1
|
Shand EL, Sweeney K, Sundling KE, McClean MN, Brow DA. Live-cell analysis of IMPDH protein levels during yeast colony growth provides insights into the regulation of GTP synthesis. mBio 2024; 15:e0102124. [PMID: 38940616 PMCID: PMC11323793 DOI: 10.1128/mbio.01021-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
The purine nucleotides ATP and GTP are made from the common precursor inosine monophosphate (IMP). Maintaining the correct balance of these nucleotides for optimal cell growth is controlled in part by the enzyme IMP dehydrogenase (IMPDH), which catalyzes the first dedicated step of GTP biosynthesis. The regulation of IMPDH mRNA and protein levels in the yeast S. cerevisiae grown in liquid culture has been studied in some detail, but regulation of IMPDH protein under conditions of cellular crowding on a solid substrate has not been examined. Here, we report real-time, live-cell analysis of the accumulation of the Imd2 isoform of IMPDH in yeast cells forming a monolayer colony in a microfluidic device over a 50-hour time course. We observe two distinct phases of increased Imd2 accumulation: a guanine-insensitive phase early in outgrowth and a guanine-sensitive phase later, when cells become crowded. We show that the IMPDH inhibitor mycophenolic acid enhances both phases of increase. Deletion of a transcription attenuator upstream of the mRNA start site that decreases Imd2 mRNA synthesis in the presence of high GTP increases the baseline level of Imd2 protein 10-fold and abolishes guanine-sensitive but not guanine-insensitive induction. Our results suggest that at least two mechanisms of yeast Imd2 regulation exist, the known GTP-dependent attenuation of RNA polymerase II elongation and a GTP concentration-independent pathway that may be controlled by cell growth state. Live-cell analysis of IMPDH protein levels in a growing yeast colony confirms a known mechanism of regulation and provides evidence for an additional mode of regulation. IMPORTANCE This study used live-cell microscopy to track changes in the level of a key enzyme in GTP nucleotide biosynthesis, inosine monophosphate dehydrogenase (IMPDH), during growth of a brewers yeast colony over 2 days in a microfluidic device. The results show that feedback regulation via transcription attenuation allows cells to adapt to nutrient limitation in the crowded environs of a yeast colony. They also identify a novel mode of regulation of IMPDH level that is not driven by guanine nucleotide availability.
Collapse
Affiliation(s)
- Erica L. Shand
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kieran Sweeney
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kaitlin E. Sundling
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Megan N. McClean
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - David A. Brow
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Sun M, Dai P, Cao Z, Dong J. Purine metabolism in plant pathogenic fungi. Front Microbiol 2024; 15:1352354. [PMID: 38384269 PMCID: PMC10879430 DOI: 10.3389/fmicb.2024.1352354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
In eukaryotic cells, purine metabolism is the way to the production of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and plays key roles in various biological processes. Purine metabolism mainly consists of de novo, salvage, and catabolic pathways, and some components of these pathways have been characterized in some plant pathogenic fungi, such as the rice blast fungus Magnaporthe oryzae and wheat head blight fungus Fusarium graminearum. The enzymatic steps of the de novo pathway are well-conserved in plant pathogenic fungi and play crucial roles in fungal growth and development. Blocking this pathway inhibits the formation of penetration structures and invasive growth, making it essential for plant infection by pathogenic fungi. The salvage pathway is likely indispensable but requires exogenous purines, implying that purine transporters are functional in these fungi. The catabolic pathway balances purine nucleotides and may have a conserved stage-specific role in pathogenic fungi. The significant difference of the catabolic pathway in planta and in vitro lead us to further explore and identify the key genes specifically regulating pathogenicity in purine metabolic pathway. In this review, we summarized recent advances in the studies of purine metabolism, focusing on the regulation of pathogenesis and growth in plant pathogenic fungi.
Collapse
Affiliation(s)
- Manli Sun
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | | | | | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology/College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
3
|
Sharma M, Verma V, Bairwa NK. Genetic interaction between RLM1 and F-box motif encoding gene SAF1 contributes to stress response in Saccharomyces cerevisiae. Genes Environ 2021; 43:45. [PMID: 34627408 PMCID: PMC8501602 DOI: 10.1186/s41021-021-00218-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 09/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stress response is mediated by the transcription of stress-responsive genes. The F-box motif protein Saf1p is involved in SCF-E3 ligase mediated degradation of the adenine deaminase, Aah1p upon nutrient stress. The four transcription regulators, BUR6, MED6, SPT10, SUA7, are listed for SAF1 in the genome database of Saccharomyces cerevisiae. Here in this study, we carried out an in-silico analysis of gene expression and transcription factor databases to understand the regulation of SAF1 expression during stress for hypothesis and experimental analysis. RESULT An analysis of the GEO profile database indicated an increase in SAF1 expression when cells were treated with stress agents such as Clioquinol, Pterostilbene, Gentamicin, Hypoxia, Genotoxic, desiccation, and heat. The increase in expression of SAF1 during stress conditions correlated positively with the expression of RLM1, encoding the Rlm1p transcription factor. The expression of AAH1 encoding Aah1p, a Saf1p substrate for ubiquitination, appeared to be negatively correlated with the expression of RLM1 as revealed by an analysis of the Yeastract expression database. Based on analysis of expression profile and regulatory association of SAF1 and RLM1, we hypothesized that inactivation of both the genes together may contribute to stress tolerance. The experimental analysis of cellular growth response of cells lacking both SAF1 and RLM1 to selected stress agents such as cell wall and osmo-stressors, by spot assay indicated stress tolerance phenotype similar to parental strain however sensitivity to genotoxic and microtubule depolymerizing stress agents. CONCLUSIONS Based on in-silico and experimental data we suggest that SAF1 and RLM1 both interact genetically in differential response to genotoxic and general stressors.
Collapse
Affiliation(s)
- Meenu Sharma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India
| | - V Verma
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India
| | - Narendra K Bairwa
- Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, 182320, India.
| |
Collapse
|
4
|
Sun M, Bian Z, Luan Q, Chen Y, Wang W, Dong Y, Chen L, Hao C, Xu JR, Liu H. Stage-specific regulation of purine metabolism during infectious growth and sexual reproduction in Fusarium graminearum. THE NEW PHYTOLOGIST 2021; 230:757-773. [PMID: 33411336 DOI: 10.1111/nph.17170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
Ascospores generated during sexual reproduction are the primary inoculum for the wheat scab fungus Fusarium graminearum. Purine metabolism is known to play important roles in fungal pathogens but its lifecycle stage-specific regulation is unclear. By characterizing the genes involved in purine de novo and salvage biosynthesis pathways, we showed that de novo syntheses of inosine, adenosine and guanosine monophosphates (IMP, AMP and GMP) are important for vegetative growth, sexual/asexual reproduction, and infectious growth, whereas purine salvage synthesis is dispensable for these stages in F. graminearum. Addition of GMP rescued the defects of the Fgimd1 mutant in vegetative growth and conidiation but not sexual reproduction, whereas addition of AMP rescued all of these defects of the Fgade12 mutant, suggesting that the function of de novo synthesis of GMP rather than AMP is distinct in sexual stages. Moreover, Acd1, an ortholog of AMP deaminase, is dispensable for growth but essential for ascosporogenesis and pathogenesis, suggesting that AMP catabolism has stage-specific functions during sexual reproduction and infectious growth. The expression of almost all the genes involved in de novo purine synthesis is downregulated during sexual reproduction and infectious growth relative to vegetative growth. This study revealed that F. graminearum has stage-specific regulation of purine metabolism during infectious growth and sexual reproduction.
Collapse
Affiliation(s)
- Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhuyun Bian
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Qiaoqiao Luan
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yitong Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yongrong Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lingfeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaofeng Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, NWAFU-Purdue Joint Research Center, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
5
|
Luzarowski M, Vicente R, Kiselev A, Wagner M, Schlossarek D, Erban A, de Souza LP, Childs D, Wojciechowska I, Luzarowska U, Górka M, Sokołowska EM, Kosmacz M, Moreno JC, Brzezińska A, Vegesna B, Kopka J, Fernie AR, Willmitzer L, Ewald JC, Skirycz A. Global mapping of protein-metabolite interactions in Saccharomyces cerevisiae reveals that Ser-Leu dipeptide regulates phosphoglycerate kinase activity. Commun Biol 2021; 4:181. [PMID: 33568709 PMCID: PMC7876005 DOI: 10.1038/s42003-021-01684-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Protein-metabolite interactions are of crucial importance for all cellular processes but remain understudied. Here, we applied a biochemical approach named PROMIS, to address the complexity of the protein-small molecule interactome in the model yeast Saccharomyces cerevisiae. By doing so, we provide a unique dataset, which can be queried for interactions between 74 small molecules and 3982 proteins using a user-friendly interface available at https://promis.mpimp-golm.mpg.de/yeastpmi/ . By interpolating PROMIS with the list of predicted protein-metabolite interactions, we provided experimental validation for 225 binding events. Remarkably, of the 74 small molecules co-eluting with proteins, 36 were proteogenic dipeptides. Targeted analysis of a representative dipeptide, Ser-Leu, revealed numerous protein interactors comprising chaperones, proteasomal subunits, and metabolic enzymes. We could further demonstrate that Ser-Leu binding increases activity of a glycolytic enzyme phosphoglycerate kinase (Pgk1). Consistent with the binding analysis, Ser-Leu supplementation leads to the acute metabolic changes and delays timing of a diauxic shift. Supported by the dipeptide accumulation analysis our work attests to the role of Ser-Leu as a metabolic regulator at the interface of protein degradation and central metabolism.
Collapse
Affiliation(s)
- Marcin Luzarowski
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rubén Vicente
- grid.418390.70000 0004 0491 976XDepartment of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Andrei Kiselev
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.503344.50000 0004 0445 6769Laboratoire de Recherche en Sciences Végétales (LRSV), UPS/CNRS, UMR, Castanet Tolosan, France
| | - Mateusz Wagner
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.8505.80000 0001 1010 5103University of Wrocław, Faculty of Biotechnology, Laboratory of Medical Biology, Wrocław, Poland
| | - Dennis Schlossarek
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Alexander Erban
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Leonardo Perez de Souza
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Dorothee Childs
- grid.4709.a0000 0004 0495 846XDepartment of Genome Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Izabela Wojciechowska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Urszula Luzarowska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.7489.20000 0004 1937 0511Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michał Górka
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ewelina M. Sokołowska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Monika Kosmacz
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.45672.320000 0001 1926 5090Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Juan C. Moreno
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.45672.320000 0001 1926 5090Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Aleksandra Brzezińska
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Bhavana Vegesna
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Alisdair R. Fernie
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lothar Willmitzer
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Jennifer C. Ewald
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Cell Biology, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Aleksandra Skirycz
- grid.418390.70000 0004 0491 976XDepartment of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany ,grid.5386.8000000041936877XBoyce Thompson Institute, Ithaca, NY USA
| |
Collapse
|
6
|
Saint-Marc C, Ceschin J, Almyre C, Pinson B, Daignan-Fornier B. Genetic investigation of purine nucleotide imbalance in Saccharomyces cerevisiae. Curr Genet 2020; 66:1163-1177. [PMID: 32780163 DOI: 10.1007/s00294-020-01101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/21/2020] [Accepted: 08/06/2020] [Indexed: 11/28/2022]
Abstract
Because metabolism is a complex balanced process involving multiple enzymes, understanding how organisms compensate for transient or permanent metabolic imbalance is a challenging task that can be more easily achieved in simpler unicellular organisms. The metabolic balance results not only from the combination of individual enzymatic properties, regulation of enzyme abundance, but also from the architecture of the metabolic network offering multiple interconversion alternatives. Although metabolic networks are generally highly resilient to perturbations, metabolic imbalance resulting from enzymatic defect and specific environmental conditions can be designed experimentally and studied. Starting with a double amd1 aah1 mutant that severely and conditionally affects yeast growth, we carefully characterized the metabolic shuffle associated with this defect. We established that the GTP decrease resulting in an adenylic/guanylic nucleotide imbalance was responsible for the growth defect. Identification of several gene dosage suppressors revealed that TAT1, encoding an amino acid transporter, is a robust suppressor of the amd1 aah1 growth defect. We show that TAT1 suppression occurs through replenishment of the GTP pool in a process requiring the histidine biosynthesis pathway. Importantly, we establish that a tat1 mutant exhibits synthetic sickness when combined with an amd1 mutant and that both components of this synthetic phenotype can be suppressed by specific gene dosage suppressors. Together our data point to a strong phenotypic connection between amino acid uptake and GTP synthesis, a connection that could open perspectives for future treatment of related human defects, previously reported as etiologically highly conserved.
Collapse
Affiliation(s)
- Christelle Saint-Marc
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France
| | - Johanna Ceschin
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France
| | - Claire Almyre
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France
| | - Benoît Pinson
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France
| | - Bertrand Daignan-Fornier
- IBGC, UMR 5095, Université de Bordeaux, Bordeaux, France. .,Centre National de la Recherche Scientifique IBGC, UMR 5095, Bordeaux, France.
| |
Collapse
|
7
|
Interactions of GMP with Human Glrx3 and with Saccharomyces cerevisiae Grx3 and Grx4 Converge in the Regulation of the Gcn2 Pathway. Appl Environ Microbiol 2020; 86:AEM.00221-20. [PMID: 32414791 DOI: 10.1128/aem.00221-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/24/2020] [Indexed: 11/20/2022] Open
Abstract
The human monothiol glutaredoxin Glrx3 (PICOT) is ubiquitously distributed in cytoplasm and nuclei in mammalian cells. Its overexpression has been associated with the development of several types of tumors, whereas its deficiency might cause retardation in embryogenesis. Its exact biological role has not been well resolved, although a function as a chaperone distributing iron/sulfur clusters is currently accepted. Yeast humanization and the use of a mouse library have allowed us to find a new partner for PICOT: the human GMP synthase (hGMPs). Both proteins carry out collaborative functions regarding the downregulation of the Saccharomyces cerevisiae Gcn2 pathway under conditions of nutritional stress. Glrx3/hGMPs interact through conserved residues that bridge iron/sulfur clusters and glutathione. This mechanism is also conserved in budding yeast, whose proteins Grx3/Grx4, along with GUA1 (S. cerevisiae GMPs), also downregulate the integrated stress response (ISR) pathway. The heterologous expression of Glrx3/hGMPs efficiently complements Grx3/Grx4. Moreover, the heterologous expression of Glrx3 efficiently complements the novel participation in chronological life span that has been characterized for both Grx3 and Grx4. Our results underscore that the Glrx3/Grx3/Grx4 family presents an evolutionary and functional conservation in signaling events that is partly related to GMP function and contributes to cell life extension.IMPORTANCE Saccharomyces cerevisiae is an optimal eukaryotic microbial model to study biological processes in higher organisms despite the divergence in evolution. The molecular function of yeast glutaredoxins Grx3 and Grx4 is enormously interesting, since both proteins are required to maintain correct iron homeostasis and an efficient response to oxidative stress. The human orthologous Glrx3 (PICOT) is involved in a number of human diseases, including cancer. Our research expanded its utility to human cells. Yeast has allowed the characterization of GMP synthase as a new interacting partner for Glrx3 and also for yeast Grx3 and Grx4, the complex monothiol glutaredoxins/GMPs that participate in the downregulation of the activity of the Gcn2 stress pathway. This mechanism is conserved in yeast and humans. Here, we also show that this family of glutaredoxins, Grx3/Grx4/Glrx3, also has a function related to life extension.
Collapse
|
8
|
Nagappa LK, Singh D, Dey S, Kumar KA, Balaram H. Biochemical and physiological investigations on adenosine 5' monophosphate deaminase from Plasmodium spp. Mol Microbiol 2019; 112:699-717. [PMID: 31132185 DOI: 10.1111/mmi.14313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 11/29/2022]
Abstract
The interplay between ATP generating and utilizing pathways in a cell is responsible for maintaining cellular ATP/energy homeostasis that is reflected by Adenylate Energy Charge (AEC) ratio. Adenylate kinase (AK), that catalyzes inter-conversion of ADP, ATP and AMP, plays a major role in maintaining AEC and is regulated by cellular AMP levels. Hence, the enzymes AMP deaminase (AMPD) and nucleotidases, which catabolize AMP, indirectly regulate AK activity and in-turn affect AEC. Here, we present the first report on AMPD from Plasmodium, the causative agent of malaria. The recombinant enzyme expressed in Saccharomyces cerevisiae was studied using functional complementation assay and residues vital for enzyme activity have been identified. Similarities and differences between Plasmodium falciparum AMPD (PfAMPD) and its homologs from yeast, Arabidopsis and humans are also discussed. The AMPD gene was deleted in the murine malaria parasite P. berghei and was found to be dispensable during all stages of the parasite life cycle. However, when episomal expression was attempted, viable parasites were not obtained, suggesting that perturbing AMP homeostasis by over-expressing AMPD might be lethal. As AMPD is known to be allosterically modulated by ATP, GTP and phosphate, allosteric activators of PfAMPD could be developed as anti-parasitic agents.
Collapse
Affiliation(s)
- Lakshmeesha Kempaiah Nagappa
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Dipti Singh
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Sandeep Dey
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Kota Arun Kumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| |
Collapse
|
9
|
Pinson B, Ceschin J, Saint-Marc C, Daignan-Fornier B. Dual control of NAD + synthesis by purine metabolites in yeast. eLife 2019; 8:43808. [PMID: 30860478 PMCID: PMC6430606 DOI: 10.7554/elife.43808] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolism is a highly integrated process resulting in energy and biomass production. While individual metabolic routes are well characterized, the mechanisms ensuring crosstalk between pathways are poorly described, although they are crucial for homeostasis. Here, we establish a co-regulation of purine and pyridine metabolism in response to external adenine through two separable mechanisms. First, adenine depletion promotes transcriptional upregulation of the de novo NAD+ biosynthesis genes by a mechanism requiring the key-purine intermediates ZMP/SZMP and the Bas1/Pho2 transcription factors. Second, adenine supplementation favors the pyridine salvage route resulting in an ATP-dependent increase of intracellular NAD+. This control operates at the level of the nicotinic acid mononucleotide adenylyl-transferase Nma1 and can be bypassed by overexpressing this enzyme. Therefore, in yeast, pyridine metabolism is under the dual control of ZMP/SZMP and ATP, revealing a much wider regulatory role for these intermediate metabolites in an integrated biosynthesis network.
Collapse
Affiliation(s)
- Benoît Pinson
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | - Johanna Ceschin
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | - Christelle Saint-Marc
- IBGCUniversité de Bordeaux UMR 5095BordeauxFrance
- Centre National de la Recherche Scientifique IBGC UMR 5095BordeauxFrance
| | | |
Collapse
|
10
|
Determination of the Global Pattern of Gene Expression in Yeast Cells by Intracellular Levels of Guanine Nucleotides. mBio 2019; 10:mBio.02500-18. [PMID: 30670615 PMCID: PMC6343037 DOI: 10.1128/mbio.02500-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This paper investigates whether, independently of the supply of any specific nutrient, gene transcription responds to the energy status of the cell by monitoring ATP and GTP levels. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into the yeast Saccharomyces cerevisiae, and the effect of an increased demand for these purine nucleotides on gene transcription was analyzed. The resulting changes in transcription were most consistently associated with changes in GTP and GEC levels, although the reprogramming in gene expression during glucose repression is sensitive to adenine nucleotide levels. The results show that GTP levels play a central role in determining how genes act to respond to changes in energy supply and that any comprehensive understanding of the control of eukaryotic gene expression requires the elucidation of how changes in guanine nucleotide abundance are sensed and transduced to alter the global pattern of transcription. Correlations between gene transcription and the abundance of high-energy purine nucleotides in Saccharomyces cerevisiae have often been noted. However, there has been no systematic investigation of this phenomenon in the absence of confounding factors such as nutrient status and growth rate, and there is little hard evidence for a causal relationship. Whether transcription is fundamentally responsive to prevailing cellular energetic conditions via sensing of intracellular purine nucleotides, independently of specific nutrition, remains an important question. The controlled nutritional environment of chemostat culture revealed a strong correlation between ATP and GTP abundance and the transcription of genes required for growth. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into S. cerevisiae, permitting analysis of the transcriptional effect of an increased demand for these nucleotides. During steady-state growth using the fermentable carbon source glucose, the futile consumption of ATP led to a decrease in intracellular ATP concentration but an increase in GTP and the guanylate energy charge (GEC). Expression of transcripts encoding proteins involved in ribosome biogenesis, and those controlled by promoters subject to SWI/SNF-dependent chromatin remodelling, was correlated with these nucleotide pool changes. Similar nucleotide abundance changes were observed using a nonfermentable carbon source, but an effect on the growth-associated transcriptional programme was absent. Induction of the GTP-cycling pathway had only marginal effects on nucleotide abundance and gene transcription. The transcriptional response of respiring cells to glucose was dampened in chemostats induced for ATP cycling, but not GTP cycling, and this was primarily associated with altered adenine nucleotide levels.
Collapse
|
11
|
Daignan-Fornier B, Pinson B. Yeast to Study Human Purine Metabolism Diseases. Cells 2019; 8:E67. [PMID: 30658520 PMCID: PMC6356901 DOI: 10.3390/cells8010067] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 02/04/2023] Open
Abstract
Purine nucleotides are involved in a multitude of cellular processes, and the dysfunction of purine metabolism has drastic physiological and pathological consequences. Accordingly, several genetic disorders associated with defective purine metabolism have been reported. The etiology of these diseases is poorly understood and simple model organisms, such as yeast, have proved valuable to provide a more comprehensive view of the metabolic consequences caused by the identified mutations. In this review, we present results obtained with the yeast Saccharomyces cerevisiae to exemplify how a eukaryotic unicellular organism can offer highly relevant information for identifying the molecular basis of complex human diseases. Overall, purine metabolism illustrates a remarkable conservation of genes, functions and phenotypes between humans and yeast.
Collapse
Affiliation(s)
- Bertrand Daignan-Fornier
- Université de Bordeaux IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
- Centre National de la Recherche Scientifique IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
| | - Benoît Pinson
- Université de Bordeaux IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
- Centre National de la Recherche Scientifique IBGC UMR 5095 1, rue Camille Saint-Saëns, F-33077 Bordeaux, France.
| |
Collapse
|
12
|
Enhancement of Pyruvate Productivity in Candida glabrata by Deleting the CgADE13 Gene to Improve Acid Tolerance. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0201-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Huyet J, Ozeir M, Burgevin MC, Pinson B, Chesney F, Remy JM, Siddiqi AR, Lupoli R, Pinon G, Saint-Marc C, Gibert JF, Morales R, Ceballos-Picot I, Barouki R, Daignan-Fornier B, Olivier-Bandini A, Augé F, Nioche P. Structural Insights into the Forward and Reverse Enzymatic Reactions in Human Adenine Phosphoribosyltransferase. Cell Chem Biol 2018; 25:666-676.e4. [PMID: 29576532 DOI: 10.1016/j.chembiol.2018.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/05/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
Phosphoribosyltransferases catalyze the displacement of a PRPP α-1'-pyrophosphate to a nitrogen-containing nucleobase. How they control the balance of substrates/products binding and activities is poorly understood. Here, we investigated the human adenine phosphoribosyltransferase (hAPRT) that produces AMP in the purine salvage pathway. We show that a single oxygen atom from the Tyr105 side chain is responsible for selecting the active conformation of the 12 amino acid long catalytic loop. Using in vitro, cellular, and in crystallo approaches, we demonstrated that Tyr105 is key for the fine-tuning of the kinetic activity efficiencies of the forward and reverse reactions. Together, our results reveal an evolutionary pressure on the strictly conserved Tyr105 and on the dynamic motion of the flexible loop in phosphoribosyltransferases that is essential for purine biosynthesis in cells. These data also provide the framework for designing novel adenine derivatives that could modulate, through hAPRT, diseases-involved cellular pathways.
Collapse
Affiliation(s)
- Jessica Huyet
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France
| | - Mohammad Ozeir
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France
| | | | - Benoît Pinson
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux Cedex 33077, France
| | - Françoise Chesney
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin 91385, France
| | - Jean-Marc Remy
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin 91385, France
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Roland Lupoli
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France; Université Paris Descartes, Structural and Molecular Analysis Platform, Paris 75006, France
| | - Gregory Pinon
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France; Université Paris Descartes, Structural and Molecular Analysis Platform, Paris 75006, France
| | - Christelle Saint-Marc
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux Cedex 33077, France
| | | | - Renaud Morales
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin 91385, France
| | - Irène Ceballos-Picot
- Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris Descartes, Paris 75015, France
| | - Robert Barouki
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France; Laboratoire de Biochimie Métabolomique et Protéomique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Faculté de Médecine Paris Descartes, Paris 75015, France
| | - Bertrand Daignan-Fornier
- Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, Bordeaux Cedex 33077, France
| | | | - Franck Augé
- Sanofi R&D, Translational Science Unit, Chilly-Mazarin 91385, France.
| | - Pierre Nioche
- Université Paris Descartes, Sorbonne Paris Cité, UFR des Sciences Fondamentales et Biomédicales, UMR-S 1124, Centre Interdisciplinaire Chimie Biologie-Paris, 45, rue des Saints Pères, Paris 75006, France; INSERM, UMR-S 1124, Paris 75006, France; Université Paris Descartes, Structural and Molecular Analysis Platform, Paris 75006, France.
| |
Collapse
|
14
|
Weems A, McMurray M. The step-wise pathway of septin hetero-octamer assembly in budding yeast. eLife 2017; 6. [PMID: 28541184 PMCID: PMC5461111 DOI: 10.7554/elife.23689] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/24/2017] [Indexed: 01/22/2023] Open
Abstract
Septin proteins bind guanine nucleotides and form rod-shaped hetero-oligomers. Cells choose from a variety of available septins to assemble distinct hetero-oligomers, but the underlying mechanism was unknown. Using a new in vivo assay, we find that a stepwise assembly pathway produces the two species of budding yeast septin hetero-octamers: Cdc11/Shs1–Cdc12–Cdc3–Cdc10–Cdc10–Cdc3–Cdc12–Cdc11/Shs1. Rapid GTP hydrolysis by monomeric Cdc10 drives assembly of the core Cdc10 homodimer. The extended Cdc3 N terminus autoinhibits Cdc3 association with Cdc10 homodimers until prior Cdc3–Cdc12 interaction. Slow hydrolysis by monomeric Cdc12 and specific affinity of Cdc11 for transient Cdc12•GTP drive assembly of distinct trimers, Cdc11–Cdc12–Cdc3 or Shs1–Cdc12–Cdc3. Decreasing the cytosolic GTP:GDP ratio increases the incorporation of Shs1 vs Cdc11, which alters the curvature of filamentous septin rings. Our findings explain how GTP hydrolysis controls septin assembly, and uncover mechanisms by which cells construct defined septin complexes. DOI:http://dx.doi.org/10.7554/eLife.23689.001
Collapse
Affiliation(s)
- Andrew Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
15
|
Ceschin J, Hürlimann HC, Saint-Marc C, Albrecht D, Violo T, Moenner M, Daignan-Fornier B, Pinson B. Disruption of Nucleotide Homeostasis by the Antiproliferative Drug 5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside Monophosphate (AICAR). J Biol Chem 2015; 290:23947-59. [PMID: 26283791 DOI: 10.1074/jbc.m115.656017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 11/06/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside monophosphate (AICAR) is a natural metabolite with potent anti-proliferative and low energy mimetic properties. At high concentration, AICAR is toxic for yeast and mammalian cells, but the molecular basis of this toxicity is poorly understood. Here, we report the identification of yeast purine salvage pathway mutants that are synthetically lethal with AICAR accumulation. Genetic suppression revealed that this synthetic lethality is in part due to low expression of adenine phosphoribosyl transferase under high AICAR conditions. In addition, metabolite profiling points to the AICAR/NTP balance as crucial for optimal utilization of glucose as a carbon source. Indeed, we found that AICAR toxicity in yeast and human cells is alleviated when glucose is replaced by an alternative carbon source. Together, our metabolic analyses unveil the AICAR/NTP balance as a major factor of AICAR antiproliferative effects.
Collapse
Affiliation(s)
- Johanna Ceschin
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Hans Caspar Hürlimann
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Christelle Saint-Marc
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Delphine Albrecht
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Typhaine Violo
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Michel Moenner
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Bertrand Daignan-Fornier
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| | - Benoît Pinson
- From the Université de Bordeaux and the Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires UMR 5095, Saint-Saëns, F-33077 Bordeaux, France
| |
Collapse
|
16
|
Helmering J, Juan T, Li CM, Chhoa M, Baron W, Gyuris T, Richards WG, Turk JR, Lawrence J, Cosgrove PA, Busby J, Kim KW, Kaufman SA, Cummings C, Carlson G, Véniant MM, Lloyd DJ. A mutation in Ampd2 is associated with nephrotic syndrome and hypercholesterolemia in mice. Lipids Health Dis 2014; 13:167. [PMID: 25361754 PMCID: PMC4232700 DOI: 10.1186/1476-511x-13-167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/22/2014] [Indexed: 11/18/2022] Open
Abstract
Background Previously, we identified three loci affecting HDL-cholesterol levels in a screen for ENU-induced mutations in mice and discovered two mutated genes. We sought to identify the third mutated gene and further characterize the mouse phenotype. Methods We engaged, DNA sequencing, gene expression profiling, western blotting, lipoprotein characterization, metabolomics assessment, histology and electron microscopy in mouse tissues. Results We identify the third gene as Ampd2, a liver isoform of AMP Deaminase (Ampd), a central component of energy and purine metabolism pathways. The causative mutation was a guanine-to-thymine transversion resulting in an A341S conversion in Ampd2. Ampd2 homozygous mutant mice exhibit a labile hypercholesterolemia phenotype, peaking around 9 weeks of age (251 mg/dL vs. wildtype control at 138 mg/dL), and was evidenced by marked increases in HDL, VLDL and LDL. In an attempt to determine the molecular connection between Ampd2 dysfunction and hypercholesterolemia, we analyzed hepatic gene expression and found the downregulation of Ldlr, Hmgcs and Insig1 and upregulation of Cyp7A1 genes. Metabolomic analysis confirmed an increase in hepatic AMP levels and a decrease in allantoin levels consistent with Ampd2 deficiency, and increases in campesterol and β-sitosterol. Additionally, nephrotic syndrome was observed in the mutant mice, through proteinuria, kidney histology and effacement and blebbing of podocyte foot processes by electron microscopy. Conclusion In summary we describe the discovery of a novel genetic mouse model of combined transient nephrotic syndrome and hypercholesterolemia, resembling the human disorder. Electronic supplementary material The online version of this article (doi:10.1186/1476-511X-13-167) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David J Lloyd
- Department of Metabolic Disorders, Amgen Inc, One Amgen Center Dr, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
17
|
Gomes D, Aguiar TQ, Dias O, Ferreira EC, Domingues L, Rocha I. Genome-wide metabolic re-annotation of Ashbya gossypii: new insights into its metabolism through a comparative analysis with Saccharomyces cerevisiae and Kluyveromyces lactis. BMC Genomics 2014; 15:810. [PMID: 25253284 PMCID: PMC4190384 DOI: 10.1186/1471-2164-15-810] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/15/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ashbya gossypii is an industrially relevant microorganism traditionally used for riboflavin production. Despite the high gene homology and gene order conservation comparatively with Saccharomyces cerevisiae, it presents a lower level of genomic complexity. Its type of growth, placing it among filamentous fungi, questions how close it really is from the budding yeast, namely in terms of metabolism, therefore raising the need for an extensive and thorough study of its entire metabolism. This work reports the first manual enzymatic genome-wide re-annotation of A. gossypii as well as the first annotation of membrane transport proteins. RESULTS After applying a developed enzymatic re-annotation pipeline, 847 genes were assigned with metabolic functions. Comparatively to KEGG's annotation, these data corrected the function for 14% of the common genes and increased the information for 52 genes, either completing existing partial EC numbers or adding new ones. Furthermore, 22 unreported enzymatic functions were found, corresponding to a significant increase in the knowledge of the metabolism of this organism. The information retrieved from the metabolic re-annotation and transport annotation was used for a comprehensive analysis of A. gossypii's metabolism in comparison to the one of S. cerevisiae (post-WGD - whole genome duplication) and Kluyveromyces lactis (pre-WGD), suggesting some relevant differences in several parts of their metabolism, with the majority being found for the metabolism of purines, pyrimidines, nitrogen and lipids. A considerable number of enzymes were found exclusively in A. gossypii comparatively with K. lactis (90) and S. cerevisiae (13). In a similar way, 176 and 123 enzymatic functions were absent on A. gossypii comparatively to K. lactis and S. cerevisiae, respectively, confirming some of the well-known phenotypes of this organism. CONCLUSIONS This high quality metabolic re-annotation, together with the first membrane transporters annotation and the metabolic comparative analysis, represents a new important tool for the study and better understanding of A. gossypii's metabolism.
Collapse
Affiliation(s)
- Daniel Gomes
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Eugénio C Ferreira
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Isabel Rocha
- CEB - Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
18
|
Walther T, Létisse F, Peyriga L, Alkim C, Liu Y, Lardenois A, Martin-Yken H, Portais JC, Primig M, François J. Developmental stage dependent metabolic regulation during meiotic differentiation in budding yeast. BMC Biol 2014; 12:60. [PMID: 25178389 PMCID: PMC4176597 DOI: 10.1186/s12915-014-0060-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Indexed: 12/12/2022] Open
Abstract
Background The meiotic developmental pathway in yeast enables both differentiation of vegetative cells into haploid spores that ensure long-term survival, and recombination of the parental DNA to create genetic diversity. Despite the importance of proper metabolic regulation for the supply of building blocks and energy, little is known about the reprogramming of central metabolic pathways in meiotically differentiating cells during passage through successive developmental stages. Results Metabolic regulation during meiotic differentiation in budding yeast was analyzed by integrating information on genome-wide transcriptional activity, 26 enzymatic activities in the central metabolism, the dynamics of 67 metabolites, and a metabolic flux analysis at mid-stage meiosis. Analyses of mutants arresting sporulation at defined stages demonstrated that metabolic reprogramming is tightly controlled by the progression through the developmental pathway. The correlation between transcript levels and enzymatic activities in the central metabolism varies significantly in a developmental stage-dependent manner. The complete loss of phosphofructokinase activity at mid-stage meiosis enables a unique setup of the glycolytic pathway which facilitates carbon flux repartitioning into synthesis of spore wall precursors during the co-assimilation of glycogen and acetate. The need for correct homeostasis of purine nucleotides during the meiotic differentiation was demonstrated by the sporulation defect of the AMP deaminase mutant amd1, which exhibited hyper-accumulation of ATP accompanied by depletion of guanosine nucleotides. Conclusions Our systems-level analysis shows that reprogramming of the central metabolism during the meiotic differentiation is controlled at different hierarchical levels to meet the metabolic and energetic needs at successive developmental stages. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0060-x) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Ceschin J, Saint-Marc C, Laporte J, Labriet A, Philippe C, Moenner M, Daignan-Fornier B, Pinson B. Identification of yeast and human 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) transporters. J Biol Chem 2014; 289:16844-54. [PMID: 24778186 DOI: 10.1074/jbc.m114.551192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5-Aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAr) is the precursor of the active monophosphate form (AICAR), a small molecule with potent anti-proliferative and low energy mimetic properties. The molecular bases for AICAR toxicity at the cellular level are poorly understood. Here, we report the isolation and characterization of several yeast AICAr-hypersensitive mutants. Identification of the cognate genes allowed us to establish that thiamine transporters Thi7 and Thi72 can efficiently take up AICAr under conditions where they are overexpressed. We establish that, under standard growth conditions, Nrt1, the nicotinamide riboside carrier, is the major AICAr transporter in yeast. A study of AICAR accumulation in human cells revealed substantial disparities among cell lines and confirmed that AICAr enters cells via purine nucleoside transporters. Together, our results point to significant differences between yeast and human cells for both AICAr uptake and AICAR accumulation.
Collapse
Affiliation(s)
- Johanna Ceschin
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Christelle Saint-Marc
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Jean Laporte
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Adrien Labriet
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Chloé Philippe
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Michel Moenner
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Bertrand Daignan-Fornier
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| | - Benoît Pinson
- From the Université de Bordeaux IBGC UMR 5095 1, F-33077 Bordeaux, France and the Centre National de la Recherche Scientifique IBGC UMR 5095 1, F-33077 Bordeaux, France
| |
Collapse
|
20
|
Akizu N, Cantagrel V, Schroth J, Cai N, Vaux K, McCloskey D, Naviaux RK, Van Vleet J, Fenstermaker AG, Silhavy JL, Scheliga JS, Toyama K, Morisaki H, Sonmez FM, Celep F, Oraby A, Zaki MS, Al-Baradie R, Faqeih EA, Saleh MAM, Spencer E, Rosti RO, Scott E, Nickerson E, Gabriel S, Morisaki T, Holmes EW, Gleeson JG. AMPD2 regulates GTP synthesis and is mutated in a potentially treatable neurodegenerative brainstem disorder. Cell 2013; 154:505-17. [PMID: 23911318 DOI: 10.1016/j.cell.2013.07.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/10/2013] [Accepted: 07/01/2013] [Indexed: 01/03/2023]
Abstract
Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease.
Collapse
Affiliation(s)
- Naiara Akizu
- Neurogenetics Laboratory, Institute for Genomic Medicine, Rady Children's Hospital, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ali TH, Ali NH, Haroun BM, Tantawy AE. Purification and partial characterization of NAD aminohydrolase from Aspergillus oryzae NRRL447. World J Microbiol Biotechnol 2013; 30:819-25. [PMID: 24158390 DOI: 10.1007/s11274-013-1483-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
Abstract
Aspergillus oryzae aminohydrolase free acid phosphodiesterase catalyzes nicotinamide adenine dinucleotide to deamino-NAD and ammonia. The enzyme was purified to homogeneity by a combination of acetone precipitation, anion exchange chromatography and gel filtration chromatography. The enzyme was purified 230.5 fold. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme showed a single protein band of MW 94 kDa. The enzyme displayed maximum activity at pH 5 and 40 °C with NAD as substrate. The enzyme activity appeared to be stable up to 40 °C. The enzyme activity was enhanced slightly by addition of Na⁺ and K⁺, whereas inhibited strongly by addition of Ag⁺, Mn²⁺, Hg²⁺ and Cu²⁺ to the reaction mixtures. The enzyme hydrolyzes several substrates, suggesting a probable non-specific nature. The enzyme catalyzes the hydrolytic cleavage of amino group of NAD, adenosine, AMP, CMP, GMP, adenosine, cytidine and cytosine to the corresponding nucleotides, nucleosides or bases and ammonia. The substrate concentration-activity relationship is the hyperbolic type and the apparent Km and Kcat for the tested substrates were calculated.
Collapse
Affiliation(s)
- Thanaa H Ali
- Department of Microbial Chemistry, National Research Centre, Dokki, Cairo, Egypt,
| | | | | | | |
Collapse
|
22
|
Stoyanov A, Petrova P, Lyutskanova D, Lahtchev K. Structural and functional analysis of PUR2,5 gene encoding bifunctional enzyme of de novo purine biosynthesis in Ogataea (Hansenula) polymorpha CBS 4732T. Microbiol Res 2013; 169:378-87. [PMID: 24135445 DOI: 10.1016/j.micres.2013.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 08/22/2013] [Accepted: 08/28/2013] [Indexed: 11/30/2022]
Abstract
We describe the cloning, sequencing and functional characterization of gene PUR2,5, involved in de novo purine biosynthesis of the yeast Ogataea (Hansenula) polymorpha. This gene (2369 bp) was cloned by genetic complementation of adenine requiring mutation. It encodes a bifunctional enzyme of 789 amino acids (85 kDa) that catalyzes the second and the fifth steps of de novo purine biosynthesis pathway and shows dual enzymatic activity - of glycinamide ribotide synthetase (GARS, EC 6.3.4.13) and of aminoimidazole ribotide synthetase (AIRS, EC 6.3.3.1). Nucleotide sequence analysis revealed the presence of putative regulatory elements located in the adjacent 5' region. Canonical motives that function as binding sites for BAS1 transcription activator were found at positions (-593) and (-389). The putative TAATTA-box was located at (-20) to (-14) and AT-rich heteroduplex was found in the 3'-non-translated region. We compared the amino acid sequence of OpPUR2,5p with those of the corresponding enzymes of other yeast species as well as with distant organisms like bacteria Escherichia coli and human Homo sapiens. A successful disruption of OpPUR2,5 gene was done. It was found that OpPUR2,5::LEU2 replacement affects both mating and sporulation processes. OpPUR2,5 sequence is deposited in the GenBank of NCBI with accession no. JF967633.
Collapse
Affiliation(s)
- Anton Stoyanov
- The Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Penka Petrova
- The Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Dimitrinka Lyutskanova
- The Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Kantcho Lahtchev
- The Stefan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| |
Collapse
|
23
|
|
24
|
Lee YJ, Shi R, Witt SN. The small molecule triclabendazole decreases the intracellular level of cyclic AMP and increases resistance to stress in Saccharomyces cerevisiae. PLoS One 2013; 8:e64337. [PMID: 23667708 PMCID: PMC3648474 DOI: 10.1371/journal.pone.0064337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022] Open
Abstract
The Ras-adenylyl cyclase-protein kinase A nutrient-sensing pathway controls metabolism, proliferation and resistance to stress in Saccharomyces cerevisiae. The genetic disruption of this pathway increases resistance to a variety of stresses. We show here that the pharmacological inhibition of this pathway by the drug triclabendazole increases resistance to oxidants, heat stress and extends the chronological life. Evidence is presented that triclabendazole decreases the intracellular level of cyclic AMP by inhibiting adenylyl cyclase and triggers the parallel rapid translocation of the stress-resistance transcription factor Msn2 from the cytosol into the nucleus, as deduced from experiments employing a strain in which MSN2 is replaced with MSN2-GFP (GFP, green fluorescent protein). Msn2 and Msn4 are responsible for activating the transcription of numerous genes that encode proteins that protect cells from stress. The results are consistent with triclabendazole either inhibiting the association of Ras with adenylyl cyclase or directly inhibiting adenylyl cyclase, which in turn triggers Msn2/4 to enter the nucleus and activate stress-responsible element gene expression.
Collapse
Affiliation(s)
- Yong Joo Lee
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, United States of America
| | | | | |
Collapse
|
25
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
26
|
Bergdahl B, Heer D, Sauer U, Hahn-Hägerdal B, van Niel EWJ. Dynamic metabolomics differentiates between carbon and energy starvation in recombinant Saccharomyces cerevisiae fermenting xylose. BIOTECHNOLOGY FOR BIOFUELS 2012; 5:34. [PMID: 22587303 PMCID: PMC3462113 DOI: 10.1186/1754-6834-5-34] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 04/23/2012] [Indexed: 05/15/2023]
Abstract
BACKGROUND The concerted effects of changes in gene expression due to changes in the environment are ultimately reflected in the metabolome. Dynamics of metabolite concentrations under a certain condition can therefore give a description of the cellular state with a high degree of functional information. We used this potential to evaluate the metabolic status of two recombinant strains of Saccharomyces cerevisiae during anaerobic batch fermentation of a glucose/xylose mixture. Two isogenic strains were studied, differing only in the pathways used for xylose assimilation: the oxidoreductive pathway with xylose reductase (XR) and xylitol dehydrogenase (XDH) or the isomerization pathway with xylose isomerase (XI). The isogenic relationship between the two strains ascertains that the observed responses are a result of the particular xylose pathway and not due to unknown changes in regulatory systems. An increased understanding of the physiological state of these strains is important for further development of efficient pentose-utilizing strains for bioethanol production. RESULTS Using LC-MS/MS we determined the dynamics in the concentrations of intracellular metabolites in central carbon metabolism, nine amino acids, the purine nucleotides and redox cofactors. The general response to the transition from glucose to xylose was increased concentrations of amino acids and TCA-cycle intermediates, and decreased concentrations of sugar phosphates and redox cofactors. The two strains investigated had significantly different uptake rates of xylose which led to an enhanced response in the XI-strain. Despite the difference in xylose uptake rate, the adenylate energy charge remained high and stable around 0.8 in both strains. In contrast to the adenylate pool, large changes were observed in the guanylate pool. CONCLUSIONS The low uptake of xylose by the XI-strain led to several distinguished responses: depletion of key metabolites in glycolysis and NADPH, a reduced GTP/GDP ratio and accumulation of PEP and aromatic amino acids. These changes are strong indicators of carbon starvation. The XR/XDH-strain displayed few such traits. The coexistence of these traits and a stable adenylate charge indicates that xylose supplies energy to the cells but does not suppress a response similar to carbon starvation. Particular signals may play a role in the latter, of which the GTP/GMP ratio could be a candidate as it decreased significantly in both strains.
Collapse
Affiliation(s)
- Basti Bergdahl
- Applied Microbiology, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | | | - Uwe Sauer
- ETH Zurich, Zurich, 8093, Switzerland
| | | | - Ed WJ van Niel
- Applied Microbiology, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| |
Collapse
|
27
|
Servant G, Pinson B, Tchalikian-Cosson A, Coulpier F, Lemoine S, Pennetier C, Bridier-Nahmias A, Todeschini AL, Fayol H, Daignan-Fornier B, Lesage P. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress. Nucleic Acids Res 2012; 40:5271-82. [PMID: 22379133 PMCID: PMC3384299 DOI: 10.1093/nar/gks166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages.
Collapse
Affiliation(s)
- Géraldine Servant
- CNRS UPR9073, associated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-chimique, F-75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Minami S, Sato M, Shiraiwa Y, Iwamoto K. Molecular characterization of adenosine 5'-monophosphate deaminase--the key enzyme responsible for the umami taste of nori (Porphyra yezoensis Ueda, Rhodophyta). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:1140-1147. [PMID: 21519809 DOI: 10.1007/s10126-011-9377-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/22/2011] [Indexed: 05/30/2023]
Abstract
The enzyme adenosine 5'-monophosphate deaminase (AMPD, EC 3.5.4.6) catalyzes the conversion of adenosine 5'-monophosphate to inosine 5'-mononucleotide (IMP). IMP is generally known as the compound responsible for the umami taste of the edible red alga Porphyra yezoensis Ueda that is known in Japan as nori. Therefore, we suspect that AMPD plays a key role in providing a favorable nori taste. In this study, we undertake the molecular characterization of nori-derived AMPD. The nori AMPD protein has a molecular mass of 55 kDa as estimated from both gel filtration and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The calculated molecular mass from the amino acid sequence deduced from cDNA is 57.1 kDa. The isoelectric point is 5.71. The coding region of AMPD consists of 1,566 bp encoding 522 amino acids and possesses a transmembrane domain and two N-glycosylation sites. The sequence identity of nori AMPD in human and yeast AMPDs was found to be less than 50% and 20% in DNA and amino acid sequences, respectively. Proline in the conserved motif of [SA]-[LIVM]-[NGS]-[STA]-D-D-P was found to be converted to glutamate. These results indicate that nori AMPD is a novel type of AMPD.
Collapse
Affiliation(s)
- Seiko Minami
- Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 985-8555, Japan
| | | | | | | |
Collapse
|
29
|
Transcriptional regulation of the gene cluster encoding allantoinase and guanine deaminase in Klebsiella pneumoniae. J Bacteriol 2011; 193:2197-207. [PMID: 21357483 DOI: 10.1128/jb.01450-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purines can be used as the sole source of nitrogen by several strains of K. pneumoniae under aerobic conditions. The genes responsible for the assimilation of purine nitrogens are distributed in three separated clusters in the K. pneumoniae genome. Here, we characterize the cluster encompassing genes KPN_01787 to KPN_01791, which is involved in the conversion of allantoin into allantoate and in the deamination of guanine to xanthine. These genes are organized in three transcriptional units, hpxSAB, hpxC, and guaD. Gene hpxS encodes a regulatory protein of the GntR family that mediates regulation of this system by growth on allantoin. Proteins encoded by hpxB and guaD display allantoinase and guanine deaminase activity, respectively. In this cluster, hpxSAB is the most tightly regulated unit. This operon was activated by growth on allantoin as a nitrogen source; however, addition of allantoin to nitrogen excess cultures did not result in hpxSAB induction. Neither guaD nor hpxC was induced by allantoin. Expression of guaD is mainly regulated by nitrogen availability through the action of NtrC. Full induction of hpxSAB by allantoin requires both HpxS and NAC. HpxS may have a dual role, acting as a repressor in the absence of allantoin and as an activator in its presence. HpxS binds to tandem sites, S1 and S2, overlapping the -10 and -35 sequences of the hpxSAB promoter, respectively. The NAC binding site is located between S1 and S2 and partially overlaps S2. In the presence of allantoin, interplay between NAC and HpxS is proposed.
Collapse
|
30
|
Mira NP, Teixeira MC, Sá-Correia I. Adaptive response and tolerance to weak acids in Saccharomyces cerevisiae: a genome-wide view. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 14:525-40. [PMID: 20955006 DOI: 10.1089/omi.2010.0072] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Weak acids are widely used as food preservatives (e.g., acetic, propionic, benzoic, and sorbic acids), herbicides (e.g., 2,4-dichlorophenoxyacetic acid), and as antimalarial (e.g., artesunic and artemisinic acids), anticancer (e.g., artesunic acid), and immunosuppressive (e.g., mycophenolic acid) drugs, among other possible applications. The understanding of the mechanisms underlying the adaptive response and resistance to these weak acids is a prerequisite to develop more effective strategies to control spoilage yeasts, and the emergence of resistant weeds, drug resistant parasites or cancer cells. Furthermore, the identification of toxicity mechanisms and resistance determinants to weak acid-based pharmaceuticals increases current knowledge on their cytotoxic effects and may lead to the identification of new drug targets. This review integrates current knowledge on the mechanisms of toxicity and tolerance to weak acid stress obtained in the model eukaryote Saccharomyces cerevisiae using genome-wide approaches and more detailed gene-by-gene analysis. The major features of the yeast response to weak acids in general, and the more specific responses and resistance mechanisms towards a specific weak acid or a group of weak acids, depending on the chemical nature of the side chain R group (R-COOH), are highlighted. The involvement of several transcriptional regulatory networks in the genomic response to different weak acids is discussed, focusing on the regulatory pathways controlled by the transcription factors Msn2p/Msn4p, War1p, Haa1p, Rim101p, and Pdr1p/Pdr3p, which are known to orchestrate weak acid stress response in yeast. The extrapolation of the knowledge gathered in yeast to other eukaryotes is also attempted.
Collapse
Affiliation(s)
- Nuno P Mira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisboa, Portugal
| | | | | |
Collapse
|
31
|
Guanine nucleotide pool imbalance impairs multiple steps of protein synthesis and disrupts GCN4 translational control in Saccharomyces cerevisiae. Genetics 2010; 187:105-22. [PMID: 20980241 DOI: 10.1534/genetics.110.122135] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purine nucleotides are structural components of the genetic material, function as phosphate donors, participate in cellular signaling, are cofactors in enzymatic reactions, and constitute the main carriers of cellular energy. Thus, imbalances in A/G nucleotide biosynthesis affect nearly the whole cellular metabolism and must be tightly regulated. We have identified a substitution mutation (G388D) that reduces the activity of the GMP synthase Gua1 in budding yeast and the total G-nucleotide pool, leading to precipitous reductions in the GDP/GTP ratio and ATP level in vivo. gua1-G388D strongly reduces the rate of growth, impairs general protein synthesis, and derepresses translation of GCN4 mRNA, encoding a transcriptional activator of diverse amino acid biosynthetic enzymes. Although processing of pre-tRNA(i)(Met) and other tRNA precursors, and the aminoacylation of tRNA(i)(Met) are also strongly impaired in gua1-G388D cells, tRNA(i)(Met)-containing complexes with the macromolecular composition of the eIF2·tRNA(i)(Met.)GTP complex (TC) and the multifactor complex (MFC) required for translation initiation accumulate ∼10-fold in gua1-G388D cells and, to a lesser extent, in wild-type (WT) cells treated with 6-azauracil (6AU). Consistently, addition of an external supply of guanine reverts all the phenotypes of gua1-G388D cells, but not those of gua1-G388D Δhpt1 mutants unable to refill the internal GMP pool through the salvage pathway. These and other findings suggest that a defect in guanine nucleotide biosynthesis evokes a reduction in the rate of general protein synthesis by impairing multiple steps of the process, disrupts the gene-specific reinitiation mechanism for translation of GCN4 mRNA and has far-reaching effects in cell biology and metabolism.
Collapse
|
32
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|