1
|
Olaya I, Burgess SM, Rog O. Formation and resolution of meiotic chromosome entanglements and interlocks. J Cell Sci 2024; 137:jcs262004. [PMID: 38985540 PMCID: PMC11267460 DOI: 10.1242/jcs.262004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Interactions between parental chromosomes during the formation of gametes can lead to entanglements, entrapments and interlocks between unrelated chromosomes. If unresolved, these topological constraints can lead to misregulation of exchanges between chromosomes and to chromosome mis-segregation. Interestingly, these configurations are largely resolved by the time parental chromosomes are aligned during pachytene. In this Review, we highlight the inevitability of topologically complex configurations and discuss possible mechanisms to resolve them. We focus on the dynamic nature of a conserved chromosomal interface - the synaptonemal complex - and the chromosome movements that accompany meiosis as potential mechanisms to resolve topological constraints. We highlight the advantages of the nematode Caenorhabditis elegans for understanding biophysical features of the chromosome axis and synaptonemal complex that could contribute to mechanisms underlying interlock resolution. In addition, we highlight advantages of using the zebrafish, Danio rerio, as a model to understand how entanglements and interlocks are avoided and resolved.
Collapse
Affiliation(s)
- Iván Olaya
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
- Integrative Genetics and Genomics Graduate Group, University of California Davis, Davis, CA 95616, USA
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Lisachov A, Dedukh D, Simanovsky S, Panthum T, Singchat W, Srikulnath K. Spaghetti Connections: Synaptonemal Complexes as a Tool to Explore Chromosome Structure, Evolution, and Meiotic Behavior in Fish. Cytogenet Genome Res 2024; 164:1-15. [PMID: 38452741 DOI: 10.1159/000538238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The synaptonemal complex (SC) is a protein axis formed along chromosomes during meiotic prophase to ensure proper pairing and crossing over. SC analysis has been widely used to study the chromosomes of mammals and less frequently of birds, reptiles, and fish. It is a promising method to investigate the evolution of fish genomes and chromosomes as a part of complex approach. SUMMARY Compared with conventional metaphase chromosomes, pachytene chromosomes are less condensed and exhibit pairing between homologous chromosomes. These features of SCs facilitate the study of the small chromosomes that are typical in fish. Moreover, it allows the study of heteromorphisms in sex chromosomes and supernumerary chromosomes. In addition, it enables the investigation of the pairing between orthologous chromosomes in hybrids, which is crucial for uncovering the causes of hybrid sterility and asexual reproduction, such as gynogenesis or hybridogenesis. However, the application of SC analysis to fish chromosomes is limited by the associated complications. First, in most fish, meiosis does not occur during every season and life stage. Second, different SC preparation methods are optimal for different fish species. Third, commercial antibodies targeting meiotic proteins have been primarily developed against mammalian antigens, and not all of them are suitable for fish chromosomes. KEY MESSAGES In the present review, we provide an overview of the methods for preparing fish SCs and highlight important studies using SC analysis in fish. This study will be valuable for planning and designing research that applies SC analysis to fish cytogenetics and genomics.
Collapse
Affiliation(s)
- Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
| | - Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
| | - Sergey Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
3
|
Parée T, Noble L, Ferreira Gonçalves J, Teotónio H. rec-1 loss of function increases recombination in the central gene clusters at the expense of autosomal pairing centers. Genetics 2024; 226:iyad205. [PMID: 38001364 DOI: 10.1093/genetics/iyad205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Meiotic control of crossover (CO) number and position is critical for homologous chromosome segregation and organismal fertility, recombination of parental genotypes, and the generation of novel genetic combinations. We here characterize the recombination rate landscape of a rec-1 loss of function modifier of CO position in Caenorhabditis elegans, one of the first ever modifiers discovered. By averaging CO position across hermaphrodite and male meioses and by genotyping 203 single-nucleotide variants covering about 95% of the genome, we find that the characteristic chromosomal arm-center recombination rate domain structure is lost in the loss of function rec-1 mutant. The rec-1 loss of function mutant smooths the recombination rate landscape but is insufficient to eliminate the nonuniform position of CO. Lower recombination rates in the rec-1 mutant are particularly found in the autosomal arm domains containing the pairing centers. We further find that the rec-1 mutant is of little consequence for organismal fertility and egg viability and thus for rates of autosomal nondisjunction. It nonetheless increases X chromosome nondisjunction rates and thus male appearance. Our findings question the maintenance of recombination rate heritability and genetic diversity among C. elegans natural populations, and they further suggest that manipulating genetic modifiers of CO position will help find quantitative trait loci located in low-recombining genomic regions normally refractory to discovery.
Collapse
Affiliation(s)
- Tom Parée
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| | - Luke Noble
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
- EnviroDNA, 95 Albert St., Brunswick, Victoria 3065, Australia
| | - João Ferreira Gonçalves
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| | - Henrique Teotónio
- Institut de Biologie de l'École Normale Supérieure, CNRS UMR, 8197, Inserm U1024, PSL Research University, Paris F-75005, France
| |
Collapse
|
4
|
Stevens L, Kieninger M, Chan B, Wood JMD, Gonzalez de la Rosa P, Allen J, Blaxter M. The genome of Litomosoides sigmodontis illuminates the origins of Y chromosomes in filarial nematodes. PLoS Genet 2024; 20:e1011116. [PMID: 38227589 PMCID: PMC10817185 DOI: 10.1371/journal.pgen.1011116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/26/2024] [Accepted: 12/26/2023] [Indexed: 01/18/2024] Open
Abstract
Heteromorphic sex chromosomes are usually thought to have originated from a pair of autosomes that acquired a sex-determining locus and subsequently stopped recombining, leading to degeneration of the sex-limited chromosome. The majority of nematode species lack heteromorphic sex chromosomes and determine sex using an X-chromosome counting mechanism, with males being hemizygous for one or more X chromosomes (XX/X0). Some filarial nematode species, including important parasites of humans, have heteromorphic XX/XY karyotypes. It has been assumed that sex is determined by a Y-linked locus in these species. However, karyotypic analyses suggested that filarial Y chromosomes are derived from the unfused homologue of an autosome involved in an X-autosome fusion event. Here, we generated a chromosome-level reference genome for Litomosoides sigmodontis, a filarial nematode with the ancestral filarial karyotype and sex determination mechanism (XX/X0). By mapping the assembled chromosomes to the rhabditid nematode ancestral linkage (or Nigon) elements, we infer that the ancestral filarial X chromosome was the product of a fusion between NigonX (the ancestrally X-linked element) and NigonD (ancestrally autosomal). In the two filarial lineages with XY systems, there have been two independent X-autosome chromosome fusion events involving different autosomal Nigon elements. In both lineages, the region shared by the neo-X and neo-Y chromosomes is within the ancestrally autosomal portion of the X, confirming that the filarial Y chromosomes are derived from the unfused homologue of the autosome. Sex determination in XY filarial nematodes therefore likely continues to operate via the ancestral X-chromosome counting mechanism, rather than via a Y-linked sex-determining locus.
Collapse
Affiliation(s)
- Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Brian Chan
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | | | | | - Judith Allen
- Lydia Becker Institute of Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, United Kingdom
| |
Collapse
|
5
|
Gordon SG, Rog O. Building the synaptonemal complex: Molecular interactions between the axis and the central region. PLoS Genet 2023; 19:e1010822. [PMID: 37471284 PMCID: PMC10359014 DOI: 10.1371/journal.pgen.1010822] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
The successful delivery of genetic material to gametes requires tightly regulated interactions between the parental chromosomes. Central to this regulation is a conserved chromosomal interface called the synaptonemal complex (SC), which brings the parental chromosomes in close proximity along their length. While many of its components are known, the interfaces that mediate the assembly of the SC remain a mystery. Here, we survey findings from different model systems while focusing on insight gained in the nematode C. elegans. We synthesize our current understanding of the structure, dynamics, and biophysical properties of the SC and propose mechanisms for SC assembly.
Collapse
Affiliation(s)
- Spencer G. Gordon
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, Utah, United States of America
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, Utah, United States of America
| |
Collapse
|
6
|
Cahoon CK, Uebel CJ, Villeneuve AM, Libuda DE. Epitope tag-specific differences in the detection of COSA-1 marked crossover sites in C. elegans spermatocytes. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000724. [PMID: 36660421 PMCID: PMC9844261 DOI: 10.17912/micropub.biology.000724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/23/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023]
Abstract
Nascent crossover sites in C. elegans meiocytes can be cytologically detected using epitope-tagged versions of the pro-crossover protein COSA-1. In spermatocytes, differences exist between cytologically-detected and genetically-detected double crossover rates. Here, we examine nascent crossovers using both GFP- and OLLAS-tagged COSA-1. Similar to previous work, we find that most late pachytene spermatocytes display 5 COSA-1 foci, indicating one crossover per autosome bivalent. However, we detected more nuclei with >5 COSA-1 foci using OLLAS::COSA-1, reflecting some bivalents having 2 COSA-1 foci. These results demonstrate tag-specific differences in the detection of COSA-1 marked nascent crossovers in spermatocytes.
Collapse
Affiliation(s)
- Cori K. Cahoon
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR, USA
| | - Celja J. Uebel
- Stanford University School of Medicine, Departments of Developmental Biology and Genetics, Stanford, CA, USA
| | - Anne M. Villeneuve
- Stanford University School of Medicine, Departments of Developmental Biology and Genetics, Stanford, CA, USA
| | - Diana E. Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, Eugene, OR, USA
| |
Collapse
|
7
|
Lascarez-Lagunas LI, Martinez-Garcia M, Nadarajan S, Diaz-Pacheco BN, Berson E, Colaiácovo MP. Chromatin landscape, DSB levels, and cKU-70/80 contribute to patterning of meiotic DSB processing along chromosomes in C. elegans. PLoS Genet 2023; 19:e1010627. [PMID: 36706157 PMCID: PMC9907818 DOI: 10.1371/journal.pgen.1010627] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/08/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Programmed DNA double-strand break (DSB) formation is essential for achieving accurate chromosome segregation during meiosis. DSB repair timing and template choice are tightly regulated. However, little is known about how DSB distribution and the choice of repair pathway are regulated along the length of chromosomes, which has direct effects on the recombination landscape and chromosome remodeling at late prophase I. Here, we use the spatiotemporal resolution of meiosis in the Caenorhabditis elegans germline along with genetic approaches to study distribution of DSB processing and its regulation. High-resolution imaging of computationally straightened chromosomes immunostained for the RAD-51 recombinase marking DSB repair sites reveals that the pattern of RAD-51 foci throughout pachytene resembles crossover distribution in wild type. Specifically, RAD-51 foci occur primarily along the gene-poor distal thirds of the chromosomes in both early and late pachytene, and on both the X and the autosomes. However, this biased off-center distribution can be abrogated by the formation of excess DSBs. Reduced condensin function, but not an increase in total physical axial length, results in a homogeneous distribution of RAD-51 foci, whereas regulation of H3K9 methylation is required for the enrichment of RAD-51 at off-center positions. Finally, the DSB recognition heterodimer cKU-70/80, but not the non-homologous end-joining canonical ligase LIG-4, contributes to the enriched off-center distribution of RAD-51 foci. Taken together, our data supports a model by which regulation of the chromatin landscape, DSB levels, and DSB detection by cKU-70/80 collaborate to promote DSB processing by homologous recombination at off-center regions of the chromosomes in C. elegans.
Collapse
Affiliation(s)
- Laura I. Lascarez-Lagunas
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marina Martinez-Garcia
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Saravanapriah Nadarajan
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brianna N. Diaz-Pacheco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elizaveta Berson
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mónica P. Colaiácovo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Evolution of sexual systems, sex chromosomes and sex-linked gene transcription in flatworms and roundworms. Nat Commun 2022; 13:3239. [PMID: 35688815 PMCID: PMC9187692 DOI: 10.1038/s41467-022-30578-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Many species with separate male and female individuals (termed ‘gonochorism’ in animals) have sex-linked genome regions. Here, we investigate evolutionary changes when genome regions become completely sex-linked, by analyses of multiple species of flatworms (Platyhelminthes; among which schistosomes recently evolved gonochorism from ancestral hermaphroditism), and roundworms (Nematoda) which have undergone independent translocations of different autosomes. Although neither the evolution of gonochorism nor translocations fusing ancestrally autosomal regions to sex chromosomes causes inevitable loss of recombination, we document that formerly recombining regions show genomic signatures of recombination suppression in both taxa, and become strongly genetically degenerated, with a loss of most genes. Comparisons with hermaphroditic flatworm transcriptomes show masculinisation and some defeminisation in schistosome gonad gene expression. We also find evidence that evolution of sex-linkage in nematodes is accompanied by transcriptional changes and dosage compensation. Our analyses also identify sex-linked genes that could assist future research aimed at controlling some of these important parasites. Transitions between hermaphroditic and separate sexes are relatively understudied in animals compared to pants. Here, Wang et al. reconstruct the evolution of separate sexes in the flatworms and complex changes of sex chromosomes in the roundworms.
Collapse
|
9
|
Liu H, Gordon SG, Rog O. Heterologous synapsis in C. elegans is regulated by meiotic double-strand breaks and crossovers. Chromosoma 2021; 130:237-250. [PMID: 34608541 PMCID: PMC8671313 DOI: 10.1007/s00412-021-00763-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Alignment of the parental chromosomes during meiotic prophase is key to the formation of genetic exchanges, or crossovers, and consequently to the successful production of gametes. In almost all studied organisms, alignment involves synapsis: the assembly of a conserved inter-chromosomal interface called the synaptonemal complex (SC). While the SC usually synapses homologous sequences, it can assemble between heterologous sequences. However, little is known about the regulation of heterologous synapsis. Here, we study the dynamics of heterologous synapsis in the nematode C. elegans. We characterize two experimental scenarios: SC assembly onto a folded-back chromosome that cannot pair with its homologous partner; and synapsis of pseudo-homologs, a fusion chromosome partnering with an unfused chromosome half its size. We observed elevated levels of heterologous synapsis when the number of meiotic double-strand breaks or crossovers were reduced, indicating that the promiscuity of synapsis is regulated by break formation or repair. In addition, our data suggests the existence of both chromosome-specific and nucleus-wide regulation on heterologous synapsis.
Collapse
Affiliation(s)
- Hanwenheng Liu
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112-0840, USA
- The Division of Biology & Biomedical Sciences, Washington University in St. Louis, 660 South Euclid Avenue, Missouri, 63110, USA
| | - Spencer G Gordon
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112-0840, USA
| | - Ofer Rog
- School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112-0840, USA.
| |
Collapse
|
10
|
Abstract
The specialized two-stage meiotic cell division program halves a cell's chromosome complement in preparation for sexual reproduction. This reduction in ploidy requires that in meiotic prophase, each pair of homologous chromosomes (homologs) identify one another and form physical links through DNA recombination. Here, we review recent advances in understanding the complex morphological changes that chromosomes undergo during meiotic prophase to promote homolog identification and crossing over. We focus on the structural maintenance of chromosomes (SMC) family cohesin complexes and the meiotic chromosome axis, which together organize chromosomes and promote recombination. We then discuss the architecture and dynamics of the conserved synaptonemal complex (SC), which assembles between homologs and mediates local and global feedback to ensure high fidelity in meiotic recombination. Finally, we discuss exciting new advances, including mechanisms for boosting recombination on particular chromosomes or chromosomal domains and the implications of a new liquid crystal model for SC assembly and structure. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah N Ur
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; ,
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA; , .,Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
11
|
Abstract
The formation of crossovers between homologous chromosomes is key to sexual reproduction. In most species, crossovers are spaced further apart than would be expected if they formed independently, a phenomenon termed crossover interference. Despite more than a century of study, the molecular mechanisms implementing crossover interference remain a subject of active debate. Recent findings of how signaling proteins control the formation of crossovers and about the interchromosomal interface in which crossovers form offer new insights into this process. In this Review, we present a cell biological and biophysical perspective on crossover interference, summarizing the evidence that links interference to the spatial, dynamic, mechanical and molecular properties of meiotic chromosomes. We synthesize this physical understanding in the context of prevailing mechanistic models that aim to explain how crossover interference is implemented.
Collapse
Affiliation(s)
- Lexy von Diezmann
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA.,School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Ofer Rog
- Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112, USA.,School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
So C, Cheng S, Schuh M. Phase Separation during Germline Development. Trends Cell Biol 2021; 31:254-268. [PMID: 33455855 DOI: 10.1016/j.tcb.2020.12.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Phase separation has emerged as a new key principle of intracellular organization. Phase-separated structures play diverse roles in various biological processes and pathogenesis of protein aggregation diseases. Recent work has revealed crucial functions for phase separation during germline development. Phase separation controls the assembly and segregation of germ granules that determine which embryonic cells become germ cells. Phase separation promotes the formation of the Balbiani body, a structure that stores organelles and RNAs during the prolonged prophase arrest of oocytes. Phase separation also facilitates meiotic recombination that prepares homologous chromosomes for segregation, and drives the formation of a liquid-like spindle domain that promotes spindle assembly in mammalian oocytes. We review how phase separation drives these essential steps during germline development.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Shiya Cheng
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
13
|
Mu X, Murakami H, Mohibullah N, Keeney S. Chromosome-autonomous feedback down-regulates meiotic DNA break competence upon synaptonemal complex formation. Genes Dev 2020; 34:1605-1618. [PMID: 33184224 PMCID: PMC7706706 DOI: 10.1101/gad.342873.120] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023]
Abstract
The number of DNA double-strand breaks (DSBs) initiating meiotic recombination is elevated in Saccharomyces cerevisiae mutants that are globally defective in forming crossovers and synaptonemal complex (SC), a protein scaffold juxtaposing homologous chromosomes. These mutants thus appear to lack a negative feedback loop that inhibits DSB formation when homologs engage one another. This feedback is predicted to be chromosome autonomous, but this has not been tested. Moreover, what chromosomal process is recognized as "homolog engagement" remains unclear. To address these questions, we evaluated effects of homolog engagement defects restricted to small portions of the genome using karyotypically abnormal yeast strains with a homeologous chromosome V pair, monosomic V, or trisomy XV. We found that homolog engagement-defective chromosomes incurred more DSBs, concomitant with prolonged retention of the DSB-promoting protein Rec114, while the rest of the genome remained unaffected. SC-deficient, crossover-proficient mutants ecm11 and gmc2 experienced increased DSB numbers diagnostic of homolog engagement defects. These findings support the hypothesis that SC formation provokes DSB protein dissociation, leading in turn to loss of a DSB competent state. Our findings show that DSB number is regulated in a chromosome-autonomous fashion and provide insight into how homeostatic DSB controls respond to aneuploidy during meiosis.
Collapse
Affiliation(s)
- Xiaojing Mu
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Hajime Murakami
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Neeman Mohibullah
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Scott Keeney
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York 10021, USA
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
14
|
Foster JM, Grote A, Mattick J, Tracey A, Tsai YC, Chung M, Cotton JA, Clark TA, Geber A, Holroyd N, Korlach J, Li Y, Libro S, Lustigman S, Michalski ML, Paulini M, Rogers MB, Teigen L, Twaddle A, Welch L, Berriman M, Dunning Hotopp JC, Ghedin E. Sex chromosome evolution in parasitic nematodes of humans. Nat Commun 2020; 11:1964. [PMID: 32327641 PMCID: PMC7181701 DOI: 10.1038/s41467-020-15654-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/20/2020] [Indexed: 11/09/2022] Open
Abstract
Sex determination mechanisms often differ even between related species yet the evolution of sex chromosomes remains poorly understood in all but a few model organisms. Some nematodes such as Caenorhabditis elegans have an XO sex determination system while others, such as the filarial parasite Brugia malayi, have an XY mechanism. We present a complete B. malayi genome assembly and define Nigon elements shared with C. elegans, which we then map to the genomes of other filarial species and more distantly related nematodes. We find a remarkable plasticity in sex chromosome evolution with several distinct cases of neo-X and neo-Y formation, X-added regions, and conversion of autosomes to sex chromosomes from which we propose a model of chromosome evolution across different nematode clades. The phylum Nematoda offers a new and innovative system for gaining a deeper understanding of sex chromosome evolution.
Collapse
Affiliation(s)
- Jeremy M Foster
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, MA, 01938, USA
| | - Alexandra Grote
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - John Mattick
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Matthew Chung
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Adam Geber
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | | | - Yichao Li
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, 45701, USA
| | - Silvia Libro
- Division of Protein Expression & Modification, New England Biolabs, Ipswich, MA, 01938, USA
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Michelle L Michalski
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| | - Michael Paulini
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Matthew B Rogers
- Department of Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Laura Teigen
- Department of Biology and Microbiology, University of Wisconsin Oshkosh, Oshkosh, WI, 54901, USA
| | - Alan Twaddle
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Lonnie Welch
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, 45701, USA
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Julie C Dunning Hotopp
- Institute for Genome Science, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Elodie Ghedin
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA.
- Department of Epidemiology, School of Global Public Health, New York University, New York, NY, 10003, USA.
| |
Collapse
|
15
|
Cahoon CK, Libuda DE. Leagues of their own: sexually dimorphic features of meiotic prophase I. Chromosoma 2019; 128:199-214. [PMID: 30826870 PMCID: PMC6823309 DOI: 10.1007/s00412-019-00692-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/28/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023]
Abstract
Meiosis is a conserved cell division process that is used by sexually reproducing organisms to generate haploid gametes. Males and females produce different end products of meiosis: eggs (females) and sperm (males). In addition, these unique end products demonstrate sex-specific differences that occur throughout meiosis to produce the final genetic material that is packaged into distinct gametes with unique extracellular morphologies and nuclear sizes. These sexually dimorphic features of meiosis include the meiotic chromosome architecture, in which both the lengths of the chromosomes and the requirement for specific meiotic axis proteins being different between the sexes. Moreover, these changes likely cause sex-specific changes in the recombination landscape with the sex that has the longer chromosomes usually obtaining more crossovers. Additionally, epigenetic regulation of meiosis may contribute to sexually dimorphic recombination landscapes. Here we explore the sexually dimorphic features of both the chromosome axis and crossing over for each stage of meiotic prophase I in Mus musculus, Caenorhabditis elegans, and Arabidopsis thaliana. Furthermore, we consider how sex-specific changes in the meiotic chromosome axes and the epigenetic landscape may function together to regulate crossing over in each sex, indicating that the mechanisms controlling crossing over may be different in oogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Cori K Cahoon
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA
| | - Diana E Libuda
- Institute of Molecular Biology, Department of Biology, University of Oregon, 1370 Franklin Boulevard, Eugene, OR, 97403-1229, USA.
| |
Collapse
|
16
|
Trevoy SAL, Janes JK, Muirhead K, Sperling FAH. Repurposing population genetics data to discern genomic architecture: A case study of linkage cohort detection in mountain pine beetle ( Dendroctonus ponderosae). Ecol Evol 2019; 9:1147-1159. [PMID: 30805148 PMCID: PMC6374669 DOI: 10.1002/ece3.4803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/11/2022] Open
Abstract
Genetic surveys of the population structure of species can be used as resources for exploring their genomic architecture. By adjusting filtering assumptions, genome-wide single-nucleotide polymorphism (SNP) datasets can be reused to give new insights into the genetic basis of divergence and speciation without targeted resampling of specimens. Filtering only for missing data and minor allele frequency, we used a combination of principal components analysis and linkage disequilibrium network analysis to distinguish three cohorts of variable SNPs in the mountain pine beetle in western Canada, including one that was sex-linked and one that was geographically associated. These marker cohorts indicate genomically localized differentiation, and their detection demonstrates an accessible and intuitive method for discovering potential islands of genomic divergence without a priori knowledge of a species' genomic architecture. Thus, this method has utility for directly addressing the genomic architecture of species and generating new hypotheses for functional research.
Collapse
Affiliation(s)
| | - Jasmine K. Janes
- School of Environmental & Rural SciencesUniversity of New EnglandArmidaleNew South WalesAustralia
- Biology DepartmentVancouver Island UniversityNanaimoBritish ColumbiaCanada
| | - Kevin Muirhead
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | |
Collapse
|
17
|
Saito TT, Colaiácovo MP. Regulation of Crossover Frequency and Distribution during Meiotic Recombination. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 82:223-234. [PMID: 29222342 DOI: 10.1101/sqb.2017.82.034132] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Crossover recombination is essential for generating genetic diversity and promoting accurate chromosome segregation during meiosis. The process of crossover recombination is tightly regulated and is initiated by the formation of programmed meiotic DNA double-strand breaks (DSBs). The number of DSBs is around 10-fold higher than the number of crossovers in most species, because only a limited number of DSBs are repaired as crossovers during meiosis. Moreover, crossovers are not randomly distributed. Most crossovers are located on chromosomal arm regions and both centromeres and telomeres are usually devoid of crossovers. Either loss or mislocalization of crossovers frequently results in chromosome nondisjunction and subsequent aneuploidy, leading to infertility, miscarriages, and birth defects such as Down syndrome. Here, we will review aspects of crossover regulation observed in most species and then focus on crossover regulation in the nematode Caenorhabditis elegans in which both the frequency and distribution of crossovers are tightly controlled. In this system, only a single crossover is formed, usually at an off-centered position, between each pair of homologous chromosomes. We have identified C. elegans mutants with deregulated crossover distribution, and we are analyzing crossover control by using an inducible single DSB system with which a single crossover can be produced at specific genomic positions. These combined studies are revealing novel insights into how crossover position is linked to accurate chromosome segregation.
Collapse
Affiliation(s)
- Takamune T Saito
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
18
|
Abstract
Sexual reproduction requires the production of haploid gametes (sperm and egg) with only one copy of each chromosome; fertilization then restores the diploid chromosome content in the next generation. This reduction in genetic content is accomplished during a specialized cell division called meiosis, in which two rounds of chromosome segregation follow a single round of DNA replication. In preparation for the first meiotic division, homologous chromosomes pair and synapse, creating a context that promotes formation of crossover recombination events. These crossovers, in conjunction with sister chromatid cohesion, serve to connect the two homologs and facilitate their segregation to opposite poles during the first meiotic division. During the second meiotic division, which is similar to mitosis, sister chromatids separate; the resultant products are haploid cells that become gametes. In Caenorhabditis elegans (and most other eukaryotes) homologous pairing and recombination are required for proper chromosome inheritance during meiosis; accordingly, the events of meiosis are tightly coordinated to ensure the proper execution of these events. In this chapter, we review the seminal events of meiosis: pairing of homologous chromosomes, the changes in chromosome structure that chromosomes undergo during meiosis, the events of meiotic recombination, the differentiation of homologous chromosome pairs into structures optimized for proper chromosome segregation at Meiosis I, and the ultimate segregation of chromosomes during the meiotic divisions. We also review the regulatory processes that ensure the coordinated execution of these meiotic events during prophase I.
Collapse
Affiliation(s)
- Kenneth J Hillers
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, United States
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter,1030 Vienna, Austria
| | | | - Judith L Yanowitz
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
19
|
Pattabiraman D, Roelens B, Woglar A, Villeneuve AM. Meiotic recombination modulates the structure and dynamics of the synaptonemal complex during C. elegans meiosis. PLoS Genet 2017; 13:e1006670. [PMID: 28339470 PMCID: PMC5384771 DOI: 10.1371/journal.pgen.1006670] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/07/2017] [Accepted: 03/06/2017] [Indexed: 12/04/2022] Open
Abstract
During meiotic prophase, a structure called the synaptonemal complex (SC) assembles at the interface between aligned pairs of homologous chromosomes, and crossover recombination events occur between their DNA molecules. Here we investigate the inter-relationships between these two hallmark features of the meiotic program in the nematode C. elegans, revealing dynamic properties of the SC that are modulated by recombination. We demonstrate that the SC incorporates new subunits and switches from a more highly dynamic/labile state to a more stable state as germ cells progress through the pachytene stage of meiotic prophase. We further show that the more dynamic state of the SC is prolonged in mutants where meiotic recombination is impaired. Moreover, in meiotic mutants where recombination intermediates are present in limiting numbers, SC central region subunits become preferentially stabilized on the subset of chromosome pairs that harbor a site where pro-crossover factors COSA-1 and MutSγ are concentrated. Polo-like kinase PLK-2 becomes preferentially localized to the SCs of chromosome pairs harboring recombination sites prior to the enrichment of SC central region proteins on such chromosomes, and PLK-2 is required for this enrichment to occur. Further, late pachytene nuclei in a plk-2 mutant exhibit the more highly dynamic SC state. Together our data demonstrate that crossover recombination events elicit chromosome-autonomous stabilizing effects on the SC and implicate PLK-2 in this process. We discuss how this recombination-triggered modulation of SC state might contribute to regulatory mechanisms that operate during meiosis to ensure the formation of crossovers while at the same time limiting their numbers.
Collapse
Affiliation(s)
- Divya Pattabiraman
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Baptiste Roelens
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Alexander Woglar
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anne M. Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
20
|
Potter S, Bragg JG, Blom MPK, Deakin JE, Kirkpatrick M, Eldridge MDB, Moritz C. Chromosomal Speciation in the Genomics Era: Disentangling Phylogenetic Evolution of Rock-wallabies. Front Genet 2017; 8:10. [PMID: 28265284 PMCID: PMC5301020 DOI: 10.3389/fgene.2017.00010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
The association of chromosome rearrangements (CRs) with speciation is well established, and there is a long history of theory and evidence relating to "chromosomal speciation." Genomic sequencing has the potential to provide new insights into how reorganization of genome structure promotes divergence, and in model systems has demonstrated reduced gene flow in rearranged segments. However, there are limits to what we can understand from a small number of model systems, which each only tell us about one episode of chromosomal speciation. Progressing from patterns of association between chromosome (and genic) change, to understanding processes of speciation requires both comparative studies across diverse systems and integration of genome-scale sequence comparisons with other lines of evidence. Here, we showcase a promising example of chromosomal speciation in a non-model organism, the endemic Australian marsupial genus Petrogale. We present initial phylogenetic results from exon-capture that resolve a history of divergence associated with extensive and repeated CRs. Yet it remains challenging to disentangle gene tree heterogeneity caused by recent divergence and gene flow in this and other such recent radiations. We outline a way forward for better integration of comparative genomic sequence data with evidence from molecular cytogenetics, and analyses of shifts in the recombination landscape and potential disruption of meiotic segregation and epigenetic programming. In all likelihood, CRs impact multiple cellular processes and these effects need to be considered together, along with effects of genic divergence. Understanding the effects of CRs together with genic divergence will require development of more integrative theory and inference methods. Together, new data and analysis tools will combine to shed light on long standing questions of how chromosome and genic divergence promote speciation.
Collapse
Affiliation(s)
- Sally Potter
- Research School of Biology, Australian National University, ActonACT, Australia
- Australian Museum Research Institute, Australian Museum, SydneyNSW, Australia
| | - Jason G. Bragg
- National Herbarium of New South Wales, The Royal Botanic Gardens and Domain Trust, SydneyNSW, Australia
| | - Mozes P. K. Blom
- Department of Bioinformatics and Genetics, Swedish Museum of Natural HistoryStockholm, Sweden
| | - Janine E. Deakin
- Institute for Applied Ecology, University of Canberra, BruceACT, Australia
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, AustinTX, USA
| | - Mark D. B. Eldridge
- Australian Museum Research Institute, Australian Museum, SydneyNSW, Australia
| | - Craig Moritz
- Research School of Biology, Australian National University, ActonACT, Australia
| |
Collapse
|
21
|
Rog O, Köhler S, Dernburg AF. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife 2017; 6. [PMID: 28045371 PMCID: PMC5268736 DOI: 10.7554/elife.21455] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/02/2017] [Indexed: 12/27/2022] Open
Abstract
The synaptonemal complex (SC) is a polymer that spans ~100 nm between paired homologous chromosomes during meiosis. Its striated, periodic appearance in electron micrographs led to the idea that transverse filaments within this structure ‘crosslink’ the axes of homologous chromosomes, stabilizing their pairing. SC proteins can also form polycomplexes, three-dimensional lattices that recapitulate the periodic structure of SCs but do not associate with chromosomes. Here we provide evidence that SCs and polycomplexes contain mobile subunits and that their assembly is promoted by weak hydrophobic interactions, indicative of a liquid crystalline phase. We further show that in the absence of recombination intermediates, polycomplexes recapitulate the dynamic localization of pro-crossover factors during meiotic progression, revealing how the SC might act as a conduit to regulate chromosome-wide crossover distribution. Properties unique to liquid crystals likely enable long-range signal transduction along meiotic chromosomes and underlie the rapid evolution of SC proteins. DOI:http://dx.doi.org/10.7554/eLife.21455.001 The genetic information in cells is encoded within long molecules of DNA called chromosomes. In most human cells, the two copies of each chromosome – the one inherited from our mother and the one from our father – are physically separated and behave independently. However, in the reproductive cells that give rise to eggs or sperm, each chromosome must pair with its partner. Pairing first occurs at one or more positions along each chromosome. This triggers a protein-based polymer called the “synaptonemal complex” to assemble between the paired chromosomes, and then spread along the interface between the partners until they are fully lined up side-by-side. Chromosomes in reproductive cells must pair in this particular way to exchange genetic information and generate new combinations of traits. The synaptonemal complex was first observed over 60 years ago, but it remains enigmatic. Though its structure is highly ordered and looks very similar in different organisms from yeast to humans, little is known about how this polymer forms or what it does between chromosomes. Some evidence has suggested that the synaptonemal complex helps to regulate how much information can be transferred between each pair of chromosomes, but not all studies have supported this conclusion. Several lines of evidence suggest that the synaptonemal complex might be fundamentally different from other protein-based polymers, such as those that form filamentous skeletal structures within cells, namely actin filaments and microtubules. Now, Rog et al. have tested the idea that the synaptonemal complex might actually have liquid-like properties, despite its highly ordered appearance. The experiments showed that the proteins that make up the synaptonemal complex in yeast, worms and fruit flies are weakly bound to each other and can move around within the assembled structure. These are considered to be defining properties that distinguish liquids from solid materials. Together with its regular, repetitive organization, these findings indicate that the synaptonemal complex behaves like a liquid crystal. This intriguing class of materials has properties between those of conventional liquids and those of solid crystals, and is particularly sensitive to environmental conditions. Rog et al. believe that this discovery helps to explain how signals are transmitted along the length of chromosomes to regulate the transfer of genetic information. In support of this idea, further experiments showed that proteins that are required for this recombination process were also found within the synaptonemal complex. As reproductive cells transition from one stage of their development to the next, these proteins abruptly move to a new location, indicating that a switch-like signal rapidly spreads throughout the synaptonemal complex. Together the findings suggest that the liquid crystal-like properties of the synaptonemal complex allow signals to be transmitted along the interface between pairs of chromosomes. The next challenges are to understand what triggers these signals and to explore whether they are based upon physical or chemical changes within the synaptonemal complex. Further research is also needed to uncover how this information is propagated along the length of a chromosome. DOI:http://dx.doi.org/10.7554/eLife.21455.002
Collapse
Affiliation(s)
- Ofer Rog
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Department of Biology, University of Utah, Salt Lake City, USA
| | - Simone Köhler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, Chevy Chase, United States.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,California Institute for Quantitative Biosciences, Berkeley, United States
| |
Collapse
|
22
|
Campos JL, Qiu S, Guirao-Rico S, Bergero R, Charlesworth D. Recombination changes at the boundaries of fully and partially sex-linked regions between closely related Silene species pairs. Heredity (Edinb) 2016; 118:395-403. [PMID: 27827389 DOI: 10.1038/hdy.2016.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 11/09/2022] Open
Abstract
The establishment of a region of suppressed recombination is a critical change during sex chromosome evolution, leading to such properties as Y (and W) chromosome genetic degeneration, accumulation of repetitive sequences and heteromorphism. Although chromosome inversions can cause large regions to have suppressed recombination, and inversions are sometimes involved in sex chromosome evolution, gradual expansion of the non-recombining region could potentially sometimes occur. We here test whether closer linkage has recently evolved between the sex-determining region and several genes that are partially sex-linked in Silene latifolia, using Silene dioica, a closely related dioecious plants whose XY sex chromosome system is inherited from a common ancestor. The S. latifolia pseudoautosomal region (PAR) includes several genes extremely closely linked to the fully Y-linked region. These genes were added to an ancestral PAR of the sex chromosome pair in two distinct events probably involving translocations of autosomal genome regions causing multiple genes to become partially sex-linked. Close linkage with the PAR boundary must have evolved since these additions, because some genes added in both events now show almost complete sex linkage in S. latifolia. We compared diversity patterns of five such S. latifolia PAR boundary genes with their orthologues in S. dioica, including all three regions of the PAR (one gene that was in the ancestral PAR and two from each of the added regions). The results suggest recent recombination suppression in S. latifolia, since its split from S. dioica.
Collapse
Affiliation(s)
- J L Campos
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - S Qiu
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - S Guirao-Rico
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - R Bergero
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - D Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
23
|
Meiotic recombination and the crossover assurance checkpoint in Caenorhabditis elegans. Semin Cell Dev Biol 2016; 54:106-16. [PMID: 27013114 DOI: 10.1016/j.semcdb.2016.03.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/16/2016] [Indexed: 12/13/2022]
Abstract
During meiotic prophase, chromosomes pair and synapse with their homologs and undergo programmed DNA double-strand break (DSB) formation to initiate meiotic recombination. These DSBs are processed to generate a limited number of crossover recombination products on each chromosome, which are essential to ensure faithful segregation of homologous chromosomes. The nematode Caenorhabditis elegans has served as an excellent model organism to investigate the mechanisms that drive and coordinate these chromosome dynamics during meiosis. Here we focus on our current understanding of the regulation of DSB induction in C. elegans. We also review evidence that feedback regulation of crossover formation prolongs the early stages of meiotic prophase, and discuss evidence that this can alter the recombination pattern, most likely by shifting the genome-wide distribution of DSBs.
Collapse
|
24
|
Lu LY, Yu X. Double-strand break repair on sex chromosomes: challenges during male meiotic prophase. Cell Cycle 2015; 14:516-25. [PMID: 25565522 DOI: 10.1080/15384101.2014.998070] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
During meiotic prophase, DNA double-strand break (DSB) repair-mediated homologous recombination (HR) occurs for exchange of genetic information between homologous chromosomes. Unlike autosomes or female sex chromosomes, human male sex chromosomes X and Y share little homology. Although DSBs are generated throughout male sex chromosomes, homologous recombination does not occur for most regions and DSB repair process is significantly prolonged. As a result, male sex chromosomes are coated with many DNA damage response proteins and form a unique chromatin structure known as the XY body. Interestingly, associated with the prolonged DSB repair, transcription is repressed in the XY body but not in autosomes, a phenomenon known as meiotic sex chromosome inactivation (MSCI), which is critical for male meiosis. Here using mice as model organisms, we briefly summarize recent progress on DSB repair in meiotic prophase and focus on the mechanism and function of DNA damage response in the XY body.
Collapse
Affiliation(s)
- Lin-Yu Lu
- a Women's Hospital ; School of Medicine ; Zhejiang University ; Hangzhou , Zhejiang , China
| | | |
Collapse
|
25
|
Anderson CM, Oke A, Yam P, Zhuge T, Fung JC. Reduced Crossover Interference and Increased ZMM-Independent Recombination in the Absence of Tel1/ATM. PLoS Genet 2015; 11:e1005478. [PMID: 26305689 PMCID: PMC4549261 DOI: 10.1371/journal.pgen.1005478] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/31/2015] [Indexed: 11/18/2022] Open
Abstract
Meiotic recombination involves the repair of double-strand break (DSB) precursors as crossovers (COs) or noncrossovers (NCOs). The proper number and distribution of COs is critical for successful chromosome segregation and formation of viable gametes. In budding yeast the majority of COs occurs through a pathway dependent on the ZMM proteins (Zip2-Zip3-Zip4-Spo16, Msh4-Msh5, Mer3), which form foci at CO-committed sites. Here we show that the DNA-damage-response kinase Tel1/ATM limits ZMM-independent recombination. By whole-genome mapping of recombination products, we find that lack of Tel1 results in higher recombination and reduced CO interference. Yet the number of Zip3 foci in tel1Δ cells is similar to wild type, and these foci show normal interference. Analysis of recombination in a tel1Δ zip3Δ double mutant indicates that COs are less dependent on Zip3 in the absence of Tel1. Together these results reveal that in the absence of Tel1, a significant proportion of COs occurs through a non-ZMM-dependent pathway, contributing to a CO landscape with poor interference. We also see a significant change in the distribution of all detectable recombination products in the absence of Tel1, Sgs1, Zip3, or Msh4, providing evidence for altered DSB distribution. These results support the previous finding that DSB interference depends on Tel1, and further suggest an additional level of DSB interference created through local repression of DSBs around CO-designated sites.
Collapse
Affiliation(s)
- Carol M. Anderson
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Ashwini Oke
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Phoebe Yam
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Tangna Zhuge
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, United States of America
| | - Jennifer C. Fung
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Center for Reproductive Sciences, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
26
|
Keeney S, Lange J, Mohibullah N. Self-organization of meiotic recombination initiation: general principles and molecular pathways. Annu Rev Genet 2015; 48:187-214. [PMID: 25421598 DOI: 10.1146/annurev-genet-120213-092304] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recombination in meiosis is a fascinating case study for the coordination of chromosomal duplication, repair, and segregation with each other and with progression through a cell-division cycle. Meiotic recombination initiates with formation of developmentally programmed DNA double-strand breaks (DSBs) at many places across the genome. DSBs are important for successful meiosis but are also dangerous lesions that can mutate or kill, so cells ensure that DSBs are made only at the right times, places, and amounts. This review examines the complex web of pathways that accomplish this control. We explore how chromosome breakage is integrated with meiotic progression and how feedback mechanisms spatially pattern DSB formation and make it homeostatic, robust, and error correcting. Common regulatory themes recur in different organisms or in different contexts in the same organism. We review this evolutionary and mechanistic conservation but also highlight where control modules have diverged. The framework that emerges helps explain how meiotic chromosomes behave as a self-organizing system.
Collapse
Affiliation(s)
- Scott Keeney
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
| | | | | |
Collapse
|
27
|
Lam I, Keeney S. Mechanism and regulation of meiotic recombination initiation. Cold Spring Harb Perspect Biol 2014; 7:a016634. [PMID: 25324213 DOI: 10.1101/cshperspect.a016634] [Citation(s) in RCA: 302] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Meiotic recombination involves the formation and repair of programmed DNA double-strand breaks (DSBs) catalyzed by the conserved Spo11 protein. This review summarizes recent studies pertaining to the formation of meiotic DSBs, including the mechanism of DNA cleavage by Spo11, proteins required for break formation, and mechanisms that control the location, timing, and number of DSBs. Where appropriate, findings in different organisms are discussed to highlight evolutionary conservation or divergence.
Collapse
Affiliation(s)
- Isabel Lam
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Scott Keeney
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
28
|
Affiliation(s)
- Xuan Zhu
- Molecular Biology Program; Memorial Sloan Kettering Cancer Center; New York, NY USA; Weill Graduate School of Medical Sciences of Cornell University; New York, NY USA
| | - Scott Keeney
- Molecular Biology Program; Memorial Sloan Kettering Cancer Center; New York, NY USA; Weill Graduate School of Medical Sciences of Cornell University; New York, NY USA; Howard Hughes Medical Institute; Memorial Sloan Kettering Cancer Center; New York, NY USA
| |
Collapse
|
29
|
Thacker D, Mohibullah N, Zhu X, Keeney S. Homologue engagement controls meiotic DNA break number and distribution. Nature 2014; 510:241-6. [PMID: 24717437 PMCID: PMC4057310 DOI: 10.1038/nature13120] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 01/31/2014] [Indexed: 11/09/2022]
Abstract
Meiotic recombination promotes genetic diversification as well as pairing and segregation of homologous chromosomes, but the double-strand breaks (DSBs) that initiate recombination are dangerous lesions that can cause mutation or meiotic failure. How cells control DSBs to balance between beneficial and deleterious outcomes is not well understood. This study tests the hypothesis that DSB control involves a network of intersecting negative regulatory circuits. Using multiple complementary methods, we show that DSBs form in greater numbers in Saccharomyces cerevisiae cells lacking ZMM proteins, a suite of recombination-promoting factors traditionally regarded as acting strictly downstream of DSB formation. ZMM-dependent DSB control is genetically distinct from a pathway tying break formation to meiotic progression through the Ndt80 transcription factor. These counterintuitive findings suggest that homologous chromosomes that have successfully engaged one another stop making breaks. Genome-wide DSB maps uncover distinct responses by different subchromosomal domains to the zmm mutation zip3, and show that Zip3 is required for the previously unexplained tendency of DSB density to vary with chromosome size. Thus, feedback tied to ZMM function contributes in unexpected ways to spatial patterning of recombination.
Collapse
Affiliation(s)
- Drew Thacker
- 1] Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Neeman Mohibullah
- 1] Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Xuan Zhu
- 1] Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Scott Keeney
- 1] Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA [2] Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA [3] Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
30
|
Gamete-type dependent crossover interference levels in a defined region of Caenorhabditis elegans chromosome V. G3-GENES GENOMES GENETICS 2014; 4:117-20. [PMID: 24240780 PMCID: PMC3887527 DOI: 10.1534/g3.113.008672] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In certain organisms, numbers of crossover events for any single chromosome are limited ("crossover interference") so that double crossover events are obtained at much lower frequencies than would be expected from the simple product of independent single-crossover events. We present a number of observations during which we examined interference over a large region of Caenorhabditis elegans chromosome V. Examining this region for multiple crossover events in heteroallelic configurations with limited dimorphism, we observed high levels of crossover interference in oocytes with only partial interference in spermatocytes.
Collapse
|
31
|
Evidence that masking of synapsis imperfections counterbalances quality control to promote efficient meiosis. PLoS Genet 2013; 9:e1003963. [PMID: 24339786 PMCID: PMC3854781 DOI: 10.1371/journal.pgen.1003963] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 10/03/2013] [Indexed: 11/26/2022] Open
Abstract
Reduction in ploidy to generate haploid gametes during sexual reproduction is accomplished by the specialized cell division program of meiosis. Pairing between homologous chromosomes and assembly of the synaptonemal complex at their interface (synapsis) represent intermediate steps in the meiotic program that are essential to form crossover recombination-based linkages between homologs, which in turn enable segregation of the homologs to opposite poles at the meiosis I division. Here, we challenge the mechanisms of pairing and synapsis during C. elegans meiosis by disrupting the normal 1∶1 correspondence between homologs through karyotype manipulation. Using a combination of cytological tools, including S-phase labeling to specifically identify X chromosome territories in highly synchronous cohorts of nuclei and 3D rendering to visualize meiotic chromosome structures and organization, our analysis of trisomic (triplo-X) and polyploid meiosis provides insight into the principles governing pairing and synapsis and how the meiotic program is “wired” to maximize successful sexual reproduction. We show that chromosomes sort into homologous groups regardless of chromosome number, then preferentially achieve pairwise synapsis during a period of active chromosome mobilization. Further, comparisons of synapsis configurations in triplo-X germ cells that are proficient or defective for initiating recombination suggest a role for recombination in restricting chromosomal interactions to a pairwise state. Increased numbers of homologs prolong markers of the chromosome mobilization phase and/or boost germline apoptosis, consistent with triggering quality control mechanisms that promote resolution of synapsis problems and/or cull meiocytes containing synapsis defects. However, we also uncover evidence for the existence of mechanisms that “mask” defects, thus allowing resumption of prophase progression and survival of germ cells despite some asynapsis. We propose that coupling of saturable masking mechanisms with stringent quality controls maximizes meiotic success by making progression and survival dependent on achieving a level of synapsis sufficient for crossover formation without requiring perfect synapsis. Diploid organisms must produce haploid gametes prior to sexual reproduction in order to maintain a constant number of chromosomes from one generation to the next. Ploidy reduction is accomplished during meiosis and requires crossover recombination-based linkages between homologous chromosomes. Here, we manipulate karyotype in C. elegans to probe the mechanisms that govern stable, pairwise, homologous associations essential for crossover formation. We find that chromosomes sort into homolog groups regardless of number prior to stabilizing interactions (“synapsing”) in a preferentially pairwise manner. Increased numbers of homologs delay meiotic progression and/or boost cell death, reflecting operation of quality control mechanisms that either buy time to correct synapsis problems or eliminate defective cells. Moreover, we found evidence for mechanisms that can “mask” synapsis imperfections, thus allowing resumption of meiotic progression and survival of germ cells when synapsis is “good enough”, albeit imperfect. This strategy would maximize meiotic success by making progression and survival contingent on achieving a level of synapsis sufficient for crossover formation without imposing an onerous and unnecessary requirement for perfect synapsis. We suggest that the regulatory logic of coupling saturable masking mechanisms with stringent quality controls may be employed widely to maximize efficiency of biological circuits.
Collapse
|
32
|
Dissociation of the X chromosome from the synaptonemal complex in the XY body of the rodent Galea musteloides. Chromosome Res 2013; 21:753-63. [PMID: 24043547 DOI: 10.1007/s10577-013-9379-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/26/2013] [Accepted: 08/29/2013] [Indexed: 01/13/2023]
Abstract
The XY body from spermatocytes of the rodent Galea musteloides shows progressive changes of the synaptonemal complex (SC) axes and the X-chromatin during pachynema. There is a gross thickening of the X-axis and the formation of a large X chromosome loop at mid and late pachytene stages. The SC proteins synaptonemal complex protein 3 (SYCP3), synaptonemal complex protein 1, and synaptonemal complex central element protein 3 and the proteins breast cancer 1, MutL homolog 1 (MLH1), and radiation-repair 51 (related to meiotic processes), the cohesin structural maintenance of chromosome 3, the centromeric protein (with CREST antibody), and the silenced chromatin (with phosphorylated (139ph) H2A histone family, member X (γ-H2AX) antibody) were analyzed in this XY body. The thick X-axis, including the interstitial loop, becomes formed by four to six laminae showing a cross-striation with a periodicity of about 20 nm. The whole length of the gross X-axis shows no significant changes during pachynema, but the interstitial chromatin of the X chromosome and the X centromere are included in the large loop, and it becomes separated from the SC. A conventional SC formed by the Y-axis, a central region and a thin lateral element originally corresponding to the X-axis, remains undisturbed up to the end of pachynema. A single MLH1 focus develops either at the distal or the proximal region of the loop end attached to the conventional SC. The chromatin surrounding the thickened axis is labeled with γ-H2AX. It is shown that most of the SYCP3 protein associated with the X chromosome loop is not involved in the SC maintenance, but it is located with the cohesin axis separated from the SC proper.
Collapse
|
33
|
Kauppi L, Barchi M, Lange J, Baudat F, Jasin M, Keeney S. Numerical constraints and feedback control of double-strand breaks in mouse meiosis. Genes Dev 2013; 27:873-86. [PMID: 23599345 DOI: 10.1101/gad.213652.113] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Different organisms display widely different numbers of the programmed double-strand breaks (DSBs) that initiate meiotic recombination (e.g., hundreds per meiocyte in mice and humans vs. dozens in nematodes), but little is known about what drives these species-specific DSB set points or the regulatory pathways that control them. Here we examine male mice with a lowered dosage of SPO11, the meiotic DSB catalyst, to gain insight into the effect of reduced DSB numbers on mammalian chromosome dynamics. An approximately twofold DSB reduction was associated with the reduced ability of homologs to synapse along their lengths, provoking prophase arrest and, ultimately, sterility. In many spermatocytes, chromosome subsets displayed a mix of synaptic failure and synapsis with both homologous and nonhomologous partners ("chromosome tangles"). The X chromosome was nearly always involved in tangles, and small autosomes were involved more often than large ones. We conclude that homolog pairing requirements dictate DSB set points during meiosis. Importantly, our results reveal that karyotype is a key factor: Smaller autosomes and heteromorphic sex chromosomes become weak links when DSBs are reduced below a critical threshold. Unexpectedly, unsynapsed chromosome segments trapped in tangles displayed an elevated density of DSB markers later in meiotic prophase. The unsynapsed portion of the X chromosome in wild-type males also showed evidence that DSB numbers increased as prophase progressed. These findings point to the existence of a feedback mechanism that links DSB number and distribution with interhomolog interactions.
Collapse
Affiliation(s)
- Liisa Kauppi
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | | | | |
Collapse
|
34
|
Rog O, Dernburg AF. Chromosome pairing and synapsis during Caenorhabditis elegans meiosis. Curr Opin Cell Biol 2013; 25:349-56. [PMID: 23578368 DOI: 10.1016/j.ceb.2013.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/27/2013] [Accepted: 03/12/2013] [Indexed: 11/18/2022]
Abstract
Meiosis is the specialized cell division cycle that produces haploid gametes to enable sexual reproduction. Reduction of chromosome number by half requires elaborate chromosome dynamics that occur in meiotic prophase to establish physical linkages between each pair of homologous chromosomes. Caenorhabditis elegans has emerged as an excellent model organism for molecular studies of meiosis, enabling investigators to combine the power of molecular genetics, cytology, and live analysis. Here we focus on recent studies that have shed light on how chromosomes find and identify their homologous partners, and the structural changes that accompany and mediate these interactions.
Collapse
Affiliation(s)
- Ofer Rog
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3220, United States
| | | |
Collapse
|
35
|
Voelkel-Meiman K, Moustafa SS, Lefrançois P, Villeneuve AM, MacQueen AJ. Full-length synaptonemal complex grows continuously during meiotic prophase in budding yeast. PLoS Genet 2012; 8:e1002993. [PMID: 23071451 PMCID: PMC3469433 DOI: 10.1371/journal.pgen.1002993] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/13/2012] [Indexed: 11/19/2022] Open
Abstract
the synaptonemal complex (SC) links two meiotic prophase chromosomal events: homolog pairing and crossover recombination. SC formation involves the multimeric assembly of coiled-coil proteins (Zip1 in budding yeast) at the interface of aligned homologous chromosomes. However, SC assembly is indifferent to homology and thus is normally regulated such that it occurs only subsequent to homology recognition. Assembled SC structurally interfaces with and influences the level and distribution of interhomolog crossover recombination events. Despite its involvement in dynamic chromosome behaviors such as homolog pairing and recombination, the extent to which SC, once installed, acts as an irreversible tether or maintains the capacity to remodel is not clear. Experiments presented here reveal insight into the dynamics of the full-length SC in budding yeast meiotic cells. We demonstrate that Zip1 continually incorporates into previously assembled synaptonemal complex during meiotic prophase. Moreover, post-synapsis Zip1 incorporation is sufficient to rescue the sporulation defect triggered by SCs built with a mutant version of Zip1, Zip1-4LA. Post-synapsis Zip1 incorporation occurs initially with a non-uniform spatial distribution, predominantly associated with Zip3, a component of the synapsis initiation complex that is presumed to mark a subset of crossover sites. A non-uniform dynamic architecture of the SC is observed independently of (i) synapsis initiation components, (ii) the Pch2 and Pph3 proteins that have been linked to Zip1 regulation, and (iii) the presence of a homolog. Finally, the rate of SC assembly and SC central region size increase in proportion to Zip1 copy number; this and other observations suggest that Zip1 does not exit the SC structure to the same extent that it enters. Our observations suggest that, after full-length assembly, SC central region exhibits little global turnover but maintains differential assembly dynamics at sites whose distribution is patterned by a recombination landscape.
Collapse
Affiliation(s)
- Karen Voelkel-Meiman
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Sarah S. Moustafa
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Philippe Lefrançois
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
| | - Anne M. Villeneuve
- Department of Developmental Biology, Stanford University, Stanford, California, United States of America
| | - Amy J. MacQueen
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
36
|
Yokoo R, Zawadzki KA, Nabeshima K, Drake M, Arur S, Villeneuve AM. COSA-1 reveals robust homeostasis and separable licensing and reinforcement steps governing meiotic crossovers. Cell 2012; 149:75-87. [PMID: 22464324 DOI: 10.1016/j.cell.2012.01.052] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 10/27/2011] [Accepted: 01/15/2012] [Indexed: 11/30/2022]
Abstract
Crossovers (COs) between homologous chromosomes ensure their faithful segregation during meiosis. We identify C. elegans COSA-1, a cyclin-related protein conserved in metazoa, as a key component required to convert meiotic double-strand breaks (DSBs) into COs. During late meiotic prophase, COSA-1 localizes to foci that correspond to the single CO site on each homolog pair and indicate sites of eventual concentration of other conserved CO proteins. Chromosomes gain and lose competence to load CO proteins during meiotic progression, with competence to load COSA-1 requiring prior licensing. Our data further suggest a self-reinforcing mechanism maintaining CO designation. Modeling of a nonlinear dose-response relationship between IR-induced DSBs and COSA-1 foci reveals efficient conversion of DSBs into COs when DSBs are limiting and a robust capacity to limit cytologically differentiated CO sites when DSBs are in excess. COSA-1 foci serve as a unique live cell readout for investigating CO formation and CO interference.
Collapse
Affiliation(s)
- Rayka Yokoo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
37
|
Homolka D, Jansa P, Forejt J. Genetically enhanced asynapsis of autosomal chromatin promotes transcriptional dysregulation and meiotic failure. Chromosoma 2011; 121:91-104. [PMID: 22002499 PMCID: PMC3260437 DOI: 10.1007/s00412-011-0346-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 09/27/2011] [Accepted: 10/02/2011] [Indexed: 01/05/2023]
Abstract
During meiosis, pairing of homologous chromosomes and their synapsis are essential prerequisites for normal male gametogenesis. Even limited autosomal asynapsis often leads to spermatogenic impairment, the mechanism of which is not fully understood. The present study was aimed at deliberately increasing the size of partial autosomal asynapsis and analysis of its impact on male meiosis. For this purpose, we studied the effect of t(12) haplotype encompassing four inversions on chromosome 17 on mouse autosomal translocation T(16;17)43H (abbreviated T43H). The T43H/T43H homozygotes were fully fertile in both sexes, while +/T43H heterozygous males, but not females, were sterile with meiotic arrest at late pachynema. Inclusion of the t(12) haplotype in trans to the T43H translocation resulted in enhanced asynapsis of the translocated autosome, ectopic phosphorylation of histone H2AX, persistence of RAD51 foci, and increased gene silencing around the translocation break. Increase was also on colocalization of unsynapsed chromatin with sex body. Remarkably, we found that transcriptional silencing of the unsynapsed autosomal chromatin precedes silencing of sex chromosomes. Based on the present knowledge, we conclude that interference of meiotic silencing of unsynapsed autosomes with meiotic sex chromosome inactivation is the most likely cause of asynapsis-related male sterility.
Collapse
Affiliation(s)
- David Homolka
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | |
Collapse
|
38
|
Checchi PM, Engebrecht J. Heteromorphic sex chromosomes: navigating meiosis without a homologous partner. Mol Reprod Dev 2011; 78:623-32. [PMID: 22113949 DOI: 10.1002/mrd.21369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 07/20/2011] [Indexed: 11/10/2022]
Abstract
Accurate chromosome segregation during meiosis relies on homology between the maternal and paternal chromosomes. Yet by definition, sex chromosomes of the heterogametic sex lack a homologous partner. Recent studies in a number of systems have shed light on the unique meiotic behavior of heteromorphic sex chromosomes, and highlight both the commonalities and differences in divergent species. During meiotic prophase, the homology-dependent processes of pairing, synapsis, and recombination have been modified in many different ways to ensure segregation of heteromorphic sex chromosomes at the first meiotic division. Additionally, an almost universal feature of heteromorphic sex chromosomes during meiosis is transcriptional silencing, or meiotic sex chromosome inactivation, an essential process proposed to prevent expression of genes deleterious to meiosis in the heterogametic sex as well as to shield unpaired sex chromosomes from recognition by meiotic checkpoints. Comparative analyses of the meiotic behavior of sex chromosomes in nematodes, mammals, and birds reveal important conserved features as well as provide insight into sex chromosome evolution.
Collapse
Affiliation(s)
- Paula M Checchi
- Molecular and Cellular Biology, University of California, Davis, California, USA
| | | |
Collapse
|
39
|
Hawley RS. Molecular biology. Hitting a tiny target in the dark. Science 2011; 331:870-1. [PMID: 21330526 DOI: 10.1126/science.1202373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- R Scott Hawley
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| |
Collapse
|