1
|
Yu SX, Jiang YT, Lin WH. Ovule initiation: the essential step controlling offspring number in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1469-1486. [PMID: 35713236 DOI: 10.1111/jipb.13314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Seed is the offspring of angiosperms. Plants produce large numbers of seeds to ensure effective reproduction and survival in varying environments. Ovule is a fundamentally important organ and is the precursor of the seed. In Arabidopsis and other plants characterized by multi-ovulate ovaries, ovule initiation determines the maximal ovule number, thus greatly affecting seed number per fruit and seed yield. Investigating the regulatory mechanism of ovule initiation has both scientific and economic significance. However, the genetic and molecular basis underlying ovule initiation remains unclear due to technological limitations. Very recently, rules governing the multiple ovules initiation from one placenta have been identified, the individual functions and crosstalk of phytohormones in regulating ovule initiation have been further characterized, and new regulators of ovule boundary are reported, therefore expanding the understanding of this field. In this review, we present an overview of current knowledge in ovule initiation and summarize the significance of ovule initiation in regulating the number of plant offspring, as well as raise insights for the future study in this field that provide potential routes for the improvement of crop yield.
Collapse
Affiliation(s)
- Shi-Xia Yu
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Tong Jiang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wen-Hui Lin
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Qadir M, Wang X, Shah SRU, Zhou XR, Shi J, Wang H. Molecular Network for Regulation of Ovule Number in Plants. Int J Mol Sci 2021; 22:ijms222312965. [PMID: 34884791 PMCID: PMC8657818 DOI: 10.3390/ijms222312965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
In seed-bearing plants, the ovule ("small egg") is the organ within the gynoecium that develops into a seed after fertilization. The gynoecium located in the inner compartment of the flower turns into a fruit. The number of ovules in the ovary determines the upper limit or the potential of seed number per fruit in plants, greatly affecting the final seed yield. Ovule number is an important adaptive characteristic for plant evolution and an agronomic trait for crop improvement. Therefore, understanding the mechanism and pathways of ovule number regulation becomes a significant research aspect in plant science. This review summarizes the ovule number regulators and their regulatory mechanisms and pathways. Specially, an integrated molecular network for ovule number regulation is constructed, in which phytohormones played a central role, followed by transcription factors, enzymes, other protein and micro-RNA. Of them, AUX, BR and CK are positive regulator of ovule number, whereas GA acts negatively on it. Interestingly, many ovule number regulators have conserved functions across several plant taxa, which should be the targets of genetic improvement via breeding or gene editing. Many ovule number regulators identified to date are involved in the diverse biological process, such as ovule primordia formation, ovule initiation, patterning, and morphogenesis. The relations between ovule number and related characteristics/traits especially of gynoecium/fruit size, ovule fertility, and final seed number, as well as upcoming research questions, are also discussed. In summary, this review provides a general overview of the present finding in ovule number regulation, which represents a more comprehensive and in-depth cognition on it.
Collapse
Affiliation(s)
- Muslim Qadir
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Lasbela 74200, Pakistan;
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
| | - Syed Rehmat Ullah Shah
- Department of Plant Breeding and Genetics, Faculty of Agriculture, Lasbela University of Agriculture Water and Marine Sciences (LUAWMS), Lasbela 74200, Pakistan;
- Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7080, SE-75007 Uppsala, Sweden
| | - Xue-Rong Zhou
- Commonwealth Scientific Industrial Research Organization (CSIRO) Agriculture Food, Canberra, ACT 2601, Australia;
| | - Jiaqin Shi
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
- Correspondence: (J.S.); (H.W.)
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of the Chines Academy of Agricultural Sciences, Wuhan 430062, China; (M.Q.); (X.W.)
- Correspondence: (J.S.); (H.W.)
| |
Collapse
|
3
|
Luo Y, Shi DQ, Jia PF, Bao Y, Li HJ, Yang WC. Nucleolar histone deacetylases HDT1, HDT2 and HDT3 regulate plant reproductive development. J Genet Genomics 2021; 49:30-39. [PMID: 34699991 DOI: 10.1016/j.jgg.2021.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
Nucleolus is a membrane-less organelle where ribosomes are assembled and rRNAs transcribed and processed. The assembled ribosomes composed of ribosomal proteins and rRNAs synthesize proteins for cell survival. In plants, the loss of nucleolar ribosomal proteins often causes gametophytically or embryonically lethality. The amount of rRNAs are under stringent regulation according to demand and partially switched off by epigenetic modifications. However, the molecular mechanism for the selective activation or silencing is still unclear, and the transcriptional coordination of rRNAs and ribosomal proteins is also unknown. Here we report the critical role of three Arabidopsis nucleolar protein HDT1, HDT2 and HDT3 in fertility and transcription of rDNAs and rRNA processing-related genes through histone acetylation. This study highlights the important roles of transcriptional repression of ribosome biogenesis-related genes for plant reproductive development.
Collapse
Affiliation(s)
- Yu Luo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Qiao Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Fei Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Nazir MF, He S, Ahmed H, Sarfraz Z, Jia Y, Li H, Sun G, Iqbal MS, Pan Z, Du X. Genomic insight into the divergence and adaptive potential of a forgotten landrace G. hirsutum L. purpurascens. J Genet Genomics 2021; 48:473-484. [PMID: 34272194 DOI: 10.1016/j.jgg.2021.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 11/28/2022]
Abstract
Wild progenitors are an excellent source for strengthening the genetic basis and accumulation of desirable variation lost because of directional selection and adaptation in modern cultivars. Here, we re-evaluate a landrace of Gossypium hirsutum, formerly known as Gossypium purpurascens. Our study seeks to understand the genomic structure, variation, and breeding potential of this landrace, providing potential insights into the biogeographic history and genomic changes likely associated with domestication. A core set of accessions, including current varieties, obsolete accessions, G. purpurascens, and other geographical landraces, are subjected to genotyping along with multilocation phenotyping. Population fixation statistics suggests a marked differentiation between G. purpurascens and three other groups, emphasizing the divergent genomic behavior of G. purpurascens. Phylogenetic analysis establishes the primitive nature of G. purpurascens, identifying it as a vital source of functional variation, the inclusion of which in the upland cotton (cultivated G. hirsutum) gene pool may broaden the genetic basis of modern cultivars. Genome-wide association results indicate multiple loci associated with domestication regions corresponding to flowering and fiber quality. Moreover, the conserved nature of G. purpurascens can also provide insights into the evolutionary process of G. hirsutum.
Collapse
Affiliation(s)
- Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Haris Ahmed
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zareen Sarfraz
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Hongge Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Gaofei Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Muhammad Shahid Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Cotton Research Institute, Ayub Agricultural Research Institute, Multan 60000, Pakistan
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
5
|
Goto C, Hashizume S, Fukao Y, Hara-Nishimura I, Tamura K. Comprehensive nuclear proteome of Arabidopsis obtained by sequential extraction. Nucleus 2020; 10:81-92. [PMID: 30961429 PMCID: PMC6527390 DOI: 10.1080/19491034.2019.1603093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In eukaryotes, the nucleus plays key roles in fundamental cellular processes, including DNA replication, chromatin maintenance, transcription, and translation. To better understand the functional diversity of nuclei, we developed a method for the comprehensive extraction of the nuclear proteome from Arabidopsis. We used a buffer with a high sucrose concentration to purify nuclei and then conducted solubility-based fractionation to increase proteome coverage. We identified 1539 proteins and two novel nuclear envelope (NE) proteins in the nuclear fraction of Arabidopsis cultured cells. The localization of 25 proteins was determined by GFP fusion analyses; 23 of these proteins were localized either in the nucleus or the NE-associated endoplasmic reticulum. This result was indicative of the high quality of the proteome. These findings will be useful for clarifying novel nuclear functions in plants.
Collapse
Affiliation(s)
- Chieko Goto
- a Graduate School of Agricultural and Life Sciences , University of Tokyo , Tokyo , Japan
| | - Shoko Hashizume
- b Department of Botany , Graduate School of Science, Kyoto University , Kyoto , Japan
| | - Yoichiro Fukao
- c Department of Bioinformatics , College of Life Sciences, Ritsumeikan University , Shiga , Japan
| | | | - Kentaro Tamura
- e Department of Environmental and Life Sciences , University of Shizuoka , Shizuoka , Japan
| |
Collapse
|
6
|
Cucinotta M, Di Marzo M, Guazzotti A, de Folter S, Kater MM, Colombo L. Gynoecium size and ovule number are interconnected traits that impact seed yield. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2479-2489. [PMID: 32067041 PMCID: PMC7210752 DOI: 10.1093/jxb/eraa050] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 01/24/2020] [Indexed: 05/02/2023]
Abstract
Angiosperms form the largest group of land plants and display an astonishing diversity of floral structures. The development of flowers greatly contributed to the evolutionary success of the angiosperms as they guarantee efficient reproduction with the help of either biotic or abiotic vectors. The female reproductive part of the flower is the gynoecium (also called pistil). Ovules arise from meristematic tissue within the gynoecium. Upon fertilization, these ovules develop into seeds while the gynoecium turns into a fruit. Gene regulatory networks involving transcription factors and hormonal communication regulate ovule primordium initiation, spacing on the placenta, and development. Ovule number and gynoecium size are usually correlated and several genetic factors that impact these traits have been identified. Understanding and fine-tuning the gene regulatory networks influencing ovule number and pistil length open up strategies for crop yield improvement, which is pivotal in light of a rapidly growing world population. In this review, we present an overview of the current knowledge of the genes and hormones involved in determining ovule number and gynoecium size. We propose a model for the gene regulatory network that guides the developmental processes that determine seed yield.
Collapse
Affiliation(s)
- Mara Cucinotta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Maurizio Di Marzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Andrea Guazzotti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-Leon, CP 36824 Irapuato, Gto., Mexico
| | - Martin M Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria, Milan, Italy
| |
Collapse
|
7
|
Coen O, Magnani E. Seed coat thickness in the evolution of angiosperms. Cell Mol Life Sci 2018; 75:2509-2518. [PMID: 29730767 PMCID: PMC6003975 DOI: 10.1007/s00018-018-2816-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 10/26/2022]
Abstract
The seed habit represents a remarkable evolutionary advance in plant sexual reproduction. Since the Paleozoic, seeds carry a seed coat that protects, nourishes and facilitates the dispersal of the fertilization product(s). The seed coat architecture evolved to adapt to different environments and reproductive strategies in part by modifying its thickness. Here, we review the great natural diversity observed in seed coat thickness among angiosperms and its molecular regulation in Arabidopsis.
Collapse
Affiliation(s)
- Olivier Coen
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026, Versailles Cedex, France
- Ecole Doctorale 567 Sciences du Végétal, University Paris-Sud, University of Paris-Saclay, bat 360, 91405, Orsay Cedex, France
| | - Enrico Magnani
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, University of Paris-Saclay, Route de St-Cyr (RD10), 78026, Versailles Cedex, France.
| |
Collapse
|
8
|
Jeon Y, Ahn HK, Kang YW, Pai HS. Functional characterization of chloroplast-targeted RbgA GTPase in higher plants. PLANT MOLECULAR BIOLOGY 2017; 95:463-479. [PMID: 29038916 DOI: 10.1007/s11103-017-0664-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
KEY MESSAGE Plant RbgA GTPase is targeted to chloroplasts and co-fractionated with chloroplast ribosomes, and plays a role in chloroplast rRNA processing and/or ribosome biogenesis. Ribosome Biogenesis GTPase A (RbgA) homologs are evolutionarily conserved GTPases that are widely distributed in both prokaryotes and eukaryotes. In this study, we investigated functions of chloroplast-targeted RbgA. Nicotiana benthamiana RbgA (NbRbgA) and Arabidopsis thaliana RbgA (AtRbgA) contained a conserved GTP-binding domain and a plant-specific C-terminal domain. NbRbgA and AtRbgA were mainly localized in chloroplasts, and possessed GTPase activity. Since Arabidopsis rbgA null mutants exhibited an embryonic lethal phenotype, virus-induced gene silencing (VIGS) of NbRbgA was performed in N. benthamiana. NbRbgA VIGS resulted in a leaf-yellowing phenotype caused by disrupted chloroplast development. NbRbgA was mainly co-fractionated with 50S/70S ribosomes and interacted with the chloroplast ribosomal proteins cpRPL6 and cpRPL35. NbRbgA deficiency lowered the levels of mature 23S and 16S rRNAs in chloroplasts and caused processing defects. Sucrose density gradient sedimentation revealed that NbRbgA-deficient chloroplasts contained reduced levels of mature 23S and 16S rRNAs and diverse plastid-encoded mRNAs in the polysomal fractions, suggesting decreased protein translation activity in the chloroplasts. Interestingly, NbRbgA protein was highly unstable under high light stress, suggesting its possible involvement in the control of chloroplast ribosome biogenesis under environmental stresses. Collectively, these results suggest a role for RbgA GTPase in chloroplast rRNA processing/ribosome biogenesis, affecting chloroplast protein translation in higher plants.
Collapse
Affiliation(s)
- Young Jeon
- Department of Systems Biology, Yonsei University, Seoul, 03722, South Korea
| | - Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul, 03722, South Korea
| | - Yong Won Kang
- R&D Center, Morechem Co., Ltd., Yongin, Gyeonggi-do, 16954, South Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
9
|
Sicard A, Lenhard M. The selfing syndrome: a model for studying the genetic and evolutionary basis of morphological adaptation in plants. ANNALS OF BOTANY 2011; 107:1433-43. [PMID: 21303786 PMCID: PMC3108801 DOI: 10.1093/aob/mcr023] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/17/2010] [Accepted: 01/04/2011] [Indexed: 05/05/2023]
Abstract
BACKGROUND In angiosperm evolution, autogamously selfing lineages have been derived from outbreeding ancestors multiple times, and this transition is regarded as one of the most common evolutionary tendencies in flowering plants. In most cases, it is accompanied by a characteristic set of morphological and functional changes to the flowers, together termed the selfing syndrome. Two major areas that have changed during evolution of the selfing syndrome are sex allocation to male vs. female function and flower morphology, in particular flower (mainly petal) size and the distance between anthers and stigma. SCOPE A rich body of theoretical, taxonomic, ecological and genetic studies have addressed the evolutionary modification of these two trait complexes during or after the transition to selfing. Here, we review our current knowledge about the genetics and evolution of the selfing syndrome. CONCLUSIONS We argue that because of its frequent parallel evolution, the selfing syndrome represents an ideal model for addressing basic questions about morphological evolution and adaptation in flowering plants, but that realizing this potential will require the molecular identification of more of the causal genes underlying relevant trait variation.
Collapse
Affiliation(s)
| | - Michael Lenhard
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Straße 24–25, D-14476 Potsdam, Germany
| |
Collapse
|
10
|
Lora J, Hormaza JI, Herrero M, Gasser CS. Seedless fruits and the disruption of a conserved genetic pathway in angiosperm ovule development. Proc Natl Acad Sci U S A 2011; 108:5461-5. [PMID: 21402944 PMCID: PMC3069195 DOI: 10.1073/pnas.1014514108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the biological function of fruiting is the production and dissemination of seeds, humans have developed seedless fruits in a number of plant species to facilitate consumption. Here we describe a unique spontaneous seedless mutant (Thai seedless; Ts) of Annona squamosa (sugar apple), a member of the early-divergent magnoliid angiosperm clade. Ovules (seed precursors) of the mutant lack the outer of two normal integuments, a phenocopy of the inner no outer (ino) mutant of Arabidopsis thaliana. Cloning of the INO ortholog from A. squamosa confirmed conservation of the outer integument-specific expression pattern of this gene between the two species. All regions of the gene were detectable in wild-type A. squamosa and in other members of this genus. However, no region of the INO gene could be detected in Ts plants, indicating apparent deletion of the INO locus. These results provide a case of a candidate gene approach revealing the apparent molecular basis of a useful agronomic trait (seedless fruit) in a crop species, and indicate conservation of the role of a critical regulator of ovule development between eudicots and more ancient lineages of angiosperms. The outer integument is one synapomorphy of angiosperms separating them from other extant seed plants, and the results suggest that the evolution of this structure was contemporaneous with the derivation of INO from ancestral YABBY genes. Thus, a unique lateral structure appears to have coevolved with a novel gene family member essential for the structure's formation.
Collapse
Affiliation(s)
- Jorge Lora
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Cientificas (CSIC), 29750 Algarrobo-Costa, Málaga, Spain
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616; and
| | - José I. Hormaza
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Cientificas (CSIC), 29750 Algarrobo-Costa, Málaga, Spain
| | - María Herrero
- Departamento de Pomoligía, Estación Experimental “Aula Dei,” CSIC, 50080 Zaragoza, Spain
| | - Charles S. Gasser
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616; and
| |
Collapse
|
11
|
Cross talk between the sporophyte and the megagametophyte during ovule development. ACTA ACUST UNITED AC 2011; 24:113-21. [PMID: 21298290 DOI: 10.1007/s00497-011-0162-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
In seed plant ovules, the diploid maternal sporophytic generation embeds and sustains the haploid generation (the female gametophyte); thus, two independent generations coexist in a single organ. Many independent studies on Arabidopsis ovule mutants suggest that embryo sac development requires highly synchronized morphogenesis of the maternal sporophyte surrounding the gametophyte, since megagametogenesis is severely perturbed in most of the known sporophytic ovule development mutants. Which are the messenger molecules involved in the haploid-diploid dialogue? And furthermore, is this one way communication or is a feedback cross talk? In this review, we discuss genetic and molecular evidences supporting the presence of a cross talk between the two generations, starting from the first studies regarding ovule development and ending to the recently sporophytic identified genes whose expression is strictly controlled by the haploid gametophytic generation. We will mainly focus on Arabidopsis studies since it is the species more widely studied for this aspect. Furthermore, possible candidate molecules involved in the diploid-haploid generations dialogue will be presented and discussed.
Collapse
|
12
|
Alvarez-Buylla ER, Benítez M, Corvera-Poiré A, Chaos Cador Á, de Folter S, Gamboa de Buen A, Garay-Arroyo A, García-Ponce B, Jaimes-Miranda F, Pérez-Ruiz RV, Piñeyro-Nelson A, Sánchez-Corrales YE. Flower development. THE ARABIDOPSIS BOOK 2010; 8:e0127. [PMID: 22303253 PMCID: PMC3244948 DOI: 10.1199/tab.0127] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flowers are the most complex structures of plants. Studies of Arabidopsis thaliana, which has typical eudicot flowers, have been fundamental in advancing the structural and molecular understanding of flower development. The main processes and stages of Arabidopsis flower development are summarized to provide a framework in which to interpret the detailed molecular genetic studies of genes assigned functions during flower development and is extended to recent genomics studies uncovering the key regulatory modules involved. Computational models have been used to study the concerted action and dynamics of the gene regulatory module that underlies patterning of the Arabidopsis inflorescence meristem and specification of the primordial cell types during early stages of flower development. This includes the gene combinations that specify sepal, petal, stamen and carpel identity, and genes that interact with them. As a dynamic gene regulatory network this module has been shown to converge to stable multigenic profiles that depend upon the overall network topology and are thus robust, which can explain the canalization of flower organ determination and the overall conservation of the basic flower plan among eudicots. Comparative and evolutionary approaches derived from Arabidopsis studies pave the way to studying the molecular basis of diverse floral morphologies.
Collapse
Affiliation(s)
- Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Mariana Benítez
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Corvera-Poiré
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Álvaro Chaos Cador
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Stefan de Folter
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alicia Gamboa de Buen
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Fabiola Jaimes-Miranda
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Rigoberto V. Pérez-Ruiz
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Alma Piñeyro-Nelson
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| | - Yara E. Sánchez-Corrales
- Laboratorio de Genética Molecular, Desarrollo y Evolución de Plantas, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México. 3er Circuito Exterior S/N Junto a Jardín Botánico Exterior, Cd. Universitaria, Coyoacán, México D.F. 04510, Mexico
| |
Collapse
|
13
|
Brown RH, Nickrent DL, Gasser CS. Expression of ovule and integument-associated genes in reduced ovules of Santalales. Evol Dev 2010; 12:231-40. [DOI: 10.1111/j.1525-142x.2010.00407.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Eukaryotic GCP1 is a conserved mitochondrial protein required for progression of embryo development beyond the globular stage in Arabidopsis thaliana. Biochem J 2009; 423:333-41. [PMID: 19694617 DOI: 10.1042/bj20091023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GCPs (glycoproteases) are members of the HSP70 (heat-shock protein 70)/actin ATPase superfamily that are highly conserved in taxonomically diverse species from bacteria to man, suggesting an essential physiological role. Although originally identified and annotated as putative endopeptidases, a proteolytic activity could not be confirmed for these proteins. Our survey of genome databases revealed that all eukaryotic organisms contain two GCP genes [called GCP1 and GCP2/Kae1 (kinase-associated endopeptidase 1)], whereas prokaryotes have only one, either of the GCP1- (Bacteria) or the GCP2/Kae1- (Archaea) type. GCP2/Kae1 is essential for telomere elongation and transcription of essential genes, although little is known about the localization, expression and physiological role of GCP1. In the present study on GCP1-type proteins from eukaryotic organisms we demonstrated that GCP1 is a mitochondrial protein in Homo sapiens [called here GCP1/OSGEPL1 (O-sialoglycoprotein endopeptidase)] and Arabidopsis thaliana, which is located/anchored to the mitochondrial inner membrane. Analysis of mRNA and protein levels revealed that the expression of GCP1/OSGEPL1 in A. thaliana and H. sapiens is tissue- and organ-specific and depends on the developmental stage, suggesting a more specialized function for this protein. We showed that homozygous A. thaliana GCP1 T-DNA (transferred DNA) insertion lines were embryonic lethal. Embryos in homozygous seeds were arrested at the globular stage and failed to undergo the transition into the heart stage. On the basis of these data we propose that the mitochondrial GCP1 is essential for embryonic development in plants.
Collapse
|
15
|
Millar AH, Small ID, Day DA, Whelan J. Mitochondrial biogenesis and function in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0111. [PMID: 22303236 DOI: 10.1199/tab.0105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Mitochondria represent the powerhouse of cells through their synthesis of ATP. However, understanding the role of mitochondria in the growth and development of plants will rely on a much deeper appreciation of the complexity of this organelle. Arabidopsis research has provided clear identification of mitochondrial components, allowed wide-scale analysis of gene expression, and has aided reverse genetic manipulation to test the impact of mitochondrial component loss on plant function. Forward genetics in Arabidopsis has identified mitochondrial involvement in mutations with notable impacts on plant metabolism, growth and development. Here we consider the evidence for components involved in mitochondria biogenesis, metabolism and signalling to the nucleus.
Collapse
|
16
|
Millar AH, Small ID, Day DA, Whelan J. Mitochondrial biogenesis and function in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0111. [PMID: 22303236 PMCID: PMC3243404 DOI: 10.1199/tab.0111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitochondria represent the powerhouse of cells through their synthesis of ATP. However, understanding the role of mitochondria in the growth and development of plants will rely on a much deeper appreciation of the complexity of this organelle. Arabidopsis research has provided clear identification of mitochondrial components, allowed wide-scale analysis of gene expression, and has aided reverse genetic manipulation to test the impact of mitochondrial component loss on plant function. Forward genetics in Arabidopsis has identified mitochondrial involvement in mutations with notable impacts on plant metabolism, growth and development. Here we consider the evidence for components involved in mitochondria biogenesis, metabolism and signalling to the nucleus.
Collapse
Affiliation(s)
- A. Harvey Millar
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| | - Ian D. Small
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| | - David A. Day
- School of Biological Sciences, The University of Sydney 2006, NSW, Australia
| | - James Whelan
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009
| |
Collapse
|