1
|
Haasl RJ, Payseur BA. Fitness landscapes of human microsatellites. PLoS Genet 2024; 20:e1011524. [PMID: 39775235 PMCID: PMC11734926 DOI: 10.1371/journal.pgen.1011524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/15/2025] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate. Because these assumptions are violated by repetitive sequences, selection remains uncharacterized for an appreciable percentage of the genome. To meet this challenge, we focus on microsatellites, repetitive variants that mutate orders of magnitude faster than single nucleotide variants, can harbor substantial variation, and are known to influence biological function in some cases. We introduce four general models of natural selection that are each characterized by just two parameters, are easily simulated, and are specifically designed for microsatellites. Using a random forests approach to approximate Bayesian computation, we fit these models to carefully chosen microsatellites genotyped in 200 humans from a diverse collection of eight populations. Altogether, we reconstruct detailed fitness landscapes for 43 microsatellites we classify as targets of selection. Microsatellite fitness surfaces are diverse, including a range of selection strengths, contributions from dominance, and variation in the number and size of optimal alleles. Microsatellites that are subject to selection include loci known to cause trinucleotide expansion disorders and modulate gene expression, as well as intergenic loci with no obvious function. The heterogeneity in fitness landscapes we report suggests that genome-scale analyses like those used to assess selection targeting single nucleotide variants run the risk of oversimplifying the evolutionary dynamics of microsatellites. Moreover, our fitness landscapes provide a valuable visualization of the selective dynamics navigated by microsatellites.
Collapse
Affiliation(s)
- Ryan J. Haasl
- Department of Biology, University of Wisconsin-Platteville, Platteville, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Bret A. Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Flynn JM, Yamashita YM. The implications of satellite DNA instability on cellular function and evolution. Semin Cell Dev Biol 2024; 156:152-159. [PMID: 37852904 DOI: 10.1016/j.semcdb.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/21/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Abundant tandemly repeated satellite DNA is present in most eukaryotic genomes. Previous limitations including a pervasive view that it was uninteresting junk DNA, combined with challenges in studying it, are starting to dissolve - and recent studies have found important functions for satellite DNAs. The observed rapid evolution and implied instability of satellite DNA now has important significance for their functions and maintenance within the genome. In this review, we discuss the processes that lead to satellite DNA copy number instability, and the importance of mechanisms to manage the potential negative effects of instability. Satellite DNA is vulnerable to challenges during replication and repair, since it forms difficult-to-process secondary structures and its homology within tandem arrays can result in various types of recombination. Satellite DNA instability may be managed by DNA or chromatin-binding proteins ensuring proper nuclear localization and repair, or by proteins that process aberrant structures that satellite DNAs tend to form. We also discuss the pattern of satellite DNA mutations from recent mutation accumulation (MA) studies that have tracked changes in satellite DNA for up to 1000 generations with minimal selection. Finally, we highlight examples of satellite evolution from studies that have characterized satellites across millions of years of Drosophila fruit fly evolution, and discuss possible ways that selection might act on the satellite DNA composition.
Collapse
Affiliation(s)
- Jullien M Flynn
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA.
| | - Yukiko M Yamashita
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA; Howard Hughes Medical Institute, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Legrand C, Andriantsoa R, Lichter P, Raddatz G, Lyko F. Time-resolved, integrated analysis of clonally evolving genomes. PLoS Genet 2023; 19:e1011085. [PMID: 38096267 PMCID: PMC10754456 DOI: 10.1371/journal.pgen.1011085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 12/28/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023] Open
Abstract
Clonal genome evolution is a key feature of asexually reproducing species and human cancer development. While many studies have described the landscapes of clonal genome evolution in cancer, few determine the underlying evolutionary parameters from molecular data, and even fewer integrate theory with data. We derived theoretical results linking mutation rate, time, expansion dynamics, and biological/clinical parameters. Subsequently, we inferred time-resolved estimates of evolutionary parameters from mutation accumulation, mutational signatures and selection. We then applied this framework to predict the time of speciation of the marbled crayfish, an enigmatic, globally invasive parthenogenetic freshwater crayfish. The results predict that speciation occurred between 1986 and 1990, which is consistent with biological records. We also used our framework to analyze whole-genome sequencing datasets from primary and relapsed glioblastoma, an aggressive brain tumor. The results identified evolutionary subgroups and showed that tumor cell survival could be inferred from genomic data that was generated during the resection of the primary tumor. In conclusion, our framework allowed a time-resolved, integrated analysis of key parameters in clonally evolving genomes, and provided novel insights into the evolutionary age of marbled crayfish and the progression of glioblastoma.
Collapse
Affiliation(s)
- Carine Legrand
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
| | - Ranja Andriantsoa
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular Precision Oncology, National Center for Tumor Diseases, Heidelberg, Germany
| | - Günter Raddatz
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
4
|
Becker D, Barnard-Kubow K, Porter R, Edwards A, Voss E, Beckerman AP, Bergland AO. Adaptive phenotypic plasticity is under stabilizing selection in Daphnia. Nat Ecol Evol 2022; 6:1449-1457. [PMID: 35982224 DOI: 10.1038/s41559-022-01837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 06/20/2022] [Indexed: 11/09/2022]
Abstract
The adaptive nature of phenotypic plasticity is widely documented. However, little is known about the evolutionary forces that shape genetic variation of plasticity within populations. Whether genetic variation in plasticity is driven by stabilizing or diversifying selection and whether the strength of such forces remains constant through time, remain open questions. Here, we address this issue by assessing the evolutionary forces that shape genetic variation in antipredator developmental plasticity of Daphnia pulex. Antipredator plasticity in D. pulex is characterized by the growth of a pedestal and spikes in the dorsal head region upon exposure to predator cue. We characterized genetic variation in plasticity using a method that describes the entire dorsal shape amongst >100 D. pulex strains recently derived from the wild. We observed the strongest reduction in genetic variation in dorsal areas where plastic responses were greatest, consistent with stabilizing selection. We compared mutational variation (Vm) to standing variation (Vg) and found that Vg/Vm is lowest in areas of greatest plasticity, again consistent with stabilizing selection. Our results suggest that stabilizing selection operates directly on phenotypic plasticity in Daphnia and provide a rare glimpse into the evolution of fitness-related traits in natural populations.
Collapse
Affiliation(s)
- Dörthe Becker
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK.
- Department of Biology, University of Marburg, Marburg, Germany.
| | - Karen Barnard-Kubow
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Robert Porter
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Austin Edwards
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Biological Imaging Development CoLab, University of California San Francisco, San Francisco, CA, USA
| | - Erin Voss
- Department of Biology, University of Virginia, Charlottesville, VA, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Andrew P Beckerman
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | - Alan O Bergland
- Department of Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
De los Santos MB, Ramírez IM, Rodríguez JE, Beerli P, Valdivia HO. Genetic diversity and population structure of Leishmania (Viannia) braziliensis in the Peruvian jungle. PLoS Negl Trop Dis 2022; 16:e0010374. [PMID: 35605021 PMCID: PMC9126394 DOI: 10.1371/journal.pntd.0010374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Human cutaneous leishmaniasis caused by Leishmania (Viannia) braziliensis is highly prevalent in the Peruvian jungle, where it affects military forces deployed to fight against drug trafficking and civilian people that migrate from the highland to the lowland jungle for economic activities such as mining, agriculture, construction, and chestnut harvest. We explored the genetic diversity and population structure of 124 L. (V.) braziliensis isolates collected from the highland (Junín, Cusco, and Ayacucho) and lowland Peruvian jungle (Loreto, Ucayali, and Madre de Dios). All samples were genotyped using Multilocus Microsatellite Typing (MLMT) of ten highly polymorphic markers. Principal findings High polymorphism and genetic diversity were found in Peruvian isolates of L. (V.) braziliensis. Most markers are not in Hardy-Weinberg equilibrium; this deviation is most likely caused by local inbreeding, as shown by the positive FIS values. Linkage Disequilibrium in subpopulations was not strong, suggesting the reproduction was not strictly clonal. Likewise, for the first time, two genetic clusters of this parasite were determined, distributed in both areas of the Peruvian jungle, which suggested a possible recent colonization event of the highland jungle from the lowland jungle. Conclusions L. (V.) braziliensis exhibits considerable genetic diversity with two different clusters in the Peruvian jungle. Migration analysis suggested a colonization event between geographical areas of distribution. Although no human migration was observed at the time of sampling, earlier displacement of humans, reservoirs, or vectors could have been responsible for the parasite spread in both regions. L. (V.) braziliensis is widespread in the Peruvian jungle region. In this region, the departments of Cusco and Madre de Dios account for a large number of patients that get infected while working in the virgin forest. For the first time, we described ample genetic diversity among Peruvian L. (V.) braziliensis isolates with new alleles that were not previously reported in South America. In addition, two different genetic clusters or subpopulations of L. (V.) braziliensis in the Amazon Rainforest of Peru were described. This finding reveals the important distribution of parasite populations and suggests a possible colonization event between ecoregions of the highland and lowland Peruvian jungle independently of recent human migration.
Collapse
Affiliation(s)
| | | | - Jorge E. Rodríguez
- Unidad de Biotecnología Molecular, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter Beerli
- Department of Scientific Computing, Florida State University, Tallahassee, Florida, United States of America
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit 6, Lima, Peru
| |
Collapse
|
6
|
Lei Y, Zhou Y, Price M, Song Z. Genome-wide characterization of microsatellite DNA in fishes: survey and analysis of their abundance and frequency in genome-specific regions. BMC Genomics 2021; 22:421. [PMID: 34098869 PMCID: PMC8186053 DOI: 10.1186/s12864-021-07752-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Microsatellite repeats are ubiquitous in organism genomes and play an important role in the chromatin organization, regulation of gene activity, recombination and DNA replication. Although microsatellite distribution patterns have been studied in most phylogenetic lineages, they are unclear in fish species. RESULTS Here, we present the first systematic examination of microsatellite distribution in coding and non-coding regions of 14 fish genomes. Our study showed that the number and type of microsatellites displayed nonrandom distribution for both intragenic and intergenic regions, suggesting that they have potential roles in transcriptional or translational regulation and DNA replication slippage theories alone were insufficient to explain the distribution patterns. Our results showed that microsatellites are dominant in non-coding regions. The total number of microsatellites ranged from 78,378 to 1,012,084, and the relative density varied from 4925.76 bp/Mb to 25,401.97 bp/Mb. Overall, (A + T)-rich repeats were dominant. The dependence of repeat abundance on the length of the repeated unit (1-6 nt) showed a great similarity decrease, whereas more tri-nucleotide repeats were found in exonic regions than tetra-nucleotide repeats of most species. Moreover, the incidence of different repeated types appeared species- and genomic-specific. These results highlight potential mechanisms for maintaining microsatellite distribution, such as selective forces and mismatch repair systems. CONCLUSIONS Our data could be beneficial for the studies of genome evolution and microsatellite DNA evolutionary dynamics, and facilitate the exploration of microsatellites structural, function, composition mode and molecular markers development in these species.
Collapse
Affiliation(s)
- Yi Lei
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yu Zhou
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Megan Price
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Zhaobin Song
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China.
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
7
|
Cao Y, Zhang DY, Zeng YF, Bai WN. Recent demographic histories of temperate deciduous trees inferred from microsatellite markers. BMC Ecol Evol 2021; 21:88. [PMID: 34006219 PMCID: PMC8130339 DOI: 10.1186/s12862-021-01805-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
Background Accurate inference of demographic histories for temperate tree species can aid our understanding of current climate change as a driver of evolution. Microsatellites are more suitable for inferring recent historical events due to their high mutation rates. However, most programs analyzing microsatellite data assume a strict stepwise mutation model (SMM), which could cause false detection of population shrinkage when microsatellite mutation does not follow SMM. Results This study aims to reconstruct the recent demographic histories of five cool-temperate tree species in Eastern Asia, Quercus mongolica, Q. liaotungensis, Juglans cathayensis, J. mandshurica and J. ailantifolia, by using 19 microsatellite markers with two methods considering generalized stepwise mutation model (GSM) (MIGRAINE and VarEff). Both programs revealed that all the five species experienced expansions after the Last Glacial Maximum (LGM). Within butternuts, J. cathayensis experienced a more serious bottleneck than the other species, and within oaks, Q. mongolica showed a moderate increase in population size and remained stable after the expansion. In addition, the point estimates of the multistep mutation proportion in the GSM model (pGSM) for all five species were between 0.50 and 0.65, indicating that when inferring population demographic history of the cool-temperate forest species using microsatellite markers, it is better to assume a GSM rather than a SMM. Conclusions This study provides the first direct evidence that five cool-temperate tree species in East Asia have experienced expansions after the LGM with microsatellite data. Considering the mutation model of microsatellite has a vital influence on demographic inference, combining multiple programs such as MIGRAINE and VarEff can effectively reduce errors caused by inappropriate model selection and prior setting. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01805-w.
Collapse
Affiliation(s)
- Yu Cao
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yan-Fei Zeng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Process and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
8
|
Flucher SM, Krapf P, Arthofer W, Suarez AV, Crozier RH, Steiner FM, Schlick-Steiner BC. Effect of social structure and introduction history on genetic diversity and differentiation. Mol Ecol 2021; 30:2511-2527. [PMID: 33811410 DOI: 10.1111/mec.15911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022]
Abstract
Invasive species are a global threat to biodiversity, and understanding their history and biology is a major goal of invasion biology. Population-genetic approaches allow insights into these features, as population structure is shaped by factors such as invasion history (number, origin and age of introductions) and life-history traits (e.g., mating system, dispersal capability). We compared the relative importance of these factors by investigating two closely related ants, Tetramorium immigrans and Tetramorium tsushimae, that differ in their social structure and invasion history in North America. We used mitochondrial DNA sequences and microsatellite alleles to estimate the source and number of introduction events of the two species, and compared genetic structure among native and introduced populations. Genetic diversity of both species was strongly reduced in introduced populations, which also differed genetically from native populations. Genetic differentiation between ranges and the reduction in microsatellite diversity were more severe in the more recently introduced and supercolonial T. tsushimae. However, the loss of mitochondrial haplotype diversity was more pronounced in T. immigrans, which has single-queen colonies and was introduced earlier. Tetramorium immigrans was introduced at least twice from Western Europe to North America and once independently to South America. Its monogyny might have limited genetic diversity per introduction, but new mutations and successive introductions over a long time may have added to the gene pool in the introduced range. Polygyny in T. tsushimae probably facilitated the simultaneous introduction of several queens from a Japanese population to St. Louis, USA. In addition to identifying introduction pathways, our results reveal how social structure can influence the population-genetic consequences of founder events.
Collapse
Affiliation(s)
- Sylvia M Flucher
- Molecular Ecology Group, Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Patrick Krapf
- Molecular Ecology Group, Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Wolfgang Arthofer
- Molecular Ecology Group, Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Andrew V Suarez
- Department of Evolution, Ecology and Behavior, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ross H Crozier
- School of Marine and Tropical Biology, James Cook University, Townsville, QLD, Australia
| | - Florian M Steiner
- Molecular Ecology Group, Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
9
|
Tesson SVM, Sha Y. Population connectivity, dispersal, and swimming behavior in Daphnia. Ecol Evol 2021; 11:2873-2885. [PMID: 33767843 PMCID: PMC7981204 DOI: 10.1002/ece3.7246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
The water flea Daphnia has the capacity to respond rapidly to environmental stressors, to disperse over large geographical scales, and to preserve its genetic material by forming egg banks in the sediment. Spatial and temporal distributions of D. magna have been extensively studied over the last decades using behavioral or genetic tools, although the correlation between the two has rarely been the focus. In the present study, we therefore investigated the population genetic structure and behavioral response to a lethal threat, ultraviolet radiation (UVR), among individuals from two different water bodies. Our results show two genetic populations with moderate gene flow, highly correlated with geographical location and with inheritable traits through generations. However, despite the strong genetic differences between populations, we show homogeneous refuge demand between populations when exposed to the lethal threat solar UVR.
Collapse
Affiliation(s)
- Sylvie V. M. Tesson
- Department of BiologyAarhus UniversityAarhusDenmark
- Department of BiologyLund UniversityLundSweden
| | - Yongcui Sha
- Department of BiologyLund UniversityLundSweden
| |
Collapse
|
10
|
McDew-White M, Li X, Nkhoma SC, Nair S, Cheeseman I, Anderson TJC. Mode and Tempo of Microsatellite Length Change in a Malaria Parasite Mutation Accumulation Experiment. Genome Biol Evol 2020; 11:1971-1985. [PMID: 31273388 PMCID: PMC6644851 DOI: 10.1093/gbe/evz140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Malaria parasites have small extremely AT-rich genomes: microsatellite repeats (1–9 bp) comprise 11% of the genome and genetic variation in natural populations is dominated by repeat changes in microsatellites rather than point mutations. This experiment was designed to quantify microsatellite mutation patterns in Plasmodium falciparum. We established 31 parasite cultures derived from a single parasite cell and maintained these for 114–267 days with frequent reductions to a single cell, so parasites accumulated mutations during ∼13,207 cell divisions. We Illumina sequenced the genomes of both progenitor and end-point mutation accumulation (MA) parasite lines in duplicate to validate stringent calling parameters. Microsatellite calls were 99.89% (GATK), 99.99% (freeBayes), and 99.96% (HipSTR) concordant in duplicate sequence runs from independent sequence libraries, whereas introduction of microsatellite mutations into the reference genome revealed a low false negative calling rate (0.68%). We observed 98 microsatellite mutations. We highlight several conclusions: microsatellite mutation rates (3.12 × 10−7 to 2.16 × 10−8/cell division) are associated with both repeat number and repeat motif like other organisms studied. However, 41% of changes resulted from loss or gain of more than one repeat: this was particularly true for long repeat arrays. Unlike other eukaryotes, we found no insertions or deletions that were not associated with repeats or homology regions. Overall, microsatellite mutation rates are among the lowest recorded and comparable to those in another AT-rich protozoan (Dictyostelium). However, a single infection (>1011 parasites) will still contain over 2.16 × 103 to 3.12 × 104 independent mutations at any single microsatellite locus.
Collapse
Affiliation(s)
| | - Xue Li
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Standwell C Nkhoma
- Texas Biomedical Research Institute, San Antonio, Texas.,Malaria Research and Reference Reagent Resource Center (MR4), BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA
| | - Shalini Nair
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Ian Cheeseman
- Texas Biomedical Research Institute, San Antonio, Texas
| | | |
Collapse
|
11
|
Ho EKH, Macrae F, Latta LC, Benner MJ, Sun C, Ebert D, Schaack S. Intraspecific Variation in Microsatellite Mutation Profiles in Daphnia magna. Mol Biol Evol 2020; 36:1942-1954. [PMID: 31077327 PMCID: PMC6934441 DOI: 10.1093/molbev/msz118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microsatellite loci (tandem repeats of short nucleotide motifs) are highly abundant in eukaryotic genomes and often used as genetic markers because they can exhibit variation both within and between populations. Although widely recognized for their mutability and utility, the mutation rates of microsatellites have only been empirically estimated in a few species, and have rarely been compared across genotypes and populations within a species. Here, we investigate the dynamics of microsatellite mutation over long- and short-time periods by quantifying the starting abundance and mutation rates for microsatellites for six different genotypes of Daphnia magna, an aquatic microcrustacean, collected from three populations (Finland, Germany, and Israel). Using whole-genome sequences of these six starting genotypes, descendent mutation accumulation (MA) lines, and large population controls (non-MA lines), we find each genotype exhibits a distinctive initial microsatellite profile which clusters according to the population-of-origin. During the period of MA, we observe motif-specific, highly variable, and rapid microsatellite mutation rates across genotypes of D. magna, the average of which is order of magnitude greater than the recently reported rate observed in a single genotype of the congener, Daphnia pulex. In our experiment, genotypes with more microsatellites starting out exhibit greater losses and those with fewer microsatellites starting out exhibit greater gains—a context-dependent mutation bias that has not been reported previously. We discuss how genotype-specific mutation rates and spectra, in conjunction with evolutionary forces, can shape both the differential accumulation of repeat content in the genome and the evolution of mutation rates.
Collapse
Affiliation(s)
- Eddie K H Ho
- Department of Biology, Reed College, Portland, OR
| | | | - Leigh C Latta
- Department of Biology, Reed College, Portland, OR
- Division of Natural Sciences and Mathematics, Lewis-Clark State College, Lewiston, ID
| | | | - Cheng Sun
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dieter Ebert
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, OR
- Corresponding author: E-mail:
| |
Collapse
|
12
|
Wamucho A, Unrine JM, Kieran TJ, Glenn TC, Schultz CL, Farman M, Svendsen C, Spurgeon DJ, Tsyusko OV. Genomic mutations after multigenerational exposure of Caenorhabditis elegans to pristine and sulfidized silver nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113078. [PMID: 31479814 DOI: 10.1016/j.envpol.2019.113078] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/31/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Our previous study showed heritable reproductive toxicity in the nematode Caenorhabditis elegans after multigenerational exposure to AgNO3 and silver nanoparticles (Ag-NPs). The aim of this study was to determine whether such inheritable effects are correlated with induced germline mutations in C. elegans. Individual C. elegans lineages were exposed for 10 generations to equitoxic concentrations at EC30 of AgNO3, Ag-NPs, and sulfidized Ag-NPs (sAg-NPs), a predominant environmentally transformed product of pristine Ag-NPs. The mutations were detected via whole genome DNA sequencing approach by comparing F0 and F10 generations. An increase in the total number of variants, though not statistically significant, was observed for all Ag treatments and the variants were mainly contributed by single nucleotide polymorphisms (SNPs). This potentially contributed towards reproductive as well as growth toxicity shown previously after ten generations of exposure in every Ag treatment. However, despite Ag-NPs and AgNO3 inducing stronger reproductive toxicity than sAg-NPs, exposure to sAg-NPs resulted in higher mutation accumulation with significant increase in the number of transversions. Thus our results suggest that other mechanisms of inheritance, such as epigenetics, may be at play in Ag-NP- and AgNO3-induced multigenerational and transgenerational reproductive toxicity.
Collapse
Affiliation(s)
- Anye Wamucho
- Department of Plant and Soil Sciences, University of Kentucky, 1100 S. Limestone St., Lexington, KY 40546, USA; Department of Toxicology and Cancer Biology, University of Kentucky, 1095 V.A. Drive, 306 Health Science Research Building, Lexington, KY 40536, USA
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, 1100 S. Limestone St., Lexington, KY 40546, USA; Department of Toxicology and Cancer Biology, University of Kentucky, 1095 V.A. Drive, 306 Health Science Research Building, Lexington, KY 40536, USA
| | - Troy J Kieran
- Department of Genetics, University of Georgia, 120 Green St., GA 30602-7223, USA
| | - Travis C Glenn
- Department of Genetics, University of Georgia, 120 Green St., GA 30602-7223, USA
| | - Carolin L Schultz
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh-Gifford, Wallingford, Oxon OX10 8BB, UK; Department of Materials, Oxford University, Begbroke Science Park, Begbroke Hill, Yarnton, Oxford OX5 1PF, UK
| | - Mark Farman
- Department of Plant Pathology, 225 Plant Science Building, Lexington, KY 40546, USA
| | - Claus Svendsen
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh-Gifford, Wallingford, Oxon OX10 8BB, UK
| | - David J Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh-Gifford, Wallingford, Oxon OX10 8BB, UK
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, 1100 S. Limestone St., Lexington, KY 40546, USA; Department of Toxicology and Cancer Biology, University of Kentucky, 1095 V.A. Drive, 306 Health Science Research Building, Lexington, KY 40536, USA.
| |
Collapse
|
13
|
Litzke V, Ottensmann M, Forcada J, Heitzmann L, Ivan Hoffman J. Heterozygosity at neutral and immune loci is not associated with neonatal mortality due to microbial infection in Antarctic fur seals. Ecol Evol 2019; 9:7985-7996. [PMID: 31380066 PMCID: PMC6662382 DOI: 10.1002/ece3.5317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 11/08/2022] Open
Abstract
Numerous studies have reported correlations between the heterozygosity of genetic markers and fitness. These heterozygosity-fitness correlations (HFCs) play a central role in evolutionary and conservation biology, yet their mechanistic basis remains open to debate. For example, fitness associations have been widely reported at both neutral and functional loci, yet few studies have directly compared the two, making it difficult to gauge the relative contributions of genome-wide inbreeding and specific functional genes to fitness. Here, we compared the effects of neutral and immune gene heterozygosity on death from bacterial infection in Antarctic fur seal (Arctocephalus gazella) pups. We specifically developed a panel of 13 microsatellites from expressed immune genes and genotyped these together with 48 neutral loci in 234 individuals, comprising 39 pups that were classified at necropsy as having most likely died of bacterial infection together with a five times larger matched sample of healthy surviving pups. Identity disequilibrium quantified from the neutral markers was positive and significant, indicative of variance in inbreeding within the study population. However, multilocus heterozygosity did not differ significantly between healthy and infected pups at either class of marker, and little evidence was found for fitness associations at individual loci. These results support a previous study of Antarctic fur seals that found no effects of heterozygosity at nine neutral microsatellites on neonatal survival and thereby help to refine our understanding of how HFCs vary across the life cycle. Given that nonsignificant HFCs are underreported in the literature, we also hope that our study will contribute toward a more balanced understanding of the wider importance of this phenomenon.
Collapse
Affiliation(s)
- Vivienne Litzke
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
| | | | | | | | - Joseph Ivan Hoffman
- Department of Animal BehaviourBielefeld UniversityBielefeldGermany
- British Antarctic Survey, High CrossCambridgeUK
| |
Collapse
|
14
|
Saxena AS, Salomon MP, Matsuba C, Yeh SD, Baer CF. Evolution of the Mutational Process under Relaxed Selection in Caenorhabditis elegans. Mol Biol Evol 2019; 36:239-251. [PMID: 30445510 DOI: 10.1093/molbev/msy213] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mutational process varies at many levels, from within genomes to among taxa. Many mechanisms have been linked to variation in mutation, but understanding of the evolution of the mutational process is rudimentary. Physiological condition is often implicated as a source of variation in microbial mutation rate and may contribute to mutation rate variation in multicellular organisms.Deleterious mutations are an ubiquitous source of variation in condition. We test the hypothesis that the mutational process depends on the underlying mutation load in two groups of Caenorhabditis elegans mutation accumulation (MA) lines that differ in their starting mutation loads. "First-order MA" (O1MA) lines maintained under minimal selection for ∼250 generations were divided into high-fitness and low-fitness groups and sets of "second-order MA" (O2MA) lines derived from each O1MA line were maintained for ∼150 additional generations. Genomes of 48 O2MA lines and their progenitors were sequenced. There is significant variation among O2MA lines in base-substitution rate (µbs), but no effect of initial fitness; the indel rate is greater in high-fitness O2MA lines. Overall, µbs is positively correlated with recombination and proximity to short tandem repeats and negatively correlated with 10 bp and 1 kb GC content. However, probability of mutation is sufficiently predicted by the three-nucleotide motif alone. Approximately 90% of the variance in standing nucleotide variation is explained by mutability. Total mutation rate increased in the O2MA lines, as predicted by the "drift barrier" model of mutation rate evolution. These data, combined with experimental estimates of fitness, suggest that epistasis is synergistic.
Collapse
Affiliation(s)
| | - Matthew P Salomon
- Department of Biology, University of Florida, Gainesville, FL
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, CA
| | - Chikako Matsuba
- Department of Biology, University of Florida, Gainesville, FL
- Department of Molecular Oncology, John Wayne Cancer Institute, Santa Monica, CA
| | - Shu-Dan Yeh
- Department of Biology, University of Florida, Gainesville, FL
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Charles F Baer
- Department of Biology, University of Florida, Gainesville, FL
- University of Florida Genetics Institute
| |
Collapse
|
15
|
Flynn JM, Lower SE, Barbash DA, Clark AG. Rates and Patterns of Mutation in Tandem Repetitive DNA in Six Independent Lineages of Chlamydomonas reinhardtii. Genome Biol Evol 2018; 10:1673-1686. [PMID: 29931069 PMCID: PMC6041958 DOI: 10.1093/gbe/evy123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
The mutational patterns of large tandem arrays of short sequence repeats remain largely unknown, despite observations of their high levels of variation in sequence and genomic abundance within and between species. Many factors can influence the dynamics of tandem repeat evolution; however, their evolution has only been examined over a limited phylogenetic sample of taxa. Here, we use publicly available whole-genome sequencing data of 85 haploid mutation accumulation lines derived from six geographically diverse Chlamydomonas reinhardtii isolates to investigate genome-wide mutation rates and patterns in tandem repeats in this species. We find that tandem repeat composition differs among ancestral strains, both in genome-wide abundance and presence/absence of individual repeats. Estimated mutation rates (repeat copy number expansion and contraction) were high, averaging 4.3×10−4 per generation per single unit copy. Although orders of magnitude higher than other types of mutation previously reported in C. reinhardtii, these tandem repeat mutation rates were one order of magnitude lower than what has recently been found in Daphnia pulex, even after correcting for lower overall genome-wide satellite abundance in C. reinhardtii. Most high-abundance repeats were related to others by a single mutational step. Correlations of repeat copy number changes within genomes revealed clusters of closely related repeats that were strongly correlated positively or negatively, and similar patterns of correlation arose independently in two different mutation accumulation experiments. Together, these results paint a dynamic picture of tandem repeat evolution in this unicellular alga.
Collapse
Affiliation(s)
- Jullien M Flynn
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Sarah E Lower
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
16
|
Erfani-Moghadam J, Zarei A. Assessment of genetic structure among different pear species (Pyrus spp.) using apple-derived SSR and evidence of duplications in the pear genome. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1447398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Javad Erfani-Moghadam
- Department of Horticulture Science, College of Agriculture, Ilam University, Ilam, Iran
| | - Abdolkarim Zarei
- Department of Biotechnology, College of Agriculture, Jahrom University, Jahrom, Iran
| |
Collapse
|
17
|
Hamarsheh O, Karakuş M, Azmi K, Jaouadi K, Yaghoobi-Ershadi MR, Krüger A, Amro A, Kenawy MA, Dokhan MR, Abdeen Z, McDowell MA. Development of polymorphic EST microsatellite markers for the sand fly, Phlebotomus papatasi (Diptera: Psychodidae). Parasit Vectors 2018. [PMID: 29523212 PMCID: PMC5845265 DOI: 10.1186/s13071-018-2770-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Phlebotomus papatasi is a widely distributed sand fly species in different tropical and sub-tropical regions including the Middle East and North Africa. It is considered an important vector that transmits Leishmania major parasites, the causative agents of cutaneous leishmaniasis. The development of microsatellite markers for this sand fly vector is of high interest to understand its population structure and to monitor its geographic dispersal. Results Fourteen polymorphic microsatellite markers were developed with simple di-, tri- and tetra-nucleotide repeats. The F statistics calculated for the 14 markers revealed high genetic diversity; expected heterozygosity (He) ranged from 0.407 to 0.767, while observed heterozygosity (Ho) was lower and ranged from 0.083 to 0.514. The number of alleles sampled fall in the range of 9–29. Three out of 14 markers deviated from Hardy-Weinberg expectations, no significant linkage disequilibrium was detected and high values for inbreeding coefficient (FIS) were likely due to inbreeding. Conclusions The development of these functional microsatellites enable a high resolution of P. papatasi populations. It opens a path for researchers to perform multi locus-based population genetic structure analyses, and comparative mapping, a part of the efforts to uncover the population dynamics of this vector, which is an important global strategy for understanding the epidemiology and control of leishmaniasis. Electronic supplementary material The online version of this article (10.1186/s13071-018-2770-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Omar Hamarsheh
- Department of Biological Sciences, Faculty of Science and Technology, Al-Quds University, Jerusalem, Palestine. .,Department of Biological Sciences, Eck Institute for Global Health, Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46656, USA.
| | - Mehmet Karakuş
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Kifaya Azmi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Kaouther Jaouadi
- Department of Medical Epidemiology, Laboratory of Transmission, Control and Immunobiology of Infections (LR11IPT02) Institut Pasteur de Tunis, 13 Place Pasteur BP-74, 1002, Tunis-Belvedere, Tunisia
| | - Mohammad Reza Yaghoobi-Ershadi
- Department of Medical Entomology & Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Andreas Krüger
- Department of Tropical Medicine, Military Hospital Hamburg, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Ahmad Amro
- Faculty of Pharmacy, Al-Quds University, Jerusalem, Palestine
| | - Mohamed Amin Kenawy
- Department of Entomology, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt
| | | | - Ziad Abdeen
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, Galvin Life Science, University of Notre Dame, Notre Dame, IN, 46656, USA
| |
Collapse
|
18
|
Noble LM, Chelo I, Guzella T, Afonso B, Riccardi DD, Ammerman P, Dayarian A, Carvalho S, Crist A, Pino-Querido A, Shraiman B, Rockman MV, Teotónio H. Polygenicity and Epistasis Underlie Fitness-Proximal Traits in the Caenorhabditis elegans Multiparental Experimental Evolution (CeMEE) Panel. Genetics 2017; 207:1663-1685. [PMID: 29066469 PMCID: PMC5714472 DOI: 10.1534/genetics.117.300406] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/10/2017] [Indexed: 01/27/2023] Open
Abstract
Understanding the genetic basis of complex traits remains a major challenge in biology. Polygenicity, phenotypic plasticity, and epistasis contribute to phenotypic variance in ways that are rarely clear. This uncertainty can be problematic for estimating heritability, for predicting individual phenotypes from genomic data, and for parameterizing models of phenotypic evolution. Here, we report an advanced recombinant inbred line (RIL) quantitative trait locus mapping panel for the hermaphroditic nematode Caenorhabditis elegans, the C. elegans multiparental experimental evolution (CeMEE) panel. The CeMEE panel, comprising 507 RILs at present, was created by hybridization of 16 wild isolates, experimental evolution for 140-190 generations, and inbreeding by selfing for 13-16 generations. The panel contains 22% of single-nucleotide polymorphisms known to segregate in natural populations, and complements existing C. elegans mapping resources by providing fine resolution and high nucleotide diversity across > 95% of the genome. We apply it to study the genetic basis of two fitness components, fertility and hermaphrodite body size at time of reproduction, with high broad-sense heritability in the CeMEE. While simulations show that we should detect common alleles with additive effects as small as 5%, at gene-level resolution, the genetic architectures of these traits do not feature such alleles. We instead find that a significant fraction of trait variance, approaching 40% for fertility, can be explained by sign epistasis with main effects below the detection limit. In congruence, phenotype prediction from genomic similarity, while generally poor ([Formula: see text]), requires modeling epistasis for optimal accuracy, with most variance attributed to the rapidly evolving chromosome arms.
Collapse
Affiliation(s)
- Luke M Noble
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Ivo Chelo
- Instituto Gulbenkian de Ciência, P-2781-901 Oeiras, Portugal
| | - Thiago Guzella
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| | - Bruno Afonso
- Instituto Gulbenkian de Ciência, P-2781-901 Oeiras, Portugal
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| | - David D Riccardi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Patrick Ammerman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Adel Dayarian
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
| | - Sara Carvalho
- Instituto Gulbenkian de Ciência, P-2781-901 Oeiras, Portugal
| | - Anna Crist
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| | | | - Boris Shraiman
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
- Department of Physics, University of California, Santa Barbara, California 93106
| | - Matthew V Rockman
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003
| | - Henrique Teotónio
- Institut de Biologie, École Normale Supérieure, Centre National de la Recherche Scientifique (CNRS) UMR 8197, Institut National de la Santé et de la Recherche Médicale (INSERM) U1024, F-75005 Paris, France
| |
Collapse
|
19
|
Selection Constrains High Rates of Tandem Repetitive DNA Mutation in Daphnia pulex. Genetics 2017; 207:697-710. [PMID: 28811387 DOI: 10.1534/genetics.117.300146] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/11/2017] [Indexed: 12/26/2022] Open
Abstract
A long-standing evolutionary puzzle is that all eukaryotic genomes contain large amounts of tandemly-repeated DNA whose sequence motifs and abundance vary greatly among even closely related species. To elucidate the evolutionary forces governing tandem repeat dynamics, quantification of the rates and patterns of mutations in repeat copy number and tests of its selective neutrality are necessary. Here, we used whole-genome sequences of 28 mutation accumulation (MA) lines of Daphnia pulex, in addition to six isolates from a non-MA population originating from the same progenitor, to both estimate mutation rates of abundances of repeat sequences and evaluate the selective regime acting upon them. We found that mutation rates of individual repeats were both high and highly variable, ranging from additions/deletions of 0.29-105 copies per generation (reflecting changes of 0.12-0.80% per generation). Our results also provide evidence that new repeat sequences are often formed from existing ones. The non-MA population isolates showed a signal of either purifying or stabilizing selection, with 33% lower variation in repeat copy number on average than the MA lines, although the level of selective constraint was not evenly distributed across all repeats. The changes between many pairs of repeats were correlated, and the pattern of correlations was significantly different between the MA lines and the non-MA population. Our study demonstrates that tandem repeats can experience extremely rapid evolution in copy number, which can lead to high levels of divergence in genome-wide repeat composition between closely related species.
Collapse
|
20
|
Gracianne C, Jan P, Fournet S, Olivier E, Arnaud J, Porte C, Bardou‐Valette S, Denis M, Petit EJ. Temporal sampling helps unravel the genetic structure of naturally occurring populations of a phytoparasitic nematode. 2. Separating the relative effects of gene flow and genetic drift. Evol Appl 2016; 9:1005-16. [PMID: 27606008 PMCID: PMC4999530 DOI: 10.1111/eva.12401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/06/2016] [Indexed: 11/29/2022] Open
Abstract
Studying wild pathogen populations in natural ecosystems offers the opportunity to better understand the evolutionary dynamics of biotic diseases in crops and to enhance pest control strategies. We used simulations and genetic markers to investigate the spatial and temporal population genetic structure of wild populations of the beet cyst nematode Heterodera schachtii on a wild host plant species, the sea beet (Beta vulgaris spp. maritima), the wild ancestor of cultivated beets. Our analysis of the variation of eight microsatellite loci across four study sites showed that (i) wild H. schachtii populations displayed fine-scaled genetic structure with no evidence of substantial levels of gene flow beyond the scale of the host plant, and comparisons with simulations indicated that (ii) genetic drift substantially affected the residual signals of isolation-by-distance processes, leading to departures from migration-drift equilibrium. In contrast to what can be suspected for (crop) field populations, this showed that wild cyst nematodes have very low dispersal capabilities and are strongly disconnected from each other. Our results provide some key elements for designing pest control strategies, such as decreasing passive dispersal events to limit the spread of virulence among field nematode populations.
Collapse
Affiliation(s)
- Cécile Gracianne
- IGEPPINRA, Agrocampus OuestUniversité Rennes 1Le RheuFrance
- VetAgro Sup, UMR 1095, GDECClermont UniversitéClermont‐FerrandFrance
| | - Pierre‐Loup Jan
- IGEPPINRA, Agrocampus OuestUniversité Rennes 1Le RheuFrance
- ESE, Ecology and Ecosystems HealthAgrocampus OuestINRARennesFrance
| | | | - Eric Olivier
- IGEPPINRA, Agrocampus OuestUniversité Rennes 1Le RheuFrance
| | - Jean‐François Arnaud
- UMR CNRS 8198 ÉvolutionÉcologie et PaléontologieUniversité Lille 1 ‐ Sciences et TechnologiesVilleneuve d'Ascq CedexFrance
| | | | | | | | - Eric J. Petit
- ESE, Ecology and Ecosystems HealthAgrocampus OuestINRARennesFrance
| |
Collapse
|
21
|
Chapuis MP, Plantamp C, Streiff R, Blondin L, Piou C. Microsatellite evolutionary rate and pattern in Schistocerca gregaria inferred from direct observation of germline mutations. Mol Ecol 2015; 24:6107-19. [PMID: 26562076 DOI: 10.1111/mec.13465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 01/21/2023]
Abstract
Unravelling variation among taxonomic orders regarding the rate of evolution in microsatellites is crucial for evolutionary biology and population genetics research. The mean mutation rate of microsatellites tends to be lower in arthropods than in vertebrates, but data are scarce and mostly concern accumulation of mutations in model species. Based on parent-offspring segregations and a hierarchical Bayesian model, the mean rate of mutation in the orthopteran insect Schistocerca gregaria was estimated at 2.1e(-4) per generation per untranscribed dinucleotide locus. This is close to vertebrate estimates and one order of magnitude higher than estimates from species of other arthropod orders, such as Drosophila melanogaster and Daphnia pulex. We also found evidence of a directional bias towards expansions even for long alleles and exceptionally large ranges of allele sizes. Finally, at transcribed microsatellites, the mean rate of mutation was half the rate found at untranscribed loci and the mutational model deviated from that usually considered, with most mutations involving multistep changes that avoid disrupting the reading frame. Our direct estimates of mutation rate were discussed in the light of peculiar biological and genomic features of S. gregaria, including specificities in mismatch repair and the dependence of its activity to allele length. Shedding new light on the mutational dynamics of grasshopper microsatellites is of critical importance for a number of research fields. As an illustration, we showed how our findings improve microsatellite application in population genetics, by obtaining a more precise estimation of S. gregaria effective population size from a published data set based on the same microsatellites.
Collapse
Affiliation(s)
- M-P Chapuis
- CIRAD, UMR CBGP, Montpellier, F-34398, France
| | - C Plantamp
- Laboratoire de Biométrie et Biologie Evolutive, CNRS, UMR 5558, Université Lyon 1, Villeurbanne, 69622, France
| | - R Streiff
- INRA, UMR CBGP, Montpellier, F-34398, France.,INRA, UMR DGIMI, Montpellier, F-34000, France
| | - L Blondin
- CIRAD, UPR B-AMR, Montpellier, F-34398, France
| | - C Piou
- CIRAD, UMR CBGP, Montpellier, F-34398, France
| |
Collapse
|
22
|
Latta LC, Peacock M, Civitello DJ, Dudycha JL, Meik JM, Schaack S. The phenotypic effects of spontaneous mutations in different environments. Am Nat 2015; 185:243-52. [PMID: 25616142 DOI: 10.1086/679501] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Understanding the context dependence of mutation represents the current frontier of mutation research. In particular, understanding how traits vary in their abilities to accrue mutational variation and how the environment influences expression of mutant phenotypes yields insight into evolutionary processes. We conducted phenotypic assays in four environments using a set of Daphnia pulex mutation accumulation lines to examine the context dependence of mutation. Life-history traits accrued mutational variance faster than morphological traits when considered in individual environments. Across environments, the mutational variance in plasticity was also greater for life-history traits than for morphological traits, although this pattern was less robust. In addition, the expression of mutational variance depended on the environment, which resulted in changes in the rank order of genotype performance across environments in some cases. Such cryptic genetic variation resulting from mutation may maintain genetic diversity and allow for rapid adaptation in spatially or temporally variable environments.
Collapse
Affiliation(s)
- Leigh C Latta
- Department of Biology, Reed College, Portland, Oregon 97202
| | | | | | | | | | | |
Collapse
|
23
|
Fierst JL, Willis JH, Thomas CG, Wang W, Reynolds RM, Ahearne TE, Cutter AD, Phillips PC. Reproductive Mode and the Evolution of Genome Size and Structure in Caenorhabditis Nematodes. PLoS Genet 2015; 11:e1005323. [PMID: 26114425 PMCID: PMC4482642 DOI: 10.1371/journal.pgen.1005323] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 05/31/2015] [Indexed: 11/18/2022] Open
Abstract
The self-fertile nematode worms Caenorhabditis elegans, C. briggsae, and C. tropicalis evolved independently from outcrossing male-female ancestors and have genomes 20-40% smaller than closely related outcrossing relatives. This pattern of smaller genomes for selfing species and larger genomes for closely related outcrossing species is also seen in plants. We use comparative genomics, including the first high quality genome assembly for an outcrossing member of the genus (C. remanei) to test several hypotheses for the evolution of genome reduction under a change in mating system. Unlike plants, it does not appear that reductions in the number of repetitive elements, such as transposable elements, are an important contributor to the change in genome size. Instead, all functional genomic categories are lost in approximately equal proportions. Theory predicts that self-fertilization should equalize the effective population size, as well as the resulting effects of genetic drift, between the X chromosome and autosomes. Contrary to this, we find that the self-fertile C. briggsae and C. elegans have larger intergenic spaces and larger protein-coding genes on the X chromosome when compared to autosomes, while C. remanei actually has smaller introns on the X chromosome than either self-reproducing species. Rather than being driven by mutational biases and/or genetic drift caused by a reduction in effective population size under self reproduction, changes in genome size in this group of nematodes appear to be caused by genome-wide patterns of gene loss, most likely generated by genomic adaptation to self reproduction per se.
Collapse
Affiliation(s)
- Janna L. Fierst
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - John H. Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Cristel G. Thomas
- Department of Ecology and Evolutionary Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario, Canada
| | - Wei Wang
- Department of Ecology and Evolutionary Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario, Canada
| | - Rose M. Reynolds
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Timothy E. Ahearne
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology and Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario, Canada
| | - Patrick C. Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
24
|
Corona-Santiago DK, Doadrio I, Domínguez-Domínguez O. Evolutionary History of the Live-Bearing Endemic Allotoca diazi Species Complex (Actinopterygii, Goodeinae): Evidence of Founder Effect Events in the Mexican Pre-Hispanic Period. PLoS One 2015; 10:e0124138. [PMID: 25946217 PMCID: PMC4422623 DOI: 10.1371/journal.pone.0124138] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 03/10/2015] [Indexed: 11/19/2022] Open
Abstract
The evolutionary history of Mexican ichthyofauna has been strongly linked to natural events, and the impact of pre-Hispanic cultures is little known. The live-bearing fish species Allotoca diazi, Allotoca meeki and Allotoca catarinae occur in areas of biological, cultural and economic importance in central Mexico: Pátzcuaro basin, Zirahuén basin, and the Cupatitzio River, respectively. The species are closely related genetically and morphologically, and hypotheses have attempted to explain their systematics and biogeography. Mitochondrial DNA and microsatellite markers were used to investigate the evolutionary history of the complex. The species complex shows minimal genetic differentiation. The separation of A. diazi and A. meeki was dated to 400-7000 years ago, explained by geological and climate events. A bottleneck and reduction of genetic diversity in Allotoca diazi was detected, attributed to recent climate fluctuations and anthropogenic activity. The isolation of A. catarinae occurred ~1900 years ago. No geological events are documented in the area during this period, but the date is contemporary with P'urhépecha culture settlements. This founder effect represents the first evidence of fish species translocation by a pre-Hispanic culture of Mexico. The response of the complex to climate fluctuation, geological changes and human activity in the past and the future according to the ecological niches predictions indicates areas of vulnerability and important information for conservation. The new genetic information showed that the Allotoca diazi complex consist of two genetic groups with an incomplete lineage sorting pattern: Pátzcuaro and Zirahuén lakes, and an introduced population in the Cupatitzio River.
Collapse
Affiliation(s)
- Diushi Keri Corona-Santiago
- Programa Institucional de Maestría en Ciencias Biológicas, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Ignacio Doadrio
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, España
| | - Omar Domínguez-Domínguez
- Laboratorio de Biología Acuática, Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| |
Collapse
|
25
|
Toward the genetic origins of a potentially non-native population of threespine stickleback (Gasterosteus aculeatus) in Alberta. CONSERV GENET 2015. [DOI: 10.1007/s10592-015-0706-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Opposing forces of A/T-biased mutations and G/C-biased gene conversions shape the genome of the nematode Pristionchus pacificus. Genetics 2014; 196:1145-52. [PMID: 24414549 DOI: 10.1534/genetics.113.159863] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Base substitution mutations are a major source of genetic novelty and mutation accumulation line (MAL) studies revealed a nearly universal AT bias in de novo mutation spectra. While a comparison of de novo mutation spectra with the actual nucleotide composition in the genome suggests the existence of general counterbalancing mechanisms, little is known about the evolutionary and historical details of these opposing forces. Here, we correlate MAL-derived mutation spectra with patterns observed from population resequencing. Variation observed in natural populations has already been subject to evolutionary forces. Distinction between rare and common alleles, the latter of which are close to fixation and of presumably older age, can provide insight into mutational processes and their influence on genome evolution. We provide a genome-wide analysis of de novo mutations in 22 MALs of the nematode Pristionchus pacificus and compare the spectra with natural variants observed in resequencing of 104 natural isolates. MALs show an AT bias of 5.3, one of the highest values observed to date. In contrast, the AT bias in natural variants is much lower. Specifically, rare derived alleles show an AT bias of 2.4, whereas common derived alleles close to fixation show no AT bias at all. These results indicate the existence of a strong opposing force and they suggest that the GC content of the P. pacificus genome is in equilibrium. We discuss GC-biased gene conversion as a potential mechanism acting against AT-biased mutations. This study provides insight into genome evolution by combining MAL studies with natural variation.
Collapse
|
27
|
Guo E, Cui Z, Wu D, Hui M, Liu Y, Wang H. Genetic structure and diversity of Portunus trituberculatus in Chinese population revealed by microsatellite markers. BIOCHEM SYST ECOL 2013. [DOI: 10.1016/j.bse.2013.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Sharma S, Dutta T, Maldonado JE, Wood TC, Panwar HS, Seidensticker J. Forest corridors maintain historical gene flow in a tiger metapopulation in the highlands of central India. Proc Biol Sci 2013; 280:20131506. [PMID: 23902910 DOI: 10.1098/rspb.2013.1506] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Understanding the patterns of gene flow of an endangered species metapopulation occupying a fragmented habitat is crucial for landscape-level conservation planning and devising effective conservation strategies. Tigers (Panthera tigris) are globally endangered and their populations are highly fragmented and exist in a few isolated metapopulations across their range. We used multi-locus genotypic data from 273 individual tigers (Panthera tigris tigris) from four tiger populations of the Satpura-Maikal landscape of central India to determine whether the corridors in this landscape are functional. This 45 000 km(2) landscape contains 17% of India's tiger population and 12% of its tiger habitat. We applied Bayesian and coalescent-based analyses to estimate contemporary and historical gene flow among these populations and to infer their evolutionary history. We found that the tiger metapopulation in central India has high rates of historical and contemporary gene flow. The tests for population history reveal that tigers populated central India about 10 000 years ago. Their population subdivision began about 1000 years ago and accelerated about 200 years ago owing to habitat fragmentation, leading to four spatially separated populations. These four populations have been in migration-drift equilibrium maintained by high gene flow. We found the highest rates of contemporary gene flow in populations that are connected by forest corridors. This information is highly relevant to conservation practitioners and policy makers, because deforestation, road widening and mining are imminent threats to these corridors.
Collapse
Affiliation(s)
- Sandeep Sharma
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC 20013-7012, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Graves TA, Beier P, Royle JA. Current approaches using genetic distances produce poor estimates of landscape resistance to interindividual dispersal. Mol Ecol 2013; 22:3888-903. [DOI: 10.1111/mec.12348] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 04/02/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Tabitha A. Graves
- Colorado State University; 201 JVK Wagar Building Fort Collins CO 80524 USA
| | - Paul Beier
- Northern Arizona University; P.O. Box 15018 Flagstaff AZ 86011 USA
| | - J. Andrew Royle
- USGS Patuxent Wildlife Research Center; 12100 Beech Forest Road Laurel MD USA
| |
Collapse
|
30
|
Robinson JD, Hall DW, Wares JP. Approximate Bayesian estimation of extinction rate in the Finnish Daphnia magna metapopulation. Mol Ecol 2013; 22:2627-39. [PMID: 23551417 DOI: 10.1111/mec.12283] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 01/14/2013] [Accepted: 01/25/2013] [Indexed: 11/27/2022]
Abstract
Approximate Bayesian computation (ABC) is useful for parameterizing complex models in population genetics. In this study, ABC was applied to simultaneously estimate parameter values for a model of metapopulation coalescence and test two alternatives to a strict metapopulation model in the well-studied network of Daphnia magna populations in Finland. The models shared four free parameters: the subpopulation genetic diversity (θS), the rate of gene flow among patches (4Nm), the founding population size (N0) and the metapopulation extinction rate (e) but differed in the distribution of extinction rates across habitat patches in the system. The three models had either a constant extinction rate in all populations (strict metapopulation), one population that was protected from local extinction (i.e. a persistent source), or habitat-specific extinction rates drawn from a distribution with specified mean and variance. Our model selection analysis favoured the model including a persistent source population over the two alternative models. Of the closest 750,000 data sets in Euclidean space, 78% were simulated under the persistent source model (estimated posterior probability = 0.769). This fraction increased to more than 85% when only the closest 150,000 data sets were considered (estimated posterior probability = 0.774). Approximate Bayesian computation was then used to estimate parameter values that might produce the observed set of summary statistics. Our analysis provided posterior distributions for e that included the point estimate obtained from previous data from the Finnish D. magna metapopulation. Our results support the use of ABC and population genetic data for testing the strict metapopulation model and parameterizing complex models of demography.
Collapse
Affiliation(s)
- John D Robinson
- Department of Genetics, University of Georgia, Athens, GA 30602-7223, USA.
| | | | | |
Collapse
|
31
|
Mendelian Inheritance Pattern and High Mutation Rates of Microsatellite Alleles in the Diatom Pseudo-nitzschia multistriata. Protist 2013; 164:89-100. [DOI: 10.1016/j.protis.2012.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 01/31/2023]
|
32
|
Robinson JD, Haag CR, Hall DW, Pajunen VI, Wares JP. Genetic estimates of population age in the water flea, Daphnia magna. ACTA ACUST UNITED AC 2012; 103:887-97. [PMID: 23129752 DOI: 10.1093/jhered/ess063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Genetic datasets can be used to date evolutionary events, even on recent time scales if sufficient data are available. We used statistics calculated from multilocus microsatellite datasets to estimate population ages in data generated through coalescent simulations and in samples from populations of known age in a metapopulation of Daphnia magna in Finland. Our simulation results show that age estimates improve with additional loci and define a time frame over which these statistics are most useful. On the most recent time scales, assumptions regarding the model of mutation (infinite sites vs. stepwise mutation) have little influence on estimated ages. In older populations, size homoplasy among microsatellite alleles results in a downwards bias for estimates based on the infinite sites model (ISM). In the Finnish D. magna metapopulation, our genetically derived estimated ages were biased upwards. Potential sources of this bias include the underlying model of mutation, gene flow, founder size, and the possibility of persistent source populations in the system. Our simulated data show that genetic age estimation is possible, even for very young populations, but our empirical data highlight the importance of factors such as migration when these statistics are applied in natural populations.
Collapse
Affiliation(s)
- John D Robinson
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
The ability to survey polymorphism on a genomic scale has enabled genome-wide scans for the targets of natural selection. Theory that connects patterns of genetic variation to evidence of natural selection most often assumes a diallelic locus and no recurrent mutation. Although these assumptions are suitable to selection that targets single nucleotide variants, fundamentally different types of mutation generate abundant polymorphism in genomes. Moreover, recent empirical results suggest that mutationally complex, multiallelic loci including microsatellites and copy number variants are sometimes targeted by natural selection. Given their abundance, the lack of inference methods tailored to the mutational peculiarities of these types of loci represents a notable gap in our ability to interrogate genomes for signatures of natural selection. Previous theoretical investigations of mutation-selection balance at multiallelic loci include assumptions that limit their application to inference from empirical data. Focusing on microsatellites, we assess the dynamics and population-level consequences of selection targeting mutationally complex variants. We develop general models of a multiallelic fitness surface, a realistic model of microsatellite mutation, and an efficient simulation algorithm. Using these tools, we explore mutation-selection-drift equilibrium at microsatellites and investigate the mutational history and selective regime of the microsatellite that causes Friedreich's ataxia. We characterize microsatellite selective events by their duration and cost, note similarities to sweeps from standing point variation, and conclude that it is premature to label microsatellites as ubiquitous agents of efficient adaptive change. Together, our models and simulation algorithm provide a powerful framework for statistical inference, which can be used to test the neutrality of microsatellites and other multiallelic variants.
Collapse
Affiliation(s)
- Ryan J Haasl
- Laboratory of Genetics, University of Wisconsin, USA.
| | | |
Collapse
|
34
|
Saxer G, Havlak P, Fox SA, Quance MA, Gupta S, Fofanov Y, Strassmann JE, Queller DC. Whole genome sequencing of mutation accumulation lines reveals a low mutation rate in the social amoeba Dictyostelium discoideum. PLoS One 2012; 7:e46759. [PMID: 23056439 PMCID: PMC3466296 DOI: 10.1371/journal.pone.0046759] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/03/2012] [Indexed: 12/18/2022] Open
Abstract
Spontaneous mutations play a central role in evolution. Despite their importance, mutation rates are some of the most elusive parameters to measure in evolutionary biology. The combination of mutation accumulation (MA) experiments and whole-genome sequencing now makes it possible to estimate mutation rates by directly observing new mutations at the molecular level across the whole genome. We performed an MA experiment with the social amoeba Dictyostelium discoideum and sequenced the genomes of three randomly chosen lines using high-throughput sequencing to estimate the spontaneous mutation rate in this model organism. The mitochondrial mutation rate of 6.76×10(-9), with a Poisson confidence interval of 4.1×10(-9) - 9.5×10(-9), per nucleotide per generation is slightly lower than estimates for other taxa. The mutation rate estimate for the nuclear DNA of 2.9×10(-11), with a Poisson confidence interval ranging from 7.4×10(-13) to 1.6×10(-10), is the lowest reported for any eukaryote. These results are consistent with low microsatellite mutation rates previously observed in D. discoideum and low levels of genetic variation observed in wild D. discoideum populations. In addition, D. discoideum has been shown to be quite resistant to DNA damage, which suggests an efficient DNA-repair mechanism that could be an adaptation to life in soil and frequent exposure to intracellular and extracellular mutagenic compounds. The social aspect of the life cycle of D. discoideum and a large portion of the genome under relaxed selection during vegetative growth could also select for a low mutation rate. This hypothesis is supported by a significantly lower mutation rate per cell division in multicellular eukaryotes compared with unicellular eukaryotes.
Collapse
Affiliation(s)
- Gerda Saxer
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tandem-repeat patterns and mutation rates in microsatellites of the nematode model organism Pristionchus pacificus. G3-GENES GENOMES GENETICS 2012; 2:1027-34. [PMID: 22973539 PMCID: PMC3429916 DOI: 10.1534/g3.112.003129] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 06/22/2012] [Indexed: 01/02/2023]
Abstract
Modern evolutionary biology requires integrative approaches that combine life history, population structure, ecology, and development. The nematode Pristionchus pacificus has been established as a model system in which these aspects can be studied in one organism. P. pacificus has well-developed genetic, genomic, and transgenic tools and its ecologic association with scarab beetles is well described. A recent study provided first mutation rate estimates based on mitochondrial genome sequencing and mutation accumulation line experiments that help resolve rather ancient evolutionary branches. Here, we analyzed the tandem-repeat pattern and studied spontaneous mutation rates for microsatellite markers by using the previously generated mutation accumulation lines. We found that 0.59%–3.83% of the genome is composed of short tandem repeats. We developed 41 microsatellite markers, randomly chosen throughout the genome and analyzed them in 82 mutation accumulation lines after 142 generations. A total of 31 mutations were identified in these lines. There was a strong correlation between allele size and mutation rate in P. pacificus, similar to Caenorhabditis elegans. In contrast to C. elegans, however, there is no evidence for a bias toward multistep mutations. The mutation spectrum of microsatellite loci in P. pacificus shows more insertions than deletions, indicating a tendency toward lengthening, a process that might have contributed to the increase in genome size. The mutation rates obtained for individual microsatellite markers provide guidelines for divergence time estimates that can be applied in P. pacificus next-generation sequencing approaches of wild isolates.
Collapse
|
36
|
Guerrero RF, Kirkpatrick M, Perrin N. Cryptic recombination in the ever‐young sex chromosomes of
H
ylid frogs. J Evol Biol 2012; 25:1947-1954. [DOI: 10.1111/j.1420-9101.2012.02591.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/22/2012] [Accepted: 07/09/2012] [Indexed: 11/29/2022]
Affiliation(s)
- R. F. Guerrero
- Section of Integrative Biology The University of Texas at Austin Austin TX USA
| | - M. Kirkpatrick
- Section of Integrative Biology The University of Texas at Austin Austin TX USA
| | - N. Perrin
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
| |
Collapse
|
37
|
Aandahl RZ, Reyes JF, Sisson SA, Tanaka MM. A model-based Bayesian estimation of the rate of evolution of VNTR loci in Mycobacterium tuberculosis. PLoS Comput Biol 2012; 8:e1002573. [PMID: 22761563 PMCID: PMC3386166 DOI: 10.1371/journal.pcbi.1002573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 05/04/2012] [Indexed: 11/18/2022] Open
Abstract
Variable numbers of tandem repeats (VNTR) typing is widely used for studying the bacterial cause of tuberculosis. Knowledge of the rate of mutation of VNTR loci facilitates the study of the evolution and epidemiology of Mycobacterium tuberculosis. Previous studies have applied population genetic models to estimate the mutation rate, leading to estimates varying widely from around to per locus per year. Resolving this issue using more detailed models and statistical methods would lead to improved inference in the molecular epidemiology of tuberculosis. Here, we use a model-based approach that incorporates two alternative forms of a stepwise mutation process for VNTR evolution within an epidemiological model of disease transmission. Using this model in a Bayesian framework we estimate the mutation rate of VNTR in M. tuberculosis from four published data sets of VNTR profiles from Albania, Iran, Morocco and Venezuela. In the first variant, the mutation rate increases linearly with respect to repeat numbers (linear model); in the second, the mutation rate is constant across repeat numbers (constant model). We find that under the constant model, the mean mutation rate per locus is (95% CI: ,)and under the linear model, the mean mutation rate per locus per repeat unit is (95% CI: ,). These new estimates represent a high rate of mutation at VNTR loci compared to previous estimates. To compare the two models we use posterior predictive checks to ascertain which of the two models is better able to reproduce the observed data. From this procedure we find that the linear model performs better than the constant model. The general framework we use allows the possibility of extending the analysis to more complex models in the future. Genetically typing the bacterium responsible for tuberculosis is useful for understanding the evolutionary and epidemiological characteristics of the disease. Typing methods based on variable number tandem repeat (VNTR) loci are increasingly being used. These loci, which are composed of repeated units, mutate by increasing or decreasing in the number of these repeats. Knowledge of the mutation rate of molecular markers facilitates the epidemiological interpretation of the observed genetic variation in a sample of bacterial isolates. Few studies have examined the rate of mutation at these markers and estimates to date have varied considerably. To address this problem we develop a stochastic model of evolution of these markers and then estimate their mutation rate using approximate Bayesian computation. We examine two alternative forms of the mutation process. The observed data are from four published data sets of tuberculosis bacterial isolates sampled in Albania, Iran, Morocco and Venezuela. We find that these markers have fairly high rates of mutation compared with estimates from previous studies.
Collapse
Affiliation(s)
- R. Zachariah Aandahl
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
- Evolution & Ecology Research Centre and School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Josephine F. Reyes
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Scott A. Sisson
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark M. Tanaka
- Evolution & Ecology Research Centre and School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
38
|
Thielsch A, Völker E, Kraus RHS, Schwenk K. Discrimination of hybrid classes using cross-species amplification of microsatellite loci: methodological challenges and solutions in Daphnia. Mol Ecol Resour 2012; 12:697-705. [PMID: 22487563 DOI: 10.1111/j.1755-0998.2012.03142.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Microsatellite markers are important tools in population, conservation and forensic studies and are frequently used for species delineation, the detection of hybridization and introgression. Therefore, marker sets that amplify variable DNA regions in two species are required; however, cross-species amplification is often difficult, as genotyping errors such as null alleles may occur. To estimate the level of potential misidentifications based on genotyping errors, we compared the occurrence of parental alleles in laboratory and natural Daphnia hybrids (Daphnia longispina group). We tested a set of 12 microsatellite loci with regard to their suitability for unambiguous species and hybrid class identification using F(1) hybrids bred in the laboratory. Further, a large set of 44 natural populations of D. cucullata, D. galeata and D. longispina (1715 individuals) as well as their interspecific hybrids were genotyped to validate the discriminatory power of different marker combinations. Species delineation using microsatellite multilocus genotypes produced reliable results for all three studied species using assignment tests. Daphnia galeata × cucullata hybrid detection was limited due to three loci exhibiting D. cucullata-specific null alleles, which most likely are caused by differences in primer-binding sites of parental species. Overall, discriminatory power in hybrid detection was improved when a subset of markers was identified that amplifies equally well in both species.
Collapse
Affiliation(s)
- A Thielsch
- Molecular Ecology, Institute for Environmental Sciences, University Koblenz-Landau, Fortstr. 7, 76829 Landau, Germany.
| | | | | | | |
Collapse
|
39
|
WALSER B, HAAG CR. Strong intraspecific variation in genetic diversity and genetic differentiation inDaphnia magna: the effects of population turnover and population size. Mol Ecol 2012; 21:851-61. [DOI: 10.1111/j.1365-294x.2011.05416.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Cieslarová J, Hanáček P, Fialová E, Hýbl M, Smýkal P. Estimation of pea (Pisum sativum L.) microsatellite mutation rate based on pedigree and single-seed descent analyses. J Appl Genet 2011; 52:391-401. [PMID: 21769669 DOI: 10.1007/s13353-011-0058-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/21/2011] [Accepted: 06/22/2011] [Indexed: 02/07/2023]
Abstract
Microsatellites, or simple sequence repeats (SSRs) are widespread class of repetitive DNA sequences, used in population genetics, genetic diversity and mapping studies. In spite of the SSR utility, the genetic and evolutionary mechanisms are not fully understood. We have investigated three microsatellite loci with different position in the pea (Pisum sativum L.) genome, the A9 locus residing in LTR region of abundant retrotransposon, AD270 as intergenic and AF016458 located in 5'untranslated region of expressed gene. Comparative analysis of a 35 pair samples from seven pea varieties propagated by single-seed descent for ten generations, revealed single 4 bp mutation in 10th generation sample at AD270 locus corresponding to stepwise increase in one additional ATCT repeat unit. The estimated mutation rate was 4.76 × 10(-3) per locus per generation, with a 95% confidence interval of 1.2 × 10(-4) to 2.7 × 10(-2). The comparison of cv. Bohatýr accessions retrieved from different collections, showed intra-, inter-accession variation and differences in flanking and repeat sequences. Fragment size and sequence alternations were also found in long term in vitro organogenic culture, established at 1983, indicative of somatic mutation process. The evidence of homoplasy was detected across of unrelated pea genotypes, which adversaly affects the reliability of diversity estimates not only for diverse germplasm but also highly bred material. The findings of this study have important implications for Pisum phylogeny studies, variety identification and registration process in pea breeding where mutation rate influences the genetic diversity and the effective population size estimates.
Collapse
Affiliation(s)
- Jaroslava Cieslarová
- Department of Plant Biology, Mendel University, Zemědělská, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
41
|
Jaquiéry J, Stoeckel S, Rispe C, Mieuzet L, Legeai F, Simon JC. Accelerated evolution of sex chromosomes in aphids, an x0 system. Mol Biol Evol 2011; 29:837-47. [PMID: 21998277 DOI: 10.1093/molbev/msr252] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sex chromosomes play a role in many important biological processes, including sex determination, genomic conflicts, imprinting, and speciation. In particular, they exhibit several unusual properties such as inheritance pattern, hemizygosity, and reduced recombination, which influence their response to evolutionary factors (e.g., drift, selection, and demography). Here, we examine the evolutionary forces driving X chromosome evolution in aphids, an XO system where females are homozygous (XX) and males are hemizygous (X0) at sex chromosomes. We show by simulations that the unusual mode of transmission of the X chromosome in aphids, coupled with cyclical parthenogenesis, results in similar effective population sizes and predicted levels of genetic diversity for X chromosomes and autosomes under neutral evolution. These results contrast with expectations from standard XX/XY or XX/X0 systems (where the effective population size of the X is three-fourths that of autosomes) and have deep consequences for aphid X chromosome evolution. We then localized 52 microsatellite markers on the X and 351 on autosomes. We genotyped 167 individuals with 356 of these loci and found similar levels of allelic richness on the X and on the autosomes, as predicted by our simulations. In contrast, we detected higher dN and dN/dS ratio for X-linked genes compared with autosomal genes, a pattern compatible with either positive or relaxed selection. Given that both types of chromosomes have similar effective population sizes and that the single copy of the X chromosome of male aphids exposes its recessive genes to selection, some degree of positive selection seems to best explain the higher rates of evolution of X-linked genes. Overall, this study highlights the particular relevance of aphids to study the evolutionary factors driving sex chromosomes and genome evolution.
Collapse
Affiliation(s)
- Julie Jaquiéry
- Institut National de Recherche Agronomique (INRA), Unité Mixte de Recherche 1099, Biology of Organisms and Populations Applied to Plant Protection, Le Rheu, France.
| | | | | | | | | | | |
Collapse
|
42
|
Kelkar YD, Eckert KA, Chiaromonte F, Makova KD. A matter of life or death: how microsatellites emerge in and vanish from the human genome. Genome Res 2011; 21:2038-48. [PMID: 21994250 DOI: 10.1101/gr.122937.111] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microsatellites--tandem repeats of short DNA motifs--are abundant in the human genome and have high mutation rates. While microsatellite instability is implicated in numerous genetic diseases, the molecular processes involved in their emergence and disappearance are still not well understood. Microsatellites are hypothesized to follow a life cycle, wherein they are born and expand into adulthood, until their degradation and death. Here we identified microsatellite births/deaths in human, chimpanzee, and orangutan genomes, using macaque and marmoset as outgroups. We inferred mutations causing births/deaths based on parsimony, and investigated local genomic environments affecting them. We also studied birth/death patterns within transposable elements (Alus and L1s), coding regions, and disease-associated loci. We observed that substitutions were the predominant cause for births of short microsatellites, while insertions and deletions were important for births of longer microsatellites. Substitutions were the cause for deaths of microsatellites of virtually all lengths. AT-rich L1 sequences exhibited elevated frequency of births/deaths over their entire length, while GC-rich Alus only in their 3' poly(A) tails and middle A-stretches, with differences depending on transposable element integration timing. Births/deaths were strongly selected against in coding regions. Births/deaths occurred in genomic regions with high substitution rates, protomicrosatellite content, and L1 density, but low GC content and Alu density. The majority of the 17 disease-associated microsatellites examined are evolutionarily ancient (were acquired by the common ancestor of simians). Our genome-wide investigation of microsatellite life cycle has fundamental applications for predicting the susceptibility of birth/death of microsatellites, including many disease-causing loci.
Collapse
Affiliation(s)
- Yogeshwar D Kelkar
- Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
43
|
Molnar RI, Bartelmes G, Dinkelacker I, Witte H, Sommer RJ. Mutation Rates and Intraspecific Divergence of the Mitochondrial Genome of Pristionchus pacificus. Mol Biol Evol 2011; 28:2317-26. [DOI: 10.1093/molbev/msr057] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
44
|
Sung W, Tucker A, Bergeron RD, Lynch M, Thomas WK. Simple sequence repeat variation in the Daphnia pulex genome. BMC Genomics 2010; 11:691. [PMID: 21129182 PMCID: PMC3017760 DOI: 10.1186/1471-2164-11-691] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 12/03/2010] [Indexed: 11/24/2022] Open
Abstract
Background Simple sequence repeats (SSRs) are highly variable features of all genomes. Their rapid evolution makes them useful for tracing the evolutionary history of populations and investigating patterns of selection and mutation across gnomes. The recently sequenced Daphnia pulex genome provides us with a valuable data set to study the mode and tempo of SSR evolution, without the inherent biases that accompany marker selection. Results Here we catalogue SSR loci in the Daphnia pulex genome with repeated motif sizes of 1-100 nucleotides with a minimum of 3 perfect repeats. We then used whole genome shotgun reads to determine the average heterozygosity of each SSR type and the relationship that it has to repeat number, motif size, motif sequence, and distribution of SSR loci. We find that SSR heterozygosity is motif specific, and positively correlated with repeat number as well as motif size. For non-repeat unit polymorphisms, we identify a motif-dependent end-nucleotide polymorphism bias that may contribute to the patterns of abundance for specific homopolymers, dimers, and trimers. Our observations confirm the high frequency of multiple unit variation (multistep) at large microsatellite loci, and further show that the occurrence of multiple unit variation is dependent on both repeat number and motif size. Using the Daphnia pulex genetic map, we show a positive correlation between dimer and trimer frequency and recombination. Conclusions This genome-wide analysis of SSR variation in Daphnia pulex indicates that several aspects of SSR variation are motif dependent and suggests that a combination of unit length variation and end repeat biased base substitution contribute to the unique spectrum of SSR repeat loci.
Collapse
Affiliation(s)
- Way Sung
- Hubbard Center for Genome Studies, University of New Hampshire, Durham, NH 03824, USA.
| | | | | | | | | |
Collapse
|
45
|
Evolution of the mutation rate. Trends Genet 2010; 26:345-52. [PMID: 20594608 DOI: 10.1016/j.tig.2010.05.003] [Citation(s) in RCA: 675] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 05/16/2010] [Accepted: 05/21/2010] [Indexed: 11/20/2022]
Abstract
Understanding the mechanisms of evolution requires information on the rate of appearance of new mutations and their effects at the molecular and phenotypic levels. Although procuring such data has been technically challenging, high-throughput genome sequencing is rapidly expanding knowledge in this area. With information on spontaneous mutations now available in a variety of organisms, general patterns have emerged for the scaling of mutation rate with genome size and for the likely mechanisms that drive this pattern. Support is presented for the hypothesis that natural selection pushes mutation rates down to a lower limit set by the power of random genetic drift rather than by intrinsic physiological limitations, and that this has resulted in reduced levels of replication, transcription, and translation fidelity in eukaryotes relative to prokaryotes.
Collapse
|
46
|
Mayer C, Leese F, Tollrian R. Genome-wide analysis of tandem repeats in Daphnia pulex--a comparative approach. BMC Genomics 2010; 11:277. [PMID: 20433735 PMCID: PMC3152781 DOI: 10.1186/1471-2164-11-277] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 04/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background DNA tandem repeats (TRs) are not just popular molecular markers, but are also important genomic elements from an evolutionary and functional perspective. For various genomes, the densities of short TR types were shown to differ strongly among different taxa and genomic regions. In this study we analysed the TR characteristics in the genomes of Daphnia pulex and 11 other eukaryotic species. Characteristics of TRs in different genomic regions and among different strands are compared in details for D. pulex and the two model insects Apis mellifera and Drosophila melanogaster. Results Profound differences in TR characteristics were found among all 12 genomes compared in this study. In D. pulex, the genomic density of TRs was low compared to the arthropod species D. melanogaster and A. mellifera. For these three species, very few common features in repeat type usage, density distribution, and length characteristics were observed in the genomes and in different genomic regions. In introns and coding regions an unexpectedly high strandedness was observed for several repeat motifs. In D. pulex, the density of TRs was highest in introns, a rare feature in animals. In coding regions, the density of TRs with unit sizes 7-50 bp were more than three times as high as for 1-6 bp repeats. Conclusions TRs in the genome of D. pulex show several notable features, which distinguish it from the other genomes. Altogether, the highly non-random distribution of TRs among genomes, genomic regions and even among different DNA-stands raises many questions concerning their functional and evolutionary importance. The high density of TRs with a unit size longer than 6 bp found in non-coding and coding regions underpins the importance to include longer TR units in comparative analyses.
Collapse
Affiliation(s)
- Christoph Mayer
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Bochum, Germany.
| | | | | |
Collapse
|
47
|
Pemberton TJ, Sandefur CI, Jakobsson M, Rosenberg NA. Sequence determinants of human microsatellite variability. BMC Genomics 2009; 10:612. [PMID: 20015383 PMCID: PMC2806349 DOI: 10.1186/1471-2164-10-612] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 12/16/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Microsatellite loci are frequently used in genomic studies of DNA sequence repeats and in population studies of genetic variability. To investigate the effect of sequence properties of microsatellites on their level of variability we have analyzed genotypes at 627 microsatellite loci in 1,048 worldwide individuals from the HGDP-CEPH cell line panel together with the DNA sequences of these microsatellites in the human RefSeq database. RESULTS Calibrating PCR fragment lengths in individual genotypes by using the RefSeq sequence enabled us to infer repeat number in the HGDP-CEPH dataset and to calculate the mean number of repeats (as opposed to the mean PCR fragment length), under the assumption that differences in PCR fragment length reflect differences in the numbers of repeats in the embedded repeat sequences. We find the mean and maximum numbers of repeats across individuals to be positively correlated with heterozygosity. The size and composition of the repeat unit of a microsatellite are also important factors in predicting heterozygosity, with tetra-nucleotide repeat units high in G/C content leading to higher heterozygosity. Finally, we find that microsatellites containing more separate sets of repeated motifs generally have higher heterozygosity. CONCLUSIONS These results suggest that sequence properties of microsatellites have a significant impact in determining the features of human microsatellite variability.
Collapse
Affiliation(s)
- Trevor J Pemberton
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | |
Collapse
|
48
|
|
49
|
Grover A, Ramesh B, Sharma PC. Development of microsatellite markers in potato and their transferability in some members of Solanaceae. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2009; 15:343-58. [PMID: 23572945 PMCID: PMC3550351 DOI: 10.1007/s12298-009-0039-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We have developed thirty new microsatellite markers in potato by screening genomic libraries and ESTs. Genomic libraries of potato cultivar Kufri Bahar were screened for sequences containing microsatellite motifs GA, GT, ACA, ATC, GAA, TAA and GATA. Using flanking sequences, PCR primers were designed for microsatellites identified from genomic libraries and ESTs. Sixteen new primer pairs from genomic libraries and fourteen from ESTs along with seven previously published primer pairs amplified PCR products in the selected genotypes comprising of 65 Solanum tuberosum lines and 14 other species of the potato gene pool. Neighbor-joining tree based on genetic distance matrix developed using microsatellite markers successfully distinguished all these genotypes in the expected size range. Seventeen microsatellites could also be cross-amplified in at least one of the five members of solanaceae, namely tomato, eggplant, pepper, petunia and tobacco. The new microsatellite markers obtained in this study will be useful in various genetic and taxonomic studies in potato and related genomes.
Collapse
Affiliation(s)
- Atul Grover
- />University School of Biotechnology, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi, 110 403 India
| | - B. Ramesh
- />Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004 India
| | - P. C. Sharma
- />University School of Biotechnology, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi, 110 403 India
| |
Collapse
|
50
|
Marriage TN, Hudman S, Mort ME, Orive ME, Shaw RG, Kelly JK. Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae). Heredity (Edinb) 2009; 103:310-7. [PMID: 19513093 PMCID: PMC2749907 DOI: 10.1038/hdy.2009.67] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The mutation rate at 54 perfect (uninterrupted) dinucleotide microsatellite loci is estimated by direct genotyping of 96 Arabidopsis thaliana mutation accumulation lines. The estimated rate differs significantly among motif types with the highest rate for AT repeats (2.03 x 10(-3) per allele per generation), intermediate for CT (3.31 x 10(-4)), and lowest for CA (4.96 x 10(-5)). The average mutation rate per generation for this sample of loci is 8.87 x 10(-4) (s.e.=2.57 x 10(-4)). There is a strong effect of initial repeat number, particularly for AT repeats, with mutation rate increasing with the length of the microsatellite locus in the progenitor line. Controlling for motif and initial repeat number, chromosome 4 exhibited an elevated mutation rate relative to other chromosomes. The great majority of mutations were gains or losses of a single repeat. Generally, the data are consistent with the stepwise mutation model of microsatellite evolution. Several lines exhibited multiple step changes from the progenitor sequence, but it is unclear whether these are multi-step mutations or multiple single-step mutations. A survey of dinucleotide repeats across the entire Arabidopsis genome indicates that AT repeats are most abundant, followed by CT, and CA.
Collapse
Affiliation(s)
- Tara N. Marriage
- Department of Ecology and Evolutionary Biology University of Kansas, Lawrence, KS
| | - Stephen Hudman
- Department of Ecology and Evolutionary Biology University of Kansas, Lawrence, KS
- Department of Ecology, Evolution, and Behavior, University of Minnesota
| | - Mark E. Mort
- Department of Ecology and Evolutionary Biology University of Kansas, Lawrence, KS
| | - Maria E. Orive
- Department of Ecology and Evolutionary Biology University of Kansas, Lawrence, KS
| | - Ruth G. Shaw
- Department of Ecology, Evolution, and Behavior, University of Minnesota
| | - John K. Kelly
- Department of Ecology and Evolutionary Biology University of Kansas, Lawrence, KS
| |
Collapse
|