1
|
Chaloupsky P, Kolackova M, Dobesova M, Pencik O, Tarbajova V, Capal P, Svec P, Ridoskova A, Bytesnikova Z, Pelcova P, Adam V, Huska D. Mechanistic transcriptome comprehension of Chlamydomonas reinhardtii subjected to black phosphorus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115823. [PMID: 38176180 DOI: 10.1016/j.ecoenv.2023.115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Two-dimensional materials have recently gained significant awareness. A representative of such materials, black phosphorous (BP), earned attention based on its comprehensive application potential. The presented study focuses on the mode of cellular response underlying the BP interaction with Chlamydomonas reinhardtii as an algal model organism. We observed noticeable ROS formation and changes in outer cellular topology after 72 h of incubation at 5 mg/L BP. Transcriptome profiling was employed to examine C. reinhardtii response after exposure to 25 mg/L BP for a deeper understanding of the associated processes. The RNA sequencing has revealed a comprehensive response with abundant transcript downregulation. The mode of action was attributed to cell wall disruption, ROS elevation, and chloroplast disturbance. Besides many other dysregulated genes, the cell response involved the downregulation of GH9 and gametolysin within a cell wall, pointing to a shift to discrete manipulation with resources. The response also included altered expression of the PRDA1 gene associated with redox governance in chloroplasts implying ROS disharmony. Altered expression of the Cre-miR906-3p, Cre-miR910, and Cre-miR914 pointed to those as potential markers in stress response studies.
Collapse
Affiliation(s)
- Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Ondrej Pencik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vladimira Tarbajova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavlina Pelcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
2
|
Boohar RT, Vandepas LE, Traylor-Knowles N, Browne WE. Phylogenetic and Protein Structure Analyses Provide Insight into the Evolution and Diversification of the CD36 Domain "Apex" among Scavenger Receptor Class B Proteins across Eukarya. Genome Biol Evol 2023; 15:evad218. [PMID: 38035778 PMCID: PMC10715195 DOI: 10.1093/gbe/evad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 11/07/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
The cluster of differentiation 36 (CD36) domain defines the characteristic ectodomain associated with class B scavenger receptor (SR-B) proteins. In bilaterians, SR-Bs play critical roles in diverse biological processes including innate immunity functions such as pathogen recognition and apoptotic cell clearance, as well as metabolic sensing associated with fatty acid uptake and cholesterol transport. Although previous studies suggest this protein family is ancient, SR-B diversity across Eukarya has not been robustly characterized. We analyzed SR-B homologs identified from the genomes and transcriptomes of 165 diverse eukaryotic species. The presence of highly conserved amino acid motifs across major eukaryotic supergroups supports the presence of a SR-B homolog in the last eukaryotic common ancestor. Our comparative analyses of SR-B protein structure identify the retention of a canonical asymmetric beta barrel tertiary structure within the CD36 ectodomain across Eukarya. We also identify multiple instances of independent lineage-specific sequence expansions in the apex region of the CD36 ectodomain-a region functionally associated with ligand-sensing. We hypothesize that a combination of both sequence expansion and structural variation in the CD36 apex region may reflect the evolution of SR-B ligand-sensing specificity between diverse eukaryotic clades.
Collapse
Affiliation(s)
- Reed T Boohar
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Lauren E Vandepas
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - William E Browne
- Department of Biology, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
3
|
Sun S, Hu K, Wang L, Liu M, Zhang Y, Dong N, Wu Q. Spatial position is a key determinant of N-glycan functionality of the scavenger receptor cysteine-rich domain of human hepsin. FEBS J 2023; 290:3966-3982. [PMID: 36802168 DOI: 10.1111/febs.16757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
The scavenger receptor cysteine-rich (SRCR) domain is a key constituent in diverse proteins. N-glycosylation is important in protein expression and function. In the SRCR domain of different proteins, N-glycosylation sites and functionality vary substantially. In this study, we examined the importance of N-glycosylation site positions in the SRCR domain of hepsin, a type II transmembrane serine protease involved in many pathophysiological processes. We analysed hepsin mutants with alternative N-glycosylation sites in the SRCR and protease domains using three-dimensional modelling, site-directed mutagenesis, HepG2 cell expression, immunostaining, and western blotting. We found that the N-glycan function in the SRCR domain in promoting hepsin expression and activation on the cell surface cannot be replaced by alternatively created N-glycans in the protease domain. Within the SRCR domain, the presence of an N-glycan in a confined surface area was essential for calnexin-assisted protein folding, endoplasmic reticulum (ER) exiting, and zymogen activation of hepsin on the cell surface. Hepsin mutants with alternative N-glycosylation sites on the opposite side of the SRCR domain were trapped by ER chaperones, resulting in the activation of the unfolded protein response in HepG2 cells. These results indicate that the spatial N-glycan positioning in the SRCR domain is a key determinant in the interaction with calnexin and subsequent cell surface expression of hepsin. These findings may help to understand the conservation and functionality of N-glycosylation sites in the SRCR domains of different proteins.
Collapse
Affiliation(s)
- Shijin Sun
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kaixuan Hu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lina Wang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yikai Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Ehrenfeld C, Veloso-Giménez V, Corrales-Orovio R, Rebolledo R, Boric MP, Egaña JT. Microalgae share key features with human erythrocytes and can safely circulate through the vascular system in mice. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12588-z. [PMID: 37227473 DOI: 10.1007/s00253-023-12588-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
As animal cells cannot produce oxygen, erythrocytes are responsible for gas interchange, being able to capture and deliver oxygen upon tissue request. Interestingly, several other cells in nature produce oxygen by photosynthesis, raising the question of whether they could circulate within the vascular networks, acting as an alternative source for oxygen delivery. To address this long-term goal, here some physical and mechanical features of the photosynthetic microalga Chlamydomona reinhardtii were studied and compared with erythrocytes, revealing that both exhibit similar size and rheological properties. Moreover, key biocompatibility aspects of the microalgae were evaluated in vitro and in vivo, showing that C. reinhardtii can be co-cultured with endothelial cells, without affecting each other's morphology and viability. Moreover, short-term systemic perfusion of the microalgae showed a thoroughly intravascular distribution in mice. Finally, the systemic injection of high numbers of microalgae did not trigger deleterious responses in living mice. Altogether, this work provides key scientific insights to support the notion that photosynthetic oxygenation could be achieved by circulating microalgae, representing another important step towards human photosynthesis. KEY POINTS: • C. reinhardtii and endothelial cells are biocompatible in vitro. • C. reinhardtii distribute throughout the entire vasculature after mice perfusion. • C. reinhardtii do not trigger deleterious responses after injection in mice.
Collapse
Affiliation(s)
- Carolina Ehrenfeld
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7821093, Santiago, Chile
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Portugal 49, 8331150, Santiago, Chile
| | - Valentina Veloso-Giménez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7821093, Santiago, Chile
| | - Rocío Corrales-Orovio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7821093, Santiago, Chile
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Rolando Rebolledo
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7821093, Santiago, Chile
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río, Santiago, Chile
| | - Mauricio P Boric
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Portugal 49, 8331150, Santiago, Chile.
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, 7821093, Santiago, Chile.
| |
Collapse
|
5
|
Bezerra RP, Conniff AS, Uversky VN. Comparative study of structures and functional motifs in lectins from the commercially important photosynthetic microorganisms. Biochimie 2022; 201:63-74. [PMID: 35839918 DOI: 10.1016/j.biochi.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/17/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022]
Abstract
Photosynthetic microorganisms, specifically cyanobacteria and microalgae, can synthesize a vast array of biologically active molecules, such as lectins, that have great potential for various biotechnological and biomedical applications. However, since the structures of these proteins are not well established, likely due to the presence of intrinsically disordered regions, our ability to better understand their functionality is hampered. We embarked on a study of the carbohydrate recognition domain (CRD), intrinsically disordered regions (IDRs), amino acidic composition, as well as and functional motifs in lectins from cyanobacteria of the genus Arthrospira and microalgae Chlorella and Dunaliella genus using a combination of bioinformatics techniques. This search revealed the presence of five distinctive CRD types differently distributed between the genera. Most CRDs displayed a group-specific distribution, except to C. sorokiniana possessing distinctive CRD probably due to its specific lifestyle. We also found that all CRDs contain short IDRs. Bacterial lectin of Arthrospira prokarionte showed lower intrinsic disorder and proline content when compared to the lectins from the eukaryotic microalgae (Chlorella and Dunaliella). Among the important functions predicted in all lectins were several specific motifs, which directly interacts with proteins involved in the cell-cycle control and which may be used for pharmaceutical purposes. Since the aforementioned properties of each type of lectin were investigated in silico, they need experimental confirmation. The results of our study provide an overview of the distribution of CRD, IDRs, and functional motifs within lectin from the commercially important microalgae.
Collapse
Affiliation(s)
- Raquel P Bezerra
- Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco-UFRPE, Dom Manoel de Medeiros Ave, Recife, PE, 52171-900, Brazil.
| | - Amanda S Conniff
- Department of Medical Engineering, Morsani College of Medicine and College of Engineering, University of South Florida, Tampa, FL, 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
6
|
Lin YT, Takeuchi T, Youk B, Umen J, Sears BB, Benning C. Chlamydomonas CHT7 is involved in repressing DNA replication and mitotic genes during synchronous growth. G3 GENES|GENOMES|GENETICS 2022; 12:6523978. [PMID: 35137070 PMCID: PMC8895990 DOI: 10.1093/g3journal/jkac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022]
Abstract
In the green alga Chlamydomonas reinhardtii, regulation of the cell cycle in response to external cues is critical for survival in a changing environment. The loss of the nuclear COMPROMISED HYDROLYSIS OF TRIACYLGLYCEROLS 7 (CHT7) protein affects the expression of many genes especially in response to nitrogen availability. Cells lacking CHT7 exhibit abnormal cell morphology following nitrogen deprivation and fail to resume normal cell division after N resupply. To investigate the function of CHT7 in the regulation of cell cycle-related pathways, cells were synchronized, and RNA-seq analysis was performed during various stages of the cell cycle. In the cht7 mutant following nitrogen deprivation, the cells were not dividing, but a subset of cell cycle genes involved in DNA replication and mitosis were found to be derepressed, suggesting that the CHT7 protein plays a role in cell cycle regulation that is opposite to that of the mitotic cyclin-dependent kinases. Furthermore, genes for cell wall synthesis and remodeling were found to be abnormally induced in nondividing cht7 cells; this misregulation may deplete cellular resources and thus contribute to cell death following nitrogen deprivation. Lastly, 43 minimally characterized kinases were found to be highly misregulated in cht7. Further analysis suggested that some of these CHT7-regulated kinases may be related to the MAP3K and Aurora-like kinases, while others are unique. Together, these results suggest a role of CHT7 in transcriptional regulation of the cell cycle and reveal several pathways and genes whose expression appears to be subject to a CHT7-mediated regulatory network.
Collapse
Affiliation(s)
- Yang-Tsung Lin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Tomomi Takeuchi
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Brian Youk
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - James Umen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Barbara B Sears
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Christoph Benning
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Cai C, Gu K, Zhao H, Steinhagen S, He P, Wichard T. Screening and verification of extranuclear genetic markers in green tide algae from the Yellow Sea. PLoS One 2021; 16:e0250968. [PMID: 34061855 PMCID: PMC8168861 DOI: 10.1371/journal.pone.0250968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/18/2021] [Indexed: 11/18/2022] Open
Abstract
Over the past decade, Ulva compressa, a cosmopolitan green algal species, has been identified as a component of green tides in the Yellow Sea, China. In the present study, we sequenced and annotated the complete chloroplast genome of U. compressa (alpha-numeric code: RD9023) and focused on the assessment of genome length, homology, gene order and direction, intron size, selection strength, and substitution rate. We compared the chloroplast genome with the mitogenome. The generated phylogenetic tree was analyzed based on single and aligned genes in the chloroplast genome of Ulva compared to mitogenome genes to detect evolutionary trends. U. compressa and U. mutabilis chloroplast genomes had similar gene queues, with individual genes exhibiting high homology levels. Chloroplast genomes were clustered together in the entire phylogenetic tree and shared several forward/palindromic/tandem repetitions, similar to those in U. prolifera and U. linza. However, U. fasciata and U. ohnoi were more divergent, especially in sharing complementary/palindromic repetitions. In addition, phylogenetic analyses of the aligned genes from their chloroplast genomes and mitogenomes confirmed the evolutionary trends of the extranuclear genomes. From phylogenetic analysis, we identified the petA chloroplast genes as potential genetic markers that are similar to the tufA marker. Complementary/forward/palindromic interval repetitions were more abundant in chloroplast genomes than in mitogenomes. Interestingly, a few tandem repetitions were significant for some Ulva subspecies and relatively more evident in mitochondria than in chloroplasts. Finally, the tandem repetition [GAAATATATAATAATA × 3, abbreviated as TRg)] was identified in the mitogenome of U. compressa and the conspecific strain U. mutabilis but not in other algal species of the Yellow Sea. Owing to the high morphological plasticity of U. compressa, the findings of this study have implications for the rapid non-sequencing detection of this species during the occurrence of green tides in the region.
Collapse
Affiliation(s)
- Chuner Cai
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| | - Kai Gu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Hui Zhao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Sophie Steinhagen
- Department of Marine Sciences-Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
8
|
Craig RJ, Hasan AR, Ness RW, Keightley PD. Comparative genomics of Chlamydomonas. THE PLANT CELL 2021; 33:1016-1041. [PMID: 33793842 PMCID: PMC8226300 DOI: 10.1093/plcell/koab026] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/22/2021] [Indexed: 05/06/2023]
Abstract
Despite its role as a reference organism in the plant sciences, the green alga Chlamydomonas reinhardtii entirely lacks genomic resources from closely related species. We present highly contiguous and well-annotated genome assemblies for three unicellular C. reinhardtii relatives: Chlamydomonas incerta, Chlamydomonas schloesseri, and the more distantly related Edaphochlamys debaryana. The three Chlamydomonas genomes are highly syntenous with similar gene contents, although the 129.2 Mb C. incerta and 130.2 Mb C. schloesseri assemblies are more repeat-rich than the 111.1 Mb C. reinhardtii genome. We identify the major centromeric repeat in C. reinhardtii as a LINE transposable element homologous to Zepp (the centromeric repeat in Coccomyxa subellipsoidea) and infer that centromere locations and structure are likely conserved in C. incerta and C. schloesseri. We report extensive rearrangements, but limited gene turnover, between the minus mating type loci of these Chlamydomonas species. We produce an eight-species core-Reinhardtinia whole-genome alignment, which we use to identify several hundred false positive and missing genes in the C. reinhardtii annotation and >260,000 evolutionarily conserved elements in the C. reinhardtii genome. In summary, these resources will enable comparative genomics analyses for C. reinhardtii, significantly extending the analytical toolkit for this emerging model system.
Collapse
Affiliation(s)
| | - Ahmed R Hasan
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Peter D Keightley
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, UK
| |
Collapse
|
9
|
Ves-Urai P, Krobthong S, Thongsuk K, Roytrakul S, Yokthongwattana C. Comparative secretome analysis between salinity-tolerant and control Chlamydomonas reinhardtii strains. PLANTA 2021; 253:68. [PMID: 33594587 DOI: 10.1007/s00425-021-03583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Secretome analysis of a salt-tolerant and control Chlamydomonas reinhardtii revealed 514 differentially expressed proteins. Membrane transport and trafficking, signal transduction and channel proteins were up-regulated in the ST secretome. Salinity is a major abiotic stress that limits crop production worldwide. Multiple adverse effects have been reported in many living organisms exposed to high-saline concentrations. Chlamydomonas reinhardtii is known for secreting proteins in response to many environmental stresses. A salinity-tolerant (ST) strain of Chlamydomonas has been developed, whose cells were able to grow at 300 mM NaCl. The current study analyzed the secretomes of ST grown in TAP medium supplemented with 300 mM NaCl and the laboratory strain CC-503 grown in TAP medium without NaCl supplement. In total, 514 secreted proteins were identified of which 203 were up-regulated and 110 were down-regulated. Bioinformatic analysis predicted 168 proteins to be secreted or in the conventional secretory pathway. Out of these, 70 were up-regulated, while 51 proteins were down-regulated. Proteins involved in membrane transport and trafficking, signal transduction and channel proteins were altered in their expression in the ST secretome, suggesting the response of saline stress acts toward not only the intracellular pool of proteins but also the extracellular proteins. This also suggested that the secreted proteins might have roles in the extracellular space. Signal peptide (SP) prediction revealed that almost 40% of the predicted secreted proteins contained a signal peptide; however, a high proportion of proteins lacked an SP, suggesting that these proteins might be secreted through an unconventional protein secretion pathway.
Collapse
Affiliation(s)
- Parthompong Ves-Urai
- Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Sucheewin Krobthong
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Karnpitcha Thongsuk
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd., Pathumthani, 12120, Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok, 10900, Thailand.
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
10
|
Chávez MN, Moellhoff N, Schenck TL, Egaña JT, Nickelsen J. Photosymbiosis for Biomedical Applications. Front Bioeng Biotechnol 2020; 8:577204. [PMID: 33123516 PMCID: PMC7573207 DOI: 10.3389/fbioe.2020.577204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022] Open
Abstract
Without the sustained provision of adequate levels of oxygen by the cardiovascular system, the tissues of higher animals are incapable of maintaining normal metabolic activity, and hence cannot survive. The consequence of this evolutionarily suboptimal design is that humans are dependent on cardiovascular perfusion, and therefore highly susceptible to alterations in its normal function. However, hope may be at hand. “Photosynthetic strategies,” based on the recognition that photosynthesis is the source of all oxygen, offer a revolutionary and promising solution to pathologies related to tissue hypoxia. These approaches, which have been under development over the past 20 years, seek to harness photosynthetic microorganisms as a local and controllable source of oxygen to circumvent the need for blood perfusion to sustain tissue survival. To date, their applications extend from the in vitro creation of artificial human tissues to the photosynthetic maintenance of oxygen-deprived organs both in vivo and ex vivo, while their potential use in other medical approaches has just begun to be explored. This review provides an overview of the state of the art of photosynthetic technologies and its innovative applications, as well as an expert assessment of the major challenges and how they can be addressed.
Collapse
Affiliation(s)
- Myra N Chávez
- Molecular Plant Science, Department Biology I, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nicholas Moellhoff
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig Maximilian Universität München, Munich, Germany
| | - Thilo L Schenck
- Division of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig Maximilian Universität München, Munich, Germany
| | - José Tomás Egaña
- Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jörg Nickelsen
- Molecular Plant Science, Department Biology I, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
11
|
N-glycan in the scavenger receptor cysteine-rich domain of hepsin promotes intracellular trafficking and cell surface expression. Int J Biol Macromol 2020; 161:818-827. [DOI: 10.1016/j.ijbiomac.2020.06.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
|
12
|
de Carpentier F, Lemaire SD, Danon A. When Unity Is Strength: The Strategies Used by Chlamydomonas to Survive Environmental Stresses. Cells 2019; 8:E1307. [PMID: 31652831 PMCID: PMC6912462 DOI: 10.3390/cells8111307] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a valuable model system to study a wide spectrum of scientific fields, including responses to environmental conditions. Most studies are performed under optimal growth conditions or under mild stress. However, when environmental conditions become harsher, the behavior of this unicellular alga is less well known. In this review we will show that despite being a unicellular organism, Chlamydomonas can survive very severe environmental conditions. To do so, and depending on the intensity of the stress, the strategies used by Chlamydomonas can range from acclimation to the formation of multicellular structures, or involve programmed cell death.
Collapse
Affiliation(s)
- Félix de Carpentier
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France.
- Faculty of Sciences, Doctoral School of Plant Sciences, Université Paris-Sud, Paris-Saclay, 91400 Orsay, France.
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France.
| | - Antoine Danon
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
13
|
Page TM, McDougall C, Diaz-Pulido G. De novo transcriptome assembly for four species of crustose coralline algae and analysis of unique orthologous genes. Sci Rep 2019; 9:12611. [PMID: 31471551 PMCID: PMC6717203 DOI: 10.1038/s41598-019-48283-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022] Open
Abstract
Crustose coralline algae (CCA) are calcifying red macroalgae that reef build in their own right and perform essential ecosystem functions on coral reefs worldwide. Despite their importance, limited genetic information exists for this algal group. De novo transcriptomes were compiled for four species of common tropical CCA using RNA-seq. Sequencing generated between 66 and 87 million raw reads. Transcriptomes were assembled, redundant contigs removed, and remaining contigs were annotated using Trinotate. Protein orthology analysis was conducted between CCA species and two noncalcifying red algae species from NCBI that have published genomes and transcriptomes, and 978 orthologous protein groups were found to be uniquely shared amongst CCA. Functional enrichment analysis of these 'CCA-specific' proteins showed a higher than expected number of sequences from categories relating to regulation of biological and cellular processes, such as actin related proteins, heat shock proteins, and adhesion proteins. Some proteins found within these enriched categories, i.e. actin and GH18, have been implicated in calcification in other taxa, and are thus candidates for involvement in CCA calcification. This study provides the first comprehensive investigation of gene content in these species, offering insights not only into the evolution of coralline algae but also of the Rhodophyta more broadly.
Collapse
Affiliation(s)
- Tessa M Page
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
- Australian Rivers Institute, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Carmel McDougall
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
- Australian Rivers Institute, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Guillermo Diaz-Pulido
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia.
- Australian Rivers Institute, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| |
Collapse
|
14
|
Cronmiller E, Toor D, Shao NC, Kariyawasam T, Wang MH, Lee JH. Cell wall integrity signaling regulates cell wall-related gene expression in Chlamydomonas reinhardtii. Sci Rep 2019; 9:12204. [PMID: 31434930 PMCID: PMC6704257 DOI: 10.1038/s41598-019-48523-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
An intact cell wall is critical for cellular interactions with the environment and protecting the cell from environmental challenges. Signaling mechanisms are necessary to monitor cell wall integrity and to regulate cell wall production and remodeling during growth and division cycles. The green alga, Chlamydomonas, has a proteinaceous cell wall of defined structure that is readily removed by gametolysin (g-lysin), a metalloprotease released during sexual mating. Naked cells treated with g-lysin induce the mRNA accumulation of >100 cell wall-related genes within an hour, offering a system to study signaling and regulatory mechanisms for de novo cell wall assembly. Combining quantitative RT-PCR and luciferase reporter assays to probe transcript accumulation and promoter activity, we revealed that up to 500-fold upregulation of cell wall-related genes was driven at least partly by transcriptional activation upon g-lysin treatment. To investigate how naked cells trigger this rapid transcriptional activation, we tested whether osmotic stress and cell wall integrity are involved in this process. Under a constant hypotonic condition, comparable levels of cell wall-gene activation were observed by g-lysin treatment. In contrast, cells in an iso- or hypertonic condition showed up to 80% reduction in the g-lysin-induced gene activation, suggesting that osmotic stress is required for full-scale responses to g-lysin treatment. To test whether mechanical perturbation of cell walls is involved, we isolated and examined a new set of cell wall mutants with defective or little cell walls. All cell wall mutants examined showed a constitutive upregulation of cell wall-related genes at a level that is only achieved by treatment with g-lysin in wild-type cells. Our study suggests a cell wall integrity monitoring mechanism that senses both osmotic stress and mechanical defects of cell walls and regulates cell wall-gene expression in Chlamydomonas, which may relate to cell wall integrity signaling mechanisms in other organisms.
Collapse
Affiliation(s)
- Evan Cronmiller
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Deepak Toor
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Nai Chun Shao
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Thamali Kariyawasam
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Ming Hsiu Wang
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada
| | - Jae-Hyeok Lee
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, Canada.
| |
Collapse
|
15
|
Han GZ. Origin and evolution of the plant immune system. THE NEW PHYTOLOGIST 2019; 222:70-83. [PMID: 30575972 DOI: 10.1111/nph.15596] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/02/2018] [Indexed: 05/11/2023]
Abstract
Contents Summary 70 I. Introduction 70 II. Ancient associations between plants and microbes 72 III. Evolutionary dynamics of plant-pathogen interactions 74 IV. Evolutionary signature of plant-pathogen interactions 74 V. Origin and evolution of RLK proteins 75 VI. Origin and evolution of NLR proteins 77 VII. Origin and evolution of SA signaling 78 VIII. Origin and evolution of RNA-based defense 79 IX. Perspectives 79 Acknowledgements 80 References 80 SUMMARY: Microbes have engaged in antagonistic associations with plants for hundreds of millions of years. Plants, in turn, have evolved diverse immune strategies to combat microbial pathogens. The conflicts between plants and pathogens result in everchanging coevolutionary cycles known as 'Red Queen' dynamics. These ancient and ongoing plant-pathogen interactions have shaped the evolution of both plant and pathogen genomes. With the recent explosion of plant genome-scale data, comparative analyses provide novel insights into the coevolutionary dynamics of plants and pathogens. Here, we discuss the ancient associations between plants and microbes as well as the evolutionary principles underlying plant-pathogen interactions. We synthesize and review the current knowledge on the origin and evolution of key components of the plant immune system. We also highlight the importance of studying algae and nonflowering land plants in understanding the evolution of the plant immune system.
Collapse
Affiliation(s)
- Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
- College of Life Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
16
|
De Clerck O, Kao SM, Bogaert KA, Blomme J, Foflonker F, Kwantes M, Vancaester E, Vanderstraeten L, Aydogdu E, Boesger J, Califano G, Charrier B, Clewes R, Del Cortona A, D’Hondt S, Fernandez-Pozo N, Gachon CM, Hanikenne M, Lattermann L, Leliaert F, Liu X, Maggs CA, Popper ZA, Raven JA, Van Bel M, Wilhelmsson PK, Bhattacharya D, Coates JC, Rensing SA, Van Der Straeten D, Vardi A, Sterck L, Vandepoele K, Van de Peer Y, Wichard T, Bothwell JH. Insights into the Evolution of Multicellularity from the Sea Lettuce Genome. Curr Biol 2018; 28:2921-2933.e5. [DOI: 10.1016/j.cub.2018.08.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/21/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
|
17
|
Abós B, Bird S, Granja AG, Morel E, More Bayona JA, Barreda DR, Tafalla C. Identification of the First Teleost CD5 Molecule: Additional Evidence on Phenotypical and Functional Similarities between Fish IgM + B Cells and Mammalian B1 Cells. THE JOURNAL OF IMMUNOLOGY 2018; 201:465-480. [PMID: 29866701 DOI: 10.4049/jimmunol.1701546] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/09/2018] [Indexed: 11/19/2022]
Abstract
Despite teleost fish being the first animal group in which all elements of adaptive immunity are present, the lack of follicular structures, as well as the fact that systemic Ab responses rely exclusively on unswitched low-affinity IgM responses, strongly suggests that fish B cell responses resemble mammalian B1 cell responses rather than those of B2 cells. In line with this hypothesis, in the current study, we have identified a homolog of CD5 in teleost fish. This pan-T marker belonging to the scavenger receptor cysteine-rich family of receptors is commonly used in mammals to distinguish a subset of B1 cells. Subsequently, we have demonstrated that a very high percentage of teleost IgM+ B cells express this marker, in contrast to the limited population of CD5-expressing B1 cells found in most mammals. Furthermore, we demonstrate that fish IgM+ B cells share classical phenotypic features of mammalian B1 cells such as large size, high complexity, high surface IgM, and low surface IgD expression, regardless of CD5 expression. Additionally, fish IgM+ B cells, unlike murine B2 cells, also displayed extended survival in cell culture and did not proliferate after BCR engagement. Altogether, our results demonstrate that although fish are evolutionarily the first group in which all the elements of acquired immunity are present, in the absence of follicular structures, most teleost IgM+ B cells have retained phenotypical and functional characteristics of mammalian B1 cells.
Collapse
Affiliation(s)
- Beatriz Abós
- Centro de Investigación en Sanidad Animal, Madrid 28130, Spain
| | - Steve Bird
- Biomedical Unit, School of Science, University of Waikato, Hamilton 3240, New Zealand; and
| | - Aitor G Granja
- Centro de Investigación en Sanidad Animal, Madrid 28130, Spain
| | - Esther Morel
- Centro de Investigación en Sanidad Animal, Madrid 28130, Spain
| | - Juan A More Bayona
- Department of Biological Sciences, University of Alberta, Alberta T6G 2R3, Canada
| | - Daniel R Barreda
- Department of Biological Sciences, University of Alberta, Alberta T6G 2R3, Canada
| | | |
Collapse
|
18
|
Tong K, Wang Y, Su Z. Phosphotyrosine signalling and the origin of animal multicellularity. Proc Biol Sci 2018; 284:rspb.2017.0681. [PMID: 28768887 DOI: 10.1098/rspb.2017.0681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
The evolution of multicellular animals (i.e. metazoans) from a unicellular ancestor is one of the most important yet least understood evolutionary transitions. Historically, given its indispensable functions in intercellular communication and exclusive presence in metazoans, phosphotyrosine (pTyr) signalling was considered a metazoan-specific evolutionary innovation that might have contributed to the origin of metazoan multicellularity. However, recent studies have led to a new understanding of pTyr signalling evolution and its role in the metazoan origin. Sequence analyses have unravelled a much earlier emergence of pTyr signalling in eukaryotic evolution. Even so, several distinct properties of holozoan pTyr signalling may have paved the way for a hypothesized functional transition of pTyr signalling at the multicellular origin, from environmental sensing to intercellular communication, and for it to evolve as a powerful intercellular signalling system for multicellularity. Biochemical analyses of premetazoan pTyr signalling components have further revealed the premetazoan origin of many key features of metazoan pTyr signalling, and the metazoan establishment of others, including the Csk-mediated negative regulation of the activity of Src, a conserved tyrosine kinase in the Holozoa. Finally, potential future directions are discussed, with a stress on the biological functions of premetazoan pTyr signalling via newly developed gene manipulation tools in non-animal holozoans.
Collapse
Affiliation(s)
- Kai Tong
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yuyu Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhixi Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Reichhardt M, Holmskov U, Meri S. SALSA—A dance on a slippery floor with changing partners. Mol Immunol 2017; 89:100-110. [DOI: 10.1016/j.molimm.2017.05.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 02/06/2023]
|
20
|
Identification and characterization of tyrosine kinases in anole lizard indicate the conserved tyrosine kinase repertoire in vertebrates. Mol Genet Genomics 2017; 292:1405-1418. [PMID: 28819830 DOI: 10.1007/s00438-017-1356-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
The tyrosine kinases (TKs) play principal roles in regulation of multicellular aspects of the organism and are implicated in many cancer types and congenital disorders. The anole lizard has recently been introduced as a model organism for laboratory-based studies of organismal function and field studies of ecology and evolution. However, the TK family of anole lizard has not been systematically identified and characterized yet. In this study, we identified 82 TK-encoding genes in the anole lizard genome and classified them into 28 subfamilies through phylogenetic analysis, with no member from ROS and STYK1 subfamilies identified. Although TK domain sequences and domain organization in each subfamily were conserved, the total number of TKs in different species was much variable. In addition, extensive evolutionary analysis in metazoans indicated that TK repertoire in vertebrates tends to be remarkably stable. Phylogenetic analysis of Eph subfamily indicated that the divergence of EphA and EphB occurred prior to the whole genome duplication (WGD) but after the split of Urochordates and vertebrates. Moreover, the expression pattern analysis of lizard TK genes among 9 different tissues showed that 14 TK genes exhibited tissue-specific expression and 6 TK genes were widely expressed. Comparative analysis of TK expression suggested that the tissue specifically expressed genes showed different expression pattern but the widely expressed genes showed similar pattern between anole lizard and human. These results may provide insights into the evolutionary diversification of animal TK genes and would aid future studies on TK protein regulation of key growth and developmental processes.
Collapse
|
21
|
Werth EG, McConnell EW, Gilbert TSK, Couso Lianez I, Perez CA, Manley CK, Graves LM, Umen JG, Hicks LM. Probing the global kinome and phosphoproteome in Chlamydomonas reinhardtii via sequential enrichment and quantitative proteomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:416-426. [PMID: 27671103 DOI: 10.1111/tpj.13384] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The identification of dynamic protein phosphorylation events is critical for understanding kinase/phosphatase-regulated signaling pathways. To date, protein phosphorylation and kinase expression have been examined independently in photosynthetic organisms. Here we present a method to study the global kinome and phosphoproteome in tandem in a model photosynthetic organism, the alga Chlamydomonas reinhardtii (Chlamydomonas), using mass spectrometry-based label-free proteomics. A dual enrichment strategy targets intact protein kinases via capture on immobilized multiplexed inhibitor beads with subsequent proteolytic digestion of unbound proteins and peptide-based phosphorylation enrichment. To increase depth of coverage, both data-dependent and data-independent (via SWATH, Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra) mass spectrometric acquisitions were performed to obtain a more than 50% increase in coverage of the enriched Chlamydomonas kinome over coverage found with no enrichment. The quantitative phosphoproteomic dataset yielded 2250 phosphopeptides and 1314 localized phosphosites with excellent reproducibility across biological replicates (90% of quantified sites with coefficient of variation below 11%). This approach enables simultaneous investigation of kinases and phosphorylation events at the global level to facilitate understanding of kinase networks and their influence in cell signaling events.
Collapse
Affiliation(s)
- Emily G Werth
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, CB#3290, Chapel Hill, NC, 2759934, USA
| | - Evan W McConnell
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, CB#3290, Chapel Hill, NC, 2759934, USA
| | - Thomas S Karim Gilbert
- The Department of Pharmacology, The University of North Carolina at Chapel Hill, NC 27599, USA
| | | | - Carlos A Perez
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, CB#3290, Chapel Hill, NC, 2759934, USA
| | - Cherrel K Manley
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, CB#3290, Chapel Hill, NC, 2759934, USA
| | - Lee M Graves
- The Department of Pharmacology, The University of North Carolina at Chapel Hill, NC 27599, USA
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, CB#3290, Chapel Hill, NC, 2759934, USA
| |
Collapse
|
22
|
Levin TC, Greaney AJ, Wetzel L, King N. The Rosetteless gene controls development in the choanoflagellate S. rosetta. eLife 2014; 3:e04070. [PMID: 25299189 PMCID: PMC4381721 DOI: 10.7554/elife.04070] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/08/2014] [Indexed: 12/30/2022] Open
Abstract
The origin of animal multicellularity may be reconstructed by comparing animals with one of their closest living relatives, the choanoflagellate Salpingoeca rosetta. Just as animals develop from a single cell-the zygote-multicellular rosettes of S. rosetta develop from a founding cell. To investigate rosette development, we established forward genetics in S. rosetta. We find that the rosette defect of one mutant, named Rosetteless, maps to a predicted C-type lectin, a class of signaling and adhesion genes required for the development and innate immunity in animals. Rosetteless protein is essential for rosette development and forms an extracellular layer that coats and connects the basal poles of each cell in rosettes. This study provides the first link between genotype and phenotype in choanoflagellates and raises the possibility that a protein with C-type lectin-like domains regulated development in the last common ancestor of choanoflagellates and animals.
Collapse
Affiliation(s)
- Tera C Levin
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Allison J Greaney
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Laura Wetzel
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| | - Nicole King
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
23
|
Identification of a fungi-specific lineage of protein kinases closely related to tyrosine kinases. PLoS One 2014; 9:e89813. [PMID: 24587055 PMCID: PMC3937382 DOI: 10.1371/journal.pone.0089813] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/27/2014] [Indexed: 11/19/2022] Open
Abstract
Tyrosine kinases (TKs) specifically catalyze the phosphorylation of tyrosine residues in proteins and play essential roles in many cellular processes. Although TKs mainly exist in animals, recent studies revealed that some organisms outside the Opisthokont clade also contain TKs. The fungi, as the sister group to animals, are thought to lack TKs. To better understand the origin and evolution of TKs, it is important to investigate if fungi have TK or TK-related genes. We therefore systematically identified possible TKs across the fungal kingdom by using the profile hidden Markov Models searches and phylogenetic analyses. Our results confirmed that fungi lack the orthologs of animal TKs. We identified a fungi-specific lineage of protein kinases (FslK) that appears to be a sister group closely related to TKs. Sequence analysis revealed that members of the FslK clade contain all the conserved protein kinase sub-domains and thus are likely enzymatically active. However, they lack key amino acid residues that determine TK-specific activities, indicating that they are not true TKs. Phylogenetic analysis indicated that the last common ancestor of fungi may have possessed numerous members of FslK. The ancestral FslK genes were lost in Ascomycota and Ustilaginomycotina and Pucciniomycotina of Basidiomycota during evolution. Most of these ancestral genes, however, were retained and expanded in Agaricomycetes. The discovery of the fungi-specific lineage of protein kinases closely related to TKs helps shed light on the origin and evolution of TKs and also has potential implications for the importance of these kinases in mushroom fungi.
Collapse
|
24
|
Species and population level molecular profiling reveals cryptic recombination and emergent asymmetry in the dimorphic mating locus of C. reinhardtii. PLoS Genet 2013; 9:e1003724. [PMID: 24009520 PMCID: PMC3757049 DOI: 10.1371/journal.pgen.1003724] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/28/2013] [Indexed: 12/12/2022] Open
Abstract
Heteromorphic sex-determining regions or mating-type loci can contain large regions of non-recombining sequence where selection operates under different constraints than in freely recombining autosomal regions. Detailed studies of these non-recombining regions can provide insights into how genes are gained and lost, and how genetic isolation is maintained between mating haplotypes or sex chromosomes. The Chlamydomonas reinhardtii mating-type locus (MT) is a complex polygenic region characterized by sequence rearrangements and suppressed recombination between its two haplotypes, MT+ and MT−. We used new sequence information to redefine the genetic contents of MT and found repeated translocations from autosomes as well as sexually controlled expression patterns for several newly identified genes. We examined sequence diversity of MT genes from wild isolates of C. reinhardtii to investigate the impacts of recombination suppression. Our population data revealed two previously unreported types of genetic exchange in Chlamydomonas MT—gene conversion in the rearranged domains, and crossover exchanges in flanking domains—both of which contribute to maintenance of genetic homogeneity between haplotypes. To investigate the cause of blocked recombination in MT we assessed recombination rates in crosses where the parents were homozygous at MT. While normal recombination was restored in MT+×MT+ crosses, it was still suppressed in MT−×MT− crosses. These data revealed an underlying asymmetry in the two MT haplotypes and suggest that sequence rearrangements are insufficient to fully account for recombination suppression. Together our findings reveal new evolutionary dynamics for mating loci and have implications for the evolution of heteromorphic sex chromosomes and other non-recombining genomic regions. Sex chromosomes and mating-type loci are often atypical in their structure and evolutionary dynamics. One distinguishing feature is the absence of recombination that results in genetic isolation and promotes rapid evolution and sometimes degeneration. We investigated gene content, sex-regulated expression, and recombination of mating locus (MT) genes in the unicellular alga Chlamydomonas reinhardtii. Despite the lack of observable recombination in and around Chlamydomonas MT, genes from its two mating types are far more similar to each other than expected for a non-recombining region. This discrepancy is explained by our finding evidence of genetic exchange between the two mating types within wild populations. In addition, we observed an unexpected asymmetry in the recombination behavior of the two mating types that may have contributed to the preferential expansion of one MT haplotype over the other through insertion of new genes. Our data suggest a mechanism to explain the emergence of heteromorphic sex chromosomes in haploid organisms by asymmetric expansion rather than by loss or degeneration as occurs in some Y or W chromosomes from diploid organisms. Our observations support a revised view of recombination in sex-determining regions as a quantitative phenomenon that can significantly affect rates of evolution and sex-linked genetic diversification.
Collapse
|
25
|
Cloning, expression and purification of the SRCR domains of glycoprotein 340. Protein Expr Purif 2013; 90:67-73. [PMID: 23707657 DOI: 10.1016/j.pep.2013.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/16/2022]
Abstract
Glycoprotein 340 (gp340), an innate immunity molecule is secreted luminally by monolayered epithelia and associated glands within the human oral cavity. Gp340 contains 14 scavenger receptor cysteine rich (SRCR) domains, two CUB (C1r/C1s Uegf Bmp1) domains and one zona pellucida (ZP) domain. Oral streptococci are known to adhere to the tooth immobilized gp340 via its surface protein Antigen I/II (AgI/II), which is considered to be the critical first step in pathogenesis that eventually results in colonization and infection. In order to decipher the interactions between gp340's domains and oral streptococcal AgI/II domains, we undertook to express human gp340's first SRCR domain (SRCR1) and the first three tandem SRCR domains (SRCR123) in Drosophila S2 cells. While our initial attempts with human codons did not produce optimal results, codon-optimization for expression in Drosophila S2 cells and usage of inducible/secretory Drosophila expression system (DES) pMT/BiP/V5-HisA vector greatly enhanced the expression of the SRCR domains. Here we report the successful cloning, expression, and purification of the SRCR domains of gp340. Recognition of expressed SRCRs by the conformational dependent gp340 antibody indicate that these domains are appropriately folded and furthermore, surface plasmon resonance studies confirmed functional adherence of the SRCR domains to AgI/II.
Collapse
|
26
|
The kinomes of apicomplexan parasites. Microbes Infect 2012; 14:796-810. [DOI: 10.1016/j.micinf.2012.04.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/11/2012] [Accepted: 04/11/2012] [Indexed: 11/21/2022]
|
27
|
Moeller JB, Nielsen MJ, Reichhardt MP, Schlosser A, Sorensen GL, Nielsen O, Tornøe I, Grønlund J, Nielsen ME, Jørgensen JS, Jensen ON, Mollenhauer J, Moestrup SK, Holmskov U. CD163-L1 is an endocytic macrophage protein strongly regulated by mediators in the inflammatory response. THE JOURNAL OF IMMUNOLOGY 2012; 188:2399-409. [PMID: 22279103 DOI: 10.4049/jimmunol.1103150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163 on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic splice variants of CD163-L1 are differentially expressed and have different subcellular distribution patterns. Despite its many similarities to CD163, CD163-L1 does not possess measurable affinity for CD163 ligands such as the haptoglobin-hemoglobin complex or various bacteria. In conclusion, CD163-L1 exhibits similarity to CD163 in terms of structure and regulated expression in cultured monocytes but shows clear differences compared with the known CD163 ligand preferences and expression pattern in the pool of tissue macrophages. We postulate that CD163-L1 functions as a scavenger receptor for one or several ligands that might have a role in resolution of inflammation.
Collapse
Affiliation(s)
- Jesper B Moeller
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Volvocine algae are a group of chlorophytes that together comprise a unique model for evolutionary and developmental biology. The species Chlamydomonas reinhardtii and Volvox carteri represent extremes in morphological diversity within the Volvocine clade. Chlamydomonas is unicellular and reflects the ancestral state of the group, while Volvox is multicellular and has evolved numerous innovations including germ-soma differentiation, sexual dimorphism, and complex morphogenetic patterning. The Chlamydomonas genome sequence has shed light on several areas of eukaryotic cell biology, metabolism and evolution, while the Volvox genome sequence has enabled a comparison with Chlamydomonas that reveals some of the underlying changes that enabled its transition to multicellularity, but also underscores the subtlety of this transition. Many of the tools and resources are in place to further develop Volvocine algae as a model for evolutionary genomics.
Collapse
Affiliation(s)
- James G Umen
- Donald Danforth Plant Science Center, 975 North Warson Rd., St. Louis, MO 63132 USA
| | - Bradley J S C Olson
- Molecular Cellular and Developmental Biology, Ecological Genomics Institute, Division of Biology, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
29
|
Cloning and characterization of the ζ-carotene desaturase gene from Chlorella protothecoides CS-41. J Biomed Biotechnol 2011; 2011:731542. [PMID: 22013384 PMCID: PMC3196254 DOI: 10.1155/2011/731542] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 08/04/2011] [Accepted: 08/08/2011] [Indexed: 11/17/2022] Open
Abstract
To elucidate the lutein biosynthesis pathway in the lutein-producing alga, Chlorella protothecoides CS-41, the ζ-carotene desaturase gene (zds) was isolated from Chlorella protothecoides using the approach of rapid amplification of cDNA ends. The full-length cDNA sequence was 2031 bp and contained 1755 bp putative open reading frame which encodes a 584 amino acid deduced polypeptide whose computed molecular weight was 63.7 kDa. Sequence homology research indicated that the nucleotide and putative protein had sequence identities of 72.5% and 69.5% with those of the green alga Chlamydomonas reinhardtii, respectively. Phylogenetic analysis demonstrated that the ZDS from C. protothecoides CS-41 had a closer relationship with those of chlorophyta and higher plants than with those of other species. In addition, we also found that the zds gene expression was upregulated in response to light.
Collapse
|
30
|
Martínez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F. The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev 2011; 63:967-1000. [PMID: 21880988 DOI: 10.1124/pr.111.004523] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The scavenger receptor cysteine-rich (SRCR) superfamily of soluble or membrane-bound protein receptors is characterized by the presence of one or several repeats of an ancient and highly conserved protein module, the SRCR domain. This superfamily (SRCR-SF) has been in constant and progressive expansion, now up to more than 30 members. The study of these members is attracting growing interest, which parallels that in innate immunity. No unifying function has been described to date for the SRCR domains, this being the result of the limited knowledge still available on the physiology of most members of the SRCR-SF, but also of the sequence versatility of the SRCR domains. Indeed, involvement of SRCR-SF members in quite different functions, such as pathogen recognition, modulation of the immune response, epithelial homeostasis, stem cell biology, and tumor development, have all been described. This has brought to us new information, unveiling the possibility that targeting or supplementing SRCR-SF proteins could result in diagnostic and/or therapeutic benefit for a number of physiologic and pathologic states. Recent research has provided structural and functional insight into these proteins, facilitating the development of means to modulate the activity of SRCR-SF members. Indeed, some of these approaches are already in use, paving the way for a more comprehensive use of SRCR-SF members in the clinic. The present review will illustrate some available evidence on the potential of well known and new members of the SRCR-SF in this regard.
Collapse
Affiliation(s)
- Vanesa Gabriela Martínez
- Center Esther Koplowitz, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | |
Collapse
|
31
|
Miró-Julià C, Roselló S, Martínez VG, Fink DR, Escoda-Ferran C, Padilla O, Vázquez-Echeverría C, Espinal-Marin P, Pujades C, García-Pardo A, Vila J, Serra-Pagès C, Holmskov U, Yélamos J, Lozano F. Molecular and Functional Characterization of Mouse S5D-SRCRB: A New Group B Member of the Scavenger Receptor Cysteine-Rich Superfamily. THE JOURNAL OF IMMUNOLOGY 2011; 186:2344-54. [PMID: 21217009 DOI: 10.4049/jimmunol.1000840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
MESH Headings
- Amino Acid Sequence
- Animals
- Cysteine/metabolism
- Epithelial Cells/chemistry
- Epithelial Cells/metabolism
- Epithelial Cells/physiology
- Gene Expression Regulation/immunology
- HEK293 Cells
- Homeostasis/genetics
- Homeostasis/immunology
- Humans
- Immunity, Innate/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Multigene Family/immunology
- Protein Binding/immunology
- Protein Structure, Tertiary/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Pattern Recognition/chemistry
- Receptors, Pattern Recognition/metabolism
- Receptors, Pattern Recognition/physiology
- Scavenger Receptors, Class B/biosynthesis
- Scavenger Receptors, Class B/chemistry
- Scavenger Receptors, Class B/genetics
- Scavenger Receptors, Class B/physiology
Collapse
Affiliation(s)
- Cristina Miró-Julià
- Centre Esther Koplowitz, Fundació Clínic per a la Recerca Biomèdica, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Fink DR, Holm D, Schlosser A, Nielsen O, Latta M, Lozano F, Holmskov U. Elevated numbers of SCART1+ gammadelta T cells in skin inflammation and inflammatory bowel disease. Mol Immunol 2010; 47:1710-8. [PMID: 20381152 DOI: 10.1016/j.molimm.2010.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 03/01/2010] [Accepted: 03/07/2010] [Indexed: 11/28/2022]
Abstract
The members of the scavenger receptor cysteine-rich (SRCR) superfamily group B have diverse functions, including roles in the immune system. For years it has been known that the WC1 protein is expressed on the surface of bovine gammadelta T cells, and more recent studies indicate that WC1(+) gammadelta T cells respond to stimulation with bacterial antigens by producing interferon-gamma. The SRCR proteins CD5, CD6, Sp alpha, CD163, and DMBT1/gp-340 are also involved in the immune response, since they are pattern recognition receptors capable of binding directly to bacterial and/or fungal components. Here, we investigate a novel murine SRCR protein named SCART1. The ectodomain and the full-length SCART1 were expressed in mammalian cells and used to raise monoclonal antibodies against the ectodomain for immunohistochemical and FACS analysis. Immunohistochemical analysis shows that SCART1 is expressed in a range of lymphoid organs and epithelial-rich tissues by a subset of T cells identified as being gammadelta T cells by FACS analysis. SCART1 was present in 86% of the gammadelta T cells and was not found in CD4(+) or CD8(+) T cells. The numbers of SCART1(+) cells were elevated in two mouse models of human diseases: skin inflammation and inflammatory bowel disease. In the skin inflammation model, an 8.6-fold increase in SCART1(+) cells was observed. Finally, recombinant SCART1 protein was found not to bind to selected bacterial or fungal components or to whole bacteria. Our results show that SCART1 is a novel gammadelta T cell marker and it is therefore likely that SCART1 plays a role in the immune response.
Collapse
Affiliation(s)
- Dorte Rosenbek Fink
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Winsløwparken 25.3, 5000 Odense, Denmark
| | | | | | | | | | | | | |
Collapse
|
33
|
Vallesi A, Di Pretoro B, Ballarini P, Apone F, Luporini P. A Novel Protein Kinase from the Ciliate Euplotes raikovi with Close Structural Identity to the Mammalian Intestinal and Male-Germ Cell Kinases: Characterization and Functional Implications in the Autocrine Pheromone Signaling Loop. Protist 2010; 161:250-63. [DOI: 10.1016/j.protis.2009.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 11/21/2009] [Indexed: 12/01/2022]
|
34
|
Bowdish DME, Gordon S. Conserved domains of the class A scavenger receptors: evolution and function. Immunol Rev 2009; 227:19-31. [PMID: 19120472 DOI: 10.1111/j.1600-065x.2008.00728.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The class A scavenger receptors are phagocytic pattern recognition receptors that are well represented in vertebrate genomes. The high level of conservation among vertebrates implies that this is an evolutionarily conserved family of receptors and indicates the presence of a common ancestral gene. The identity of this ancestral gene is not clear, as it appears that many of the domains of the scavenger receptors (e.g. collagenous, scavenger receptor cysteine rich) originated early in evolutionary history and are found in many combinations, often in genes of unknown function. These early receptors may function in cell-cell recognition, aggregation, or lipid recognition, and their involvement in pattern recognition, phagocytosis, and homeostasis may have been adaptations of such conserved patterns. Herein, we reclassify the class A scavenger receptors based on recent discoveries of new members of this family, describe the evolution of the various domains of the class A scavenger receptors, and discuss the appearance and function of these domains through evolutionary history.
Collapse
Affiliation(s)
- Dawn M E Bowdish
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | |
Collapse
|
35
|
Martin DMA, Miranda-Saavedra D, Barton GJ. Kinomer v. 1.0: a database of systematically classified eukaryotic protein kinases. Nucleic Acids Res 2009; 37:D244-50. [PMID: 18974176 PMCID: PMC2686601 DOI: 10.1093/nar/gkn834] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 11/14/2022] Open
Abstract
The regulation of protein function through reversible phosphorylation by protein kinases and phosphatases is a general mechanism controlling virtually every cellular activity. Eukaryotic protein kinases can be classified into distinct, well-characterized groups based on amino acid sequence similarity and function. We recently reported a highly sensitive and accurate hidden Markov model-based method for the automatic detection and classification of protein kinases into these specific groups. The Kinomer v. 1.0 database presented here contains annotated classifications for the protein kinase complements of 43 eukaryotic genomes. These span the taxonomic range and include fungi (16 species), plants (6), diatoms (1), amoebas (2), protists (1) and animals (17). The kinomes are stored in a relational database and are accessible through a web interface on the basis of species, kinase group or a combination of both. In addition, the Kinomer v. 1.0 HMM library is made available for users to perform classification on arbitrary sequences. The Kinomer v. 1.0 database is a continually updated resource where direct comparison of kinase sequences across kinase groups and across species can give insights into kinase function and evolution. Kinomer v. 1.0 is available at http://www.compbio.dundee.ac.uk/kinomer/.
Collapse
Affiliation(s)
| | | | - Geoffrey J. Barton
- College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, UK
| |
Collapse
|
36
|
|