1
|
Dolezal T. How to eliminate pathogen without killing oneself? Immunometabolism of encapsulation and melanization in Drosophila. Front Immunol 2023; 14:1330312. [PMID: 38124757 PMCID: PMC10730662 DOI: 10.3389/fimmu.2023.1330312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Cellular encapsulation associated with melanization is a crucial component of the immune response in insects, particularly against larger pathogens. The infection of a Drosophila larva by parasitoid wasps, like Leptopilina boulardi, is the most extensively studied example. In this case, the encapsulation and melanization of the parasitoid embryo is linked to the activation of plasmatocytes that attach to the surface of the parasitoid. Additionally, the differentiation of lamellocytes that encapsulate the parasitoid, along with crystal cells, is accountable for the melanization process. Encapsulation and melanization lead to the production of toxic molecules that are concentrated in the capsule around the parasitoid and, at the same time, protect the host from this toxic immune response. Thus, cellular encapsulation and melanization represent primarily a metabolic process involving the metabolism of immune cell activation and differentiation, the production of toxic radicals, but also the production of melanin and antioxidants. As such, it has significant implications for host physiology and systemic metabolism. Proper regulation of metabolism within immune cells, as well as at the level of the entire organism, is therefore essential for an efficient immune response and also impacts the health and overall fitness of the organism that survives. The purpose of this "perspective" article is to map what we know about the metabolism of this type of immune response, place it in the context of possible implications for host physiology, and highlight open questions related to the metabolism of this important insect immune response.
Collapse
Affiliation(s)
- Tomas Dolezal
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| |
Collapse
|
2
|
Mariano V, Kanellopoulos AK, Aiello G, Lo AC, Legius E, Achsel T, Bagni C. SREBP modulates the NADP +/NADPH cycle to control night sleep in Drosophila. Nat Commun 2023; 14:763. [PMID: 36808152 PMCID: PMC9941135 DOI: 10.1038/s41467-022-35577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/12/2022] [Indexed: 02/22/2023] Open
Abstract
Sleep behavior is conserved throughout evolution, and sleep disturbances are a frequent comorbidity of neuropsychiatric disorders. However, the molecular basis underlying sleep dysfunctions in neurological diseases remains elusive. Using a model for neurodevelopmental disorders (NDDs), the Drosophila Cytoplasmic FMR1 interacting protein haploinsufficiency (Cyfip85.1/+), we identify a mechanism modulating sleep homeostasis. We show that increased activity of the sterol regulatory element-binding protein (SREBP) in Cyfip85.1/+ flies induces an increase in the transcription of wakefulness-associated genes, such as the malic enzyme (Men), causing a disturbance in the daily NADP+/NADPH ratio oscillations and reducing sleep pressure at the night-time onset. Reduction in SREBP or Men activity in Cyfip85.1/+ flies enhances the NADP+/NADPH ratio and rescues the sleep deficits, indicating that SREBP and Men are causative for the sleep deficits in Cyfip heterozygous flies. This work suggests modulation of the SREBP metabolic axis as a new avenue worth exploring for its therapeutic potential in sleep disorders.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland.,Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | | | - Giuseppe Aiello
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Adrian C Lo
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Eric Legius
- Department of Human Genetics, KU Leuven, Leuven, 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, 1005, Switzerland. .,Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, 00133, Italy.
| |
Collapse
|
3
|
Lin C, Dong Z, Song J, Wang S, Yang Y, Li H, Feng Z, Pei Y. Differences in histomorphology and expression of key lipid regulated genes of four adipose tissues from Tibetan pigs. PeerJ 2023; 11:e14556. [PMID: 36643642 PMCID: PMC9835692 DOI: 10.7717/peerj.14556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023] Open
Abstract
Tibetan pigs, an indigenous pig breed in China, have high overall fat deposition and flavorful and tasty meat. They are thus good models for studying adipogenesis. Few studies have been conducted focusing on expression of lipid regulated genes in different adipose tissues of Tibetan pigs. Therefore, we compared the difference of histomorphology and expression level of lipid regulated genes through qPCR and western blot in subcutaneous fat, perirenal fat, omental adipose tissue, and inguinal fat of Tibetan pigs. Our results showed that the area of subcutaneous adipocytes in Tibetan pigs was smaller, while the other three adipose tissues (perirenal fat, greater omentum fat, inguinal fat) had cell areas of similar size. The gene expression of FABP4, FASN, FABP3, and ME1 in subcutaneous fat was significantly higher than that in perirenal fat. Furthermore, the protein expression of FABP4 was significantly lower in subcutaneous fat than in perirenal fat (p < 0.05), and the expression of FASN was higher in greater omentum fat than in subcutaneous fat (p = 0.084). The difference in adipocyte cell size and expression of lipid-regulated genes in adipose tissues from the various parts of the pig body is likely due to the different cellular lipid metabolic processes. Specially, FABP4 and FASN may be involved in the regulation of fat deposition in different adipose tissues of Tibetan pigs.
Collapse
Affiliation(s)
- Chenghong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zexia Dong
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jia Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yangli Pei
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
4
|
Qian L, Liu YF, Lu SM, Yang JJ, Miao HJ, He X, Huang H, Zhang JG. Construction of a fatty acid metabolism-related gene signature for predicting prognosis and immune response in breast cancer. Front Genet 2023; 14:1002157. [PMID: 36936412 PMCID: PMC10014556 DOI: 10.3389/fgene.2023.1002157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Background: Breast cancer has the highest incidence among malignant tumors in women, and its prevalence ranks first in global cancer morbidity. Aim: This study aimed to explore the feasibility of a prognostic model for patients with breast cancer based on the differential expression of genes related to fatty acid metabolism. Methods: The mRNA expression matrix of breast cancer and paracancer tissues was downloaded from The Cancer Genome Atlas database. The differentially expressed genes related to fatty acid metabolism were screened in R language. The TRRUST database was used to predict transcriptional regulators related to hub genes and construct an mRNA-transcription factor interaction network. A consensus clustering approach was used to identify different fatty acid regulatory patterns. In combination with patient survival data, Lasso and multivariate Cox proportional risk regression models were used to establish polygenic prognostic models based on fatty acid metabolism. The median risk score was used to categorize patients into high- and low-risk groups. Kaplan-Meier survival curves were used to analyze the survival differences between both groups. The Cox regression analysis included risk score and clinicopathological factors to determine whether risk score was an independent risk factor. Models based on genes associated with fatty acid metabolism were evaluated using receiver operating characteristic curves. A comparison was made between risk score levels and the fatty acid metabolism-associated genes in different subtypes of breast cancer. The differential gene sets of the Kyoto Encyclopedia of Genes and Genomes for screening high- and low-risk populations were compared using a gene set enrichment analysis. Furthermore, we utilized CIBERSORT to examine the abundance of immune cells in breast cancer in different clustering models. Results: High expression levels of ALDH1A1 and UBE2L6 prevented breast cancer, whereas high RDH16 expression levels increased its risk. Our comprehensive assessment of the association between prognostic risk scoring models and tumor microenvironment characteristics showed significant differences in the abundance of various immune cells between high- and low-risk breast cancer patients. Conclusions: By assessing fatty acid metabolism patterns, we gained a better understanding of the infiltration characteristics of the tumor microenvironment. Our findings are valuable for prognosis prediction and treatment of patients with breast cancer based on their clinicopathological characteristics.
Collapse
Affiliation(s)
- Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yi-Fei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shu-Min Lu
- Department of Oncology, Shanghai Jiaotong University School of Medicine Xinhua Hospital, Shanghai, China
| | - Juan-Juan Yang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua-Jie Miao
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xin He
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hua Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Hua Huang, ; Jian-Guo Zhang,
| | - Jian-Guo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Hua Huang, ; Jian-Guo Zhang,
| |
Collapse
|
5
|
Weidman T, Nagengast AA, DiAngelo JR. The splicing factor 9G8 regulates the expression of NADPH-producing enzyme genes in Drosophila. Biochem Biophys Res Commun 2022; 620:92-97. [DOI: 10.1016/j.bbrc.2022.06.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 11/02/2022]
|
6
|
Cellular Redox State Acts as Switch to Determine the Direction of NNT-Catalyzed Reaction in Cystic Fibrosis Cells. Int J Mol Sci 2021; 22:ijms22020967. [PMID: 33478087 PMCID: PMC7835933 DOI: 10.3390/ijms22020967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
The redox states of NAD and NADP are linked to each other in the mitochondria thanks to the enzyme nicotinamide nucleotide transhydrogenase (NNT) which, by utilizing the mitochondrial membrane potential (mΔΨ), catalyzes the transfer of redox potential between these two coenzymes, reducing one at the expense of the oxidation of the other. In order to define NNT reaction direction in CF cells, NNT activity under different redox states of cell has been investigated. Using spectrophotometric and western blotting techniques, the presence, abundance and activity level of NNT were determined. In parallel, the levels of NADPH and NADH as well as of mitochondrial and cellular ROS were also quantified. CF cells showed a 70% increase in protein expression compared to the Wt sample; however, regarding NNT activity, it was surprisingly lower in CF cells than healthy cells (about 30%). The cellular redox state, together with the low mΔΨ, pushes to drive NNT reverse reaction, at the expense of its antioxidant potential, thus consuming NADPH to support NADH production. At the same time, the reduced NNT activity prevents the NADH, produced by the reaction, from causing an explosion of ROS by the damaged respiratory chain, in accordance with the reduced level of mitochondrial ROS in NNT-loss cells. This new information on cellular bioenergetics represents an important building block for further understanding the molecular mechanisms responsible for cellular dysfunction in cystic fibrosis.
Collapse
|
7
|
Zang W, Zheng X. Structure and functions of cellular redox sensor HSCARG/NMRAL1, a linkage among redox status, innate immunity, DNA damage response, and cancer. Free Radic Biol Med 2020; 160:768-774. [PMID: 32950687 PMCID: PMC7497778 DOI: 10.1016/j.freeradbiomed.2020.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/31/2020] [Accepted: 09/11/2020] [Indexed: 01/05/2023]
Abstract
NmrA-like proteins are NAD(P) (H) interacting molecules whose structures are similar to that of short-chain dehydrogenases. In this review, we focus on an NADP(H) sensor, HSCARG (also named NMRAL1), which is a NmrA-like protein that is widely present in mammals, and provide a comprehensive overview of the current knowledge of its structure and physiological functions. HSCARG selectively binds to the reduced form of type II coenzyme NADPH via its Rossmann fold domain. In response to reduction of intracellular NADPH concentration, HSCARG transforms from homodimer to monomer and exhibits enhanced interactions with its binding partners. In the cytoplasm, HSCARG negatively regulates innate immunity through impairing the activities of NF-κB and RLR pathways. Besides, HSCARG regulates redox homeostasis via suppression of ROS and NO generation. Intensive and persistent oxidative stress leads to translocation of HSCARG from the cytoplasm to the nucleus, where it regulates the DNA damage response. Taken together, HSCARG functions as a linkage between cellular redox status and other signaling pathways and fine-tunes cellular response to redox changes.
Collapse
Affiliation(s)
- Weicheng Zang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
8
|
Simmen FA, Alhallak I, Simmen RCM. Malic enzyme 1 (ME1) in the biology of cancer: it is not just intermediary metabolism. J Mol Endocrinol 2020; 65:R77-R90. [PMID: 33064660 PMCID: PMC7577320 DOI: 10.1530/jme-20-0176] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/11/2020] [Indexed: 12/25/2022]
Abstract
Malic enzyme 1 (ME1) is a cytosolic protein that catalyzes the conversion of malate to pyruvate while concomitantly generating NADPH from NADP. Early studies identified ME1 as a mediator of intermediary metabolism primarily through its participatory roles in lipid and cholesterol biosynthesis. ME1 was one of the first identified insulin-regulated genes in liver and adipose and is a transcriptional target of thyroxine. Multiple studies have since documented that ME1 is pro-oncogenic in numerous epithelial cancers. In tumor cells, the reduction of ME1 gene expression or the inhibition of its activity resulted in decreases in proliferation, epithelial-to-mesenchymal transition and in vitro migration, and conversely, in promotion of oxidative stress, apoptosis and/or cellular senescence. Here, we integrate recent findings to highlight ME1's role in oncogenesis, provide a rationale for its nexus with metabolic syndrome and diabetes, and raise the prospects of targeting the cytosolic NADPH network to improve therapeutic approaches against multiple cancers.
Collapse
Affiliation(s)
- Frank A Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Iad Alhallak
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Rosalia C M Simmen
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
9
|
Biological Effects of Single-Nucleotide Polymorphisms in the Drosophila melanogaster Malic Enzyme Locus. Biochem Genet 2019; 58:129-156. [PMID: 31302799 DOI: 10.1007/s10528-019-09932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 07/05/2019] [Indexed: 10/26/2022]
Abstract
A pair of amino acid polymorphisms within the Drosophila melanogaster Malic enzyme (Men) locus presents an interesting case of genetic variation that appears to be under selection. The two alleles at each site are biochemically distinct, but their biological effects are unknown. One polymorphic site is near the active site and the other is buried within the protein. Strikingly, in twelve different populations, the first polymorphism is always found at approximately a 50:50 allelic frequency, whereas the second polymorphism is always found at approximately 90:10. The consistency of the frequencies between populations suggests that the polymorphisms are under selection and it is possible that balancing selection is at play. We used 16 lines of flies to create the nine genotypes needed to quantify both effects of the polymorphic sites and possible genetic background effects, which we found to be widespread. The alleles at each site differ, but in different biochemical characteristics. The first site significantly influences MEN Km and Vmax, whereas the second site affects the Km and the Vmax/Km ratio (relative activity). Interestingly, the rarest allele is the most biochemically distinct. We also assayed three more distal phenotypes, triglyceride concentration, carbohydrate concentration, and longevity. In all cases, the phenotypes of the heterozygous genotypes are intermediate between those of the respective homozygotes suggesting that if balancing selection is maintaining the observed allele frequencies it is not through non-linear combinations of the biochemical phenotypes.
Collapse
|
10
|
Cytoplasmic and Mitochondrial NADPH-Coupled Redox Systems in the Regulation of Aging. Nutrients 2019; 11:nu11030504. [PMID: 30818813 PMCID: PMC6471790 DOI: 10.3390/nu11030504] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
The reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) protects against redox stress by providing reducing equivalents to antioxidants such as glutathione and thioredoxin. NADPH levels decline with aging in several tissues, but whether this is a major driving force for the aging process has not been well established. Global or neural overexpression of several cytoplasmic enzymes that synthesize NADPH have been shown to extend lifespan in model organisms such as Drosophila suggesting a positive relationship between cytoplasmic NADPH levels and longevity. Mitochondrial NADPH plays an important role in the protection against redox stress and cell death and mitochondrial NADPH-utilizing thioredoxin reductase 2 levels correlate with species longevity in cells from rodents and primates. Mitochondrial NADPH shuttles allow for some NADPH flux between the cytoplasm and mitochondria. Since a decline of nicotinamide adenine dinucleotide (NAD+) is linked with aging and because NADP+ is exclusively synthesized from NAD+ by cytoplasmic and mitochondrial NAD+ kinases, a decline in the cytoplasmic or mitochondrial NADPH pool may also contribute to the aging process. Therefore pro-longevity therapies should aim to maintain the levels of both NAD+ and NADPH in aging tissues.
Collapse
|
11
|
Millington JW, Rideout EJ. Sex differences in Drosophila development and physiology. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Abstract
Changes in mitochondrial capacity and quality play a critical role in skeletal and cardiac muscle dysfunction. In vivo measurements of mitochondrial capacity provide a clear link between physical activity and mitochondrial function in aging and heart failure, although the cause and effect relationship remains unclear. Age-related decline in mitochondrial quality leads to mitochondrial defects that affect redox, calcium, and energy-sensitive signaling by altering the cellular environment that can result in skeletal muscle dysfunction independent of reduced mitochondrial capacity. This reduced mitochondrial quality with age is also likely to sensitize skeletal muscle mitochondria to elevated angiotensin or beta-adrenergic signaling associated with heart failure. This synergy between aging and heart failure could further disrupt cell energy and redox homeostasis and contribute to exercise intolerance in this patient population. Therefore, the interaction between aging and heart failure, particularly with respect to mitochondrial dysfunction, should be a consideration when developing strategies to improve quality of life in heart failure patients. Given the central role of the mitochondria in skeletal and cardiac muscle dysfunction, mitochondrial quality may provide a common link for targeted interventions in these populations.
Collapse
Affiliation(s)
- Sophia Z Liu
- Department of Radiology, University of Washington, Box 358050, Seattle, WA, 98109, USA
| | - David J Marcinek
- Department of Radiology, University of Washington, Box 358050, Seattle, WA, 98109, USA. .,Department of Pathology, University of Washington, Seattle, WA, 98109, USA. .,Department of Bioengineering, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
13
|
Sex and Genetic Background Influence Superoxide Dismutase (cSOD)-Related Phenotypic Variation in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2017. [PMID: 28624774 PMCID: PMC5555470 DOI: 10.1534/g3.117.043836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mutations often have drastically different effects in different genetic backgrounds; understanding a gene’s biological function then requires an understanding of its interaction with genetic diversity. The antioxidant enzyme cytosolic copper/zinc superoxide dismutase (cSOD) catalyzes the dismutation of the superoxide radical, a molecule that can induce oxidative stress if its concentration exceeds cellular control. Accordingly, Drosophila melanogaster lacking functional cSOD exhibit a suite of phenotypes including decreased longevity, hypersensitivity to oxidative stress, impaired locomotion, and reduced NADP(H) enzyme activity in males. To date, cSOD-null phenotypes have primarily been characterized using males carrying one allele, cSodn108red, in a single genetic background. We used ANOVA, and the effect size partial eta squared, to partition the amount of variation attributable to cSOD activity, sex, and genetic background across a series of life history, locomotor, and biochemical phenotypes associated with the cSOD-null condition. Overall, the results demonstrate that the cSOD-null syndrome is largely consistent across sex and genetic background, but also significantly influenced by both. The sex-specific effects are particularly striking and our results support the idea that phenotypes cannot be considered to be fully defined if they are examined in limited genetic contexts.
Collapse
|
14
|
Talbert ME, Barnett B, Hoff R, Amella M, Kuczynski K, Lavington E, Koury S, Brud E, Eanes WF. Genetic perturbation of key central metabolic genes extends lifespan in Drosophila and affects response to dietary restriction. Proc Biol Sci 2016; 282:rspb.2015.1646. [PMID: 26378219 DOI: 10.1098/rspb.2015.1646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a connection between nutrient inputs, energy-sensing pathways, lifespan variation and aging. Despite the role of metabolic enzymes in energy homeostasis and their metabolites as nutrient signals, little is known about how their gene expression impacts lifespan. In this report, we use P-element mutagenesis in Drosophila to study the effect on lifespan of reductions in expression of seven central metabolic enzymes, and contrast the effects on normal diet and dietary restriction. The major observation is that for five of seven genes, the reduction of gene expression extends lifespan on one or both diets. Two genes are involved in redox balance, and we observe that lower activity genotypes significantly extend lifespan. The hexokinases also show extension of lifespan with reduced gene activity. Since both affect the ATP/ADP ratio, this connects with the role of AMP-activated protein kinase as an energy sensor in regulating lifespan and mediating caloric restriction. These genes possess significant expression variation in natural populations, and our experimental genotypes span this level of natural activity variation. Our studies link the readout of energy state with the perturbation of the genes of central metabolism and demonstrate their effect on lifespan.
Collapse
Affiliation(s)
- Matthew E Talbert
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brittany Barnett
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Robert Hoff
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Amella
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kate Kuczynski
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Erik Lavington
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Spencer Koury
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Evgeny Brud
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| | - Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
15
|
Kemppainen E, George J, Garipler G, Tuomela T, Kiviranta E, Soga T, Dunn CD, Jacobs HT. Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth. PLoS One 2016; 11:e0145836. [PMID: 26812173 PMCID: PMC4728084 DOI: 10.1371/journal.pone.0145836] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/04/2015] [Indexed: 11/18/2022] Open
Abstract
The Drosophila mutant tko25t exhibits a deficiency of mitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced by mechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko25t larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level.
Collapse
Affiliation(s)
- Esko Kemppainen
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Tampere, Finland
| | - Jack George
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Tampere, Finland
| | - Görkem Garipler
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Tampere, Finland
- Department of Molecular Biology and Genetics, Koç University, Sariyer, Istanbul, 34450, Turkey
| | - Tea Tuomela
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Tampere, Finland
| | - Essi Kiviranta
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Tampere, Finland
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997–0035, Japan
| | - Cory D. Dunn
- Department of Molecular Biology and Genetics, Koç University, Sariyer, Istanbul, 34450, Turkey
| | - Howard T. Jacobs
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Tampere, Finland
- Institute of Biotechnology, FI-00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Transvection-based gene regulation in Drosophila is a complex and plastic trait. G3-GENES GENOMES GENETICS 2014; 4:2175-87. [PMID: 25213691 PMCID: PMC4232543 DOI: 10.1534/g3.114.012484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transvection, a chromosome pairing-dependent form of trans-based gene regulation, is potentially widespread in the Drosophila melanogaster genome and varies across cell types and within tissues in D. melanogaster, characteristics of a complex trait. Here, we demonstrate that the trans-interactions at the Malic enzyme (Men) locus are, in fact, transvection as classically defined and are plastic with respect to both genetic background and environment. Using chromosomal inversions, we show that trans-interactions at the Men locus are eliminated by changes in chromosomal architecture that presumably disrupt somatic pairing. We further show that the magnitude of transvection at the Men locus is modified by both genetic background and environment (temperature), demonstrating that transvection is a plastic phenotype. Our results suggest that transvection effects in D. melanogaster are shaped by a dynamic interplay between environment and genetic background. Interestingly, we find that cis-based regulation of the Men gene is more robust to genetic background and environment than trans-based. Finally, we begin to uncover the nonlocal factors that may contribute to variation in transvection overall, implicating Abd-B in the regulation of Men in cis and in trans in an allele-specific and tissue-specific manner, driven by differences in expression of the two genes across genetic backgrounds and environmental conditions.
Collapse
|
17
|
Batich KA, Sampson JH. Standard of care and future pharmacological treatment options for malignant glioma: an urgent need for screening and identification of novel tumor-specific antigens. Expert Opin Pharmacother 2014; 15:2047-61. [PMID: 25139628 DOI: 10.1517/14656566.2014.947266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Malignant gliomas (MGs) represent the most common primary brain tumors in adults, the most deadly of which is grade IV glioblastoma. Patients with glioblastoma undergoing current standard-of-care therapy have a median survival of 12 - 15 months. AREAS COVERED Over the past 25 years, there have been modest advancements in the treatment of MGs. Assessment of therapeutic responses has continued to evolve to account for the increasing number of agents being tested in the clinic. Currently approved therapies for primary tumors have been extended for use in the setting of recurrent disease with modest efficacy. Agents initially approved for recurrent gliomas have begun to demonstrate efficacy against de novo tumors but will ultimately need to be evaluated in future studies for scheduling, timing and dosing relative to chemotherapy. EXPERT OPINION Screening and identification of tumor-specific mutations is critical for the advancement of effective therapy that is both safe and precise for the patient. Two unique antigens found in glioblastoma are currently being employed as targets for immunotherapeutic vaccines, one of which has advanced to Phase III testing. Whole genome sequencing of MGs has yielded two other novel mutations that offer great promise for the development of molecular inhibitors.
Collapse
Affiliation(s)
- Kristen A Batich
- Duke University Medical Center, Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery , DUMC Box 3050, 303 Research Drive, 220 Sands Building, Durham, NC 27710 , USA +1 919 684 9041 ; +1 919 684 9045 ;
| | | |
Collapse
|
18
|
Xie HB, Cammarato A, Rajasekaran NS, Zhang H, Suggs JA, Lin HC, Bernstein SI, Benjamin IJ, Golic KG. The NADPH metabolic network regulates human αB-crystallin cardiomyopathy and reductive stress in Drosophila melanogaster. PLoS Genet 2013; 9:e1003544. [PMID: 23818860 PMCID: PMC3688542 DOI: 10.1371/journal.pgen.1003544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 04/20/2013] [Indexed: 11/18/2022] Open
Abstract
Dominant mutations in the alpha-B crystallin (CryAB) gene are responsible for a number of inherited human disorders, including cardiomyopathy, skeletal muscle myopathy, and cataracts. The cellular mechanisms of disease pathology for these disorders are not well understood. Among recent advances is that the disease state can be linked to a disturbance in the oxidation/reduction environment of the cell. In a mouse model, cardiomyopathy caused by the dominant CryAB(R120G) missense mutation was suppressed by mutation of the gene that encodes glucose 6-phosphate dehydrogenase (G6PD), one of the cell's primary sources of reducing equivalents in the form of NADPH. Here, we report the development of a Drosophila model for cellular dysfunction caused by this CryAB mutation. With this model, we confirmed the link between G6PD and mutant CryAB pathology by finding that reduction of G6PD expression suppressed the phenotype while overexpression enhanced it. Moreover, we find that expression of mutant CryAB in the Drosophila heart impaired cardiac function and increased heart tube dimensions, similar to the effects produced in mice and humans, and that reduction of G6PD ameliorated these effects. Finally, to determine whether CryAB pathology responds generally to NADPH levels we tested mutants or RNAi-mediated knockdowns of phosphogluconate dehydrogenase (PGD), isocitrate dehydrogenase (IDH), and malic enzyme (MEN), the other major enzymatic sources of NADPH, and we found that all are capable of suppressing CryAB(R120G) pathology, confirming the link between NADP/H metabolism and CryAB.
Collapse
Affiliation(s)
- Heng B. Xie
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Anthony Cammarato
- Department of Biology, San Diego State University, San Diego, California, United States of America
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Namakkal S. Rajasekaran
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Huali Zhang
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jennifer A. Suggs
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Ho-Chen Lin
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Sanford I. Bernstein
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Ivor J. Benjamin
- Division of Cardiology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail: (IJB); (KGG)
| | - Kent G. Golic
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail: (IJB); (KGG)
| |
Collapse
|
19
|
Interactions of NADP-reducing enzymes across varying environmental conditions: a model of biological complexity. G3-GENES GENOMES GENETICS 2012; 2:1613-23. [PMID: 23275884 PMCID: PMC3516483 DOI: 10.1534/g3.112.003715] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/09/2012] [Indexed: 12/05/2022]
Abstract
Interactions across biological networks are often quantified under a single set of conditions; however, cellular behaviors are dynamic and interactions can be expected to change in response to molecular context and environment. To determine the consistency of network interactions, we examined the enzyme network responsible for the reduction of nicotinamide adenine dinucleotide phosphate (NADP) to NADPH across three different conditions: oxidative stress, starvation, and desiccation. Synthetic, activity-variant alleles were used in Drosophila melanogaster for glucose-6-phosphate dehydrogenase (G6pd), cytosolic isocitrate dehydrogenase (Idh), and cytosolic malic enzyme (Men) along with seven different genetic backgrounds to lend biological relevance to the data. The responses of the NADP-reducing enzymes and two downstream phenotypes (lipid and glycogen concentration) were compared between the control and stress conditions. In general, responses in NADP-reducing enzymes were greater under conditions of oxidative stress, likely due to an increased demand for NADPH. Interactions between the enzymes were altered by environmental stress in directions and magnitudes that are consistent with differential contributions of the different enzymes to the NADPH pool: the contributions of G6PD and IDH seem to be accentuated by oxidative stress, and MEN by starvation. Overall, we find that biological network interactions are strongly influenced by environmental conditions, underscoring the importance of examining networks as dynamic entities.
Collapse
|
20
|
Hecker PA, Lionetti V, Ribeiro RF, Rastogi S, Brown BH, O'Connell KA, Cox JW, Shekar KC, Gamble DM, Sabbah HN, Leopold JA, Gupte SA, Recchia FA, Stanley WC. Glucose 6-phosphate dehydrogenase deficiency increases redox stress and moderately accelerates the development of heart failure. Circ Heart Fail 2012; 6:118-26. [PMID: 23170010 DOI: 10.1161/circheartfailure.112.969576] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Glucose 6-phosphate dehydrogenase (G6PD) is the most common deficient enzyme in the world. In failing hearts, G6PD is upregulated and generates reduced nicotinamide adenine dinucleotide phosphate (NADPH) that is used by the glutathione pathway to remove reactive oxygen species but also as a substrate by reactive oxygen species-generating enzymes. Therefore, G6PD deficiency might prevent heart failure by decreasing NADPH and reactive oxygen species production. METHODS AND RESULTS This hypothesis was evaluated in a mouse model of human G6PD deficiency (G6PDX mice, ≈40% normal activity). Myocardial infarction with 3 months follow-up resulted in left ventricular dilation and dysfunction in both wild-type and G6PDX mice but significantly greater end diastolic volume and wall thinning in G6PDX mice. Similarly, pressure overload induced by transverse aortic constriction (TAC) for 6 weeks caused greater left ventricular dilation in G6PDX mice than wild-type mice. We further stressed transverse aortic constriction mice by feeding a high fructose diet to increase flux through G6PD and reactive oxygen species production and again observed worse left ventricular remodeling and a lower ejection fraction in G6PDX than wild-type mice. Tissue content of lipid peroxidation products was increased in G6PDX mice in response to infarction and aconitase activity was decreased with transverse aortic constriction, suggesting that G6PD deficiency increases myocardial oxidative stress and subsequent damage. CONCLUSIONS Contrary to our hypothesis, G6PD deficiency increased redox stress in response to infarction or pressure overload. However, we found only a modest acceleration of left ventricular remodeling, suggesting that, in individuals with G6PD deficiency and concurrent hypertension or myocardial infarction, the risk for developing heart failure is higher but limited by compensatory mechanisms.
Collapse
Affiliation(s)
- Peter A Hecker
- Division of Cardiology and Department of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rzezniczak TZ, Lum TE, Harniman R, Merritt TJS. A combination of structural and cis-regulatory factors drives biochemical differences in Drosophila melanogaster malic enzyme. Biochem Genet 2012; 50:823-37. [PMID: 22733181 DOI: 10.1007/s10528-012-9523-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 02/28/2012] [Indexed: 11/26/2022]
Abstract
The evolutionary significance of molecular variation is still contentious, with much current interest focusing on the relative contribution of structural changes in proteins versus regulatory variation in gene expression. We present a population genetic and biochemical study of molecular variation at the malic enzyme locus (Men) in Drosophila melanogaster. Two amino acid polymorphisms appear to affect substrate-binding kinetics, while only one appears to affect thermal stability. Interestingly, we find that enzyme activity differences previously assigned to one of the polymorphisms may, instead, be a function of linked regulatory differences. These results suggest that both regulatory and structural changes contribute to differences in protein function. Our examination of the Men coding sequences reveals no evidence for selection acting on the polymorphisms, but earlier work on this enzyme indicates that the biochemical variation observed has physiological repercussions and therefore could potentially be under natural selection.
Collapse
Affiliation(s)
- Teresa Z Rzezniczak
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, P3E 2C6, Canada
| | | | | | | |
Collapse
|
22
|
Experimental approaches to evaluate the contributions of candidate protein-coding mutations to phenotypic evolution. Methods Mol Biol 2012; 772:377-96. [PMID: 22065450 DOI: 10.1007/978-1-61779-228-1_22] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Identifying mechanisms of molecular adaptation can provide important insights into the process of phenotypic evolution, but it can be exceedingly difficult to quantify the phenotypic effects of specific mutational changes. To verify the adaptive significance of genetically based changes in protein function, it is necessary to document functional differences between the products of derived and wild-type alleles and to demonstrate that such differences impinge on higher-level physiological processes (and ultimately, fitness). In the case of metabolic enzymes, this requires documenting in vivo differences in reaction rate that give rise to differences in flux through the pathway in which the enzymes function. These measured differences in pathway flux should then give rise to differences in cellular or systemic physiology that affect fitness-related variation in whole-organism performance. Efforts to establish these causal connections between genotype, phenotype, and fitness require experiments that carefully control for environmental variation and background genetic variation. Here, we discuss experimental approaches to evaluate the contributions of amino-acid mutations to adaptive phenotypic change. We discuss conceptual and methodological issues associated with in vitro and in vivo studies of protein function, and the evolutionary insights that can be gleaned from such studies. We also discuss the importance of isolating the effects of individual mutations to distinguish between positively selected substitutions that directly contribute to improvements in protein function versus positively selected, compensatory substitutions that mitigate negative pleiotropic effects of antecedent changes.
Collapse
|
23
|
Rzezniczak T, Douglas L, Watterson J, Merritt T. Paraquat administration in Drosophila for use in metabolic studies of oxidative stress. Anal Biochem 2011; 419:345-7. [DOI: 10.1016/j.ab.2011.08.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/04/2011] [Accepted: 08/12/2011] [Indexed: 11/27/2022]
|
24
|
Nonclassical regulation of transcription: interchromosomal interactions at the malic enzyme locus of Drosophila melanogaster. Genetics 2011; 189:837-49. [PMID: 21900270 DOI: 10.1534/genetics.111.133231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of transcription can be a complex process in which many cis- and trans-interactions determine the final pattern of expression. Among these interactions are trans-interactions mediated by the pairing of homologous chromosomes. These trans-effects are wide ranging, affecting gene regulation in many species and creating complex possibilities in gene regulation. Here we describe a novel case of trans-interaction between alleles of the Malic enzyme (Men) locus in Drosophila melanogaster that results in allele-specific, non-additive gene expression. Using both empirical biochemical and predictive bioinformatic approaches, we show that the regulatory elements of one allele are capable of interacting in trans with, and modifying the expression of, the second allele. Furthermore, we show that nonlocal factors--different genetic backgrounds--are capable of significant interactions with individual Men alleles, suggesting that these trans-effects can be modified by both locally and distantly acting elements. In sum, these results emphasize the complexity of gene regulation and the need to understand both small- and large-scale interactions as more complete models of the role of trans-interactions in gene regulation are developed.
Collapse
|
25
|
Bernard KE, Parkes TL, Merritt TJS. A model of oxidative stress management: moderation of carbohydrate metabolizing enzymes in SOD1-null Drosophila melanogaster. PLoS One 2011; 6:e24518. [PMID: 21909438 PMCID: PMC3164733 DOI: 10.1371/journal.pone.0024518] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 08/12/2011] [Indexed: 01/25/2023] Open
Abstract
The response to oxidative stress involves numerous genes and mutations in these genes often manifest in pleiotropic ways that presumably reflect perturbations in ROS-mediated physiology. The Drosophila melanogaster SOD1-null allele (cSODn108) is proposed to result in oxidative stress by preventing superoxide breakdown. In SOD1-null flies, oxidative stress management is thought to be reliant on the glutathione-dependent antioxidants that utilize NADPH to cycle between reduced and oxidized form. Previous studies suggest that SOD1-null Drosophila rely on lipid catabolism for energy rather than carbohydrate metabolism. We tested these connections by comparing the activity of carbohydrate metabolizing enzymes, lipid and triglyceride concentration, and steady state NADPH:NADP+ in SOD1-null and control transgenic rescue flies. We find a negative shift in the activity of carbohydrate metabolizing enzymes in SOD1-nulls and the NADP+-reducing enzymes were found to have significantly lower activity than the other enzymes assayed. Little evidence for the catabolism of lipids as preferential energy source was found, as the concentration of lipids and triglycerides were not significantly lower in SOD1-nulls compared with controls. Using a starvation assay to impact lipids and triglycerides, we found that lipids were indeed depleted in both genotypes when under starvation stress, suggesting that oxidative damage was not preventing the catabolism of lipids in SOD1-null flies. Remarkably, SOD1-nulls were also found to be relatively resistant to starvation. Age profiles of enzyme activity, triglyceride and lipid concentration indicates that the trends observed are consistent over the average lifespan of the SOD1-nulls. Based on our results, we propose a model of physiological response in which organisms under oxidative stress limit the production of ROS through the down-regulation of carbohydrate metabolism in order to moderate the products exiting the electron transport chain.
Collapse
|
26
|
Eanes WF. Molecular population genetics and selection in the glycolytic pathway. ACTA ACUST UNITED AC 2011; 214:165-71. [PMID: 21177937 DOI: 10.1242/jeb.046458] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this review, I discuss the evidence for differential natural selection acting across enzymes in the glycolytic pathway in Drosophila. Across the genome, genes evolve at very different rates and possess markedly varying levels of molecular polymorphism, codon bias and expression variation. Discovering the underlying causes of this variation has been a challenge in evolutionary biology. It has been proposed that both the intrinsic properties of enzymes and their pathway position have direct effects on their molecular evolution, and with the genomic era the study of adaptation has been taken to the level of pathways and networks of genes and their products. Of special interest have been the energy-producing pathways. Using both population genetic and experimental approaches, our laboratory has been engaged in a study of molecular variation across the glycolytic pathway in Drosophila melanogaster and its close relatives. We have observed a pervasive pattern in which genes at the top of the pathway, especially around the intersection at glucose 6-phosphate, show evidence for both contemporary selection, in the form of latitudinal allele clines, and inter-specific selection, in the form of elevated levels of amino acid substitutions between species. To further explore this question, future work will require corroboration in other species, expansion into tangential pathways, and experimental work to better characterize metabolic control through the pathway and to examine the pleiotropic effects of these genes on other traits and fitness components.
Collapse
Affiliation(s)
- Walter F Eanes
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11790, USA.
| |
Collapse
|
27
|
Metabolic regulation of Drosophila apoptosis through inhibitory phosphorylation of Dronc. EMBO J 2010; 29:3196-207. [PMID: 20700104 DOI: 10.1038/emboj.2010.191] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 07/15/2010] [Indexed: 11/09/2022] Open
Abstract
Apoptosis ensures tissue homeostasis in response to developmental cues or cellular damage. Recently reported genome-wide RNAi screens have suggested that several metabolic regulators can modulate caspase activation in Drosophila. Here, we establish a previously unrecognized link between metabolism and Drosophila apoptosis by showing that cellular NADPH levels modulate the initiator caspase Dronc through its phosphorylation at S130. Depletion of NADPH removed this inhibitory phosphorylation, resulting in the activation of Dronc and subsequent cell death. Conversely, upregulation of NADPH prevented Dronc-mediated apoptosis upon DIAP1 RNAi or cycloheximide treatment. Furthermore, this CaMKII-mediated phosphorylation of Dronc hindered Dronc activation, but not its catalytic activity. Blockade of NADPH production aggravated the death-inducing activity of Dronc in specific neurons, but not in the photoreceptor cells of the eyes of transgenic flies; similarly, non-phosphorylatable Dronc was more potent than wild type in triggering specific neuronal apoptosis. Our observations reveal a novel regulatory circuitry in Drosophila apoptosis, and, as NADPH levels are elevated in cancer cells, also provide a genetic model to understand aberrations in cancer cell apoptosis resulting from metabolic alterations.
Collapse
|
28
|
Kloosterhof NK, Bralten LBC, Dubbink HJ, French PJ, van den Bent MJ. Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma? Lancet Oncol 2010; 12:83-91. [PMID: 20615753 DOI: 10.1016/s1470-2045(10)70053-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The discovery of somatic mutations in the gene encoding isocitrate dehydrogenase-1 (IDH1) in glioblastomas was remarkable because the enzyme was not previously identified with any known oncogenic pathway. IDH1 is mutated in up to 75% of grade II and grade III diffuse gliomas. Apart from acute myeloid leukaemia, other tumour types do not carry IDH1 mutations. Mutations in a homologous gene, IDH2, have also been identified, although they are much rarer. Although TP53 mutations and 1p/19q codeletions are mutually exclusive in gliomas, in both of these genotypes IDH1 mutations are common. IDH1 and IDH2 mutations are early events in the development of gliomas. Moreover, IDH1 and IDH2 mutations are a major prognostic marker for overall and progression-free survival in grade II-IV gliomas. Mutated IDH1 has an altered catalytic activity that results in the accumulation of 2-hydroxyglutarate. Molecularly, IDH1 and IDH2 mutations are heterozygous, affect only a single codon, and rarely occur together. Because IDH1 does not belong to a traditional oncogenic pathway and is specifically and commonly mutated in gliomas, the altered enzymatic activity of IDH1 may provide a fundamentally new understanding of diffuse glioma.
Collapse
Affiliation(s)
- Nanne K Kloosterhof
- Department of Neurology and Neuro-Oncology, Daniel den Hoed Cancer Center, Netherlands
| | | | | | | | | |
Collapse
|
29
|
Mailloux RJ, Harper ME. Glucose regulates enzymatic sources of mitochondrial NADPH in skeletal muscle cells; a novel role for glucose-6-phosphate dehydrogenase. FASEB J 2010; 24:2495-506. [PMID: 20228249 DOI: 10.1096/fj.09-151803] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Reduced nicotinamide adenine dinucleotide (NADPH) is a functionally important metabolite required to support numerous cellular processes. However, despite the identification of numerous NADPH-producing enzymes, the mechanisms underlying how the organellar pools of NADPH are maintained remain elusive. Here, we have identified glucose-6-phosphate dehydrogenase (G6PDH) as an important source of NADPH in mitochondria. Activity analysis, submitochondrial fractionation, fluorescence microscopy, and protease sensitivity assays revealed that G6PDH is localized to the mitochondrial matrix. 6-ANAM, a specific G6PDH inhibitor, depleted mitochondrial NADPH pools and increased oxidative stress revealing the importance of G6PDH in NADPH maintenance. We also show that glucose availability and differences in metabolic state modulate the enzymatic sources of NADPH in mitochondria. Indeed, cells cultured in high glucose (HG) not only adopted a glycolytic phenotype but also relied heavily on matrix-associated G6PDH as a source of NADPH. In contrast, cells exposed to low-glucose (LG) concentrations, which displayed increased oxygen consumption, mitochondrial metabolic efficiency, and decreased glycolysis, relied predominantly on isocitrate dehydrogenase (ICDH) as the principal NADPH-producing enzyme in the mitochondria. Culturing glycolytic cells in LG for 48 h decreased G6PDH and increased ICDH protein levels in the mitochondria, further pointing to the regulatory role of glucose. 2-Deoxyglucose treatment also prevented the increase of mitochondrial G6PDH in response to HG. The role of glucose in regulating enzymatic sources of mitochondrial NADPH pool maintenance was confirmed using human myotubes from obese adults with a history of type 2 diabetes mellitus (post-T2DM). Myotubes from post-T2DM participants failed to increase mitochondrial G6PDH in response to HG in contrast to mitochondria in myotubes from control participants (non-T2DM). Hence, we not only identified a matrix-associated G6PDH but also provide evidence that metabolic state/glucose availability modulate enzymatic sources of NADPH.
Collapse
Affiliation(s)
- Ryan J Mailloux
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, Canada K1H 8M5
| | | |
Collapse
|
30
|
Alcohol sensitivity in Drosophila: translational potential of systems genetics. Genetics 2009; 183:733-45, 1SI-12SI. [PMID: 19652175 DOI: 10.1534/genetics.109.107490] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Identification of risk alleles for human behavioral disorders through genomewide association studies (GWAS) has been hampered by a daunting multiple testing problem. This problem can be circumvented for some phenotypes by combining genomewide studies in model organisms with subsequent candidate gene association analyses in human populations. Here, we characterized genetic networks that underlie the response to ethanol exposure in Drosophila melanogaster by measuring ethanol knockdown time in 40 wild-derived inbred Drosophila lines. We associated phenotypic variation in ethanol responses with genomewide variation in gene expression and identified modules of correlated transcripts associated with a first and second exposure to ethanol vapors as well as the induction of tolerance. We validated the computational networks and assessed their robustness by transposon-mediated disruption of focal genes within modules in a laboratory inbred strain, followed by measurements of transcript abundance of connected genes within the module. Many genes within the modules have human orthologs, which provides a stepping stone for the identification of candidate genes associated with alcohol drinking behavior in human populations. We demonstrated the potential of this translational approach by identifying seven intronic single nucleotide polymorphisms of the Malic Enzyme 1 (ME1) gene that are associated with cocktail drinking in 1687 individuals of the Framingham Offspring cohort, implicating that variation in levels of cytoplasmic malic enzyme may contribute to variation in alcohol consumption.
Collapse
|