1
|
Timpano S, Picketts DJ. Neurodevelopmental Disorders Caused by Defective Chromatin Remodeling: Phenotypic Complexity Is Highlighted by a Review of ATRX Function. Front Genet 2020; 11:885. [PMID: 32849845 PMCID: PMC7432156 DOI: 10.3389/fgene.2020.00885] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/20/2020] [Indexed: 12/15/2022] Open
Abstract
The ability to determine the genetic etiology of intellectual disability (ID) and neurodevelopmental disorders (NDD) has improved immensely over the last decade. One prevailing metric from these studies is the large percentage of genes encoding epigenetic regulators, including many members of the ATP-dependent chromatin remodeling enzyme family. Chromatin remodeling proteins can be subdivided into five classes that include SWI/SNF, ISWI, CHD, INO80, and ATRX. These proteins utilize the energy from ATP hydrolysis to alter nucleosome positioning and are implicated in many cellular processes. As such, defining their precise roles and contributions to brain development and disease pathogenesis has proven to be complex. In this review, we illustrate that complexity by reviewing the roles of ATRX on genome stability, replication, and transcriptional regulation and how these mechanisms provide key insight into the phenotype of ATR-X patients.
Collapse
Affiliation(s)
- Sara Timpano
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David J. Picketts
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
2
|
Straub J, Gregor A, Sauerer T, Fliedner A, Distel L, Suchy C, Ekici AB, Ferrazzi F, Zweier C. Genetic interaction screen for severe neurodevelopmental disorders reveals a functional link between Ube3a and Mef2 in Drosophila melanogaster. Sci Rep 2020; 10:1204. [PMID: 31988313 PMCID: PMC6985129 DOI: 10.1038/s41598-020-58182-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/13/2020] [Indexed: 11/09/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are clinically and genetically extremely heterogeneous with shared phenotypes often associated with genes from the same networks. Mutations in TCF4, MEF2C, UBE3A, ZEB2 or ATRX cause phenotypically overlapping, syndromic forms of NDDs with severe intellectual disability, epilepsy and microcephaly. To characterize potential functional links between these genes/proteins, we screened for genetic interactions in Drosophila melanogaster. We induced ubiquitous or tissue specific knockdown or overexpression of each single orthologous gene (Da, Mef2, Ube3a, Zfh1, XNP) and in pairwise combinations. Subsequently, we assessed parameters such as lethality, wing and eye morphology, neuromuscular junction morphology, bang sensitivity and climbing behaviour in comparison between single and pairwise dosage manipulations. We found most stringent evidence for genetic interaction between Ube3a and Mef2 as simultaneous dosage manipulation in different tissues including glia, wing and eye resulted in multiple phenotype modifications. We subsequently found evidence for physical interaction between UBE3A and MEF2C also in human cells. Systematic pairwise assessment of the Drosophila orthologues of five genes implicated in clinically overlapping, severe NDDs and subsequent confirmation in a human cell line revealed interactions between UBE3A/Ube3a and MEF2C/Mef2, thus contributing to the characterization of the underlying molecular commonalities.
Collapse
Affiliation(s)
- Jonas Straub
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Anne Gregor
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Tatjana Sauerer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Anna Fliedner
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Laila Distel
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Christine Suchy
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Fulvia Ferrazzi
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Christiane Zweier
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany.
| |
Collapse
|
3
|
Glial ensheathment of the somatodendritic compartment regulates sensory neuron structure and activity. Proc Natl Acad Sci U S A 2019; 116:5126-5134. [PMID: 30804200 DOI: 10.1073/pnas.1814456116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sensory neurons perceive environmental cues and are important of organismal survival. Peripheral sensory neurons interact intimately with glial cells. While the function of axonal ensheathment by glia is well studied, less is known about the functional significance of glial interaction with the somatodendritic compartment of neurons. Herein, we show that three distinct glia cell types differentially wrap around the axonal and somatodendritic surface of the polymodal dendritic arborization (da) neuron of the Drosophila peripheral nervous system for detection of thermal, mechanical, and light stimuli. We find that glial cell-specific loss of the chromatin modifier gene dATRX in the subperineurial glial layer leads to selective elimination of somatodendritic glial ensheathment, thus allowing us to investigate the function of such ensheathment. We find that somatodendritic glial ensheathment regulates the morphology of the dendritic arbor, as well as the activity of the sensory neuron, in response to sensory stimuli. Additionally, glial ensheathment of the neuronal soma influences dendritic regeneration after injury.
Collapse
|
4
|
Herb BR, Shook MS, Fields CJ, Robinson GE. Defense against territorial intrusion is associated with DNA methylation changes in the honey bee brain. BMC Genomics 2018; 19:216. [PMID: 29580210 PMCID: PMC5870497 DOI: 10.1186/s12864-018-4594-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/12/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Aggression is influenced by individual variation in temperament as well as behavioral plasticity in response to adversity. DNA methylation is stably maintained over time, but also reversible in response to specific environmental conditions, and may thus be a neuromolecular regulator of both of these processes. A previous study reported DNA methylation differences between aggressive Africanized and gentle European honey bees. We investigated whether threat-induced aggression altered DNA methylation profiles in the honey bee brain in response to a behavioral stimulus (aggression-provoking intruder bee or inert control). We sampled five minutes and two hours after stimulus exposure to examine the effect of time on epigenetic profiles of aggression. RESULTS There were DNA methylation differences between aggressive and control bees for individual cytosine-guanine dinucleotides (CpGs) across the genome. Eighteen individual CpG sites showed significant difference between aggressive and control bees 120 min post stimulus. For clusters of CpGs, we report four genomic regions differentially methylated between aggressive and control bees at the 5-min time point, and 50 regions differentially methylated at the120-minute time point following intruder exposure. Differential methylation occurred at genes involved in neural plasticity, chromatin remodeling and hormone signaling. Additionally, there was a significant overlap of differential methylation with previously published epigenetic differences that distinguish aggressive Africanized and gentle European honey bees, suggesting an evolutionarily conserved use of brain DNA methylation in the regulation of aggression. Lastly, we identified individually statistically suggestive CpGs that as a group were significantly associated with differentially expressed genes underlying aggressive behavior and also co-localize with binding sites of transcription factors involved in neuroplasticity or neurodevelopment. CONCLUSIONS There were DNA methylation differences in the brain associated with response to an intruder. These differences increased in number a few hours after the initial exposure and overlap with previously reported aggression-associated genes and neurobiologically relevant transcription factor binding sites. Many DNA methylation differences that occurred in association with the expression of aggression in real time also exist between Africanized bees and European bees, suggesting an evolutionarily conserved role for epigenetic regulation in aggressive behavior.
Collapse
Affiliation(s)
- Brian R Herb
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Molly S Shook
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J Fields
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Marcogliese PC, Abuaish S, Kabbach G, Abdel-Messih E, Seang S, Li G, Slack RS, Haque ME, Venderova K, Park DS. LRRK2(I2020T) functional genetic interactors that modify eye degeneration and dopaminergic cell loss in Drosophila. Hum Mol Genet 2017; 26:1247-1257. [PMID: 28158614 DOI: 10.1093/hmg/ddx030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/19/2017] [Indexed: 11/14/2022] Open
Abstract
Progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta is the primary cause for motor symptoms observed in Parkinson's disease (PD). Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most commonly linked contributor to familial PD. LRRK2 is suggested to be involved in a wide variety of cellular processes, but deciphering its role in the pathogenesis of PD has been difficult. Modelling PD in rodents has been a persistent challenge for the field. However, the fruit fly has been exploited to recapitulate PD gene related dopaminergic cell loss. Using the GAL4-UAS system and established models of hLRRK2 induced eye degeneration in Drosophila, we conducted an unbiased suppressor/enhancer screen to uncover genetic modifiers of LRRK2. We have identified 36 candidate interactors that modify LRRK2 induced toxicity in the Drosophila eye. Importantly, we determined that a subset of these interactors also modified hLRRK2(I2020T) induced dopaminergic neuronal loss in the fly brain and uncovered 16 candidates that modify dopaminergic cell loss. Our results suggest LRRK2 may be involved in a wide variety of cellular processes and the results from this screen provide an important genetic resource for further evaluation of LRRK2 function.
Collapse
Affiliation(s)
- Paul C Marcogliese
- Department of Cellular and Molecular Medicine.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sameera Abuaish
- Department of Cellular and Molecular Medicine.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Ghassan Kabbach
- Department of Cellular and Molecular Medicine.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Elizabeth Abdel-Messih
- Department of Cellular and Molecular Medicine.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sarah Seang
- Department of Cellular and Molecular Medicine.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Gang Li
- Department of Cellular and Molecular Medicine.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Ruth S Slack
- Department of Cellular and Molecular Medicine.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - M Emdadul Haque
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates University, Al Ain, UAE
| | - Katerina Venderova
- Department of Biopharmaceutical Sciences, Keck Graduate Institute, Claremont, CA, USA
| | - David S Park
- Department of Cellular and Molecular Medicine.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
6
|
Chistiakov DA, Orekhov AN, Bobryshev YV. The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol 2016; 97:47-55. [DOI: 10.1016/j.yjmcc.2016.05.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/19/2016] [Accepted: 05/11/2016] [Indexed: 10/21/2022]
|
7
|
Carrasco-Rando M, Atienza-Manuel A, Martín P, Burke R, Ruiz-Gómez M. Fear-of-intimacy mediated zinc transport controls the function of Zn-finger transcription factors involved in myogenesis. Development 2016; 143:1948-57. [DOI: 10.1242/dev.131953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 03/31/2016] [Indexed: 12/17/2022]
Abstract
Zinc is a component of one tenth of all human proteins. Its cellular concentration is tightly regulated because its dyshomeostasis has catastrophic health consequences. Two families of zinc transporters control zinc homeostasis in organisms, but there is little information about their specific developmental roles. We show that the ZIP transporter fear-of-intimacy (foi) is necessary for the formation of Drosophila muscles. In foi mutants, myoblasts segregate normally, but their specification is affected, leading to the formation of a misshapen muscle pattern and distorted midgut. The observed phenotypes could be ascribed to the inactivation of specific zing-finger transcription factors (ZFTFs), supporting the hypothesis that they a consequence of a zinc intracellular depletion. Accordingly, foi phenotypes can be rescued by mesodermal expression of other ZIP members with similar subcellular localization. We propose that Foi acts mostly as a transporter to regulate zinc intracellular homeostasis, thereby impacting on the activity of ZFTFs that control specific developmental processes. Our results additionally suggest a possible explanation for the presence of large numbers of zinc transporters in organisms based on differences in ion transport specificity and/or degrees of activity among transporters.
Collapse
Affiliation(s)
- Marta Carrasco-Rando
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, C/ Nicolás Cabrera 1, 28049-Madrid, Spain
| | - Alexandra Atienza-Manuel
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, C/ Nicolás Cabrera 1, 28049-Madrid, Spain
| | - Paloma Martín
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, C/ Nicolás Cabrera 1, 28049-Madrid, Spain
| | - Richard Burke
- School of Biological Sciences, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, C/ Nicolás Cabrera 1, 28049-Madrid, Spain
| |
Collapse
|
8
|
Kang H, McElroy KA, Jung YL, Alekseyenko AA, Zee BM, Park PJ, Kuroda MI. Sex comb on midleg (Scm) is a functional link between PcG-repressive complexes in Drosophila. Genes Dev 2015; 29:1136-50. [PMID: 26063573 PMCID: PMC4470282 DOI: 10.1101/gad.260562.115] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this study, Kang et al. investigate how PcG complexes form repressive chromatin domains. The findings show that Scm, a transcriptional repressor, is an important regulator of PRC1, PRC2, and transcriptional silencing and suggest that Scm coordinates PcG complexes and polymerizes, resulting in PcG silencing. The Polycomb group (PcG) proteins are key regulators of development in Drosophila and are strongly implicated in human health and disease. How PcG complexes form repressive chromatin domains remains unclear. Using cross-linked affinity purifications of BioTAP-Polycomb (Pc) or BioTAP-Enhancer of zeste [E(z)], we captured all PcG-repressive complex 1 (PRC1) or PRC2 core components and Sex comb on midleg (Scm) as the only protein strongly enriched with both complexes. Although previously not linked to PRC2, we confirmed direct binding of Scm and PRC2 using recombinant protein expression and colocalization of Scm with PRC1, PRC2, and H3K27me3 in embryos and cultured cells using ChIP-seq (chromatin immunoprecipitation [ChIP] combined with deep sequencing). Furthermore, we found that RNAi knockdown of Scm and overexpression of the dominant-negative Scm-SAM (sterile α motif) domain both affected the binding pattern of E(z) on polytene chromosomes. Aberrant localization of the Scm-SAM domain in long contiguous regions on polytene chromosomes revealed its independent ability to spread on chromatin, consistent with its previously described ability to oligomerize in vitro. Pull-downs of BioTAP-Scm captured PRC1 and PRC2 and additional repressive complexes, including PhoRC, LINT, and CtBP. We propose that Scm is a key mediator connecting PRC1, PRC2, and transcriptional silencing. Combined with previous structural and genetic analyses, our results strongly suggest that Scm coordinates PcG complexes and polymerizes to produce broad domains of PcG silencing.
Collapse
Affiliation(s)
- Hyuckjoon Kang
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kyle A McElroy
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Youngsook Lucy Jung
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Artyom A Alekseyenko
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Barry M Zee
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Peter J Park
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Center for Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mitzi I Kuroda
- Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
9
|
Yuva-Aydemir Y, Xu XL, Aydemir O, Gascon E, Sayin S, Zhou W, Hong Y, Gao FB. Downregulation of the Host Gene jigr1 by miR-92 Is Essential for Neuroblast Self-Renewal in Drosophila. PLoS Genet 2015; 11:e1005264. [PMID: 26000445 PMCID: PMC4441384 DOI: 10.1371/journal.pgen.1005264] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/05/2015] [Indexed: 11/18/2022] Open
Abstract
Intragenic microRNAs (miRNAs), located mostly in the introns of protein-coding genes, are often co-expressed with their host mRNAs. However, their functional interaction in development is largely unknown. Here we show that in Drosophila, miR-92a and miR-92b are embedded in the intron and 3'UTR of jigr1, respectively, and co-expressed with some jigr1 isoforms. miR-92a and miR-92b are highly expressed in neuroblasts of larval brain where Jigr1 expression is low. Genetic deletion of both miR-92a and miR-92b demonstrates an essential cell-autonomous role for these miRNAs in maintaining neuroblast self-renewal through inhibiting premature differentiation. We also show that miR-92a and miR-92b directly target jigr1 in vivo and that some phenotypes due to the absence of these miRNAs are partially rescued by reducing the level of jigr1. These results reveal a novel function of the miR-92 family in Drosophila neuroblasts and provide another example that local negative feedback regulation of host genes by intragenic miRNAs is essential for animal development.
Collapse
Affiliation(s)
- Yeliz Yuva-Aydemir
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Xia-Lian Xu
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Ozkan Aydemir
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Eduardo Gascon
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Serkan Sayin
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Wenke Zhou
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
10
|
Pinheiro P, Bereman MS, Burd J, Pals M, Armstrong S, Howe KJ, Thannhauser TW, MacCoss MJ, Gray SM, Cilia M. Evidence of the biochemical basis of host virulence in the greenbug aphid, Schizaphis graminum (Homoptera: Aphididae). J Proteome Res 2014; 13:2094-108. [PMID: 24588548 DOI: 10.1021/pr4012415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biotypes of aphids and many other insect pests are defined based on the phenotypic response of host plants to the insect pest without considering their intrinsic characteristics and genotypes. Plant breeders have spent considerable effort developing aphid-resistant, small-grain varieties to limit insecticide control of the greenbug, Schizaphis graminum. However, new S. graminum biotypes frequently emerge that break resistance. Mechanisms of virulence on the aphid side of the plant-insect interaction are not well understood. S. graminum biotype H is highly virulent on most small grain varieties. This characteristic makes biotype H ideal for comparative proteomics to investigate the basis of biotype virulence in aphids. In this study, we used comparative proteomics to identify protein expression differences associated with virulence. Aphid proteins involved in the tricarboxylic acid cycle, immune system, cell division, and antiapoptosis pathways were found to be up-regulated in biotype H relative to other biotypes. Proteins from the bacterial endosymbiont of aphids were also differentially expressed in biotype H. Guided by the proteome results, we tested whether biotype H had a fitness advantage compared with other S. graminum biotypes and found that biotype H had a higher reproductive fitness as compared with two other biotypes on a range of different wheat germplasms. Finally, we tested whether aphid genetics can be used to further dissect the genetic mechanisms of biotype virulence in aphids. The genetic data showed that sexual reproduction is a source of biotypic variation observed in S. graminum.
Collapse
Affiliation(s)
- Patricia Pinheiro
- Department of Entomology, Cornell University , 2130 Comstock Hall, Ithaca, New York 14853 United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Arif S, Murat S, Almudi I, Nunes M, Bortolamiol-Becet D, McGregor N, Currie J, Hughes H, Ronshaugen M, Sucena É, Lai E, Schlötterer C, McGregor A. Evolution of mir-92a underlies natural morphological variation in Drosophila melanogaster. Curr Biol 2013; 23:523-8. [PMID: 23453955 PMCID: PMC3605577 DOI: 10.1016/j.cub.2013.02.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 11/21/2022]
Abstract
Identifying the genetic mechanisms underlying phenotypic change is essential to understanding how gene regulatory networks and ultimately the genotype-to-phenotype map evolve. It is recognized that microRNAs (miRNAs) have the potential to facilitate evolutionary change [1-3]; however, there are no known examples of natural morphological variation caused by evolutionary changes in miRNA expression. Therefore, the contribution of miRNAs to evolutionary change remains unknown [1, 4]. Drosophila melanogaster subgroup species display a portion of trichome-free cuticle on the femur of the second leg called the "naked valley." It was previously shown that Ultrabithorax (Ubx) is involved in naked valley variation between D. melanogaster and D. simulans [5, 6]. However, naked valley size also varies among populations of D. melanogaster, ranging from 1,000 up to 30,000 μm(2). We investigated the genetic basis of intraspecific differences in the naked valley in D. melanogaster and found that neither Ubx nor shavenbaby (svb) [7, 8] contributes to this morphological difference. Instead, we show that changes in mir-92a expression underlie the evolution of naked valley size in D. melanogaster through repression of shavenoid (sha) [9]. Therefore, our results reveal a novel mechanism for morphological evolution and suggest that modulation of the expression of miRNAs potentially plays a prominent role in generating organismal diversity.
Collapse
Affiliation(s)
- Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, 1210 Vienna, Austria
| | - Sophie Murat
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, 1210 Vienna, Austria
| | - Isabel Almudi
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Maria D.S. Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Diane Bortolamiol-Becet
- Sloan-Kettering Institute, 1017C Rockefeller Research Labs, 1275 York Avenue, Box 252, New York, NY 10065, USA
| | - Naomi S. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - James M.S. Currie
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Harri Hughes
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
| | - Matthew Ronshaugen
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Apartado 14, 2781-901 Oeiras, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Eric C. Lai
- Sloan-Kettering Institute, 1017C Rockefeller Research Labs, 1275 York Avenue, Box 252, New York, NY 10065, USA
| | - Christian Schlötterer
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, 1210 Vienna, Austria
| | - Alistair P. McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK
- Institut für Populationsgenetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
12
|
Ding ZY, Wang YH, Luo ZK, Lee HF, Hwang J, Chien CT, Huang ML. Glial cell adhesive molecule unzipped mediates axon guidance in Drosophila. Dev Dyn 2010; 240:122-34. [PMID: 21117153 DOI: 10.1002/dvdy.22508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axon guidance needs help from the glial cell system during embryogenesis. In the Drosophila embryonic central nervous system (CNS), longitudinal glia (LG) have been implicated in axon guidance but the mechanism remains unclear. We identified the protein encoded by the Drosophila gene unzipped (uzip) as a novel cell adhesion molecule (CAM). Uzip expressed in Drosophila S2 cells triggered cell aggregation through homophilic binding. In the embryonic CNS, Uzip was mainly produced by the LG but was also located at axons, which is consistent with the secretion of Uzip expressed in cultured cells. Although uzip mutants displayed no axonal defect, loss of uzip enhanced the axonal defects in the mutant of N-cadherin (CadN) and the Wnt gene family member wnt5. Overexpression of uzip could rescue the phenotype in the CadNuzip(D43) mutant. Thus, Uzip is a novel CAM from the LG regulating axon guidance.
Collapse
Affiliation(s)
- Zhao-Ying Ding
- Department of Life Science, National Chung-Cheng University, Chia-Yi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
13
|
Sonnenfeld M, Morozova T, Hackett J, Sun X. Drosophila Jing is part of the breathless fibroblast growth factor receptor positive feedback loop. Dev Genes Evol 2010; 220:207-20. [PMID: 21061018 DOI: 10.1007/s00427-010-0342-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 10/19/2010] [Indexed: 11/28/2022]
Abstract
In the developing Drosophila trachea, extensive cell migration lays the foundation for an elaborate network of tubules to form. This process is controlled by the Drosophila fibroblast growth factor receptor, known as Breathless (Btl), whose expression is activated by the Trachealess (Trh) and Tango (Tgo) basic helix-loop-helix (bHLH)-PAS transcription factors. We previously identified the jing zinc finger transcription factor as a gene sensitive to the dosage of bHLH-PAS transcriptional activity and showed that its mutations interact genetically with those of trh and btl. Here, we demonstrate that jing is required for btl expression in the branching trachea and dominantly interacts with known regulators of btl expression, including the ETS and POU transcription factors, pointed, and drifter/ventral veinless, respectively. Furthermore, the zinc finger-containing C-terminus of Jing associates with a btl tracheal enhancer in a Trh/Tgo-dependent manner in chromatin immunoprecipitation assays in vitro and interferes with btl in vitro and in vivo. Together, our results support a model by which Jing/Trh/Tgo complexes regulate btl transcript levels during primary tracheal branching.
Collapse
Affiliation(s)
- Margaret Sonnenfeld
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|
14
|
Smith MB, Weiler KS. Drosophila D1 overexpression induces ectopic pairing of polytene chromosomes and is deleterious to development. Chromosoma 2010; 119:287-309. [PMID: 20127347 DOI: 10.1007/s00412-010-0257-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/24/2009] [Accepted: 01/06/2010] [Indexed: 11/30/2022]
Abstract
Eukaryotic genomes function in the context of chromatin, but the roles of most nonhistone chromosomal proteins are far from understood. The D1 protein of Drosophila is an example of a chromosomal protein that has been fairly well characterized biochemically, but has nevertheless eluded functional description. To this end, we have undertaken a gain-of-function genetical analysis of D1, utilizing the GAL4-UAS system. We determined that ubiquitous overexpression of D1 using the Act5C- or tubP-GAL4 drivers was lethal to the organism during larval growth. We also ectopically expressed D1 in a tissue-limited manner using other GAL4 drivers. In general, ectopic D1 was observed to inhibit differentiation and/or development. We observed effects on pattern formation of the adult eye, bristle morphogenesis, and spermatogenesis. These phenotypes may be the consequence of misregulation of D1 target genes. A surprising result was obtained when D1 was overexpressed in the third instar salivary gland. The polytene chromosomes exhibited numerous ectopic associations such that spreading of the chromosome arms was precluded. We mapped the sites of ectopic pairing along the polytene chromosome arms, and found a correlation with sites of intercalary heterochromatin. We speculate that these sites comprise the natural targets of D1 protein activity and that D1 is involved in the ectopic pairing observed for wild-type chromosomes. Together, our data suggest that D1 may influence multiple biochemical activities within the nucleus.
Collapse
Affiliation(s)
- Marissa B Smith
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | | |
Collapse
|
15
|
Venderova K, Kabbach G, Abdel-Messih E, Zhang Y, Parks RJ, Imai Y, Gehrke S, Ngsee J, Lavoie MJ, Slack RS, Rao Y, Zhang Z, Lu B, Haque ME, Park DS. Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson's disease. Hum Mol Genet 2009; 18:4390-404. [PMID: 19692353 DOI: 10.1093/hmg/ddp394] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Mutations in the LRRK2 gene are the most common genetic cause of familial Parkinson's disease (PD). However, its physiological and pathological functions are unknown. Therefore, we generated several independent Drosophila lines carrying WT or mutant human LRRK2 (mutations in kinase, COR or LRR domains, resp.). Ectopic expression of WT or mutant LRRK2 in dopaminergic neurons caused their significant loss accompanied by complex age-dependent changes in locomotor activity. Overall, the ubiquitous expression of LRRK2 increased lifespan and fertility of the flies. However, these flies were more sensitive to rotenone. LRRK2 expression in the eye exacerbated retinal degeneration. Importantly, in double transgenic flies, various indices of the eye and dopaminergic survival were modified in a complex fashion by a concomitant expression of PINK1, DJ-1 or Parkin. This evidence suggests a genetic interaction between these PD-relevant genes.
Collapse
Affiliation(s)
- Katerina Venderova
- Ottawa Health Research Institute, Neuroscience Research Institute, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hong YK, Lee NG, Lee MJ, Park MS, Choi G, Suh YS, Han SY, Hwang S, Jeong G, Cho KS. dXNP/DATRX increases apoptosis via the JNK and dFOXO pathway in Drosophila neurons. Biochem Biophys Res Commun 2009; 384:160-6. [PMID: 19406101 DOI: 10.1016/j.bbrc.2009.04.112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 04/18/2009] [Indexed: 12/11/2022]
Abstract
Mutation of the XNP/ATRX gene, which encodes an SNF2 family ATPase/helicase protein, leads to ATR-X syndrome and several other X-linked mental retardation syndromes. Although XNP/ATRX is a chromatin remodeler, the molecular mechanism by which mental retardation occurs in patients with ATR-X has yet to be determined. To better understand the role of XNP/ATRX in neuronal development, we expressed Drosophila XNP (dXNP/DATRX) ectopically in Drosophila neurons. Neuronal expression of dXNP/DATRX resulted in various developmental defects and induced strong apoptosis. These defects and apoptosis were suppressed by Drosophila inhibitor of apoptosis protein 1. Expression of dXNP/DATRX also increased JNK activity and the levels of reaper and hid transcripts, which are pro-apoptotic factors that activate caspase. Furthermore, dXNP/DATRX-induced rough eye phenotype and apoptosis were suppressed by dFOXO deficiency. These results suggest that dXNP/DATRX is involved in caspase-dependent apoptosis in Drosophila neurons via regulation of the JNK and dFOXO pathway.
Collapse
Affiliation(s)
- Yoon Ki Hong
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Mental retardation--known more commonly nowadays as intellectual disability--is a severe neurological condition affecting up to 3% of the general population. As a result of the analysis of familial cases and recent advances in clinical genetic testing, great strides have been made in our understanding of the genetic etiologies of mental retardation. Nonetheless, no treatment is currently clinically available to patients suffering from intellectual disability. Several animal models have been used in the study of memory and cognition. Established paradigms in Drosophila have recently captured cognitive defects in fly mutants for orthologs of genes involved in human intellectual disability. We review here three protocols designed to understand the molecular genetic basis of learning and memory in Drosophila and the genes identified so far with relation to mental retardation. In addition, we explore the mental retardation genes for which evidence of neuronal dysfunction other than memory has been established in Drosophila. Finally, we summarize the findings in Drosophila for mental retardation genes for which no neuronal information is yet available. All in all, this review illustrates the impressive overlap between genes identified in human mental retardation and genes involved in physiological learning and memory.
Collapse
Affiliation(s)
- François V Bolduc
- Watson School of Biological Sciences, Cold Spring Harbor, New York, USA
| | | |
Collapse
|
18
|
Medina CF, Mazerolle C, Wang Y, Bérubé NG, Coupland S, Gibbons RJ, Wallace VA, Picketts DJ. Altered visual function and interneuron survival in Atrx knockout mice: inference for the human syndrome. Hum Mol Genet 2008; 18:966-77. [DOI: 10.1093/hmg/ddn424] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
19
|
The chromatin remodelling factor dATRX is involved in heterochromatin formation. PLoS One 2008; 3:e2099. [PMID: 18461125 PMCID: PMC2324200 DOI: 10.1371/journal.pone.0002099] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 03/27/2008] [Indexed: 01/25/2023] Open
Abstract
Despite extensive study of heterochromatin, relatively little is known about the mechanisms by which such a structure forms. We show that the Drosophila homologue of the human α-thalassemia and mental retardation X-linked protein (dATRX), is important in the formation or maintenance of heterochromatin through modification of position effect variegation. We further show that there are two isoforms of the dATRX protein, the longer of which interacts directly with heterochromatin protein 1 (dHP-1) through a CxVxL motif both in vitro and in vivo. These two proteins co-localise at heterochromatin in a manner dependent on this motif. Consistent with this observation, the long isoform of the dATRX protein localises primarily to the heterochromatin at the chromocentre on salivary gland polytene chromosomes, whereas the short isoform binds to many sites along the chromosome arms. We suggest that the establishment of a regular nucleosomal organisation may be common to heterochromatin and transcriptionally repressed chromatin in other locations, and may require the action of ATP dependent chromatin remodelling factors.
Collapse
|
20
|
Gene expression profile in cerebrum in the filial imprinting of domestic chicks (Gallus gallus domesticus). Brain Res Bull 2008; 76:275-81. [PMID: 18498941 DOI: 10.1016/j.brainresbull.2008.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 12/06/2007] [Accepted: 02/06/2008] [Indexed: 12/21/2022]
Abstract
In newly hatched chicks, gene expression in the brain has previously been shown to be up-regulated following filial imprinting. By applying cDNA microarrays containing 13,007 expressed sequence tags, we examined the comprehensive gene expression profiling of the intermediate medial mesopallium in the chick cerebrum, which has been shown to play a key role in filial imprinting. We found 52 up-regulated genes and 6 down-regulated genes of at least 2.0-fold changes 3h after the training of filial imprinting, compared to the gene expression of the dark-reared chick brain. The up-regulated genes are known to be involved in a variety of pathways, including signal transduction, cytoskeletal organization, nuclear function, cell metabolism, RNA binding, endoplasmic reticulum or Golgi function, synaptic function, ion channel, and transporter. In contrast, fewer genes were down-regulated in the imprinting, coinciding with the previous data that the total RNA synthesis increased associated with filial imprinting. Our data suggests that the filial imprinting involves the modulation of multiple signaling pathways.
Collapse
|