1
|
Parmar S, Gharat SA, Tagirasa R, Chandra T, Behera L, Dash SK, Shaw BP. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS One 2020; 15:e0230958. [PMID: 32294092 PMCID: PMC7159242 DOI: 10.1371/journal.pone.0230958] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.
Collapse
Affiliation(s)
- Shaifaly Parmar
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sachin Ashruba Gharat
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ravichandra Tagirasa
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Tilak Chandra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Lambodar Behera
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Sushant Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Esposito S, Barteri F, Casacuberta J, Mirouze M, Carputo D, Aversano R. LTR-TEs abundance, timing and mobility in Solanum commersonii and S. tuberosum genomes following cold-stress conditions. PLANTA 2019; 250:1781-1787. [PMID: 31562541 DOI: 10.1007/s00425-019-03283-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/13/2019] [Indexed: 05/25/2023]
Abstract
Copia/Ale is the youngest lineage in both Solanum tuberosum and S. commersonii. Within it, we identified nightshade, a new LTR element active in the cultivated potato. From an evolutionary perspective, long-terminal repeat retrotransposons (LTR-RT) activity during stress may be viewed as a mean by which organisms can keep up rates of genetic adaptation to changing conditions. Potato is one of the most important crop consumed worldwide, but studies on LTR-RT characterization are still lacking. Here, we assessed the abundance, insertion time and activity of LTR-RTs in both cultivated Solanum tuberosum and its cold-tolerant wild relative S. commersonii genomes. Gypsy elements were more abundant than Copia ones, suggesting that the former was somehow more successful in colonizing potato genomes. However, Copia elements, and in particular, the Ale lineage, are younger than Gypsy ones, since their insertion time was in average ~ 2 Mya. Due to the ability of LTR-RTs to be circularized by the host DNA repair mechanisms, we identified via mobilome-seq a Copia/Ale element (called nightshade, informal name used for potato family) active in S. tuberosum genome. Our analyses represent a valuable resource for comparative genomics within the Solanaceae, transposon-tagging and for the design of cultivar-specific molecular markers in potato.
Collapse
Affiliation(s)
- Salvatore Esposito
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Fabio Barteri
- Center for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas-Institut de Recerca i Tecnologia Agroalimentàries-Universitat Autònoma de Barcelona, Universitat de Barcelona, Campus Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Marie Mirouze
- Institut de Recherche pour le Développement, IRD DIADE, Université de Perpignan, Plant Genome and Development Laboratory, Perpignan, France
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy.
| |
Collapse
|
3
|
Benoit M, Drost HG, Catoni M, Gouil Q, Lopez-Gomollon S, Baulcombe D, Paszkowski J. Environmental and epigenetic regulation of Rider retrotransposons in tomato. PLoS Genet 2019; 15:e1008370. [PMID: 31525177 PMCID: PMC6762207 DOI: 10.1371/journal.pgen.1008370] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/26/2019] [Accepted: 08/14/2019] [Indexed: 11/18/2022] Open
Abstract
Transposable elements in crop plants are the powerful drivers of phenotypic variation that has been selected during domestication and breeding programs. In tomato, transpositions of the LTR (long terminal repeat) retrotransposon family Rider have contributed to various phenotypes of agronomical interest, such as fruit shape and colour. However, the mechanisms regulating Rider activity are largely unknown. We have developed a bioinformatics pipeline for the functional annotation of retrotransposons containing LTRs and defined all full-length Rider elements in the tomato genome. Subsequently, we showed that accumulation of Rider transcripts and transposition intermediates in the form of extrachromosomal DNA is triggered by drought stress and relies on abscisic acid signalling. We provide evidence that residual activity of Rider is controlled by epigenetic mechanisms involving siRNAs and the RNA-dependent DNA methylation pathway. Finally, we demonstrate the broad distribution of Rider-like elements in other plant species, including crops. Our work identifies Rider as an environment-responsive element and a potential source of genetic and epigenetic variation in plants. Transposons are major constituents of plant genomes and represent a powerful source of internal genetic and epigenetic variation. For example, domestication of maize has been facilitated by a dramatic change in plant architecture, the consequence of a transposition event. Insertion of transposons near genes often confers quantitative phenotypic variation linked to changes in transcriptional patterns, as documented for blood oranges and grapes. In tomato, the most widely grown fruit crop and model for fleshy fruit biology, occurrences of several beneficial traits related to fruit shape and plant architecture are due to the activity of the transposon family Rider. While Rider represents a unique endogenous source of genetic and epigenetic variation, mechanisms regulating Rider activity remain unexplored. By achieving experimentally-controlled activation of the Rider family, we shed light on the regulation of these transposons by drought stress, signalling by phytohormones, as well as epigenetic pathways. Furthermore, we reveal the presence of Rider-like elements in other economically important crops such as rapeseed, beetroot and quinoa. This suggests that drought-inducible Rider activation could be further harnessed to generate genetic and epigenetic variation for crop breeding, and highlights the potential of transposon-directed mutagenesis for crop improvement.
Collapse
Affiliation(s)
- Matthias Benoit
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Hajk-Georg Drost
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Marco Catoni
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Quentin Gouil
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sara Lopez-Gomollon
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - David Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Jerzy Paszkowski
- The Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Wang J, Li X, Do Kim K, Scanlon MJ, Jackson SA, Springer NM, Yu J. Genome-wide nucleotide patterns and potential mechanisms of genome divergence following domestication in maize and soybean. Genome Biol 2019; 20:74. [PMID: 31018867 PMCID: PMC6482504 DOI: 10.1186/s13059-019-1683-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 03/28/2019] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Plant domestication provides a unique model to study genome evolution. Many studies have been conducted to examine genes, genetic diversity, genome structure, and epigenome changes associated with domestication. Interestingly, domesticated accessions have significantly higher [A] and [T] values across genome-wide polymorphic sites than accessions sampled from the corresponding progenitor species. However, the relative contributions of different genomic regions to this genome divergence pattern and underlying mechanisms have not been well characterized. RESULTS Here, we investigate the genome-wide base-composition patterns by analyzing millions of SNPs segregating among 100 accessions from a teosinte-maize comparison set and among 302 accessions from a wild-domesticated soybean comparison set. We show that non-genic part of the genome has a greater contribution than genic SNPs to the [AT]-increase observed between wild and domesticated accessions in maize and soybean. The separation between wild and domesticated accessions in [AT] values is significantly enlarged in non-genic and pericentromeric regions. Motif frequency and sequence context analyses show the motifs (PyCG) related to solar-UV signature are enriched in these regions, particularly when they are methylated. Additional analysis using population-private SNPs also implicates the role of these motifs in relatively recent mutations. With base-composition across polymorphic sites as a genome phenotype, genome scans identify a set of putative candidate genes involved in UV damage repair pathways. CONCLUSIONS The [AT]-increase is more pronounced in genomic regions that are non-genic, pericentromeric, transposable elements; methylated; and with low recombination. Our findings establish important links among UV radiation, mutation, DNA repair, methylation, and genome evolution.
Collapse
Affiliation(s)
- Jinyu Wang
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Xianran Li
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| | - Kyung Do Kim
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - Michael J. Scanlon
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA 30602 USA
| | - Nathan M. Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108 USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
5
|
Gaiero P, Vaio M, Peters SA, Schranz ME, de Jong H, Speranza PR. Comparative analysis of repetitive sequences among species from the potato and the tomato clades. ANNALS OF BOTANY 2019; 123:521-532. [PMID: 30346473 PMCID: PMC6377101 DOI: 10.1093/aob/mcy186] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/20/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS The genus Solanum includes important vegetable crops and their wild relatives. Introgression of their useful traits into elite cultivars requires effective recombination between hom(e)ologues, which is partially determined by genome sequence differentiation. In this study we compared the repetitive genome fractions of wild and cultivated species of the potato and tomato clades in a phylogenetic context. METHODS Genome skimming followed by a clustering approach was used as implemented in the RepeatExplorer pipeline. Repeat classes were annotated and the sequences of their main domains were compared. KEY RESULTS Repeat abundance and genome size were correlated and the larger genomes of species in the tomato clade were found to contain a higher proportion of unclassified elements. Families and lineages of repetitive elements were largely conserved between the clades, but their relative proportions differed. The most abundant repeats were Ty3/Gypsy elements. Striking differences in abundance were found in the highly dynamic Ty3/Gypsy Chromoviruses and Ty1/Copia Tork elements. Within the potato clade, early branching Solanum cardiophyllum showed a divergent repeat profile. There were also contrasts between cultivated and wild potatoes, mostly due to satellite amplification in the cultivated species. Interspersed repeat profiles were very similar among potatoes. The repeat profile of Solanum etuberosum was more similar to that of the potato clade. CONCLUSIONS The repeat profiles in Solanum seem to be very similar despite genome differentiation at the level of collinearity. Removal of transposable elements by unequal recombination may have been responsible for structural rearrangements across the tomato clade. Sequence variability in the tomato clade is congruent with clade-specific amplification of repeats after its divergence from S. etuberosum and potatoes. The low differentiation among potato and its wild relatives at the level of interspersed repeats may explain the difficulty in discriminating their genomes by genomic in situ hybridization techniques.
Collapse
Affiliation(s)
- Paola Gaiero
- Laboratory of Genetics, Wageningen University & Research (WUR), Droevendaalsesteeg, PB Wageningen, The Netherlands
- Laboratorio de Evolución y Domesticación de las Plantas, Facultad de Agronomía, Universidad de la República, Garzón, Montevideo, Uruguay
| | - Magdalena Vaio
- Laboratorio de Evolución y Domesticación de las Plantas, Facultad de Agronomía, Universidad de la República, Garzón, Montevideo, Uruguay
| | - Sander A Peters
- Applied Bioinformatics, Department of Bioscience, Wageningen University & Research (WUR), Droevendaalsesteeg, PB Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research (WUR), Droevendaalsesteeg, PB Wageningen, The Netherlands
| | - Hans de Jong
- Laboratory of Genetics, Wageningen University & Research (WUR), Droevendaalsesteeg, PB Wageningen, The Netherlands
| | - Pablo R Speranza
- Laboratorio de Evolución y Domesticación de las Plantas, Facultad de Agronomía, Universidad de la República, Garzón, Montevideo, Uruguay
- For correspondence. E-mail:
| |
Collapse
|
6
|
Carpentier MC, Manfroi E, Wei FJ, Wu HP, Lasserre E, Llauro C, Debladis E, Akakpo R, Hsing YI, Panaud O. Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nat Commun 2019; 10:24. [PMID: 30604755 PMCID: PMC6318337 DOI: 10.1038/s41467-018-07974-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
The recent release of genomic sequences for 3000 rice varieties provides access to the genetic diversity at species level for this crop. We take advantage of this resource to unravel some features of the retrotranspositional landscape of rice. We develop software TRACKPOSON specifically for the detection of transposable elements insertion polymorphisms (TIPs) from large datasets. We apply this tool to 32 families of retrotransposons and identify more than 50,000 TIPs in the 3000 rice genomes. Most polymorphisms are found at very low frequency, suggesting that they may have occurred recently in agro. A genome-wide association study shows that these activations in rice may be triggered by external stimuli, rather than by the alteration of genetic factors involved in transposable element silencing pathways. Finally, the TIPs dataset is used to trace the origin of rice domestication. Our results suggest that rice originated from three distinct domestication events.
Collapse
Affiliation(s)
- Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy., 66860, Perpignan Cedex, France
| | - Ernandes Manfroi
- Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil
| | - Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, 115, Taipei, Taiwan
- Department of Forest Molecular Genetics and Biotechnology, Forestry and Forest Products Research Institute, 1 Matsunosato, Tsukuba, 305-8687, Ibaraki, Japan
| | - Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, 115, Taipei, Taiwan
| | - Eric Lasserre
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy., 66860, Perpignan Cedex, France
| | - Christel Llauro
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy., 66860, Perpignan Cedex, France
| | - Emilie Debladis
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy., 66860, Perpignan Cedex, France
| | - Roland Akakpo
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy., 66860, Perpignan Cedex, France
| | - Yue-Ie Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Section 2, Yien-chu-yuan Road, Nankang, 115, Taipei, Taiwan
| | - Olivier Panaud
- Laboratoire Génome et Développement des Plantes, UMR CNRS/UPVD 5096, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy., 66860, Perpignan Cedex, France.
- Institut Universitaire de France, 1 rue Descartes, 75231, Paris Cedex 05, France.
| |
Collapse
|
7
|
de Haas LS, Koopmans R, Lelivelt CLC, Ursem R, Dirks R, Velikkakam James G. Low-coverage resequencing detects meiotic recombination pattern and features in tomato RILs. DNA Res 2018; 24:549-558. [PMID: 28605512 PMCID: PMC5726486 DOI: 10.1093/dnares/dsx024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 05/18/2017] [Indexed: 12/14/2022] Open
Abstract
Traditional plant breeding relies on meiotic recombination for mixing of parental alleles to create novel allele combinations. Detailed analysis of recombination patterns in model organisms shows that recombination is tightly regulated within the genome, but frequencies vary extensively along chromosomes. Despite being a model organism for fruit developmental studies, high-resolution recombination patterns are lacking in tomato. In this study, we developed a novel methodology to use low-coverage resequencing to identify genome-wide recombination patterns and applied this methodology on 60 tomato Recombinant Inbred Lines (RILs). Our methodology identifies polymorphic markers from the low-coverage resequencing population data and utilizes the same data to locate the recombination breakpoints in individuals by using a variable sliding window. We identified 1,445 recombination sites comprising 112 recombination prone regions enriched for AT-rich DNA motifs. Furthermore, the recombination prone regions in tomato preferably occurred in gene promoters over intergenic regions, an observation consistent with Arabidopsis thaliana, Zea mays and Mimulus guttatus. Overall, our cost effective method and findings enhance the understanding of meiotic recombination in tomato and suggest evolutionarily conserved recombination associated genomic features.
Collapse
Affiliation(s)
- Lars S de Haas
- Rijk Zwaan Breeding B.V., 4793 RS Fijnaart, The Netherlands
| | - Roy Koopmans
- Rijk Zwaan Breeding B.V., 4793 RS Fijnaart, The Netherlands
| | | | - Remco Ursem
- Rijk Zwaan Breeding B.V., 4793 RS Fijnaart, The Netherlands
| | - Rob Dirks
- Rijk Zwaan Breeding B.V., 4793 RS Fijnaart, The Netherlands
| | | |
Collapse
|
8
|
Pérez‐Martín F, Yuste‐Lisbona FJ, Pineda B, Angarita‐Díaz MP, García‐Sogo B, Antón T, Sánchez S, Giménez E, Atarés A, Fernández‐Lozano A, Ortíz‐Atienza A, García‐Alcázar M, Castañeda L, Fonseca R, Capel C, Goergen G, Sánchez J, Quispe JL, Capel J, Angosto T, Moreno V, Lozano R. A collection of enhancer trap insertional mutants for functional genomics in tomato. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1439-1452. [PMID: 28317264 PMCID: PMC5633825 DOI: 10.1111/pbi.12728] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 05/06/2023]
Abstract
With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T-DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T-DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium-mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T-DNA mutants, one of these genes codes for a UTP-glucose-1-phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T-DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy-fruited model species.
Collapse
Affiliation(s)
- Fernando Pérez‐Martín
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | | | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - María Pilar Angarita‐Díaz
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Begoña García‐Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Teresa Antón
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Sibilla Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Estela Giménez
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Antonia Fernández‐Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Ana Ortíz‐Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Manuel García‐Alcázar
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Laura Castañeda
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Rocío Fonseca
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Geraldine Goergen
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge L. Quispe
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| |
Collapse
|
9
|
Ma B, Kuang L, Xin Y, Hou F, He N. Reverse transcriptase sequences from mulberry LTR retrotransposons: characterization analysis. Open Life Sci 2017. [DOI: 10.1515/biol-2017-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractCopia and Gypsy play important roles in structural, functional and evolutionary dynamics of plant genomes. In this study, a total of 106 and 101, Copia and Gypsy reverse transcriptase (rt) were amplified respectively in the Morus notabilis genome using degenerate primers. All sequences exhibited high levels of heterogeneity, were rich in AT and possessed higher sequence divergence of Copia rt in comparison to Gypsy rt. Two reasons are likely to account for this phenomenon: a) these elements often experience deletions or fragmentation by illegitimate or unequal homologous recombination in the transposition process; b) strong purifying selective pressure drives the evolution of these elements through “selective silencing” with random mutation and eventual deletion from the host genome. Interestingly, mulberry rt clustered with other rt from distantly related taxa according to the phylogenetic analysis. This phenomenon did not result from horizontal transposable element transfer. Results obtained from fluorescence in situ hybridization revealed that most of the hybridization signals were preferentially concentrated in pericentromeric and distal regions of chromosomes, and these elements may play important roles in the regions in which they are found. Results of this study support the continued pursuit of further functional studies of Copia and Gypsy in the mulberry genome.
Collapse
Affiliation(s)
- Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Lulu Kuang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Youchao Xin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Fei Hou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
10
|
Gramazio P, Prohens J, Plazas M, Mangino G, Herraiz FJ, Vilanova S. Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background. FRONTIERS IN PLANT SCIENCE 2017; 8:1477. [PMID: 28912788 PMCID: PMC5582342 DOI: 10.3389/fpls.2017.01477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/09/2017] [Indexed: 05/29/2023]
Abstract
Advanced backcrosses (ABs) and introgression lines (ILs) of eggplant (Solanum melongena) can speed up genetics and genomics studies and breeding in this crop. We have developed the first full set of ABs and ILs in eggplant using Solanum incanum, a wild eggplant that has a relatively high tolerance to drought, as a donor parent. The development of these ABs and IL eggplant populations had a low efficiency in the early stages, because of the lack of molecular markers and genomic tools. However, this dramatically improved after performing genotyping-by-sequencing in the first round of selfing, followed by high-resolution-melting single nucleotide polymorphism genotyping in subsequent selection steps. A set of 73 selected ABs covered 99% of the S. incanum genome, while 25 fixed immortal ILs, each carrying a single introgressed fragment in homozygosis, altogether spanned 61.7% of the S. incanum genome. The introgressed size fragment in the ILs contained between 0.1 and 10.9% of the S. incanum genome, with a mean value of 4.3%. Sixty-eight candidate genes involved in drought tolerance were identified in the set of ILs. This first set of ABs and ILs of eggplant will be extremely useful for the genetic dissection of traits of interest for eggplant, and represents an elite material for introduction into the breeding pipelines for developing new eggplant cultivars adapted to the challenges posed by the climate-change scenario.
Collapse
Affiliation(s)
- Pietro Gramazio
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Jaime Prohens
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Mariola Plazas
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de ValènciaValencia, Spain
| | - Giulio Mangino
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Francisco J. Herraiz
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| | - Santiago Vilanova
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de ValènciaValencia, Spain
| |
Collapse
|
11
|
Feitoza L, Costa L, Guerra M. Condensation patterns of prophase/prometaphase chromosome are correlated with H4K5 histone acetylation and genomic DNA contents in plants. PLoS One 2017; 12:e0183341. [PMID: 28854212 PMCID: PMC5576753 DOI: 10.1371/journal.pone.0183341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/02/2017] [Indexed: 02/05/2023] Open
Abstract
Mitotic prophase chromosome condensation plays an essential role in nuclear division being therefore regulated by highly conserved mechanisms. However, degrees of chromatin condensation in prophase-prometaphase cells may vary along the chromosomes resulting in specific condensation patterns. We examined different condensation patterns (CPs) of prophase and prometaphase chromosomes and investigated their relationship with genome size and distribution of histone H4 acetylated at lysine 5 (H4K5ac) in 17 plant species. Our results showed that most species with small genomes (2C < 5 pg) (Arachis pusilla, Bixa orellana, Costus spiralis, Eleutherine bulbosa, Indigofera campestris, Phaseolus lunatus, P. vulgaris, Poncirus trifoliata, and Solanum lycopersicum) displayed prophase chromosomes with late condensing terminal regions that were highly enriched in H4K5ac, and early condensing regions with apparently non-acetylated proximal chromatin. The species with large genomes (Allium cepa, Callisia repens, Araucaria angustifolia and Nothoscordum pulchellum) displayed uniformly condensed and acetylated prophase/prometaphase chromosomes. Three species with small genomes (Eleocharis geniculata, Rhynchospora pubera, and R. tenuis) displayed CP and H4K5ac labeling patterns similar to species with large genomes, whereas a forth species (Emilia sonchifolia) exhibited a gradual chromosome labeling, being more acetylated in the terminal regions and less acetylated in the proximal ones. The nucleolus organizer chromatin was the only chromosomal region that in prometaphase or metaphase could be hyperacetylated, hypoacetylated or non-acetylated, depending on the species. Our data indicate that the CP of a plant chromosome complement is influenced but not exclusively determined by nuclear and chromosomal DNA contents, whereas the CP of individual chromosomes is clearly correlated with H4K5ac distribution.
Collapse
Affiliation(s)
- Lidiane Feitoza
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, PE, Brazil
| | - Lucas Costa
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, PE, Brazil
| | - Marcelo Guerra
- Laboratory of Plant Cytogenetics and Evolution, Department of Botany, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
12
|
Paz RC, Kozaczek ME, Rosli HG, Andino NP, Sanchez-Puerta MV. Diversity, distribution and dynamics of full-length Copia and Gypsy LTR retroelements in Solanum lycopersicum. Genetica 2017; 145:417-430. [PMID: 28776161 DOI: 10.1007/s10709-017-9977-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/26/2017] [Indexed: 12/18/2022]
Abstract
Transposable elements are the most abundant components of plant genomes and can dramatically induce genetic changes and impact genome evolution. In the recently sequenced genome of tomato (Solanum lycopersicum), the estimated fraction of elements corresponding to retrotransposons is nearly 62%. Given that tomato is one of the most important vegetable crop cultivated and consumed worldwide, understanding retrotransposon dynamics can provide insight into its evolution and domestication processes. In this study, we performed a genome-wide in silico search of full-length LTR retroelements in the tomato nuclear genome and annotated 736 full-length Gypsy and Copia retroelements. The dispersion level across the 12 chromosomes, the diversity and tissue-specific expression of those elements were estimated. Phylogenetic analysis based on the retrotranscriptase region revealed the presence of 12 major lineages of LTR retroelements in the tomato genome. We identified 97 families, of which 77 and 20 belong to the superfamilies Copia and Gypsy, respectively. Each retroelement family was characterized according to their element size, relative frequencies and insertion time. These analyses represent a valuable resource for comparative genomics within the Solanaceae, transposon-tagging and for the design of cultivar-specific molecular markers in tomato.
Collapse
Affiliation(s)
- Rosalía Cristina Paz
- CIGEOBIO (FCEFyN, UNSJ/CONICET), Av. Ignacio de la Roza 590 (Oeste), J5402DCS, Rivadavia, San Juan, Argentina.
| | - Melisa Eliana Kozaczek
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - Hernán Guillermo Rosli
- Instituto de Fisiología Vegetal, INFIVE, Universidad Nacional de La Plata, CONICET, La Plata, Buenos Aires, Argentina
| | - Natalia Pilar Andino
- Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, San Juan, Argentina
| | - Maria Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, FCA and FCEN, Almirante Brown 500, M5528AHB, Chacras de Coria, Argentina
| |
Collapse
|
13
|
Two Loci Contribute Epistastically to Heterospecific Pollen Rejection, a Postmating Isolating Barrier Between Species. G3-GENES GENOMES GENETICS 2017; 7:2151-2159. [PMID: 28512086 PMCID: PMC5499124 DOI: 10.1534/g3.117.041673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recognition and rejection of heterospecific male gametes occurs in a broad range of taxa, although the complexity of mechanisms underlying these components of postmating cryptic female choice is poorly understood. In plants, the arena for postmating interactions is the female reproductive tract (pistil), within which heterospecific pollen tube growth can be arrested via active molecular recognition and rejection. Unilateral incompatibility (UI) is one such postmating barrier in which pollen arrest occurs in only one direction of an interspecific cross. We investigated the genetic basis of pistil-side UI between Solanum species, with the specific goal of understanding the role and magnitude of epistasis between UI QTL. Using heterospecific introgression lines (ILs) between Solanum pennellii and S. lycopersicum, we assessed the individual and pairwise effects of three chromosomal regions (ui1.1, ui3.1, and ui12.1) previously associated with interspecific UI among Solanum species. Specifically, we generated double introgression (‘pyramided’) genotypes that combined ui12.1 with each of ui1.1 and ui3.1, and assessed the strength of UI pollen rejection in the pyramided lines, compared to single introgression genotypes. We found that none of the three QTL individually showed UI rejection phenotypes, but lines combining ui3.1 and ui12.1 showed significant pistil-side pollen rejection. Furthermore, double ILs (DILs) that combined different chromosomal regions overlapping ui3.1 differed significantly in their rate of UI, consistent with at least two genetic factors on chromosome three contributing quantitatively to interspecific pollen rejection. Together, our data indicate that loci on both chromosomes 3 and 12 are jointly required for the expression of UI between S. pennellii and S. lycopersicum, suggesting that coordinated molecular interactions among a relatively few loci underlie the expression of this postmating prezygotic barrier. In addition, in conjunction with previous data, at least one of these loci appears to also contribute to conspecific self-incompatibility (SI), consistent with a partially shared genetic basis between inter- and intraspecific mechanisms of postmating prezygotic female choice.
Collapse
|
14
|
Gaiero P, van de Belt J, Vilaró F, Schranz ME, Speranza P, de Jong H. Collinearity between potato (Solanum tuberosum L.) and wild relatives assessed by comparative cytogenetic mapping. Genome 2016; 60:228-240. [PMID: 28169563 DOI: 10.1139/gen-2016-0150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A major bottleneck to introgressive hybridization is the lack of genome collinearity between the donor (alien) genome and the recipient crop genome. Structural differences between the homeologs may create unbalanced segregation of chromosomes or cause linkage drag. To assess large-scale collinearity between potato and two of its wild relatives (Solanum commersonii and Solanum chacoense), we used BAC-FISH mapping of sequences with known positions on the RH potato map. BAC probes could successfully be hybridized to the S. commersonii and S. chachoense pachytene chromosomes, confirming their correspondence with linkage groups in RH potato. Our study shows that the order of BAC signals is conserved. Distances between BAC signals were quantified and compared; some differences found suggest either small-scale rearrangements or reduction/amplification of repeats. We conclude that S. commersonii and S. chacoense are collinear with cultivated Solanum tuberosum on the whole chromosome scale, making these amenable species for efficient introgressive hybridization breeding.
Collapse
Affiliation(s)
- Paola Gaiero
- a Department of Plant Biology, Facultad de Agronomía, Universidad de la República, Garzón 780, PC 12900, Montevideo, Uruguay.,b Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, P.O. Box 16, 6708 PB, Wageningen, the Netherlands
| | - José van de Belt
- b Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, P.O. Box 16, 6708 PB, Wageningen, the Netherlands
| | - Francisco Vilaró
- c Horticulture Unit, National Institute for Agricultural Research, Ruta 48 km 10, Las Brujas, Uruguay
| | - M Eric Schranz
- d Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | - Pablo Speranza
- a Department of Plant Biology, Facultad de Agronomía, Universidad de la República, Garzón 780, PC 12900, Montevideo, Uruguay
| | - Hans de Jong
- b Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, P.O. Box 16, 6708 PB, Wageningen, the Netherlands
| |
Collapse
|
15
|
Ribeiro T, Barrela RM, Bergès H, Marques C, Loureiro J, Morais-Cecílio L, Paiva JAP. Advancing Eucalyptus Genomics: Cytogenomics Reveals Conservation of Eucalyptus Genomes. FRONTIERS IN PLANT SCIENCE 2016; 7:510. [PMID: 27148332 PMCID: PMC4840385 DOI: 10.3389/fpls.2016.00510] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/31/2016] [Indexed: 05/30/2023]
Abstract
The genus Eucalyptus encloses several species with high ecological and economic value, being the subgenus Symphyomyrtus one of the most important. Species such as E. grandis and E. globulus are well characterized at the molecular level but knowledge regarding genome and chromosome organization is very scarce. Here we characterized and compared the karyotypes of three economically important species, E. grandis, E. globulus, and E. calmadulensis, and three with ecological relevance, E. pulverulenta, E. cornuta, and E. occidentalis, through an integrative approach including genome size estimation, fluorochrome banding, rDNA FISH, and BAC landing comprising genes involved in lignin biosynthesis. All karyotypes show a high degree of conservation with pericentromeric 35S and 5S rDNA loci in the first and third pairs, respectively. GC-rich heterochromatin was restricted to the 35S rDNA locus while the AT-rich heterochromatin pattern was species-specific. The slight differences in karyotype formulas and distribution of AT-rich heterochromatin, along with genome sizes estimations, support the idea of Eucalyptus genome evolution by local expansions of heterochromatin clusters. The unusual co-localization of both rDNA with AT-rich heterochromatin was attributed mainly to the presence of silent transposable elements in those loci. The cinnamoyl CoA reductase gene (CCR1) previously assessed to linkage group 10 (LG10) was clearly localized distally at the long arm of chromosome 9 establishing an unexpected correlation between the cytogenetic chromosome 9 and the LG10. Our work is novel and contributes to the understanding of Eucalyptus genome organization which is essential to develop successful advanced breeding strategies for this genus.
Collapse
Affiliation(s)
- Teresa Ribeiro
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of LisbonLisboa, Portugal
| | - Ricardo M. Barrela
- Plant Cell Biotechnology Laboratory, Instituto de Biologia Experimental e TecnológicaOeiras, Portugal
| | - Hélène Bergès
- Institut National de la Recherche Agronomique, Centre National de Ressources Génomiques VégétalesCastanet-Tolosan, France
| | - Cristina Marques
- RAIZ, Instituto de Investigação da Floresta e PapelAveiro, Portugal
| | - João Loureiro
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, University of LisbonLisboa, Portugal
| | - Jorge A. P. Paiva
- Plant Cell Biotechnology Laboratory, Instituto de Biologia Experimental e TecnológicaOeiras, Portugal
- Department of Integrative Plant Biology, Instytut Genetyki Roślin, Polskiej Akademii NaukPoznań, Poland
| |
Collapse
|
16
|
Iwata-Otsubo A, Lin JY, Gill N, Jackson SA. Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis. Chromosome Res 2016; 24:197-216. [PMID: 26758200 PMCID: PMC4856725 DOI: 10.1007/s10577-015-9515-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022]
Abstract
Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies.
Collapse
Affiliation(s)
- Aiko Iwata-Otsubo
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA.,Department of Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Jer-Young Lin
- Department of Agronomy, Purdue University, 170 S. University Street, West Lafayette, IN, USA.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, 90095, USA
| | - Navdeep Gill
- Department of Agronomy, Purdue University, 170 S. University Street, West Lafayette, IN, USA.,Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 111 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
17
|
Cis-acting determinants of paramutation. Semin Cell Dev Biol 2015; 44:22-32. [DOI: 10.1016/j.semcdb.2015.08.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 11/23/2022]
|
18
|
Haggard JE, Johnson EB, St Clair DA. Multiple QTL for horticultural traits and quantitative resistance to Phytophthora infestans linked on Solanum habrochaites chromosome 11. G3 (BETHESDA, MD.) 2014; 5:219-33. [PMID: 25504736 PMCID: PMC4321030 DOI: 10.1534/g3.114.014654] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/06/2014] [Indexed: 11/18/2022]
Abstract
Previously, a Phytophthora infestans resistance QTL from Solanum habrochaites chromosome 11 was introgressed into cultivated tomato (S. lycopersicum). Fine mapping of this resistance QTL using near-isogenic lines (NILs) revealed some co-located QTL with undesirable effects on plant size, canopy density, and fruit size traits. Subsequently, higher-resolution mapping with sub-NILs detected multiple P. infestans resistance QTL within this 9.4-cM region of chromosome 11. In our present study, these same sub-NILs were also evaluated for 17 horticultural traits, including yield, maturity, fruit size and shape, fruit quality, and plant architecture traits in replicated field experiments over 2 years. The horticultural trait QTL originally detected by fine mapping each fractionated into two or more QTL at higher resolution. A total of 34 QTL were detected across all traits, with 14% exhibiting significant QTL × environment interactions (QTL × E). QTL for many traits were co-located, suggesting either pleiotropic effects or tight linkage among genes controlling these traits. Recombination in the pericentromeric region of the introgression between markers TG147 and At4g10050 was suppressed to approximately 29.7 Mbp per cM, relative to the genomewide average of 750 kbp per cM. The genetic architecture of many of the horticultural and P. infestans resistance traits that mapped within this chromosome 11 S. habrochaites region is complex. Complicating factors included fractionation of QTL, pleiotropy or tight linkage of QTL for multiple traits, pericentromeric chromosomal location(s), and/or QTL × E. High-resolution mapping of QTL in this region would be needed to determine which specific target QTL could be useful in breeding cultivated tomato.
Collapse
Affiliation(s)
- J Erron Haggard
- Plant Sciences Department, University of California-Davis, Davis, California 95616
| | - Emily B Johnson
- Plant Sciences Department, University of California-Davis, Davis, California 95616
| | - Dina A St Clair
- Plant Sciences Department, University of California-Davis, Davis, California 95616
| |
Collapse
|
19
|
Xu Y, Du J. Young but not relatively old retrotransposons are preferentially located in gene-rich euchromatic regions in tomato (Solanum lycopersicum) plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:582-91. [PMID: 25182777 DOI: 10.1111/tpj.12656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 05/24/2023]
Abstract
Long terminal repeat (LTR) retrotransposons are the major DNA components of flowering plants. They are generally enriched in pericentromeric heterochromatin regions of their host genomes, which could result from the preferential insertion of LTR retrotransposons and the low effectiveness of purifying selection in these regions. To estimate the relative importance of the actions of these two factors on their distribution pattern, the LTR retrotransposons in Solanum lycopersicum (tomato) plants were characterized at the genome level, and then the distribution of young elements was compared with that of relatively old elements. The current data show that old elements are mainly located in recombination-suppressed heterochromatin regions, and that young elements are preferentially located in the gene-rich euchromatic regions. Further analysis showed a negative correlation between the insertion time of LTR retrotransposons and the recombination rate. The data also showed there to be more solo LTRs in genic regions than in intergenic regions or in regions close to genes. These observations indicate that, unlike in many other plant genomes, the current LTR retrotransposons in tomatoes have a tendency to be preferentially located into euchromatic regions, probably caused by their severe suppression of activities in heterochromatic regions. These elements are apt to be maintained in heterochromatin regions, probably as a consequence of the pericentromeric effect in tomatoes. These results also indicate that local recombination rates and intensities of purifying selection in different genomic regions are largely responsible for structural variation and non-random distribution of LTR retrotransposons in tomato plants.
Collapse
Affiliation(s)
- Yingxiu Xu
- Bioinformatics Group, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Key laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture, Nanjing, 210014, China
| | | |
Collapse
|
20
|
Kim YH, Park HM, Hwang TY, Lee SK, Choi MS, Jho S, Hwang S, Kim HM, Lee D, Kim BC, Hong CP, Cho YS, Kim H, Jeong KH, Seo MJ, Yun HT, Kim SL, Kwon YU, Kim WH, Chun HK, Lim SJ, Shin YA, Choi IY, Kim YS, Yoon HS, Lee SH, Lee S. Variation block-based genomics method for crop plants. BMC Genomics 2014; 15:477. [PMID: 24929792 PMCID: PMC4229737 DOI: 10.1186/1471-2164-15-477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/03/2014] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In contrast with wild species, cultivated crop genomes consist of reshuffled recombination blocks, which occurred by crossing and selection processes. Accordingly, recombination block-based genomics analysis can be an effective approach for the screening of target loci for agricultural traits. RESULTS We propose the variation block method, which is a three-step process for recombination block detection and comparison. The first step is to detect variations by comparing the short-read DNA sequences of the cultivar to the reference genome of the target crop. Next, sequence blocks with variation patterns are examined and defined. The boundaries between the variation-containing sequence blocks are regarded as recombination sites. All the assumed recombination sites in the cultivar set are used to split the genomes, and the resulting sequence regions are termed variation blocks. Finally, the genomes are compared using the variation blocks. The variation block method identified recurring recombination blocks accurately and successfully represented block-level diversities in the publicly available genomes of 31 soybean and 23 rice accessions. The practicality of this approach was demonstrated by the identification of a putative locus determining soybean hilum color. CONCLUSIONS We suggest that the variation block method is an efficient genomics method for the recombination block-level comparison of crop genomes. We expect that this method will facilitate the development of crop genomics by bringing genomics technologies to the field of crop breeding.
Collapse
Affiliation(s)
- Yul Ho Kim
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Hyang Mi Park
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Tae-Young Hwang
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Seuk Ki Lee
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Man Soo Choi
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Sungwoong Jho
- Personal Genomics Institute, Genome Research Foundation, Suwon 443-270, Republic of Korea
| | - Seungwoo Hwang
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 306-809, Republic of Korea
| | - Hak-Min Kim
- Personal Genomics Institute, Genome Research Foundation, Suwon 443-270, Republic of Korea
| | - Dongwoo Lee
- Personal Genomics Institute, Genome Research Foundation, Suwon 443-270, Republic of Korea
| | - Byoung-Chul Kim
- Personal Genomics Institute, Genome Research Foundation, Suwon 443-270, Republic of Korea
| | - Chang Pyo Hong
- Theragen Bio Institute, TheragenEtex, Suwon 443-270, Republic of Korea
| | - Yun Sung Cho
- Personal Genomics Institute, Genome Research Foundation, Suwon 443-270, Republic of Korea
| | - Hyunmin Kim
- Theragen Bio Institute, TheragenEtex, Suwon 443-270, Republic of Korea
| | - Kwang Ho Jeong
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Min Jung Seo
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Hong Tai Yun
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Sun Lim Kim
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Young-Up Kwon
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Wook Han Kim
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Hye Kyung Chun
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Sang Jong Lim
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Republic of Korea
| | - Young-Ah Shin
- Personal Genomics Institute, Genome Research Foundation, Suwon 443-270, Republic of Korea
| | - Ik-Young Choi
- National Instrumentation Center for Environmental Management, College of Agriculture and Life Science, Seoul National University, Seoul 151-921, Republic of Korea
| | - Young Sun Kim
- Department of Biology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Ho-Sung Yoon
- Department of Biology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Sunghoon Lee
- Personal Genomics Institute, Genome Research Foundation, Suwon 443-270, Republic of Korea
- Theragen Bio Institute, TheragenEtex, Suwon 443-270, Republic of Korea
| |
Collapse
|
21
|
Fluorescence in situ hybridization and optical mapping to correct scaffold arrangement in the tomato genome. G3-GENES GENOMES GENETICS 2014; 4:1395-405. [PMID: 24879607 PMCID: PMC4132171 DOI: 10.1534/g3.114.011197] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The order and orientation (arrangement) of all 91 sequenced scaffolds in the 12 pseudomolecules of the recently published tomato (Solanum lycopersicum, 2n = 2x = 24) genome sequence were positioned based on marker order in a high-density linkage map. Here, we report the arrangement of these scaffolds determined by two independent physical methods, bacterial artificial chromosome–fluorescence in situ hybridization (BAC-FISH) and optical mapping. By localizing BACs at the ends of scaffolds to spreads of tomato synaptonemal complexes (pachytene chromosomes), we showed that 45 scaffolds, representing one-third of the tomato genome, were arranged differently than predicted by the linkage map. These scaffolds occur mostly in pericentric heterochromatin where 77% of the tomato genome is located and where linkage mapping is less accurate due to reduced crossing over. Although useful for only part of the genome, optical mapping results were in complete agreement with scaffold arrangement by FISH but often disagreed with scaffold arrangement based on the linkage map. The scaffold arrangement based on FISH and optical mapping changes the positions of hundreds of markers in the linkage map, especially in heterochromatin. These results suggest that similar errors exist in pseudomolecules from other large genomes that have been assembled using only linkage maps to predict scaffold arrangement, and these errors can be corrected using FISH and/or optical mapping. Of note, BAC-FISH also permits estimates of the sizes of gaps between scaffolds, and unanchored BACs are often visualized by FISH in gaps between scaffolds and thus represent starting points for filling these gaps.
Collapse
|
22
|
Fonsêca A, Richard MM, Geffroy V, Pedrosa-Harand A. Epigenetic Analyses and the Distribution of Repetitive DNA and Resistance Genes Reveal the Complexity of Common Bean ( Phaseolus vulgaris L., Fabaceae) Heterochromatin. Cytogenet Genome Res 2014; 143:168-78. [DOI: 10.1159/000360572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K, Lee GW, Oh SK, Bae C, Kim SB, Lee HY, Kim SY, Kim MS, Kang BC, Jo YD, Yang HB, Jeong HJ, Kang WH, Kwon JK, Shin C, Lim JY, Park JH, Huh JH, Kim JS, Kim BD, Cohen O, Paran I, Suh MC, Lee SB, Kim YK, Shin Y, Noh SJ, Park J, Seo YS, Kwon SY, Kim HA, Park JM, Kim HJ, Choi SB, Bosland PW, Reeves G, Jo SH, Lee BW, Cho HT, Choi HS, Lee MS, Yu Y, Do Choi Y, Park BS, van Deynze A, Ashrafi H, Hill T, Kim WT, Pai HS, Ahn HK, Yeam I, Giovannoni JJ, Rose JKC, Sørensen I, Lee SJ, Kim RW, Choi IY, Choi BS, Lim JS, Lee YH, Choi D. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 2014; 46:270-8. [PMID: 24441736 DOI: 10.1038/ng.2877] [Citation(s) in RCA: 558] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/30/2013] [Indexed: 12/12/2022]
Abstract
Hot pepper (Capsicum annuum), one of the oldest domesticated crops in the Americas, is the most widely grown spice crop in the world. We report whole-genome sequencing and assembly of the hot pepper (Mexican landrace of Capsicum annuum cv. CM334) at 186.6× coverage. We also report resequencing of two cultivated peppers and de novo sequencing of the wild species Capsicum chinense. The genome size of the hot pepper was approximately fourfold larger than that of its close relative tomato, and the genome showed an accumulation of Gypsy and Caulimoviridae family elements. Integrative genomic and transcriptomic analyses suggested that change in gene expression and neofunctionalization of capsaicin synthase have shaped capsaicinoid biosynthesis. We found differential molecular patterns of ripening regulators and ethylene synthesis in hot pepper and tomato. The reference genome will serve as a platform for improving the nutritional and medicinal values of Capsicum species.
Collapse
Affiliation(s)
- Seungill Kim
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2]
| | - Minkyu Park
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3]
| | - Seon-In Yeom
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3]
| | - Yong-Min Kim
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3]
| | - Je Min Lee
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3]
| | - Hyun-Ah Lee
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2]
| | - Eunyoung Seo
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2]
| | - Jaeyoung Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Kyeongchae Cheong
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Ki-Tae Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Kyongyong Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Gir-Won Lee
- Department of Bioinformatics and Life Science, Soongsil University, Seoul, Korea
| | - Sang-Keun Oh
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| | - Chungyun Bae
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Saet-Byul Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Hye-Young Lee
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Shin-Young Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Myung-Shin Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Byoung-Cheorl Kang
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea. [3] Vegetable Breeding Research Center, Seoul National University, Seoul, Korea
| | - Yeong Deuk Jo
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Hee-Bum Yang
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Hee-Jin Jeong
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Won-Hee Kang
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Jin-Kyung Kwon
- Vegetable Breeding Research Center, Seoul National University, Seoul, Korea
| | - Chanseok Shin
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jae Yun Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - June Hyun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jin Hoe Huh
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - June-Sik Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Byung-Dong Kim
- Department of Plant Science, Seoul National University, Seoul, Korea
| | - Oded Cohen
- Agricultural Research Organization, Institute of Plant Science, Volcani Center, Bet Dagan, Israel
| | - Ilan Paran
- Agricultural Research Organization, Institute of Plant Science, Volcani Center, Bet Dagan, Israel
| | - Mi Chung Suh
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| | - Saet Buyl Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Korea
| | - Yeon-Ki Kim
- Genomics Genetics Institute, GreenGene BioTech, Inc., Yongin, Korea
| | | | | | | | - Young Sam Seo
- Ginseng Resources Research Laboratory, Korea Ginseng Corporation, Daejeon, Korea
| | - Suk-Yoon Kwon
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hyun A Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Jeong Mee Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Hyun-Jin Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Sang-Bong Choi
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Korea
| | - Paul W Bosland
- 1] Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, USA. [2] Chile Pepper Institute, New Mexico State University, Las Cruces, New Mexico, USA
| | - Gregory Reeves
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, USA
| | | | | | - Hyung-Taeg Cho
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hee-Seung Choi
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Min-Soo Lee
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yeisoo Yu
- Arizona Genomics Institute, University of Arizona, Tucson, Arizona, USA
| | - Yang Do Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Beom-Seok Park
- Agricultural Genome Center, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Allen van Deynze
- Seed Biotechnology Center, University of California, Davis, Davis, California, USA
| | - Hamid Ashrafi
- Seed Biotechnology Center, University of California, Davis, Davis, California, USA
| | - Theresa Hill
- Seed Biotechnology Center, University of California, Davis, Davis, California, USA
| | - Woo Taek Kim
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hee Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Inhwa Yeam
- Department of Horticulture and Breeding, Andong National University, Andong, Korea
| | - James J Giovannoni
- 1] US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Ithaca, New York, USA. [2] Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Jocelyn K C Rose
- Department of Plant Biology, Cornell University, Ithaca, New York, USA
| | - Iben Sørensen
- Department of Plant Biology, Cornell University, Ithaca, New York, USA
| | - Sang-Jik Lee
- Biotechnology Institute, Nongwoo Bio, Yeoju, Korea
| | - Ryan W Kim
- Genome Center, University of California, Davis, Davis, California, USA
| | - Ik-Young Choi
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Beom-Soon Choi
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Jong-Sung Lim
- National Instrumentation Center for Environmental Management, Seoul National University, Seoul, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Doil Choi
- 1] Department of Plant Science, Seoul National University, Seoul, Korea. [2] Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
24
|
Long W, Li Y, Zhou W, Ling HQ, Zheng S. Sequence-based SSR marker development and their application in defining the Introgressions of LA0716 (Solanum pennellii) in the background of cv. M82 (Solanum lycopersicum). PLoS One 2013; 8:e81091. [PMID: 24339899 PMCID: PMC3855227 DOI: 10.1371/journal.pone.0081091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 10/18/2013] [Indexed: 12/02/2022] Open
Abstract
The introgression lines (ILs) from cv. M82 (Solanum lycopersicum) × LA0716 (S. pennellii) have been proven to be exceptionally useful for genetic analysis and gene cloning. The introgressions were originally defined by RFLP markers at their development. The objectives of this study are to develop polymorphic SSR markers, and to re-define the DNA introgression from LA0716 in the ILs. Tomato sequence data was scanned by software to generate SSR markers. In total, 829 SSRs, which could be robustly amplified by PCR, were developed. Among them, 658 SSRs were dinucleotide repeats, 162 were trinucleotide repeats, and nine were tetranucleotide repeats. The 829 SSRs together with 96 published RFLPs were integrated into the physical linkage map of S. lycopersicum. Introgressions of DNA fragments from LA0716 were re-defined among the 75 ILs using the newly developed SSRs. A specific introgression of DNA fragment from LA0716 was identified in 72 ILs as described previously by RFLP, whereas the specific DNA introgression described previously were not detected in the ILs LA4035, LA4059 and LA4091. The physical location of each investigated DNA introgression was finely determined by SSR mapping. Among the 72 ILs, eight ILs showed a shorter and three ILs (IL3-2, IL12-3 and IL12-3-1) revealed a longer DNA introgression than that framed by RFLPs. Furthermore, 54 previously undefined segments were found in 21 ILs, ranging from 1 to 11 DNA introgressions per IL. Generally, the newly developed SSRs provide additional markers for genetic studies of tomatoes, and the fine definition of DNA introgressions from LA0716 would facilitate the use of the ILs for genetic analysis and gene cloning.
Collapse
Affiliation(s)
- Wenbo Long
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ye Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Zhou
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (H-QL); (SZ)
| | - Shusong Zheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (H-QL); (SZ)
| |
Collapse
|
25
|
Iacia AAS, Pinto-Maglio CAF. Mapping pachytene chromosomes of coffee using a modified protocol for fluorescence in situ hybridization. AOB PLANTS 2013; 5:plt040. [PMID: 24244840 PMCID: PMC3828664 DOI: 10.1093/aobpla/plt040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
Fluorescence in situ hybridization (FISH) is the most direct method for physically mapping DNA sequences on chromosomes. Fluorescence in situ hybridization mapping of meiotic chromosomes during the pachytene stage is an important tool in plant cytogenetics, because it provides high-resolution measurements of physical distances. Fluorescence in situ hybridization mapping of coffee pachytene chromosomes offers significant advantages compared with FISH mapping of somatic chromosomes, because pachytene chromosomes are 30 times longer and provide additional cytological markers. However, the application of this technique to pachytene chromosomes has been complicated by problems in making preparations of meiotic chromosomes and by difficulties in the application of standard FISH protocols. We have been able to overcome most of these obstacles in applying the FISH technique to the pachytene chromosomes of coffee plants. Digesting the external callose layer surrounding the pollen mother cells (PMCs) in conjunction with other procedures permitted suitable pachytene chromosomes to be obtained by increasing cell permeability, which allowed the probe sequences to enter the cells. For the first time, hybridization signals were registered on coffee pachytene chromosomes using the FISH technique with a repetitive sequence as a probe. We obtained slides on which 80 % of the PMCs had hybridization signals, resulting in FISH labelling with high efficiency. The procedure does not seem to be dependent on the genotype, because hybridization signals were detected in genetically different coffee plants. These findings enhance the possibilities for high-resolution physical mapping of coffee chromosomes.
Collapse
|
26
|
Kolano B, Bednara E, Weiss-Schneeweiss H. Isolation and characterization of reverse transcriptase fragments of LTR retrotransposons from the genome of Chenopodium quinoa (Amaranthaceae). PLANT CELL REPORTS 2013; 32:1575-1588. [PMID: 23754338 PMCID: PMC3778962 DOI: 10.1007/s00299-013-1468-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/30/2013] [Accepted: 05/28/2013] [Indexed: 05/29/2023]
Abstract
High heterogeneity was observed among conserved domains of reverse transcriptase ( rt ) isolated from quinoa. Only one Ty1- copia rt was highly amplified. Reverse transcriptase sequences were located predominantly in pericentromeric region of quinoa chromosomes. The heterogeneity, genomic abundance, and chromosomal distribution of reverse transcriptase (rt)-coding fragments of Ty1-copia and Ty3-gypsy long terminal repeat retrotransposons were analyzed in the Chenopodium quinoa genome. Conserved domains of the rt gene were amplified and characterized using degenerate oligonucleotide primer pairs. Sequence analyses indicated that half of Ty1-copia rt (51 %) and 39 % of Ty3-gypsy rt fragments contained intact reading frames. High heterogeneity among rt sequences was observed for both Ty1-copia and Ty3-gypsy rt amplicons, with Ty1-copia more heterogeneous than Ty3-gypsy. Most of the isolated rt fragments were present in quinoa genome in low copy numbers, with only one highly amplified Ty1-copia rt sequence family. The gypsy-like RNase H fragments co-amplified with Ty1-copia-degenerate primers were shown to be highly amplified in the quinoa genome indicating either higher abundance of some gypsy families of which rt domains could not be amplified, or independent evolution of this gypsy-region in quinoa. Both Ty1-copia and Ty3-gypsy retrotransposons were preferentially located in pericentromeric heterochromatin of quinoa chromosomes. Phylogenetic analyses of newly amplified rt fragments together with well-characterized retrotransposon families from other organisms allowed identification of major lineages of retroelements in the genome of quinoa and provided preliminary insight into their evolutionary dynamics.
Collapse
Affiliation(s)
- Bozena Kolano
- Department of Plant Anatomy and Cytology, University of Silesia, Jagiellonska 28, 40-032, Katowice, Poland,
| | | | | |
Collapse
|
27
|
Yin H, Liu J, Xu Y, Liu X, Zhang S, Ma J, Du J. TARE1, a mutated Copia-like LTR retrotransposon followed by recent massive amplification in tomato. PLoS One 2013; 8:e68587. [PMID: 23861922 PMCID: PMC3701649 DOI: 10.1371/journal.pone.0068587] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/05/2013] [Indexed: 11/19/2022] Open
Abstract
Long terminal repeat retrotransposons (LTR-RTs) are the major DNA components in flowering plants. Most LTR-RTs contain dinucleotides ‘TG’ and ‘CA’ at the ends of the two LTRs. Here we report the structure, evolution, and propensity of a tomato atypical retrotransposon element (TARE1) with both LTRs starting as ‘TA’. This family is also characterized by high copy numbers (354 copies), short LTR size (194 bp), extremely low ratio of solo LTRs to intact elements (0.05∶1), recent insertion (most within 0.75∼1.75 million years, Mys), and enrichment in pericentromeric region. The majority (83%) of the TARE1 elements are shared between S. lycopersicum and its wild relative S. pimpinellifolium, but none of them are found in potato. In the present study, we used shared LTR-RTs as molecular markers and estimated the divergence time between S. lycopersicum and S. pimpinellifolium to be <0.5 Mys. Phylogenetic analysis showed that the TARE1 elements, together with two closely related families, TARE2 and TGRE1, have formed a sub-lineage belonging to a Copia-like Ale lineage. Although TARE1 and TARE2 shared similar structural characteristics, the timing, scale, and activity of their amplification were found to be substantially different. We further propose a model wherein a single mutation from ‘G’ to ‘A’ in 3′ LTR followed by amplification is responsible for the origin of TARE1, thus providing evidence that the proliferation of a spontaneous mutation can be mediated by the amplification of LTR-RTs at the level of RNA.
Collapse
Affiliation(s)
- Hao Yin
- Bioinformatics Group, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jing Liu
- Bioinformatics Group, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yingxiu Xu
- Bioinformatics Group, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Liu
- Bioinformatics Group, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Jianchang Du
- Bioinformatics Group, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- * E-mail:
| |
Collapse
|
28
|
Liu D, Zeng SH, Chen JJ, Zhang YJ, Xiao G, Zhu LY, Wang Y. First insights into the large genome of Epimedium sagittatum (Sieb. et Zucc) Maxim, a Chinese Ttaditional medicinal plant. Int J Mol Sci 2013; 14:13559-76. [PMID: 23807511 PMCID: PMC3742203 DOI: 10.3390/ijms140713559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 05/16/2013] [Accepted: 06/06/2013] [Indexed: 11/30/2022] Open
Abstract
Epimedium sagittatum (Sieb. et Zucc) Maxim is a member of the Berberidaceae family of basal eudicot plants, widely distributed and used as a traditional medicinal plant in China for therapeutic effects on many diseases with a long history. Recent data shows that E. sagittatum has a relatively large genome, with a haploid genome size of ~4496 Mbp, divided into a small number of only 12 diploid chromosomes (2n = 2x = 12). However, little is known about Epimedium genome structure and composition. Here we present the analysis of 691 kb of high-quality genomic sequence derived from 672 randomly selected plasmid clones of E. sagittatum genomic DNA, representing ~0.0154% of the genome. The sampled sequences comprised at least 78.41% repetitive DNA elements and 2.51% confirmed annotated gene sequences, with a total GC% content of 39%. Retrotransposons represented the major class of transposable element (TE) repeats identified (65.37% of all TE repeats), particularly LTR (Long Terminal Repeat) retrotransposons (52.27% of all TE repeats). Chromosome analysis and Fluorescence in situ Hybridization of Gypsy-Ty3 retrotransposons were performed to survey the E. sagittatum genome at the cytological level. Our data provide the first insights into the composition and structure of the E. sagittatum genome, and will facilitate the functional genomic analysis of this valuable medicinal plant.
Collapse
Affiliation(s)
- Di Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; E-Mails: (D.L.); (J.-J.C.); (Y.-J.Z.); (G.X.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shao-Hua Zeng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; E-Mail:
| | - Jian-Jun Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; E-Mails: (D.L.); (J.-J.C.); (Y.-J.Z.); (G.X.)
| | - Yan-Jun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; E-Mails: (D.L.); (J.-J.C.); (Y.-J.Z.); (G.X.)
| | - Gong Xiao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; E-Mails: (D.L.); (J.-J.C.); (Y.-J.Z.); (G.X.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lin-Yao Zhu
- Wuhan Vegetable Research Station, Wuhan 430065, China; E-Mail:
| | - Ying Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; E-Mails: (D.L.); (J.-J.C.); (Y.-J.Z.); (G.X.)
| |
Collapse
|
29
|
Firdaus S, van Heusden AW, Hidayati N, Supena EDJ, Mumm R, de Vos RCH, Visser RGF, Vosman B. Identification and QTL mapping of whitefly resistance components in Solanum galapagense. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1487-501. [PMID: 23440381 DOI: 10.1007/s00122-013-2067-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/08/2013] [Indexed: 05/20/2023]
Abstract
Solanum galapagense is closely related to the cultivated tomato and can show a very good resistance towards whitefly. A segregating population resulting from a cross between the cultivated tomato and a whitefly resistant S. galapagense was created and used for mapping whitefly resistance and related traits, which made it possible to study the genetic basis of the resistance. Quantitative trait loci (QTL) for adult survival co-localized with type IV trichome characteristics (presence, density, gland longevity and gland size). A major QTL (Wf-1) was found for adult survival and trichome characters on Chromosome 2. This QTL explained 54.1 % of the variation in adult survival and 81.5 % of the occurrence of type IV trichomes. A minor QTL (Wf-2) for adult survival and trichome characters was identified on Chromosome 9. The major QTL was confirmed in F3 populations. Comprehensive metabolomics, based on GCMS profiling, revealed that 16 metabolites segregating in the F2 mapping population were associated with Wf-1 and/or Wf-2. Analysis of the 10 most resistant and susceptible F2 genotypes by LCMS showed that several acyl sugars were present in significantly higher concentration in the whitefly resistant genotypes, suggesting a role for these components in the resistance as well. Our results show that whitefly resistance in S. galapagense seems to inherit relatively simple compared to whitefly resistance from other sources and this offers great prospects for resistance breeding as well as elucidating the underlying molecular mechanism(s) of the resistance.
Collapse
Affiliation(s)
- Syarifin Firdaus
- Research Center for Bioresources and Biotechnology, Bogor Agricultural University, Bogor, 16680 West Java, Indonesia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Asamizu E, Shirasawa K, Hirakawa H, Sato S, Tabata S, Yano K, Ariizumi T, Shibata D, Ezura H. Mapping of Micro-Tom BAC-End Sequences to the Reference Tomato Genome Reveals Possible Genome Rearrangements and Polymorphisms. INTERNATIONAL JOURNAL OF PLANT GENOMICS 2012; 2012:437026. [PMID: 23227037 PMCID: PMC3514829 DOI: 10.1155/2012/437026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/18/2012] [Indexed: 05/29/2023]
Abstract
A total of 93,682 BAC-end sequences (BESs) were generated from a dwarf model tomato, cv. Micro-Tom. After removing repetitive sequences, the BESs were similarity searched against the reference tomato genome of a standard cultivar, "Heinz 1706." By referring to the "Heinz 1706" physical map and by eliminating redundant or nonsignificant hits, 28,804 "unique pair ends" and 8,263 "unique ends" were selected to construct hypothetical BAC contigs. The total physical length of the BAC contigs was 495, 833, 423 bp, covering 65.3% of the entire genome. The average coverage of euchromatin and heterochromatin was 58.9% and 67.3%, respectively. From this analysis, two possible genome rearrangements were identified: one in chromosome 2 (inversion) and the other in chromosome 3 (inversion and translocation). Polymorphisms (SNPs and Indels) between the two cultivars were identified from the BLAST alignments. As a result, 171,792 polymorphisms were mapped on 12 chromosomes. Among these, 30,930 polymorphisms were found in euchromatin (1 per 3,565 bp) and 140,862 were found in heterochromatin (1 per 2,737 bp). The average polymorphism density in the genome was 1 polymorphism per 2,886 bp. To facilitate the use of these data in Micro-Tom research, the BAC contig and polymorphism information are available in the TOMATOMICS database.
Collapse
Affiliation(s)
- Erika Asamizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu 292-0818, Japan
| | - Hideki Hirakawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu 292-0818, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu 292-0818, Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu 292-0818, Japan
| | - Kentaro Yano
- School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki 214-8571, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| | - Daisuke Shibata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu 292-0818, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan
| |
Collapse
|
31
|
Park M, Park J, Kim S, Kwon JK, Park HM, Bae IH, Yang TJ, Lee YH, Kang BC, Choi D. Evolution of the large genome in Capsicum annuum occurred through accumulation of single-type long terminal repeat retrotransposons and their derivatives. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:1018-29. [PMID: 22074025 DOI: 10.1111/j.1365-313x.2011.04851.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although plant genome sizes are extremely diverse, the mechanism underlying the expansion of huge genomes that did not experience whole-genome duplication has not been elucidated. The pepper, Capsicum annuum, is an excellent model for studies of genome expansion due to its large genome size (2700 Mb) and the absence of whole genome duplication. As most of the pepper genome structure has been identified as constitutive heterochromatin, we investigated the evolution of this region in detail. Our findings show that the constitutive heterochromatin in pepper was actively expanded 20.0-7.5 million years ago through a massive accumulation of single-type Ty3/Gypsy-like elements that belong to the Del subgroup. Interestingly, derivatives of the Del elements, such as non-autonomous long terminal repeat retrotransposons and long-unit tandem repeats, played important roles in the expansion of constitutive heterochromatic regions. This expansion occurred not only in the existing heterochromatic regions but also into the euchromatic regions. Furthermore, our results revealed a repeat of unit length 18-24 kb. This repeat was found not only in the pepper genome but also in the other solanaceous species, such as potato and tomato. These results represent a characteristic mechanism for large genome evolution in plants.
Collapse
Affiliation(s)
- Minkyu Park
- Interdisciplinary Program in Agriculture Biotechnology, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Di Filippo M, Traini A, D'Agostino N, Frusciante L, Chiusano ML. Euchromatic and heterochromatic compositional properties emerging from the analysis of Solanum lycopersicum BAC sequences. Gene 2012; 499:176-81. [PMID: 22391094 DOI: 10.1016/j.gene.2012.02.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/20/2012] [Indexed: 11/15/2022]
Abstract
The consortium responsible for the sequencing of the tomato (Solanum lycopersicum) genome initially focused on the sequencing of the euchromatic regions using a BAC-by-BAC strategy. We analyzed the compositional features of the whole collection of BAC sequences publically available. This analysis highlights specific peculiarities of heterochromatic and euchromatic BACs, in particular: the whole BAC collection has i) a large variability in repeat and gene content, ii) a positive and significant correlation of LTR retrotransposons of the Gypsy class with the repeat content and iii) the preferential location of the SINEs (short interspersed nuclear elements) in BAC sequences showing a low repeat content. Our results point out a typical design of the tomato chromosomes and pave the way for further investigations on the relationship between DNA primary structure and chromatin organization in Solanaceae genomes.
Collapse
Affiliation(s)
- Miriam Di Filippo
- University of Naples Federico II, Dept. of Soil, Plant, Environmental and Animal Production Sciences, Via Università 100, 80055 Portici, Italy.
| | | | | | | | | |
Collapse
|
33
|
Singer SD, Liu Z, Cox KD. Minimizing the unpredictability of transgene expression in plants: the role of genetic insulators. PLANT CELL REPORTS 2012; 31:13-25. [PMID: 21987122 DOI: 10.1007/s00299-011-1167-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 09/27/2011] [Indexed: 05/20/2023]
Abstract
The genetic transformation of plants has become a necessary tool for fundamental plant biology research, as well as the generation of engineered plants exhibiting improved agronomic and industrial traits. However, this technology is significantly hindered by the fact that transgene expression is often highly variable amongst independent transgenic lines. Two of the major contributing factors to this type of inconsistency are inappropriate enhancer-promoter interactions and chromosomal position effects, which frequently result in mis-expression or silencing of the transgene, respectively. Since the precise, often tissue-specific, expression of the transgene(s) of interest is often a necessity for the successful generation of transgenic plants, these undesirable side effects have the potential to pose a major challenge for the genetic engineering of these organisms. In this review, we discuss strategies for improving foreign gene expression in plants via the inclusion of enhancer-blocking insulators, which function to impede enhancer-promoter communication, and barrier insulators, which block the spread of heterochromatin, in transgenic constructs. While a complete understanding of these elements remains elusive, recent studies regarding their use in genetically engineered plants indicate that they hold great promise for the improvement of transgene expression, and thus the future of plant biotechnology.
Collapse
Affiliation(s)
- Stacy D Singer
- Department of Plant Pathology and Plant-Microbe Biology, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456, USA
| | | | | |
Collapse
|
34
|
Jiang N, Visa S, Wu S, van der Knaap E. Rider Transposon Insertion and Phenotypic Change in Tomato. PLANT TRANSPOSABLE ELEMENTS 2012. [DOI: 10.1007/978-3-642-31842-9_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
35
|
Park M, Jo S, Kwon JK, Park J, Ahn JH, Kim S, Lee YH, Yang TJ, Hur CG, Kang BC, Kim BD, Choi D. Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC Genomics 2011; 12:85. [PMID: 21276256 PMCID: PMC3042944 DOI: 10.1186/1471-2164-12-85] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 01/29/2011] [Indexed: 11/23/2022] Open
Abstract
Background Among the Solanaceae plants, the pepper genome is three times larger than that of tomato. Although the gene repertoire and gene order of both species are well conserved, the cause of the genome-size difference is not known. To determine the causes for the expansion of pepper euchromatic regions, we compared the pepper genome to that of tomato. Results For sequence-level analysis, we generated 35.6 Mb of pepper genomic sequences from euchromatin enriched 1,245 pepper BAC clones. The comparative analysis of orthologous gene-rich regions between both species revealed insertion of transposons exclusively in the pepper sequences, maintaining the gene order and content. The most common type of the transposon found was the LTR retrotransposon. Phylogenetic comparison of the LTR retrotransposons revealed that two groups of Ty3/Gypsy-like elements (Tat and Athila) were overly accumulated in the pepper genome. The FISH analysis of the pepper Tat elements showed a random distribution in heterochromatic and euchromatic regions, whereas the tomato Tat elements showed heterochromatin-preferential accumulation. Conclusions Compared to tomato pepper euchromatin doubled its size by differential accumulation of a specific group of Ty3/Gypsy-like elements. Our results could provide an insight on the mechanism of genome evolution in the Solanaceae family.
Collapse
Affiliation(s)
- Minkyu Park
- Interdisciplinary Program in Agriculture Biotechnology, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Shirasawa K, Isobe S, Hirakawa H, Asamizu E, Fukuoka H, Just D, Rothan C, Sasamoto S, Fujishiro T, Kishida Y, Kohara M, Tsuruoka H, Wada T, Nakamura Y, Sato S, Tabata S. SNP discovery and linkage map construction in cultivated tomato. DNA Res 2010; 17:381-91. [PMID: 21044984 PMCID: PMC2993540 DOI: 10.1093/dnares/dsq024] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Few intraspecific genetic linkage maps have been reported for cultivated tomato, mainly because genetic diversity within Solanum lycopersicum is much less than that between tomato species. Single nucleotide polymorphisms (SNPs), the most abundant source of genomic variation, are the most promising source of polymorphisms for the construction of linkage maps for closely related intraspecific lines. In this study, we developed SNP markers based on expressed sequence tags for the construction of intraspecific linkage maps in tomato. Out of the 5607 SNP positions detected through in silico analysis, 1536 were selected for high-throughput genotyping of two mapping populations derived from crosses between 'Micro-Tom' and either 'Ailsa Craig' or 'M82'. A total of 1137 markers, including 793 out of the 1338 successfully genotyped SNPs, along with 344 simple sequence repeat and intronic polymorphism markers, were mapped onto two linkage maps, which covered 1467.8 and 1422.7 cM, respectively. The SNP markers developed were then screened against cultivated tomato lines in order to estimate the transferability of these SNPs to other breeding materials. The molecular markers and linkage maps represent a milestone in the genomics and genetics, and are the first step toward molecular breeding of cultivated tomato. Information on the DNA markers, linkage maps, and SNP genotypes for these tomato lines is available at http://www.kazusa.or.jp/tomato/.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Isobe S. An interspecific linkage map of SSR and intronic polymorphism markers in tomato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:731-9. [PMID: 20431859 PMCID: PMC2909429 DOI: 10.1007/s00122-010-1344-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/11/2010] [Indexed: 05/20/2023]
Abstract
Despite the collection and availability of abundant tomato genome sequences, PCR-based markers adapted to large scale analysis have not been developed in tomato species. Therefore, using public genome sequence data in tomato, we developed three types of DNA markers: expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers (TES markers), genome-derived SSR markers (TGS markers) and EST-derived intronic polymorphism markers (TEI markers). A total of 2,047 TES, 3,510 TGS and 674 TEI markers were established and used in the polymorphic analysis of a cultivated tomato (Solanum lycopersicum) 'LA925' and its wild relative Solanum pennellii 'LA716', parents of the Tomato-EXPEN 2000 mapping population. The polymorphic ratios between parents revealed by the TES, TGS and TEI markers were 37.3, 22.6 and 80.0%, respectively. Those showing polymorphisms were used to genotype the Tomato-EXPEN 2000 mapping population, and a high-density genetic linkage map composed of 1,433 new and 683 existing marker loci was constructed on 12 chromosomes, covering 1,503.1 cM. In the present map, 48% of the mapped TGS loci were located within heterochromatic regions, while 18 and 21% of TES and TEI loci, respectively, were located in heterochromatin. The large number of SSR and SNP markers developed in this study provide easily handling genomic tools for molecular breeding in tomato. Information on the DNA markers developed in this study is available at http://www.kazusa.or.jp/tomato/.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Erika Asamizu
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 Japan
- Gene Research Center, University of Tsukuba, Ten-no dai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| | - Hiroyuki Fukuoka
- National Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392 Japan
| | - Akio Ohyama
- National Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392 Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Yasukazu Nakamura
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 Japan
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540 Japan
| | - Satoshi Tabata
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Shigemi Sasamoto
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Tsuyuko Wada
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Yoshie Kishida
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Hisano Tsuruoka
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Tsunakazu Fujishiro
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Manabu Yamada
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 Japan
| | - Sachiko Isobe
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818 Japan
| |
Collapse
|
38
|
Chester M, Leitch AR, Soltis PS, Soltis DE. Review of the Application of Modern Cytogenetic Methods (FISH/GISH) to the Study of Reticulation (Polyploidy/Hybridisation). Genes (Basel) 2010; 1. [PMID: 24710040 PMCID: PMC3954085 DOI: 10.3390/genes1010166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The convergence of distinct lineages upon interspecific hybridisation, including when accompanied by increases in ploidy (allopolyploidy), is a driving force in the origin of many plant species. In plant breeding too, both interspecific hybridisation and allopolyploidy are important because they facilitate introgression of alien DNA into breeding lines enabling the introduction of novel characters. Here we review how fluorescence in situ hybridisation (FISH) and genomic in situ hybridisation (GISH) have been applied to: 1) studies of interspecific hybridisation and polyploidy in nature, 2) analyses of phylogenetic relationships between species, 3) genetic mapping and 4) analysis of plant breeding materials. We also review how FISH is poised to take advantage of nextgeneration sequencing (NGS) technologies, helping the rapid characterisation of the repetitive fractions of a genome in natural populations and agricultural plants.
Collapse
Affiliation(s)
- Michael Chester
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary, University of London, UK.
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA.
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
39
|
Chester M, Leitch AR, Soltis PS, Soltis DE. Review of the Application of Modern Cytogenetic Methods (FISH/GISH) to the Study of Reticulation (Polyploidy/Hybridisation). Genes (Basel) 2010; 1:166-92. [PMID: 24710040 PMCID: PMC3954085 DOI: 10.3390/genes1020166] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 06/30/2010] [Accepted: 06/30/2010] [Indexed: 11/16/2022] Open
Abstract
The convergence of distinct lineages upon interspecific hybridisation, including when accompanied by increases in ploidy (allopolyploidy), is a driving force in the origin of many plant species. In plant breeding too, both interspecific hybridisation and allopolyploidy are important because they facilitate introgression of alien DNA into breeding lines enabling the introduction of novel characters. Here we review how fluorescence in situ hybridisation (FISH) and genomic in situ hybridisation (GISH) have been applied to: 1) studies of interspecific hybridisation and polyploidy in nature, 2) analyses of phylogenetic relationships between species, 3) genetic mapping and 4) analysis of plant breeding materials. We also review how FISH is poised to take advantage of nextgeneration sequencing (NGS) technologies, helping the rapid characterisation of the repetitive fractions of a genome in natural populations and agricultural plants.
Collapse
Affiliation(s)
- Michael Chester
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary, University of London, UK.
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611, USA.
| | - Douglas E Soltis
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA.
| |
Collapse
|
40
|
Miozzi L, Provero P, Accotto GP. ORTom: a multi-species approach based on conserved co-expression to identify putative functional relationships among genes in tomato. PLANT MOLECULAR BIOLOGY 2010; 73:519-532. [PMID: 20411302 DOI: 10.1007/s11103-010-9638-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 04/11/2010] [Indexed: 05/29/2023]
Abstract
Co-expressed genes are often expected to be functionally related and many bioinformatics approaches based on co-expression have been developed to infer their biological role. However, such annotations may be unreliable, whereas the evolutionary conservation of gene co-expression among species may form a basis for more confident predictions. The huge amount of expression data (microarrays, SAGE, ESTs) has already allowed functional studies based on conserved co-expression in animals. Up to now, the implementation of analogous tools for plants has been strongly limited probably by the paucity and heterogeneity of data. Here we present ORTom, a tomato-centred EST data-mining approach based on conserved co-expression in the Solanaceae family. ORTom can be used to predict functional relationships among genes and to prioritize candidate genes for targeted studies. The method consists in ranking ESTs co-expressed with a gene of interest according to the level of expression pattern conservation in phylogenetically-related plants (potato, tobacco and pepper) to obtain lists of putative functionally-related genes. The lists are then analyzed for Gene Ontology keyword enrichment. The web server ORTom has been implemented to make the results publicly-available and searchable. Few biological examples on how the tool can be used are presented.
Collapse
Affiliation(s)
- Laura Miozzi
- Istituto di Virologia Vegetale, CNR, Strada delle Cacce 73, 10135 Turin, Italy.
| | | | | |
Collapse
|
41
|
Karlov GI, Fesenko IA, Andreeva GN, Khrustaleva LI. Chromosome organization of Ty1-copia-like retrotransposons in the tomato genome. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410060074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Niehuis O, Gibson JD, Rosenberg MS, Pannebakker BA, Koevoets T, Judson AK, Desjardins CA, Kennedy K, Duggan D, Beukeboom LW, van de Zande L, Shuker DM, Werren JH, Gadau J. Recombination and its impact on the genome of the haplodiploid parasitoid wasp Nasonia. PLoS One 2010; 5:e8597. [PMID: 20087411 PMCID: PMC2799529 DOI: 10.1371/journal.pone.0008597] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 06/14/2009] [Indexed: 12/17/2022] Open
Abstract
Homologous meiotic recombination occurs in most sexually reproducing organisms, yet its evolutionary advantages are elusive. Previous research explored recombination in the honeybee, a eusocial hymenopteran with an exceptionally high genome-wide recombination rate. A comparable study in a non-social member of the Hymenoptera that would disentangle the impact of sociality from Hymenoptera-specific features such as haplodiploidy on the evolution of the high genome-wide recombination rate in social Hymenoptera is missing. Utilizing single-nucleotide polymorphisms (SNPs) between two Nasonia parasitoid wasp genomes, we developed a SNP genotyping microarray to infer a high-density linkage map for Nasonia. The map comprises 1,255 markers with an average distance of 0.3 cM. The mapped markers enabled us to arrange 265 scaffolds of the Nasonia genome assembly 1.0 on the linkage map, representing 63.6% of the assembled N. vitripennis genome. We estimated a genome-wide recombination rate of 1.4-1.5 cM/Mb for Nasonia, which is less than one tenth of the rate reported for the honeybee. The local recombination rate in Nasonia is positively correlated with the distance to the center of the linkage groups, GC content, and the proportion of simple repeats. In contrast to the honeybee genome, gene density in the parasitoid wasp genome is positively associated with the recombination rate; regions of low recombination are characterized by fewer genes with larger introns and by a greater distance between genes. Finally, we found that genes in regions of the genome with a low recombination frequency tend to have a higher ratio of non-synonymous to synonymous substitutions, likely due to the accumulation of slightly deleterious non-synonymous substitutions. These findings are consistent with the hypothesis that recombination reduces interference between linked sites and thereby facilitates adaptive evolution and the purging of deleterious mutations. Our results imply that the genomes of haplodiploid and of diploid higher eukaryotes do not differ systematically in their recombination rates and associated parameters.
Collapse
Affiliation(s)
- Oliver Niehuis
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gao D, Gill N, Kim HR, Walling JG, Zhang W, Fan C, Yu Y, Ma J, SanMiguel P, Jiang N, Cheng Z, Wing RA, Jiang J, Jackson SA. A lineage-specific centromere retrotransposon in Oryza brachyantha. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:820-831. [PMID: 19702667 DOI: 10.1111/j.1365-313x.2009.04005.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Most eukaryotic centromeres contain large quantities of repetitive DNA, such as satellite repeats and retrotransposons. Unlike most transposons in plant genomes, the centromeric retrotransposon (CR) family is conserved over long evolutionary periods among a majority of the grass species. CR elements are highly concentrated in centromeres, and are likely to play a role in centromere function. In order to study centromere evolution in the Oryza (rice) genus, we sequenced the orthologous region to centromere 8 of Oryza sativa from a related species, Oryza brachyantha. We found that O. brachyantha does not have the canonical CRR (CR of rice) found in the centromeres of all other Oryza species. Instead, a new Ty3-gypsy (Metaviridae) retroelement (FRetro3) was found to colonize the centromeres of this species. This retroelement is found in high copy numbers in the O. brachyantha genome, but not in other Oryza genomes, and based on the dating of long terminal repeats (LTRs) of FRetro3 it was amplified in the genome in the last few million years. Interestingly, there is a high level of removal of FRetro3 based on solo-LTRs to full-length elements, and this rapid turnover may have played a role in the replacement of the canonical CRR with the new element by active deletion. Comparison with previously described ChIP cloning data revealed that FRetro3 is found in CENH3-associated chromatin sequences. Thus, within a single lineage of the Oryza genus, the canonical component of grass centromeres has been replaced with a new retrotransposon that has all the hallmarks of a centromeric retroelement.
Collapse
Affiliation(s)
- Dongying Gao
- Molecular and Evolutionary Genetics, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jiang N, Gao D, Xiao H, van der Knaap E. Genome organization of the tomato sun locus and characterization of the unusual retrotransposon Rider. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:181-193. [PMID: 19508380 DOI: 10.1111/j.1365-313x.2009.03946.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
DNA sequences provide useful insights into genome structure and organization as well as evolution of species. We report on a detailed analysis of the locus surrounding the tomato (Solanum lycopersicum) fruit-shape gene SUN to determine the driving force and genome environment that foster the appearance of novel phenotypes. The gene density at the sun locus is similar to that described in other euchromatic portions of the tomato genome despite the relatively high number of transposable elements. Genes at the sun locus include protein-coding as well as RNA genes, are small in size, and belong to families that were duplicated at the locus an estimated 5-74 million years ago. In general, the DNA transposons at the sun locus are older than the RNA transposons, and their insertion pre-dates the speciation of S. lycopersicum and S. pimpinellifolium. Gene redundancy and large intergenic regions may explain the tolerance of the sun locus to frequent rearrangements and transpositions. The most recent transposition event at the sun locus involved Rider, a recently discovered high-copy retrotransposon. Rider probably arose early during the speciation of tomato. The element inserts into or near to genes and may still be active, which are unusual features for a high-copy element. Rider full-length and read-through transcripts past the typical transcription termination stop are detected, and the latter are required for mobilizing nearby sequences. Rider activity has resulted in an altered phenotype in three known cases, and may therefore have played an important role in tomato evolution and domestication.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | |
Collapse
|
45
|
Tang X, de Boer JM, van Eck HJ, Bachem C, Visser RGF, de Jong H. Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology. Chromosome Res 2009; 17:899-915. [PMID: 19774472 PMCID: PMC2776164 DOI: 10.1007/s10577-009-9077-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/20/2009] [Indexed: 11/30/2022]
Abstract
A cytogenetic map has been developed for diploid potato (Solanum tuberosum), in which the arms of the 12 potato bivalents can be identified in pachytene complements using multicolor fluorescence in situ hybridization (FISH) with a set of 60 genetically anchored bacterial artificial chromosome (BAC) clones from the RHPOTKEY BAC library. This diagnostic set of selected BACs (five per chromosome) hybridizes to euchromatic regions and corresponds to well-defined loci in the ultradense genetic map, and with these probes a new detailed and reliable pachytene karyotype could be established. Chromosome size has been estimated both from microscopic length measurements and from 4′,6-diamidino-2-phenylindole fluorescence-based DNA content measurements. In both approaches, chromosome 1 is the largest (100–115 Mb) and chromosome 11 the smallest (49–53 Mb). Detailed measurements of mega-base-pair to micrometer ratios have been obtained for chromosome 5, with average values of 1.07 Mb/μm for euchromatin and 3.67 Mb/μm for heterochromatin. In addition, our FISH results helped to solve two discrepancies in the potato genetic map related to chromosomes 8 and 12. Finally, we discuss the significance of the potato cytogenetic map for extended FISH studies in potato and related Solanaceae, which will be especially beneficial for the potato genome-sequencing project.
Collapse
Affiliation(s)
- Xiaomin Tang
- Wageningen UR Plant Breeding, Wageningen University and Research Center, 6708 PB, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Gupta V, Mathur S, Solanke AU, Sharma MK, Kumar R, Vyas S, Khurana P, Khurana JP, Tyagi AK, Sharma AK. Genome analysis and genetic enhancement of tomato. Crit Rev Biotechnol 2009; 29:152-81. [PMID: 19319709 DOI: 10.1080/07388550802688870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Solanaceae is an important family of vegetable crops, ornamentals and medicinal plants. Tomato has served as a model member of this family largely because of its enriched cytogenetic, genetic, as well as physical, maps. Mapping has helped in cloning several genes of importance such as Pto, responsible for resistance against bacterial speck disease, Mi-1.2 for resistance against nematodes, and fw2.2 QTL for fruit weight. A high-throughput genome-sequencing program has been initiated by an international consortium of 10 countries. Since heterochromatin has been found to be concentrated near centromeres, the consortium is focusing on sequencing only the gene-rich euchromatic region. Genomes of the members of Solanaceae show a significant degree of synteny, suggesting that the tomato genome sequence would help in the cloning of genes for important traits from other Solanaceae members as well. ESTs from a large number of cDNA libraries have been sequenced, and microarray chips, in conjunction with wide array of ripening mutants, have contributed immensely to the understanding of the fruit-ripening phenomenon. Work on the analysis of the tomato proteome has also been initiated. Transgenic tomato plants with improved abiotic stress tolerance, disease resistance and insect resistance, have been developed. Attempts have also been made to develop tomato as a bioreactor for various pharmaceutical proteins. However, control of fruit quality and ripening remains an active and challenging area of research. Such efforts should pave the way to improve not only tomato, but also other solanaceous crops.
Collapse
Affiliation(s)
- Vikrant Gupta
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Staton SE, Ungerer MC, Moore RC. The genomic organization of Ty3/gypsy-like retrotransposons in Helianthus (Asteraceae) homoploid hybrid species. AMERICAN JOURNAL OF BOTANY 2009; 96:1646-1655. [PMID: 21622351 DOI: 10.3732/ajb.0800337] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The origin of new diploid, or homoploid, hybrid species is associated with rapid genomic restructuring in the hybrid neospecies. This mode of speciation has been best characterized in wild sunflower species in the genus Helianthus, where three homoploid hybrid species (H. anomalus, H. deserticola, and H. paradoxus) have independently arisen via ancient hybridization events between the same two parental species (H. annuus and H. petiolaris). Most previous work examining genomic restructuring in these sunflower hybrid species has focused on chromosomal rearrangements. However, the origin of all three homoploid hybrid sunflower species also is associated with massive proliferation events of Ty3/gypsy-like retrotransposons in the hybrid species' genomes. We compared the genomic organization of these elements in the parent species and two of the homoploid hybrid species using fluorescence in situ hybridization (FISH). We found a significant expansion of Ty3/gypsy-like retrotransposons confined to the pericentromeric regions of two hybrid sunflower species, H. deserticola and H. paradoxus. In contrast, we detected no significant increase in the frequency or extent of dispersed retrotransposon populations in the hybrid species within the resolution limits of our assay. We discuss the potential role that transposable element proliferation and localization plays in the evolution of homoploid hybrid species.
Collapse
Affiliation(s)
- S Evan Staton
- Miami University, Department of Botany, 316 Pearson Hall, Oxford, Ohio 45056 USA
| | | | | |
Collapse
|
48
|
Yu Q, Tong E, Skelton RL, Bowers JE, Jones MR, Murray JE, Hou S, Guan P, Acob RA, Luo MC, Moore PH, Alam M, Paterson AH, Ming R. A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 2009; 10:371. [PMID: 19664231 PMCID: PMC3224731 DOI: 10.1186/1471-2164-10-371] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 08/07/2009] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Papaya is a major fruit crop in tropical and subtropical regions worldwide and has primitive sex chromosomes controlling sex determination in this trioecious species. The papaya genome was recently sequenced because of its agricultural importance, unique biological features, and successful application of transgenic papaya for resistance to papaya ringspot virus. As a part of the genome sequencing project, we constructed a BAC-based physical map using a high information-content fingerprinting approach to assist whole genome shotgun sequence assembly. RESULTS The physical map consists of 963 contigs, representing 9.4x genome equivalents, and was integrated with the genetic map and genome sequence using BAC end sequences and a sequence-tagged high-density genetic map. The estimated genome coverage of the physical map is about 95.8%, while 72.4% of the genome was aligned to the genetic map. A total of 1,181 high quality overgo (overlapping oligonucleotide) probes representing conserved sequences in Arabidopsis and genetically mapped loci in Brassica were anchored on the physical map, which provides a foundation for comparative genomics in the Brassicales. The integrated genetic and physical map aligned with the genome sequence revealed recombination hotspots as well as regions suppressed for recombination across the genome, particularly on the recently evolved sex chromosomes. Suppression of recombination spread to the adjacent region of the male specific region of the Y chromosome (MSY), and recombination rates were recovered gradually and then exceeded the genome average. Recombination hotspots were observed at about 10 Mb away on both sides of the MSY, showing 7-fold increase compared with the genome wide average, demonstrating the dynamics of recombination of the sex chromosomes. CONCLUSION A BAC-based physical map of papaya was constructed and integrated with the genetic map and genome sequence. The integrated map facilitated the draft genome assembly, and is a valuable resource for comparative genomics and map-based cloning of agronomically and economically important genes and for sex chromosome research.
Collapse
Affiliation(s)
- Qingyi Yu
- Cellular and Molecular Biology Research Unit, Hawaii Agriculture Research Center, Aiea, HI 96701, USA
| | - Eric Tong
- Cellular and Molecular Biology Research Unit, Hawaii Agriculture Research Center, Aiea, HI 96701, USA
| | - Rachel L Skelton
- Cellular and Molecular Biology Research Unit, Hawaii Agriculture Research Center, Aiea, HI 96701, USA
| | - John E Bowers
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Meghan R Jones
- Cellular and Molecular Biology Research Unit, Hawaii Agriculture Research Center, Aiea, HI 96701, USA
| | - Jan E Murray
- Cellular and Molecular Biology Research Unit, Hawaii Agriculture Research Center, Aiea, HI 96701, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shaobin Hou
- Center for Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, HI 96822, USA
| | - Peizhu Guan
- Department of Molecular Bioscience and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA
| | - Ricelle A Acob
- Department of Molecular Bioscience and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Paul H Moore
- USDA-ARS, Pacific Basin Agricultural Research Center, Hilo, HI 96720, USA
| | - Maqsudul Alam
- Center for Advanced Studies in Genomics, Proteomics and Bioinformatics, University of Hawaii, Honolulu, HI 96822, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA 30602, USA
| | - Ray Ming
- Cellular and Molecular Biology Research Unit, Hawaii Agriculture Research Center, Aiea, HI 96701, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
49
|
Brasileiro-Vidal AC, Melo-Oliveira MB, Carvalheira GMG, Guerra M. Different chromatin fractions of tomato (Solanum lycopersicum L.) and related species. Micron 2009; 40:851-9. [PMID: 19646883 DOI: 10.1016/j.micron.2009.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 06/12/2009] [Accepted: 06/12/2009] [Indexed: 11/17/2022]
Abstract
Conventional chromosome staining has suggested that more than 75% of the tomato chromosomes are constituted by heterochromatin. In order to determine whether more deeply stained proximal regions are classic heterochromatin, the distributions of C-bands and chromomycin A(3) (CMA) bands, and the prophase condensation patterns, were analysed in tomato. In this and most other species of the tomato clade, the 5S and 45S rDNA sites were also localised. In tomato, CMA banding was similar to C-banding. After conventional staining, all species displayed large condensed heteropycnotic regions that did not correspond to C-bands or CMA bands. Analyses of the CMA banded karyotypes revealed a low heterochromatin content. Around 12-17% of the chromatin of tomato was CMA(+) and 1/4 to 1/5 of this heterochromatin corresponded to 45S rDNA. In other species, the CMA(+) heterochromatin showed extensive variation (8-35%), but was never near the values found in the literature for tomato. These data suggest the existence of three principal fractions of chromatin in tomato and related species: the late condensed euchromatin corresponding to the terminal regions of the chromosomes, the precocious condensed euchromatin that occupies the major part of the chromosomes and the constitutive heterochromatin that represents those regions revealed by C-bands.
Collapse
Affiliation(s)
- A C Brasileiro-Vidal
- Department of Genetics, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n Cidade, 50670-901 Recife, PE, Brazil.
| | | | | | | |
Collapse
|
50
|
Peters SA, Datema E, Szinay D, van Staveren MJ, Schijlen EGWM, van Haarst JC, Hesselink T, Abma-Henkens MHC, Bai Y, de Jong H, Stiekema WJ, Klein Lankhorst RM, van Ham RCHJ. Solanum lycopersicum cv. Heinz 1706 chromosome 6: distribution and abundance of genes and retrotransposable elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:857-69. [PMID: 19207213 DOI: 10.1111/j.1365-313x.2009.03822.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We studied the physical and genetic organization of chromosome 6 of tomato (Solanum lycopersicum) cv. Heinz 1706 by combining bacterial artificial chromosome (BAC) sequence analysis, high-information-content fingerprinting, genetic analysis, and BAC-fluorescent in situ hybridization (FISH) mapping data. The chromosome positions of 81 anchored seed and extension BACs corresponded in most cases with the linear marker order on the high-density EXPEN 2000 linkage map. We assembled 25 BAC contigs and eight singleton BACs spanning 2.0 Mb of the short-arm euchromatin, 1.8 Mb of the pericentromeric heterochromatin and 6.9 Mb of the long-arm euchromatin. Sequence data were combined with their corresponding genetic and pachytene chromosome positions into an integrated map that covers approximately a third of the chromosome 6 euchromatin and a small part of the pericentromeric heterochromatin. We then compared physical length (Mb), genetic (cM) and chromosome distances (microm) for determining gap sizes between contigs, revealing relative hot and cold spots of recombination. Through sequence annotation we identified several clusters of functionally related genes and an uneven distribution of both gene and repeat sequences between heterochromatin and euchromatin domains. Although a greater number of the non-transposon genes were located in the euchromatin, the highly repetitive (22.4%) pericentromeric heterochromatin displayed an unexpectedly high gene content of one gene per 36.7 kb. Surprisingly, the short-arm euchromatin was relatively rich in repeats as well, with a repeat content of 13.4%, yet the ratio of Ty3/Gypsy and Ty1/Copia retrotransposable elements across the chromosome clearly distinguished euchromatin (2:3) from heterochromatin (3:2).
Collapse
Affiliation(s)
- Sander A Peters
- Wageningen University Centre for Biosystems Genomics, Droevendaalsesteeg 1 6708 PB Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|