the importance of glia-neuron interactions in the synaptic unit, emphasized by glial phagocytosis of synapses and local excretion of inflammatory mediators. These findings warrant a closer look into the molecular basis of cell-signaling pathways in the different brain cells that are related to synaptic plasticity. In neurons, intracellular second messengers, such as cyclic guanosine or adenosine monophosphate (cGMP and cAMP, respectively), are known mediators of synaptic homeostasis and plasticity. Increased levels of these second messengers in glial cells slow down inflammation and neurodegenerative processes. These multi-faceted effects provide the opportunity to counteract excessive synapse loss by targeting cGMP and cAMP pathways in multiple cell types. Phosphodiesterases (PDEs) are specialized degraders of these second messengers, rendering them attractive targets to combat the detrimental effects of neurological disorders. Cellular and subcellular compartmentalization of the specific isoforms of PDEs leads to divergent downstream effects for these enzymes in the various central nervous system resident cell types. This review provides a detailed overview on the role of PDEs and their inhibition in the context of glia-neuron interactions in different neuropathologies characterized by synapse loss. In doing so, it provides a framework to support future research towards finding combinational therapy for specific neuropathologies.
Collapse
|
7
|
Honer M, Buscemi K, Barrett N, Riazati N, Orlando G, Nelson MD. Orcokinin neuropeptides regulate sleep in Caenorhabditis elegans. J Neurogenet 2020; 34:440-452. [PMID: 33044108 DOI: 10.1080/01677063.2020.1830084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Orcokinin neuropeptides are conserved among ecdysozoans, but their functions are incompletely understood. Here, we report a role for orcokinin neuropeptides in the regulation of sleep in the nematode Caenorhabditis elegans. The C. elegans orcokinin peptides, which are encoded by the nlp-14 and nlp-15 genes, are necessary and sufficient for quiescent behaviors during developmentally timed sleep (DTS) as well as during stress-induced sleep (SIS). The five orcokinin neuropeptides encoded by nlp-14 have distinct but overlapping functions in the regulation of movement and defecation quiescence during SIS. We suggest that orcokinins may regulate behavioral components of sleep-like states in nematodes and other ecdysozoans.
Collapse
Affiliation(s)
- Madison Honer
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Kristen Buscemi
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Natalie Barrett
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Niknaz Riazati
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Gerald Orlando
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA
| |
Collapse
|
8
|
Chien J, Wolf FW, Grosche S, Yosef N, Garriga G, Mörck C. The Enigmatic Canal-Associated Neurons Regulate Caenorhabditis elegans Larval Development Through a cAMP Signaling Pathway. Genetics 2019; 213:1465-1478. [PMID: 31619445 PMCID: PMC6893374 DOI: 10.1534/genetics.119.302628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 11/18/2022] Open
Abstract
Caenorhabditis elegans larval development requires the function of the two Canal-Associated Neurons (CANs): killing the CANs by laser microsurgery or disrupting their development by mutating the gene ceh-10 results in early larval arrest. How these cells promote larval development, however, remains a mystery. In screens for mutations that bypass CAN function, we identified the gene kin-29, which encodes a member of the Salt-Inducible Kinase (SIK) family and a component of a conserved pathway that regulates various C. elegans phenotypes. Like kin-29 loss, gain-of-function mutations in genes that may act upstream of kin-29 or growth in cyclic-AMP analogs bypassed ceh-10 larval arrest, suggesting that a conserved adenylyl cyclase/PKA pathway inhibits KIN-29 to promote larval development, and that loss of CAN function results in dysregulation of KIN-29 and larval arrest. The adenylyl cyclase ACY-2 mediates CAN-dependent larval development: acy-2 mutant larvae arrested development with a similar phenotype to ceh-10 mutants, and the arrest phenotype was suppressed by mutations in kin-29 ACY-2 is expressed predominantly in the CANs, and we provide evidence that the acy-2 functions in the CANs to promote larval development. By contrast, cell-specific expression experiments suggest that kin-29 acts in both the hypodermis and neurons, but not in the CANs. Based on our findings, we propose two models for how ACY-2 activity in the CANs regulates KIN-29 in target cells.
Collapse
Affiliation(s)
- Jason Chien
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| | - Fred W Wolf
- Department of Molecular and Cell Biology, University of California, Merced, California 95343
| | - Sarah Grosche
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| | - Nebeyu Yosef
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| | - Gian Garriga
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204
| | - Catarina Mörck
- Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden 405 30
| |
Collapse
|
9
|
Cianciulli A, Yoslov L, Buscemi K, Sullivan N, Vance RT, Janton F, Szurgot MR, Buerkert T, Li E, Nelson MD. Interneurons Regulate Locomotion Quiescence via Cyclic Adenosine Monophosphate Signaling During Stress-Induced Sleep in Caenorhabditis elegans. Genetics 2019; 213:267-279. [PMID: 31292211 PMCID: PMC6727807 DOI: 10.1534/genetics.119.302293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/08/2019] [Indexed: 01/01/2023] Open
Abstract
Sleep is evolutionarily conserved, thus studying simple invertebrates such as Caenorhabditis elegans can provide mechanistic insight into sleep with single cell resolution. A conserved pathway regulating sleep across phylogeny involves cyclic adenosine monophosphate (cAMP), a ubiquitous second messenger that functions in neurons by activating protein kinase A. C. elegans sleep in response to cellular stress caused by environmental insults [stress-induced sleep (SIS)], a model for studying sleep during sickness. SIS is controlled by simple neural circuitry, thus allowing for cellular dissection of cAMP signaling during sleep. We employed a red-light activated adenylyl cyclase, IlaC22, to identify cells involved in SIS regulation. We found that pan-neuronal activation of IlaC22 disrupts SIS through mechanisms independent of the cAMP response element binding protein. Activating IlaC22 in the single DVA interneuron, the paired RIF interneurons, and in the CEPsh glia identified these cells as wake-promoting. Using a cAMP biosensor, epac1-camps, we found that cAMP is decreased in the RIF and DVA interneurons by neuropeptidergic signaling from the ALA neuron. Ectopic overexpression of sleep-promoting neuropeptides coded by flp-13 and flp-24, released from the ALA, reduced cAMP in the DVA and RIFs, respectively. Overexpression of the wake-promoting neuropeptides coded by pdf-1 increased cAMP levels in the RIFs. Using a combination of optogenetic manipulation and in vivo imaging of cAMP we have identified wake-promoting neurons downstream of the neuropeptidergic output of the ALA. Our data suggest that sleep- and wake-promoting neuropeptides signal to reduce and heighten cAMP levels during sleep, respectively.
Collapse
Affiliation(s)
- Alana Cianciulli
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Lauren Yoslov
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Kristen Buscemi
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Nicole Sullivan
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Ryan T Vance
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Francis Janton
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Mary R Szurgot
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Thomas Buerkert
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Edwin Li
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| | - Matthew D Nelson
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania 19131
| |
Collapse
|
10
|
Pharmacological and molecular dynamics analyses of differences in inhibitor binding to human and nematode PDE4: Implications for management of parasitic nematodes. PLoS One 2019; 14:e0214554. [PMID: 30917179 PMCID: PMC6436744 DOI: 10.1371/journal.pone.0214554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/14/2019] [Indexed: 11/19/2022] Open
Abstract
Novel chemical controls are needed that selectively target human, animal, and plant parasitic nematodes with reduced adverse effects on the host or the environment. We hypothesize that the phosphodiesterase (PDE) enzyme family represents a potential target for development of novel nematicides and anthelmintics. To test this, we identified six PDE families present in the nematode phylum that are orthologous to six of the eleven human PDE families. We characterized the binding interactions of family-selective PDE inhibitors with human and C. elegans PDE4 in conjunction with molecular dynamics (MD) simulations to evaluate differences in binding interactions of these inhibitors within the PDE4 catalytic domain. We observed that roflumilast (human PDE4-selective inhibitor) and zardaverine (selective for human PDE3 and PDE4) were 159- and 77-fold less potent, respectively, in inhibiting C. elegans PDE4. The pan-specific PDE inhibitor isobutyl methyl xanthine (IBMX) had similar affinity for nematode and human PDE4. Of 32 residues within 5 Å of the ligand binding site, five revealed significant differences in non-bonded interaction energies (van der Waals and electrostatic interaction energies) that could account for the differential binding affinities of roflumilast and zardaverine. One site (Phe506 in the human PDE4D3 amino acid sequence corresponding to Tyr253 in C. elegans PDE4) is predicted to alter the binding conformation of roflumilast and zardaverine (but not IBMX) into a less energetically favorable state for the nematode enzyme. The pharmacological differences in sensitivity to PDE4 inhibitors in conjunction with differences in the amino acids comprising the inhibitor binding sites of human and C. elegans PDE4 catalytic domains together support the feasibility of designing the next generation of anthelmintics/nematicides that could selectively bind to nematode PDEs.
Collapse
|
11
|
Koelle MR. Neurotransmitter signaling through heterotrimeric G proteins: insights from studies in C. elegans. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2018; 2018:1-52. [PMID: 26937633 PMCID: PMC5010795 DOI: 10.1895/wormbook.1.75.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotransmitters signal via G protein coupled receptors (GPCRs) to modulate activity of neurons and muscles. C. elegans has ∼150 G protein coupled neuropeptide receptor homologs and 28 additional GPCRs for small-molecule neurotransmitters. Genetic studies in C. elegans demonstrate that neurotransmitters diffuse far from their release sites to activate GPCRs on distant cells. Individual receptor types are expressed on limited numbers of cells and thus can provide very specific regulation of an individual neural circuit and behavior. G protein coupled neurotransmitter receptors signal principally via the three types of heterotrimeric G proteins defined by the G alpha subunits Gαo, Gαq, and Gαs. Each of these G alpha proteins is found in all neurons plus some muscles. Gαo and Gαq signaling inhibit and activate neurotransmitter release, respectively. Gαs signaling, like Gαq signaling, promotes neurotransmitter release. Many details of the signaling mechanisms downstream of Gαq and Gαs have been delineated and are consistent with those of their mammalian orthologs. The details of the signaling mechanism downstream of Gαo remain a mystery. Forward genetic screens in C. elegans have identified new molecular components of neural G protein signaling mechanisms, including Regulators of G protein Signaling (RGS proteins) that inhibit signaling, a new Gαq effector (the Trio RhoGEF domain), and the RIC-8 protein that is required for neuronal Gα signaling. A model is presented in which G proteins sum up the variety of neuromodulator signals that impinge on a neuron to calculate its appropriate output level.
Collapse
Affiliation(s)
- Michael R Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven CT 06520 USA
| |
Collapse
|
12
|
Long T, Rojo-Arreola L, Shi D, El-Sakkary N, Jarnagin K, Rock F, Meewan M, Rascón AA, Lin L, Cunningham KA, Lemieux GA, Podust L, Abagyan R, Ashrafi K, McKerrow JH, Caffrey CR. Phenotypic, chemical and functional characterization of cyclic nucleotide phosphodiesterase 4 (PDE4) as a potential anthelmintic drug target. PLoS Negl Trop Dis 2017; 11:e0005680. [PMID: 28704396 PMCID: PMC5526615 DOI: 10.1371/journal.pntd.0005680] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/25/2017] [Accepted: 06/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Reliance on just one drug to treat the prevalent tropical disease, schistosomiasis, spurs the search for new drugs and drug targets. Inhibitors of human cyclic nucleotide phosphodiesterases (huPDEs), including PDE4, are under development as novel drugs to treat a range of chronic indications including asthma, chronic obstructive pulmonary disease and Alzheimer's disease. One class of huPDE4 inhibitors that has yielded marketed drugs is the benzoxaboroles (Anacor Pharmaceuticals). METHODOLOGY/PRINCIPAL FINDINGS A phenotypic screen involving Schistosoma mansoni and 1,085 benzoxaboroles identified a subset of huPDE4 inhibitors that induced parasite hypermotility and degeneration. To uncover the putative schistosome PDE4 target, we characterized four PDE4 sequences (SmPDE4A-D) in the parasite's genome and transcriptome, and cloned and recombinantly expressed the catalytic domain of SmPDE4A. Among a set of benzoxaboroles and catechol inhibitors that differentially inhibit huPDE4, a relationship between the inhibition of SmPDE4A, and parasite hypermotility and degeneration, was measured. To validate SmPDE4A as the benzoxaborole molecular target, we first generated Caenorhabditis elegans lines that express a cDNA for smpde4a on a pde4(ce268) mutant (hypermotile) background: the smpde4a transgene restored mutant worm motility to that of the wild type. We then showed that benzoxaborole inhibitors of SmPDE4A that induce hypermotility in the schistosome also elicit a hypermotile response in the C. elegans lines that express the smpde4a transgene, thereby confirming SmPDE4A as the relevant target. CONCLUSIONS/SIGNIFICANCE The orthogonal chemical, biological and genetic strategies employed identify SmPDE4A's contribution to parasite motility and degeneration, and its potential as a drug target. Transgenic C. elegans is highlighted as a potential screening tool to optimize small molecule chemistries to flatworm molecular drug targets.
Collapse
Affiliation(s)
- Thavy Long
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Liliana Rojo-Arreola
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Da Shi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nelly El-Sakkary
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kurt Jarnagin
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Fernando Rock
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Maliwan Meewan
- Anacor Pharmaceuticals, Inc., Palo Alto, California, United States of America
| | - Alberto A. Rascón
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Lin Lin
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Katherine A. Cunningham
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - George A. Lemieux
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Larissa Podust
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Kaveh Ashrafi
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, University of California San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Locomotion Behavior Is Affected by the Gα S Pathway and the Two-Pore-Domain K + Channel TWK-7 Interacting in GABAergic Motor Neurons in Caenorhabditis elegans. Genetics 2017; 206:283-297. [PMID: 28341653 DOI: 10.1534/genetics.116.195669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/19/2017] [Indexed: 01/03/2023] Open
Abstract
Adjusting the efficiency of movement in response to environmental cues is an essential integrative characteristic of adaptive locomotion behavior across species. However, the modulatory molecules and the pathways involved are largely unknown. Recently, we demonstrated that in Caenorhabditis elegans, a loss-of-function of the two-pore-domain potassium (K2P) channel TWK-7 causes a fast, coordinated, and persistent forward crawling behavior in which five central aspects of stimulated locomotion-velocity, direction, wave parameters, duration, and straightness-are affected. Here, we isolated the reduction-of-function allele cau1 of the C. elegans gene kin-2 in a forward genetic screen and showed that it phenocopies the locomotor activity and locomotion behavior of twk-7(null) animals. Kin-2 encodes the negative regulatory subunit of protein kinase A (KIN-1/PKA). Consistently, we found that other gain-of-function mutants of the GαS-KIN-1/PKA pathway resemble kin-2(cau1) and twk-7(null) in locomotion phenotype. Using the powerful genetics of the C. elegans system in combination with cell type-specific approaches and detailed locomotion analyses, we identified TWK-7 as a putative downstream target of the GαS-KIN-1/PKA pathway at the level of the γ-aminobutyric acid (GABA)ergic D-type motor neurons. Due to this epistatic interaction, we suggest that KIN-1/PKA and TWK-7 may share a common pathway that is probably involved in the modulation of both locomotor activity and locomotion behavior during forward crawling.
Collapse
|
14
|
Steuer Costa W, Yu SC, Liewald JF, Gottschalk A. Fast cAMP Modulation of Neurotransmission via Neuropeptide Signals and Vesicle Loading. Curr Biol 2017; 27:495-507. [PMID: 28162892 DOI: 10.1016/j.cub.2016.12.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/06/2016] [Accepted: 12/27/2016] [Indexed: 02/02/2023]
Abstract
Cyclic AMP (cAMP) signaling augments synaptic transmission, but because many targets of cAMP and protein kinase A (PKA) may be involved, mechanisms underlying this pathway remain unclear. To probe this mechanism, we used optogenetic stimulation of cAMP signaling by Beggiatoa-photoactivated adenylyl cyclase (bPAC) in Caenorhabditis elegans motor neurons. Behavioral, electron microscopy (EM), and electrophysiology analyses revealed cAMP effects on both the rate and on quantal size of transmitter release and led to the identification of a neuropeptidergic pathway affecting quantal size. cAMP enhanced synaptic vesicle (SV) fusion by increasing mobilization and docking/priming. cAMP further evoked dense core vesicle (DCV) release of neuropeptides, in contrast to channelrhodopsin (ChR2) stimulation. cAMP-evoked DCV release required UNC-31/Ca2+-dependent activator protein for secretion (CAPS). Thus, DCVs accumulated in unc-31 mutant synapses. bPAC-induced neuropeptide signaling acts presynaptically to enhance vAChT-dependent SV loading with acetylcholine, thus causing increased miniature postsynaptic current amplitudes (mPSCs) and significantly enlarged SVs.
Collapse
Affiliation(s)
- Wagner Steuer Costa
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Szi-Chieh Yu
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jana F Liewald
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt, Germany; Department of Biochemistry, Chemistry and Pharmacy, Institute for Biophysical Chemistry, Goethe University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany.
| |
Collapse
|
15
|
Novel DLK-independent neuronal regeneration in Caenorhabditis elegans shares links with activity-dependent ectopic outgrowth. Proc Natl Acad Sci U S A 2016; 113:E2852-60. [PMID: 27078101 DOI: 10.1073/pnas.1600564113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
During development, a neuron transitions from a state of rapid growth to a stable morphology, and neurons within the adult mammalian CNS lose their ability to effectively regenerate in response to injury. Here, we identify a novel form of neuronal regeneration, which is remarkably independent of DLK-1/DLK, KGB-1/JNK, and other MAPK signaling factors known to mediate regeneration in Caenorhabditis elegans, Drosophila, and mammals. This DLK-independent regeneration in C. elegans has direct genetic and molecular links to a well-studied form of endogenous activity-dependent ectopic axon outgrowth in the same neuron type. Both neuron outgrowth types are triggered by physical lesion of the sensory dendrite or mutations disrupting sensory activity, calcium signaling, or genes that restrict outgrowth during neuronal maturation, such as SAX-1/NDR kinase or UNC-43/CaMKII. These connections suggest that ectopic outgrowth represents a powerful platform for gene discovery in neuronal regeneration. Moreover, we note numerous similarities between C. elegans DLK-independent regeneration and lesion conditioning, a phenomenon producing robust regeneration in the mammalian CNS. Both regeneration types are triggered by lesion of a sensory neurite via reduction of neuronal activity and enhanced by disrupting L-type calcium channels or elevating cAMP. Taken as a whole, our study unites disparate forms of neuronal outgrowth to uncover fresh molecular insights into activity-dependent control of the adult nervous system's intrinsic regenerative capacity.
Collapse
|
16
|
Abstract
Electrophysiological recordings have enabled identification of physiologically distinct yet behaviorally similar states of mammalian sleep. In contrast, sleep in nonmammals has generally been identified behaviorally and therefore regarded as a physiologically uniform state characterized by quiescence of feeding and locomotion, reduced responsiveness, and rapid reversibility. The nematode Caenorhabditis elegans displays sleep-like quiescent behavior under two conditions: developmentally timed quiescence (DTQ) occurs during larval transitions, and stress-induced quiescence (SIQ) occurs in response to exposure to cellular stressors. Behaviorally, DTQ and SIQ appear identical. Here, we use optogenetic manipulations of neuronal and muscular activity, pharmacology, and genetic perturbations to uncover circuit and molecular mechanisms of DTQ and SIQ. We find that locomotion quiescence induced by DTQ- and SIQ-associated neuropeptides occurs via their action on the nervous system, although their neuronal target(s) and/or molecular mechanisms likely differ. Feeding quiescence during DTQ results from a loss of pharyngeal muscle excitability, whereas feeding quiescence during SIQ results from a loss of excitability in the nervous system. Together these results indicate that, as in mammals, quiescence is subserved by different mechanisms during distinct sleep-like states in C. elegans.
Collapse
|
17
|
The Importance of cGMP Signaling in Sensory Cilia for Body Size Regulation in Caenorhabditis elegans. Genetics 2015; 201:1497-510. [PMID: 26434723 DOI: 10.1534/genetics.115.177543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/01/2015] [Indexed: 01/24/2023] Open
Abstract
The body size of Caenorhabditis elegans is thought to be controlled by sensory inputs because many mutants with sensory cilium structure defects exhibit small body size. The EGL-4 cGMP-dependent protein kinase acts in sensory neurons to reduce body size when animals fail to perceive sensory signals. In addition to body size control, EGL-4 regulates various other behavioral and developmental pathways, including those involved in the regulation of egg laying and chemotaxis behavior. Here we have identified gcy-12, which encodes a receptor-type guanylyl cyclase, as a gene involved in the sensory regulation of body size. Analyses with GFP fusion constructs showed that gcy-12 is expressed in several sensory neurons and localizes to sensory cilia. Genetic analyses indicated that GCY-12 acts upstream of EGL-4 in body size control but does not affect other EGL-4 functions. Our studies indicate that the function of the GCY-12 guanylyl cyclase is to provide cGMP to the EGL-4 cGMP-dependent kinase only for limited tasks including body size regulation. We also found that the PDE-2 cyclic nucleotide phosphodiesterase negatively regulates EGL-4 in controlling body size. Thus, the cGMP level is precisely controlled by GCY-12 and PDE-2 to determine body size through EGL-4, and the defects in the sensory cilium structure may disturb the balanced control of the cGMP level. The large number of guanylyl cyclases encoded in the C. elegans genome suggests that EGL-4 exerts pleiotropic effects by partnering with different guanylyl cyclases for different downstream functions.
Collapse
|
18
|
An automated system for quantitative analysis of Drosophila larval locomotion. BMC DEVELOPMENTAL BIOLOGY 2015; 15:11. [PMID: 25881248 PMCID: PMC4345013 DOI: 10.1186/s12861-015-0062-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/16/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Drosophila larvae have been used as a model to study to genetic and cellular circuitries modulating behaviors. One of the challenges in behavioral study is the quantification of complex phenotypes such as locomotive behaviors. Experimental capability can be greatly enhanced by an automatic single-animal tracker that records an animal at a high resolution for an extended period, and analyzes multiple behavioral parameters. RESULTS Here we present MaggotTracker, a single-animal tracking system for Drosophila larval locomotion analysis. This system controls the motorized microscope stage while taking a video, so that the animal remains in the viewing center. It then reduces the animal to 13 evenly distributed points along the midline, and computes over 20 parameters evaluating the shape, peristalsis movement, stamina, and track of the animal. To demonstrate its utility, we applied MaggotTracker to analyze both wild-type and mutant animals to identify factors affecting locomotive behaviors. Each animal was tracked for four minutes. Our analysis on Canton-S third-instar larvae revealed that the distance an animal travelled was correlated to its striding speed rather than the percentage of time the animal spent striding, and that the striding speed was correlated to both the distance and the duration of one stride. Sexual dimorphism was observed in body length but not in locomotive parameters such as speed. Locomotive parameters were affected by animal developmental stage and the crawling surface. No significant changes in movement speed were detected in mutants of circadian genes such as period (per), timeout, and timeless (tim). The MaggotTracker analysis showed that ether a go-go (eag), Shaker (Sh), slowpoke (slo), and dunce (dnc) mutant larvae had severe phenotypes in multiple locomotive parameters such as stride distance and speed, consistent with their function in neuromuscular junctions. Further, the phenotypic patterns of the K(+) channel genes eag, Sh and slo are highly similar. CONCLUSIONS These results showed that MaggotTracker is an efficient tool for automatic phenotyping. The MaggotTracker software as well as the data presented here can be downloaded from our open-access site www.WormLoco.org/Mag.
Collapse
|
19
|
Singh K, Ju JY, Walsh MB, DiIorio MA, Hart AC. Deep conservation of genes required for both Drosphila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signaling. Sleep 2014; 37:1439-51. [PMID: 25142568 DOI: 10.5665/sleep.3990] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Cross-species conservation of sleep-like behaviors predicts the presence of conserved molecular mechanisms underlying sleep. However, limited experimental evidence of conservation exists. Here, this prediction is tested directly. MEASUREMENTS AND RESULTS During lethargus, Caenorhabditis elegans spontaneously sleep in short bouts that are interspersed with bouts of spontaneous locomotion. We identified 26 genes required for Drosophila melanogaster sleep. Twenty orthologous C. elegans genes were selected based on similarity. Their effect on C. elegans sleep and arousal during the last larval lethargus was assessed. The 20 most similar genes altered both the quantity of sleep and arousal thresholds. In 18 cases, the direction of change was concordant with Drosophila studies published previously. Additionally, we delineated a conserved genetic pathway by which dopamine regulates sleep and arousal. In C. elegans neurons, G-alpha S, adenylyl cyclase, and protein kinase A act downstream of D1 dopamine receptors to regulate these behaviors. Finally, a quantitative analysis of genes examined herein revealed that C. elegans arousal thresholds were directly correlated with amount of sleep during lethargus. However, bout duration varies little and was not correlated with arousal thresholds. CONCLUSIONS The comprehensive analysis presented here suggests that conserved genes and pathways are required for sleep in invertebrates and, likely, across the entire animal kingdom. The genetic pathway delineated in this study implicates G-alpha S and previously known genes downstream of dopamine signaling in sleep. Quantitative analysis of various components of quiescence suggests that interdependent or identical cellular and molecular mechanisms are likely to regulate both arousal and sleep entry.
Collapse
|
20
|
Regulation of synaptic nlg-1/neuroligin abundance by the skn-1/Nrf stress response pathway protects against oxidative stress. PLoS Genet 2014; 10:e1004100. [PMID: 24453991 PMCID: PMC3894169 DOI: 10.1371/journal.pgen.1004100] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 11/26/2013] [Indexed: 12/30/2022] Open
Abstract
The Nrf family of transcription factors mediates adaptive responses to stress and longevity, but the identities of the crucial Nrf targets, and the tissues in which they function in multicellular organisms to promote survival, are not known. Here, we use whole transcriptome RNA sequencing to identify 810 genes whose expression is controlled by the SKN-1/Nrf2 negative regulator WDR-23 in the nervous system of Caenorhabditis elegans. Among the genes identified is the synaptic cell adhesion molecule nlg-1/neuroligin. We find that the synaptic abundance of NLG-1 protein increases following pharmacological treatments that generate oxidative stress or by the genetic activation of skn-1. Increasing nlg-1 dosage correlates with increased survival in response to oxidative stress, whereas genetic inactivation of nlg-1 reduces survival and impairs skn-1-mediated stress resistance. We identify a canonical SKN-1 binding site in the nlg-1 promoter that binds to SKN-1 in vitro and is necessary for SKN-1 and toxin-mediated increases in nlg-1 expression in vivo. Together, our results suggest that SKN-1 activation in the nervous system can confer protection to organisms in response to stress by directly regulating nlg-1/neuroligin expression.
Collapse
|
21
|
An organelle gatekeeper function for Caenorhabditis elegans UNC-16 (JIP3) at the axon initial segment. Genetics 2013; 194:143-61. [PMID: 23633144 DOI: 10.1534/genetics.112.147348] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Neurons must cope with extreme membrane trafficking demands to produce axons with organelle compositions that differ dramatically from those of the cell soma and dendrites; however, the mechanism by which they accomplish this is not understood. Here we use electron microscopy and quantitative imaging of tagged organelles to show that Caenorhabditis elegans axons lacking UNC-16 (JIP3/Sunday Driver) accumulate Golgi, endosomes, and lysosomes at levels up to 10-fold higher than wild type, while ER membranes are largely unaffected. Time lapse microscopy of tagged lysosomes in living animals and an analysis of lysosome distributions in various regions of unc-16 mutant axons revealed that UNC-16 inhibits organelles from escaping the axon initial segment (AIS) and moving to the distal synaptic part of the axon. Immunostaining of native UNC-16 in C. elegans neurons revealed a localized concentration of UNC-16 at the initial segment, although UNC-16 is also sparsely distributed in distal regions of axons, including the synaptic region. Organelles that escape the AIS in unc-16 mutants show bidirectional active transport within the axon commissure that occasionally deposits them in the synaptic region, where their mobility decreases and they accumulate. These results argue against the long-standing, untested hypothesis that JIP3/Sunday Driver promotes anterograde organelle transport in axons and instead suggest an organelle gatekeeper model in which UNC-16 (JIP3/Sunday Driver) selectively inhibits the escape of Golgi and endosomal organelles from the AIS. This is the first evidence for an organelle gatekeeper function at the AIS, which could provide a regulatory node for controlling axon organelle composition.
Collapse
|
22
|
Cao P, Sun W, Kramp K, Zheng M, Salom D, Jastrzebska B, Jin H, Palczewski K, Feng Z. Light-sensitive coupling of rhodopsin and melanopsin to G(i/o) and G(q) signal transduction in Caenorhabditis elegans. FASEB J 2011; 26:480-91. [PMID: 22090313 DOI: 10.1096/fj.11-197798] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activation of G-protein-coupled receptors (GPCRs) initiates signal transduction cascades that affect many physiological responses. The worm Caenorhabditis elegans expresses >1000 of these receptors along with their cognate heterotrimeric G proteins. Here, we report properties of 9-cis-retinal regenerated bovine opsin [(b)isoRho] and human melanopsin [(h)Mo], two light-activated, heterologously expressed GPCRs in the nervous system of C. elegans with various genetically engineered alterations. Profound transient photoactivation of G(i/o) signaling by (b)isoRho led to a sudden and transient loss of worm motility dependent on cyclic adenosine monophosphate, whereas transient photoactivation of G(q) signaling by (h)Mo enhanced worm locomotion dependent on phospholipase Cβ. These transgenic C. elegans models provide a unique way to study the consequences of G(i/o) and G(q) signaling in vivo with temporal and spatial precision and, by analogy, their relationship to human neuromotor function.
Collapse
Affiliation(s)
- Pengxiu Cao
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
RIC8 is a guanine-nucleotide exchange factor for Galpha subunits that regulates growth and development in Neurospora crassa. Genetics 2011; 189:165-76. [PMID: 21750256 DOI: 10.1534/genetics.111.129270] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heterotrimeric (αβγ) G proteins are crucial components of eukaryotic signal transduction pathways. G-protein-coupled receptors (GPCRs) act as guanine nucleotide exchange factors (GEFs) for Gα subunits. Recently, facilitated GDP/GTP exchange by non-GPCR GEFs, such as RIC8, has emerged as an important mechanism for Gα regulation in animals. RIC8 is present in animals and filamentous fungi, such as the model eukaryote Neurospora crassa, but is absent from the genomes of baker's yeast and plants. In Neurospora, deletion of ric8 leads to profound defects in growth and asexual and sexual development, similar to those observed for a mutant lacking the Gα genes gna-1 and gna-3. In addition, constitutively activated alleles of gna-1 and gna-3 rescue many defects of Δric8 mutants. Similar to reports in Drosophila, Neurospora Δric8 strains have greatly reduced levels of G-protein subunits. Effects on cAMP signaling are suggested by low levels of adenylyl cyclase protein in Δric8 mutants and suppression of Δric8 by a mutation in the protein kinase A regulatory subunit. RIC8 acts as a GEF for GNA-1 and GNA-3 in vitro, with the strongest effect on GNA-3. Our results support a role for RIC8 in regulating GNA-1 and GNA-3 in Neurospora.
Collapse
|
24
|
Francis SH, Blount MA, Corbin JD. Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions. Physiol Rev 2011; 91:651-90. [DOI: 10.1152/physrev.00030.2010] [Citation(s) in RCA: 451] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The superfamily of cyclic nucleotide (cN) phosphodiesterases (PDEs) is comprised of 11 families of enzymes. PDEs break down cAMP and/or cGMP and are major determinants of cellular cN levels and, consequently, the actions of cN-signaling pathways. PDEs exhibit a range of catalytic efficiencies for breakdown of cAMP and/or cGMP and are regulated by myriad processes including phosphorylation, cN binding to allosteric GAF domains, changes in expression levels, interaction with regulatory or anchoring proteins, and reversible translocation among subcellular compartments. Selective PDE inhibitors are currently in clinical use for treatment of erectile dysfunction, pulmonary hypertension, intermittent claudication, and chronic pulmonary obstructive disease; many new inhibitors are being developed for treatment of these and other maladies. Recently reported x-ray crystallographic structures have defined features that provide for specificity for cAMP or cGMP in PDE catalytic sites or their GAF domains, as well as mechanisms involved in catalysis, oligomerization, autoinhibition, and interactions with inhibitors. In addition, major advances have been made in understanding the physiological impact and the biochemical basis for selective localization and/or recruitment of specific PDE isoenzymes to particular subcellular compartments. The many recent advances in understanding PDE structures, functions, and physiological actions are discussed in this review.
Collapse
Affiliation(s)
- Sharron H. Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Mitsi A. Blount
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| | - Jackie D. Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and Department of Medicine-Renal Division, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
25
|
Zhang S, Jin W, Huang Y, Su W, Yang J, Feng Z. Profiling a Caenorhabditis elegans behavioral parametric dataset with a supervised K-means clustering algorithm identifies genetic networks regulating locomotion. J Neurosci Methods 2011; 197:315-23. [PMID: 21376755 DOI: 10.1016/j.jneumeth.2011.02.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 02/11/2011] [Accepted: 02/17/2011] [Indexed: 12/11/2022]
Abstract
Defining genetic networks underlying animal behavior in a high throughput manner is an important but challenging task that has not yet been achieved for any organism. Using Caenorhabditis elegans, we collected quantitative parametric data related to various aspects of locomotion from wild type and 31 mutant worm strains with single mutations in genes functioning in sensory reception, neurotransmission, G-protein signaling, neuromuscular control or other facets of motor regulation. We applied unsupervised and constrained K-means clustering algorithms to the data and found that the genes that clustered together due to the behavioral similarity of their mutants encoded proteins in the same signaling networks. This approach provides a framework to identify genes and genetic networks underlying worm neuromotor function in a high-throughput manner. A publicly accessible database harboring the visual and quantitative behavioral data collected in this study adds valuable information to the rapidly growing C. elegans databanks that can be employed in a similar context.
Collapse
Affiliation(s)
- Shijie Zhang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | | | | | | | | | | |
Collapse
|
26
|
Weissenberger S, Schultheis C, Liewald JF, Erbguth K, Nagel G, Gottschalk A. PACα--an optogenetic tool for in vivo manipulation of cellular cAMP levels, neurotransmitter release, and behavior in Caenorhabditis elegans. J Neurochem 2011; 116:616-25. [PMID: 21166803 DOI: 10.1111/j.1471-4159.2010.07148.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photoactivated adenylyl cyclase α (PACα) was originally isolated from the flagellate Euglena gracilis. Following stimulation by blue light it causes a rapid increase in cAMP levels. In the present study, we expressed PACα in cholinergic neurons of Caenorhabditis elegans. Photoactivation led to a rise in swimming frequency, speed of locomotion, and a decrease in the number of backward locomotion episodes. The extent of the light-induced behavioral effects was dependent on the amount of PACα that was expressed. Furthermore, electrophysiological recordings from body wall muscle cells revealed an increase in miniature post-synaptic currents during light stimulation. We conclude that the observed effects were caused by cAMP synthesis because of photoactivation of pre-synaptic PACα which subsequently triggered acetylcholine release at the neuromuscular junction. Our results demonstrate that PACα can be used as an optogenetic tool in C. elegans for straightforward in vivo manipulation of intracellular cAMP levels by light, with good temporal control and high cell specificity. Thus, using PACα allows manipulation of neurotransmitter release and behavior by directly affecting intracellular signaling.
Collapse
Affiliation(s)
- Simone Weissenberger
- Department of Biochemistry, Chemistry, and Pharmacy, Institute of Biochemistry, Goethe-University, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Gurney ME, Burgin AB, Magnusson OT, Stewart LJ. Small molecule allosteric modulators of phosphodiesterase 4. Handb Exp Pharmacol 2011:167-92. [PMID: 21695640 DOI: 10.1007/978-3-642-17969-3_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors have shown benefit in human clinical trials but dosing is limited by tolerability, particularly because of emesis. Novel cocrystal structures of PDE4 catalytic units with their regulatory domains together with bound inhibitors have revealed three different PDE4 conformers that can be exploited in the design of novel therapeutic agents. The first is an open conformer, which has been employed in the traditional approach to the design of competitive PDE4 inhibitors. The second is an asymmetric dimer in which a UCR2 regulatory helix from one monomer is placed in a closed conformation over the opposite active site in the PDE4 dimer (trans-capping). Only one active site can be closed by an inhibitor at a time with the consequence that compounds exploiting this conformer only partially inhibit PDE4 enzymatic activity while retaining potency in cellular and in vivo models. By placing an intrinsic ceiling on the magnitude of PDE4 inhibition, such compounds may better maintain spatial and temporal patterning of signaling in cAMP microdomains with consequent improved tolerability. The third is a symmetric PDE4 conformer in which helices from the C-terminal portion of the catalytic unit cap both active sites (cis-capping). We propose that dual-gating of PDE4 activity may be further fine tuned by accessory proteins that recognize open or closed conformers of PDE4 regulatory helices.
Collapse
|
28
|
Abstract
hid-1 was originally identified as a Caenorhabditis elegans gene encoding a novel conserved protein that regulates the decision to enter into the enduring dauer larval stage. We isolated a novel allele of hid-1 in a forward genetic screen for mutants mislocalizing RBF-1 rabphilin, a RAB-27 effector. Here we demonstrate that HID-1 functions in the nervous system to regulate neuromuscular signaling and in the intestine to regulate the defecation motor program. We further show that a conserved N-terminal myristoylated motif of both invertebrate and vertebrate HID-1 is essential for its association with intracellular membranes in nematodes and PC12 cells. C. elegans neuronal HID-1 resides on intracellular membranes in neuronal cell somas; however, the kinesin UNC-104 also transports HID-1 to synaptic regions. HID-1 accumulates in the axons of unc-13 and unc-31 mutants, suggesting it is associated with neurosecretory vesicles. Consistent with this, genetic studies place HID-1 in a peptidergic signaling pathway. Finally, a hid-1 null mutation reduces the levels of endogenous neuropeptides and alters the secretion of fluorescent-tagged cargos derived from neuronal and intestinal dense core vesicles (DCVs). Taken together, our findings indicate that HID-1 is a novel component of a DCV-based neurosecretory pathway and that it regulates one or more aspects of the biogenesis, maturation, or trafficking of DCVs.
Collapse
|
29
|
Evolutionarily conserved role of calcineurin in phosphodegron-dependent degradation of phosphodiesterase 4D. Mol Cell Biol 2010; 30:4379-90. [PMID: 20647544 DOI: 10.1128/mcb.01193-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Calcineurin is a widely expressed and highly conserved Ser/Thr phosphatase. Calcineurin is inhibited by the immunosuppressant drug cyclosporine A (CsA) or tacrolimus (FK506). The critical role of CsA/FK506 as an immunosuppressant following transplantation surgery provides a strong incentive to understand the phosphatase calcineurin. Here we uncover a novel regulatory pathway for cyclic AMP (cAMP) signaling by the phosphatase calcineurin which is also evolutionarily conserved in Caenorhabditis elegans. We found that calcineurin binds directly to and inhibits the proteosomal degradation of cAMP-hydrolyzing phosphodiesterase 4D (PDE4D). We show that ubiquitin conjugation and proteosomal degradation of PDE4D are controlled by a cullin 1-containing E(3) ubiquitin ligase complex upon dual phosphorylation by casein kinase 1 (CK1) and glycogen synthase kinase 3beta (GSK3beta) in a phosphodegron motif. Our findings identify a novel signaling process governing G-protein-coupled cAMP signal transduction-opposing actions of the phosphatase calcineurin and the CK1/GSK3beta protein kinases on the phosphodegron-dependent degradation of PDE4D. This novel signaling system also provides unique functional insights into the complications elicited by CsA in transplant patients.
Collapse
|
30
|
Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J Neurosci 2010; 30:3175-83. [PMID: 20203177 PMCID: PMC2921707 DOI: 10.1523/jneurosci.5464-09.2010] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Axons of adult Caenorhabditis elegans neurons undergo robust regenerative growth after laser axotomy. Here we show that axotomy of PLM sensory neurons triggers axonal calcium waves whose amplitude correlates with the extent of regeneration. Genetic elevation of Ca(2+) or cAMP accelerates formation of a growth cone from the injured axon. Elevated Ca(2+) or cAMP also facilitates apparent fusion of axonal fragments and promotes branching to postsynaptic targets. Conversely, inhibition of voltage-gated calcium channels or calcium release from internal stores reduces regenerative growth. We identify the fusogen EFF-1 as critical for axon fragment fusion and the basic leucine zipper domain (bZip) protein CREB (cAMP response element-binding protein) as a key effector for branching. The effects of elevated Ca(2+) or cAMP on regrowth require the MAPKKK (mitogen-activated protein kinase kinase kinase) DLK-1. Increased cAMP signaling can partly bypass the requirement for the bZip protein CEBP-1, a downstream factor of the DLK-1 kinase cascade. These findings reveal the relationship between Ca(2+)/cAMP signaling and the DLK-1 MAPK (mitogen-activated protein kinase) cascade in regeneration.
Collapse
|
31
|
Edwards SL, Charlie NK, Richmond JE, Hegermann J, Eimer S, Miller KG. Impaired dense core vesicle maturation in Caenorhabditis elegans mutants lacking Rab2. ACTA ACUST UNITED AC 2009; 186:881-95. [PMID: 19797080 PMCID: PMC2753164 DOI: 10.1083/jcb.200902095] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Uncoordinated movement in Rab2 mutants is caused by impaired retention of cargo on dense core vesicles, not by defective synaptic vesicle release. (Also see the companion article by Sumakovic et al. in this issue.) Despite a key role for dense core vesicles (DCVs) in neuronal function, there are major gaps in our understanding of DCV biogenesis. A genetic screen for Caenorhabditis elegans mutants with behavioral defects consistent with impaired DCV function yielded five mutations in UNC-108 (Rab2). A genetic analysis showed that unc-108 mutations impair a DCV function unrelated to neuropeptide release that, together with neuropeptide release, fully accounts for the role of DCVs in locomotion. An electron microscopy analysis of DCVs in unc-108 mutants, coupled with quantitative imaging of DCV cargo proteins, revealed that Rab2 acts in cell somas during DCV maturation to prevent the loss of soluble and membrane cargo. In Rab2 null mutants, two thirds of these cargoes move to early endosomes via a PI(3)P-dependent trafficking pathway, whereas aggregated neuropeptides are unaffected. These results reveal how neurons solve a challenging trafficking problem using the most highly conserved animal Rab.
Collapse
Affiliation(s)
- Stacey L Edwards
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
32
|
Cho JH, Song HO, Singaravelu G, Sung H, Oh WC, Kwon S, Kim DH, Ahnn J. Pleiotropic roles of calumenin (calu-1), a calcium-binding ER luminal protein, inCaenorhabditis elegans. FEBS Lett 2009; 583:3050-6. [DOI: 10.1016/j.febslet.2009.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/11/2009] [Accepted: 08/13/2009] [Indexed: 11/29/2022]
|
33
|
Perez-Mansilla B, Nurrish S. A network of G-protein signaling pathways control neuronal activity in C. elegans. ADVANCES IN GENETICS 2009; 65:145-192. [PMID: 19615533 DOI: 10.1016/s0065-2660(09)65004-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Caenorhabditis elegans neuromuscular junction (NMJ) is one of the best studied synapses in any organism. A variety of genetic screens have identified genes required both for the essential steps of neurotransmitter release from motorneurons as well as the signaling pathways that regulate rates of neurotransmitter release. A number of these regulatory genes encode proteins that converge to regulate neurotransmitter release. In other cases genes are known to regulate signaling at the NMJ but how they act remains unknown. Many of the proteins that regulate activity at the NMJ participate in a network of heterotrimeric G-protein signaling pathways controlling the release of synaptic vesicles and/or dense-core vesicles (DCVs). At least four heterotrimeric G-proteins (Galphaq, Galpha12, Galphao, and Galphas) act within the motorneurons to control the activity of the NMJ. The Galphaq, Galpha12, and Galphao pathways converge to control production and destruction of the lipid-bound second messenger diacylglycerol (DAG) at sites of neurotransmitter release. DAG acts via at least two effectors, MUNC13 and PKC, to control the release of both neurotransmitters and neuropeptides from motorneurons. The Galphas pathway converges with the other three heterotrimeric G-protein pathways downstream of DAG to regulate neuropeptide release. Released neurotransmitters and neuropeptides then act to control contraction of the body-wall muscles to control locomotion. The lipids and proteins involved in these networks are conserved between C. elegans and mammals. Thus, the C. elegans NMJ acts as a model synapse to understand how neuronal activity in the human brain is regulated.
Collapse
Affiliation(s)
- Borja Perez-Mansilla
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Stephen Nurrish
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
34
|
van der Linden AM, Wiener S, You YJ, Kim K, Avery L, Sengupta P. The EGL-4 PKG acts with KIN-29 salt-inducible kinase and protein kinase A to regulate chemoreceptor gene expression and sensory behaviors in Caenorhabditis elegans. Genetics 2008; 180:1475-91. [PMID: 18832350 PMCID: PMC2581950 DOI: 10.1534/genetics.108.094771] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 09/15/2008] [Indexed: 11/18/2022] Open
Abstract
The regulation of chemoreceptor (CR) gene expression by environmental signals and internal cues may contribute to the modulation of multiple physiological processes and behavior in Caenorhabditis elegans. We previously showed that KIN-29, a homolog of salt-inducible kinase, acts in sensory neurons to regulate the expression of a subset of CR genes, as well as sensory behaviors. Here we show that the cGMP-dependent protein kinase EGL-4 acts partly in parallel with KIN-29 to regulate CR gene expression. Sensory inputs inhibit both EGL-4 and KIN-29 functions, and KIN-29 function is inhibited in turn by cAMP-dependent protein kinase (PKA) activation. EGL-4 and KIN-29 regulate CR gene expression by antagonizing the gene repression functions of the class II HDAC HDA-4 and the MEF-2 transcription factor, and KIN-29, EGL-4, and PKA target distinct residues in HDA-4 to regulate its function and subcellular localization. While KIN-29 acts primarily via MEF-2/HDA-4 to regulate additional sensory signal-regulated physiological processes and behaviors, EGL-4 acts via both MEF-2-dependent and -independent pathways. Our results suggest that integration of complex sensory inputs via multiple signaling pathways allows animals to precisely regulate sensory gene expression, thereby appropriately modulating physiology and behavior.
Collapse
|
35
|
Edwards SL, Charlie NK, Milfort MC, Brown BS, Gravlin CN, Knecht JE, Miller KG. A novel molecular solution for ultraviolet light detection in Caenorhabditis elegans. PLoS Biol 2008; 6:e198. [PMID: 18687026 PMCID: PMC2494560 DOI: 10.1371/journal.pbio.0060198] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Accepted: 07/09/2008] [Indexed: 11/19/2022] Open
Abstract
For many organisms the ability to transduce light into cellular signals is crucial for survival. Light stimulates DNA repair and metabolism changes in bacteria, avoidance responses in single-cell organisms, attraction responses in plants, and both visual and nonvisual perception in animals. Despite these widely differing responses, in all of nature there are only six known families of proteins that can transduce light. Although the roundworm Caenorhabditis elegans has none of the known light transduction systems, we show here that C. elegans strongly accelerates its locomotion in response to blue or shorter wavelengths of light, with maximal responsiveness to ultraviolet light. Our data suggest that C. elegans uses this light response to escape the lethal doses of sunlight that permeate its habitat. Short-wavelength light drives locomotion by bypassing two critical signals, cyclic adenosine monophosphate (cAMP) and diacylglycerol (DAG), that neurons use to shape and control behaviors. C. elegans mutants lacking these signals are paralyzed and unresponsive to harsh physical stimuli in ambient light, but short-wavelength light rapidly rescues their paralysis and restores normal levels of coordinated locomotion. This light response is mediated by LITE-1, a novel ultraviolet light receptor that acts in neurons and is a member of the invertebrate Gustatory receptor (Gr) family. Heterologous expression of the receptor in muscle cells is sufficient to confer light responsiveness on cells that are normally unresponsive to light. Our results reveal a novel molecular solution for ultraviolet light detection and an unusual sensory modality in C. elegans that is unlike any previously described light response in any organism.
Collapse
Affiliation(s)
- Stacey L Edwards
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Nicole K Charlie
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Marie C Milfort
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Brandon S Brown
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Christen N Gravlin
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Jamie E Knecht
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Kenneth G Miller
- Genetic Models of Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You YJ, Sundaram MV, Pack AI. Lethargus is a Caenorhabditis elegans sleep-like state. Nature 2008; 451:569-72. [PMID: 18185515 DOI: 10.1038/nature06535] [Citation(s) in RCA: 348] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 12/13/2007] [Indexed: 11/10/2022]
Abstract
There are fundamental similarities between sleep in mammals and quiescence in the arthropod Drosophila melanogaster, suggesting that sleep-like states are evolutionarily ancient. The nematode Caenorhabditis elegans also has a quiescent behavioural state during a period called lethargus, which occurs before each of the four moults. Like sleep, lethargus maintains a constant temporal relationship with the expression of the C. elegans Period homologue LIN-42 (ref. 5). Here we show that quiescence associated with lethargus has the additional sleep-like properties of reversibility, reduced responsiveness and homeostasis. We identify the cGMP-dependent protein kinase (PKG) gene egl-4 as a regulator of sleep-like behaviour, and show that egl-4 functions in sensory neurons to promote the C. elegans sleep-like state. Conserved effects on sleep-like behaviour of homologous genes in C. elegans and Drosophila suggest a common genetic regulation of sleep-like states in arthropods and nematodes. Our results indicate that C. elegans is a suitable model system for the study of sleep regulation. The association of this C. elegans sleep-like state with developmental changes that occur with larval moults suggests that sleep may have evolved to allow for developmental changes.
Collapse
Affiliation(s)
- David M Raizen
- Center for Sleep and Respiratory Neurobiology, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Mahoney TR, Luo S, Nonet ML. Analysis of synaptic transmission in Caenorhabditis elegans using an aldicarb-sensitivity assay. Nat Protoc 2007; 1:1772-7. [PMID: 17487159 DOI: 10.1038/nprot.2006.281] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Caenorhabditis elegans has emerged as a powerful model system for studying the biology of the synapse. Here we describe a widely used assay for synaptic transmission at the C. elegans neuromuscular junction. This protocol monitors the sensitivity of C. elegans to the paralyzing affects of an acetylcholinesterase inhibitor, aldicarb. Briefly, adult worms are incubated in the presence of aldicarb and scored for the time-course of aldicarb-induced paralysis. Animals harboring mutations in genes that affect synaptic transmission generally exhibit a change in their sensitivity to aldicarb (either increased sensitivity for enhancements in synaptic transmission or decreased sensitivity for blockage in synaptic transmission). This technique provides a simple assay for the accurate comparative analysis of synaptic transmission in multiple C. elegans strains. The protocol described can be performed relatively quickly and is a practical alternative to other techniques used to study synaptic transmission. This protocol can also be modified to follow the paralytic effects with other pharmacological reagents. The assay can be performed in about 3-6 hours depending on the severity of synaptic transmission defects.
Collapse
Affiliation(s)
- Timothy R Mahoney
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
38
|
Williams SL, Lutz S, Charlie NK, Vettel C, Ailion M, Coco C, Tesmer JJG, Jorgensen EM, Wieland T, Miller KG. Trio's Rho-specific GEF domain is the missing Galpha q effector in C. elegans. Genes Dev 2007; 21:2731-46. [PMID: 17942708 DOI: 10.1101/gad.1592007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The Galpha(q) pathway is essential for animal life and is a central pathway for driving locomotion, egg laying, and growth in Caenorhabditis elegans, where it exerts its effects through EGL-8 (phospholipase Cbeta [PLCbeta]) and at least one other effector. To find the missing effector, we performed forward genetic screens to suppress the slow growth and hyperactive behaviors of mutants with an overactive Galpha(q) pathway. Four suppressor mutations disrupted the Rho-specific guanine-nucleotide exchange factor (GEF) domain of UNC-73 (Trio). The mutations produce defects in neuronal function, but not neuronal development, that cause sluggish locomotion similar to animals lacking EGL-8 (PLCbeta). Strains containing null mutations in both EGL-8 (PLCbeta) and UNC-73 (Trio RhoGEF) have strong synthetic phenotypes that phenocopy the arrested growth and near-complete paralysis of Galpha(q)-null mutants. Using cell-based and biochemical assays, we show that activated C. elegans Galpha(q) synergizes with Trio RhoGEF to activate RhoA. Activated Galpha(q) and Trio RhoGEF appear to be part of a signaling complex, because they coimmunoprecipitate when expressed together in cells. Our results show that Trio's Rho-specific GEF domain is a major Galpha(q) effector that, together with PLCbeta, mediates the Galpha(q) signaling that drives the locomotion, egg laying, and growth of the animal.
Collapse
Affiliation(s)
- Stacey L Williams
- Program in Molecular, Cell, and Developmental Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Weimer RM, Gracheva EO, Meyrignac O, Miller KG, Richmond JE, Bessereau JL. UNC-13 and UNC-10/rim localize synaptic vesicles to specific membrane domains. J Neurosci 2006; 26:8040-7. [PMID: 16885217 PMCID: PMC3874421 DOI: 10.1523/jneurosci.2350-06.2006] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic vesicles undergo a maturation step, termed priming, in which they become competent to fuse with the plasma membrane. To morphologically define the site of vesicle priming and identify fusion-competent synaptic vesicles, we combined a rapid physical-fixation technique with immunogold staining and high-resolution morphometric analysis at Caenorhabditis elegans neuromuscular junctions. In these presynaptic terminals, a subset of synaptic vesicles contact the plasma membrane within approximately 100 nm of a presynaptic dense projection. UNC-13, a protein required for vesicle priming, localizes to this same region of the plasma membrane. In an unc-13 null mutant, few synaptic vesicles contact the plasma membrane, suggesting that membrane-contacting synaptic vesicles represent the morphological correlates of primed vesicles. Interestingly, a subpopulation of membrane-contacting vesicles, located within 30 nm of a dense projection, are unperturbed in unc-13 mutants. We show that UNC-10/Rim, a protein implicated in presynaptic plasticity, localizes to dense projections and that loss of UNC-10/Rim causes an UNC-13-independent reduction in membrane-contacting synaptic vesicles within 30 nm of the dense projections. Our data together identify a discrete domain for vesicle priming within 100 nm of dense projections and further suggest that UNC-10/Rim and UNC-13 separately contribute to the membrane localization of synaptic vesicles within this domain.
Collapse
|
40
|
Seifert M, Schmidt E, Baumeister R. The genetics of synapse formation and function in Caenorhabditis elegans. Cell Tissue Res 2006; 326:273-85. [PMID: 16896949 DOI: 10.1007/s00441-006-0277-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 06/08/2006] [Indexed: 01/17/2023]
Abstract
The aim of this review is to introduce the reader to Caenorhabditis elegans as a model system, especially with respect to studies of synapse formation and function. We begin by giving a short description of the structure of the nervous system of C. elegans. As most of the findings that are reviewed here have emerged from studies of neuromuscular junctions (NMJs), two prominent NMJs of C. elegans will be outlined briefly. In addition, we summarize new findings that have added to our understanding of NMJs during the last few years.
Collapse
Affiliation(s)
- Mark Seifert
- Bio 3, Bioinformatics and Molecular Genetics, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg (Brsg.), Germany
| | | | | |
Collapse
|