1
|
Chriss A, Börner GV, Ryan SD. Agent-based modeling of nuclear chromosome ensembles identifies determinants of homolog pairing during meiosis. PLoS Comput Biol 2024; 20:e1011416. [PMID: 38739641 PMCID: PMC11115365 DOI: 10.1371/journal.pcbi.1011416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 05/23/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
During meiosis, pairing of homologous chromosomes (homologs) ensures the formation of haploid gametes from diploid precursor cells, a prerequisite for sexual reproduction. Pairing during meiotic prophase I facilitates crossover recombination and homolog segregation during the ensuing reductional cell division. Mechanisms that ensure stable homolog alignment in the presence of an excess of non-homologous chromosomes have remained elusive, but rapid chromosome movements appear to play a role in the process. Apart from homolog attraction, provided by early intermediates of homologous recombination, dissociation of non-homologous associations also appears to contribute to homolog pairing, as suggested by the detection of stable non-homologous chromosome associations in pairing-defective mutants. Here, we have developed an agent-based model for homolog pairing derived from the dynamics of a naturally occurring chromosome ensemble. The model simulates unidirectional chromosome movements, as well as collision dynamics determined by attractive and repulsive forces arising from close-range physical interactions. Chromosome number and size as well as movement velocity and repulsive forces are identified as key factors in the kinetics and efficiency of homologous pairing in addition to homolog attraction. Dissociation of interactions between non-homologous chromosomes may contribute to pairing by crowding homologs into a limited nuclear area thus creating preconditions for close-range homolog attraction. Incorporating natural chromosome lengths, the model accurately recapitulates efficiency and kinetics of homolog pairing observed for wild-type and mutant meiosis in budding yeast, and can be adapted to nuclear dimensions and chromosome sets of other organisms.
Collapse
Affiliation(s)
- Ariana Chriss
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, United States of America
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
| | - G. Valentin Börner
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio, United States of America
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio, United States of America
| | - Shawn D. Ryan
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio, United States of America
- Center for Applied Data Analysis and Modeling, Cleveland State University, Cleveland, Ohio, United States of America
| |
Collapse
|
2
|
Chriss A, Börner GV, Ryan SD. Agent-based modeling of nuclear chromosome ensemble identifies determinants of homolog pairing during meiosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.09.552574. [PMID: 38260664 PMCID: PMC10802385 DOI: 10.1101/2023.08.09.552574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
During meiosis, pairing of homologous chromosomes (homologs) ensures the formation of haploid gametes from diploid precursor cells, a prerequisite for sexual reproduction. Pairing during meiotic prophase I facilitates crossover recombination and homolog segregation during the ensuing reductional cell division. Mechanisms that ensure stable homolog alignment in the presence of an excess of non-homologous chromosomes have remained elusive, but rapid chromosome movements during prophase I appear to play a role in the process. Apart from homolog attraction, provided by early intermediates of homologous recombination, dissociation of non-homologous associations also appears to contribute to homolog pairing, as suggested by the detection of stable non-homologous chromosome associations in pairing-defective mutants. Here, we have developed an agent-based model for homolog pairing derived from the dynamics of a naturally occurring chromosome ensemble. The model simulates unidirectional chromosome movements, as well as collision dynamics determined by attractive and repulsive forces arising from close-range physical interactions. In addition to homolog attraction, chromosome number and size as well as movement velocity and repulsive forces are identified as key factors in the kinetics and efficiency of homologous pairing. Dissociation of interactions between non-homologous chromosomes may contribute to pairing by crowding homologs into a limited nuclear area thus creating preconditions for close-range homolog attraction. Predictions from the model are readily compared to experimental data from budding yeast, parameters can be adjusted to other cellular systems and predictions from the model can be tested via experimental manipulation of the relevant chromosomal features.
Collapse
Affiliation(s)
- Ariana Chriss
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH 44115
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
| | - G. Valentin Börner
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115
| | - Shawn D. Ryan
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, OH 44115
- Center for Applied Data Analysis and Modeling, Cleveland State University, Cleveland, OH 44115
| |
Collapse
|
3
|
Navarro EJ, Marshall WF, Fung JC. Modeling cell biological features of meiotic chromosome pairing to study interlock resolution. PLoS Comput Biol 2022; 18:e1010252. [PMID: 35696428 PMCID: PMC9232156 DOI: 10.1371/journal.pcbi.1010252] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 06/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
During meiosis, homologous chromosomes become associated side by side in a process known as homologous chromosome pairing. Pairing requires long range chromosome motion through a nucleus that is full of other chromosomes. It remains unclear how the cell manages to align each pair of chromosomes quickly while mitigating and resolving interlocks. Here, we use a coarse-grained molecular dynamics model to investigate how specific features of meiosis, including motor-driven telomere motion, nuclear envelope interactions, and increased nuclear size, affect the rate of pairing and the mitigation/resolution of interlocks. By creating in silico versions of three yeast strains and comparing the results of our model to experimental data, we find that a more distributed placement of pairing sites along the chromosome is necessary to replicate experimental findings. Active motion of the telomeric ends speeds up pairing only if binding sites are spread along the chromosome length. Adding a meiotic bouquet significantly speeds up pairing but does not significantly change the number of interlocks. An increase in nuclear size slows down pairing while greatly reducing the number of interlocks. Interestingly, active forces increase the number of interlocks, which raises the question: How do these interlocks resolve? Our model gives us detailed movies of interlock resolution events which we then analyze to build a step-by-step recipe for interlock resolution. In our model, interlocks must first translocate to the ends, where they are held in a quasi-stable state by a large number of paired sites on one side. To completely resolve an interlock, the telomeres of the involved chromosomes must come in close proximity so that the cooperativity of pairing coupled with random motion causes the telomeres to unwind. Together our results indicate that computational modeling of homolog pairing provides insight into the specific cell biological changes that occur during meiosis.
Collapse
Affiliation(s)
- Erik J. Navarro
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center of Reproductive Sciences, University of California, San Francisco, California, United States of America
| | - Wallace F. Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Jennifer C. Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences and Center of Reproductive Sciences, University of California, San Francisco, California, United States of America
| |
Collapse
|
4
|
Diffusion and distal linkages govern interchromosomal dynamics during meiotic prophase. Proc Natl Acad Sci U S A 2022; 119:e2115883119. [PMID: 35302885 PMCID: PMC8944930 DOI: 10.1073/pnas.2115883119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceEssential for sexual reproduction, meiosis is a specialized cell division required for the production of haploid gametes. Critical to this process are the pairing, recombination, and segregation of homologous chromosomes (homologs). While pairing and recombination are linked, it is not known how many linkages are sufficient to hold homologs in proximity. Here, we reveal that random diffusion and the placement of a small number of linkages are sufficient to establish the apparent "pairing" of homologs. We also show that colocalization between any two loci is more dynamic than anticipated. Our study provides observations of live interchromosomal dynamics during meiosis and illustrates the power of combining single-cell measurements with theoretical polymer modeling.
Collapse
|
5
|
Lee CY, Bisig CG, Conrad MN, Ditamo Y, Previato de Almeida L, Dresser ME, Pezza RJ. Telomere-led meiotic chromosome movements: recent update in structure and function. Nucleus 2020; 11:111-116. [PMID: 32412326 PMCID: PMC7781623 DOI: 10.1080/19491034.2020.1769456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
In S. cerevisiae prophase meiotic chromosomes move by forces generated in the cytoplasm and transduced to the telomere via a protein complex located in the nuclear membrane. We know that chromosome movements require actin cytoskeleton [13,31] and the proteins Ndj1, Mps3, and Csm4. Until recently, the identity of the protein connecting Ndj1-Mps3 with the cytoskeleton components was missing. It was also not known the identity of a cytoplasmic motor responsible for interacting with the actin cytoskeleton and a protein at the outer nuclear envelope. Our recent work [36] identified Mps2 as the protein connecting Ndj1-Mps3 with cytoskeleton components; Myo2 as the cytoplasmic motor that interacts with Mps2; and Cms4 as a regulator of Mps2 and Myo2 interaction and activities (Figure 1). Below we present a model for how Mps2, Csm4, and Myo2 promote chromosome movements by providing the primary connections joining telomeres to the actin cytoskeleton through the LINC complex.
Collapse
Affiliation(s)
- C Y Lee
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA
| | - C G Bisig
- Facultad de Ciencias Químicas, Dpto. Química Biológica Ranwel Caputto-CIQUIBIC, Universidad Nacional de Córdoba , Córdoba, Argentina
| | - M N Conrad
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA
| | - Y Ditamo
- Facultad de Ciencias Químicas, Dpto. Química Biológica Ranwel Caputto-CIQUIBIC, Universidad Nacional de Córdoba , Córdoba, Argentina
| | - L Previato de Almeida
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA
| | - M E Dresser
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA
| | - R J Pezza
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation , Oklahoma City, OK, USA.,Department of Cell Biology, University of Oklahoma Health Science Center , Oklahoma City, OK, USA
| |
Collapse
|
6
|
González-Arranz S, Gardner JM, Yu Z, Patel NJ, Heldrich J, Santos B, Carballo JA, Jaspersen SL, Hochwagen A, San-Segundo PA. SWR1-Independent Association of H2A.Z to the LINC Complex Promotes Meiotic Chromosome Motion. Front Cell Dev Biol 2020; 8:594092. [PMID: 33195270 PMCID: PMC7642583 DOI: 10.3389/fcell.2020.594092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/11/2020] [Indexed: 11/27/2022] Open
Abstract
The H2A.Z histone variant is deposited into the chromatin by the SWR1 complex, affecting multiple aspects of meiosis. We describe here a SWR1-independent localization of H2A.Z at meiotic telomeres and the centrosome. We demonstrate that H2A.Z colocalizes and interacts with Mps3, the SUN component of the linker of nucleoskeleton, and cytoskeleton (LINC) complex that spans the nuclear envelope and links meiotic telomeres to the cytoskeleton, promoting meiotic chromosome movement. H2A.Z also interacts with the meiosis-specific Ndj1 protein that anchors telomeres to the nuclear periphery via Mps3. Telomeric localization of H2A.Z depends on Ndj1 and the N-terminal domain of Mps3. Although telomeric attachment to the nuclear envelope is maintained in the absence of H2A.Z, the distribution of Mps3 is altered. The velocity of chromosome movement during the meiotic prophase is reduced in the htz1Δ mutant lacking H2A.Z, but it is unaffected in swr1Δ cells. We reveal that H2A.Z is an additional LINC-associated factor that contributes to promote telomere-driven chromosome motion critical for error-free gametogenesis.
Collapse
Affiliation(s)
- Sara González-Arranz
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | | | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, MO, United States
| | - Neem J. Patel
- Department of Biology, New York University, New York, NY, United States
| | - Jonna Heldrich
- Department of Biology, New York University, New York, NY, United States
| | - Beatriz Santos
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| | - Jesús A. Carballo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, NY, United States
| | - Pedro A. San-Segundo
- Instituto de Biología Funcional y Genómica (IBFG), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Salamanca, Spain
| |
Collapse
|
7
|
Fernández-Jiménez N, Pradillo M. The role of the nuclear envelope in the regulation of chromatin dynamics during cell division. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5148-5159. [PMID: 32589712 DOI: 10.1093/jxb/eraa299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
The nuclear envelope delineates the eukaryotic cell nucleus. The membrane system of the nuclear envelope consists of an outer nuclear membrane and an inner nuclear membrane separated by a perinuclear space. It serves as more than just a static barrier, since it regulates the communication between the nucleoplasm and the cytoplasm and provides the anchoring points where chromatin is attached. Fewer nuclear envelope proteins have been identified in plants in comparison with animals and yeasts. Here, we review the current state of knowledge of the nuclear envelope in plants, focusing on its role as a chromatin organizer and regulator of gene expression, as well as on the modifications that it undergoes to be efficiently disassembled and reassembled with each cell division. Advances in knowledge concerning the mitotic role of some nuclear envelope constituents are also presented. In addition, we summarize recent progress on the contribution of the nuclear envelope elements to telomere tethering and chromosome dynamics during the meiotic division in different plant species.
Collapse
Affiliation(s)
- Nadia Fernández-Jiménez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Mónica Pradillo
- Departamento de Genética, Fisiología y Microbiología, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Mixing and Matching Chromosomes during Female Meiosis. Cells 2020; 9:cells9030696. [PMID: 32178277 PMCID: PMC7140621 DOI: 10.3390/cells9030696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
Meiosis is a key event in the manufacturing of an oocyte. During this process, the oocyte creates a set of unique chromosomes by recombining paternal and maternal copies of homologous chromosomes, and by eliminating one set of chromosomes to become haploid. While meiosis is conserved among sexually reproducing eukaryotes, there is a bewildering diversity of strategies among species, and sometimes within sexes of the same species, to achieve proper segregation of chromosomes. Here, we review the very first steps of meiosis in females, when the maternal and paternal copies of each homologous chromosomes have to move, find each other and pair. We explore the similarities and differences observed in C. elegans, Drosophila, zebrafish and mouse females.
Collapse
|
9
|
Extranuclear Structural Components that Mediate Dynamic Chromosome Movements in Yeast Meiosis. Curr Biol 2020; 30:1207-1216.e4. [PMID: 32059771 DOI: 10.1016/j.cub.2020.01.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 11/20/2019] [Accepted: 01/16/2020] [Indexed: 02/02/2023]
Abstract
Telomere-led rapid chromosome movements or rapid prophase movements direct fundamental meiotic processes required for successful haploidization of the genome. Critical components of the machinery that generates rapid prophase movements are unknown, and the mechanism underlying rapid prophase movements remains poorly understood. We identified S. cerevisiae Mps2 as the outer nuclear membrane protein that connects the LINC complex with the cytoskeleton. We also demonstrate that the motor Myo2 works together with Mps2 to couple the telomeres to the actin cytoskeleton. Further, we show that Csm4 interacts with Mps2 and is required for perinuclear localization of Myo2, implicating Csm4 as a regulator of the Mps2-Myo2 interaction. We propose a model in which the newly identified functions of Mps2 and Myo2 cooperate with Csm4 to drive chromosome movements in meiotic prophase by coupling telomeres to the actin cytoskeleton.
Collapse
|
10
|
Marshall WF, Fung JC. Modeling meiotic chromosome pairing: a tug of war between telomere forces and a pairing-based Brownian ratchet leads to increased pairing fidelity. Phys Biol 2019; 16:046005. [PMID: 30943453 DOI: 10.1088/1478-3975/ab15a7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Meiotic homolog pairing involves associations between homologous DNA regions scattered along the length of a chromosome. When homologs associate, they tend to do so by a processive zippering process, which apparently results from avidity effects. Using a computational model, we show that this avidity-driven processive zippering reduces the selectivity of pairing. When active random forces are applied to telomeres, this drop in selectivity is eliminated in a force-dependent manner. Further simulations suggest that active telomere forces are engaged in a tug-of-war against zippering, which can be interpreted as a Brownian ratchet with a stall force that depends on the dissociation constant of pairing. When perfectly homologous regions of high affinity compete with homeologous regions of lower affinity, the affinity difference can be amplified through this tug of war effect provided the telomere force acts in a range that is strong enough to oppose zippering of homeologs while still permitting zippering of correct homologs. The degree of unzippering depends on the radius of the nucleus, such that complete unzippering of homeologous regions can only take place if the nucleus is large enough to pull the two chromosomes completely apart. A picture of meiotic pairing thus emerges that is fundamentally mechanical in nature, possibly explaining the purpose of active telomere forces, increased nuclear diameter, and the presence of 'Maverick' chromosomes in meiosis.
Collapse
Affiliation(s)
- Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, United States of America. Center for Cellular Construction, University of California San Francisco, San Francisco, CA, United States of America
| | | |
Collapse
|
11
|
Dukowic-Schulze S, Liu C, Chen C. Not just gene expression: 3D implications of chromatin modifications during sexual plant reproduction. PLANT CELL REPORTS 2018; 37:11-16. [PMID: 29032424 DOI: 10.1007/s00299-017-2222-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
DNA methylation and histone modifications are epigenetic changes on a DNA molecule that alter the three-dimensional (3D) structure locally as well as globally, impacting chromatin looping and packaging on a larger scale. Epigenetic marks thus inform higher-order chromosome organization and placement in the nucleus. Conventional epigenetic marks are joined by chromatin modifiers like cohesins, condensins and membrane-anchoring complexes to support particularly 3D chromosome organization. The most popular consequences of epigenetic modifications are gene expression changes, but chromatin modifications have implications beyond this, particularly in actively dividing cells and during sexual reproduction. In this opinion paper, we will focus on epigenetic mechanisms and chromatin modifications during meiosis as part of plant sexual reproduction where 3D management of chromosomes and re-organization of chromatin are defining features and prime tasks in reproductive cells, not limited to modulating gene expression. Meiotic chromosome organization, pairing and synapsis of homologous chromosomes as well as distribution of meiotic double-strand breaks and resulting crossovers are presumably highly influenced by epigenetic mechanisms. Special mobile small RNAs have been described in anthers, where these so-called phasiRNAs seem to direct DNA methylation in meiotic cells. Intriguingly, many of the mentioned developmental processes make use of epigenetic changes and small RNAs in a manner other than gene expression changes. Widening our approaches and opening our mind to thinking three-dimensionally regarding epigenetics in plant development holds high promise for new discoveries and could give us a boost for further knowledge.
Collapse
Affiliation(s)
- Stefanie Dukowic-Schulze
- Department of Horticultural Science, University of Minnesota, Alderman Hall, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA
| | - Chang Liu
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, Alderman Hall, 1970 Folwell Avenue, Saint Paul, MN, 55108, USA.
| |
Collapse
|
12
|
Al-Sweel N, Raghavan V, Dutta A, Ajith VP, Di Vietro L, Khondakar N, Manhart CM, Surtees JA, Nishant KT, Alani E. mlh3 mutations in baker's yeast alter meiotic recombination outcomes by increasing noncrossover events genome-wide. PLoS Genet 2017; 13:e1006974. [PMID: 28827832 PMCID: PMC5578695 DOI: 10.1371/journal.pgen.1006974] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/31/2017] [Accepted: 08/12/2017] [Indexed: 12/11/2022] Open
Abstract
Mlh1-Mlh3 is an endonuclease hypothesized to act in meiosis to resolve double Holliday junctions into crossovers. It also plays a minor role in eukaryotic DNA mismatch repair (MMR). To understand how Mlh1-Mlh3 functions in both meiosis and MMR, we analyzed in baker’s yeast 60 new mlh3 alleles. Five alleles specifically disrupted MMR, whereas one (mlh3-32) specifically disrupted meiotic crossing over. Mlh1-mlh3 representatives for each class were purified and characterized. Both Mlh1-mlh3-32 (MMR+, crossover-) and Mlh1-mlh3-45 (MMR-, crossover+) displayed wild-type endonuclease activities in vitro. Msh2-Msh3, an MSH complex that acts with Mlh1-Mlh3 in MMR, stimulated the endonuclease activity of Mlh1-mlh3-32 but not Mlh1-mlh3-45, suggesting that Mlh1-mlh3-45 is defective in MSH interactions. Whole genome recombination maps were constructed for wild-type and MMR+ crossover-, MMR- crossover+, endonuclease defective and null mlh3 mutants in an S288c/YJM789 hybrid background. Compared to wild-type, all of the mlh3 mutants showed increases in the number of noncrossover events, consistent with recombination intermediates being resolved through alternative recombination pathways. Our observations provide a structure-function map for Mlh3 that reveals the importance of protein-protein interactions in regulating Mlh1-Mlh3’s enzymatic activity. They also illustrate how defective meiotic components can alter the fate of meiotic recombination intermediates, providing new insights for how meiotic recombination pathways are regulated. During meiosis, diploid germ cells that become eggs or sperm undergo a single round of DNA replication followed by two consecutive chromosomal divisions. The segregation of chromosomes at the first meiotic division is dependent in most organisms on at least one genetic exchange, or crossover event, between chromosome homologs. Homologs that do not receive a crossover frequently undergo nondisjunction at the first meiotic division, yielding gametes that lack chromosomes or contain additional copies. Such events have been linked to human disease and infertility. Recent studies suggest that the Mlh1-Mlh3 complex is an endonuclease that resolves recombination intermediates into crossovers. Interestingly, this complex also acts as a matchmaker in DNA mismatch repair (MMR) to remove DNA replication errors. How does one complex act in two different processes? We investigated this question by performing a mutational analysis of the baker’s yeast Mlh3 protein. Five mutations were identified that disrupted MMR but not crossing over, and one mutation disrupted crossing over while maintaining MMR. Using a combination of biochemical and genetic analyses to further characterize these mutants we illustrate the importance of protein-protein interactions for Mlh1-Mlh3’s activity. Importantly, our data illustrate how defective meiotic components can alter the outcome of meiotic recombination events. They also provide new insights for the basis of infertility syndromes.
Collapse
Affiliation(s)
- Najla Al-Sweel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Vandana Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Abhishek Dutta
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - V. P. Ajith
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
| | - Luigi Di Vietro
- Department of Life Sciences and Systems Biology, University of Turin, Via Verdi, Turin, Italy
| | - Nabila Khondakar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Carol M. Manhart
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Jennifer A. Surtees
- Department of Biochemistry, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - K. T. Nishant
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
- Center for Computation Modelling and Simulation, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum, India
- * E-mail: (EA); (KTN)
| | - Eric Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (EA); (KTN)
| |
Collapse
|
13
|
The Nucleoporin Nup2 Contains a Meiotic-Autonomous Region that Promotes the Dynamic Chromosome Events of Meiosis. Genetics 2017; 206:1319-1337. [PMID: 28455351 DOI: 10.1534/genetics.116.194555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a specialized cellular program required to create haploid gametes from diploid parent cells. Homologous chromosomes pair, synapse, and recombine in a dynamic environment that accommodates gross chromosome reorganization and significant chromosome motion, which are critical for normal chromosome segregation. In Saccharomyces cerevisiae, Ndj1 is a meiotic telomere-associated protein required for physically attaching telomeres to proteins embedded in the nuclear envelope. In this study, we identified additional proteins that act at the nuclear periphery from meiotic cell extracts, including Nup2, a nonessential nucleoporin with a known role in tethering interstitial chromosomal loci to the nuclear pore complex. We found that deleting NUP2 affects meiotic progression and spore viability, and gives increased levels of recombination intermediates and products. We identified a previously uncharacterized 125 aa region of Nup2 that is necessary and sufficient for its meiotic function, thus behaving as a meiotic autonomous region (MAR). Nup2-MAR forms distinct foci on spread meiotic chromosomes, with a subset overlapping with Ndj1 foci. Localization of Nup2-MAR to meiotic chromosomes does not require Ndj1, nor does Ndj1 localization require Nup2, suggesting these proteins function in different pathways, and their interaction is weak or indirect. Instead, several severe synthetic phenotypes are associated with the nup2Δ ndj1Δ double mutant, including delayed turnover of recombination joint molecules, and a failure to undergo nuclear divisions without also arresting the meiotic program. These data suggest Nup2 and Ndj1 support partially overlapping functions that promote two different levels of meiotic chromosome organization necessary to withstand a dynamic stage of the eukaryotic life cycle.
Collapse
|
14
|
Ferreira DW, Allard P. Models of germ cell development and their application for toxicity studies. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:637-49. [PMID: 25821157 PMCID: PMC4586303 DOI: 10.1002/em.21946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/15/2015] [Accepted: 02/21/2015] [Indexed: 05/19/2023]
Abstract
Germ cells are unique in their ability to transfer genetic information and traits from generation to generation. As such, the proper development of germ cells and the integrity of their genome are paramount to the health of organisms and the survival of species. Germ cells are also exquisitely sensitive to environmental influences although the testing of germ cell toxicity, especially in females, has proven particularly challenging. In this review, we first describe the remarkable odyssey of germ cells in mammals, with an emphasis on the female germline, from their initial specification early during embryogenesis to the generation of mature gametes in adults. We also describe the current methods used in germ cell toxicity testing and their limitations in examining the complex features of mammalian germ cell development. To bypass these challenges, we propose the use of alternative model systems such as Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, and in vitro germ cell methods that have distinct advantages over traditional toxicity models. We discuss the benefits and limitations of each approach, their application to germ cell toxicity studies, and the need for computational approaches to maximize the usefulness of these models. Together, the inclusion of these alternative germ cell toxicity models will be invaluable for the examination of stages not easily accessible in mammals as well as the large scale, high-throughput investigation of germ cell toxicity.
Collapse
Affiliation(s)
- Daniel W Ferreira
- Institute for Society and Genetics, Department of Environmental Health Sciences, University of California, Los Angeles, California
| | - Patrick Allard
- Institute for Society and Genetics, Department of Environmental Health Sciences, University of California, Los Angeles, California
| |
Collapse
|
15
|
Abstract
Production of gametes of halved ploidy for sexual reproduction requires a specialized cell division called meiosis. The fusion of two gametes restores the original ploidy in the new generation, and meiosis thus stabilizes ploidy across generations. To ensure balanced distribution of chromosomes, pairs of homologous chromosomes (homologs) must recognize each other and pair in the first meiotic division. Recombination plays a key role in this in most studied species, but it is not the only actor and particular chromosomal regions are known to facilitate the meiotic pairing of homologs. In this review, we focus on the roles of centromeres and in particular on the clustering and pairwise associations of nonhomologous centromeres that precede stable pairing between homologs. Although details vary from species to species, it is becoming increasingly clear that these associations play active roles in the meiotic chromosome pairing process, analogous to those of the telomere bouquet.
Collapse
Affiliation(s)
- Olivier Da Ines
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France; ,
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293, Clermont Université, INSERM U1103, Aubière, France; ,
| |
Collapse
|
16
|
A computational study of dsDNA pairs and vibrational resonance in separating water. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 8:329-35. [PMID: 26396657 DOI: 10.1007/s11693-014-9157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/19/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
This article investigates the relationship between molecular sequence and dependent interacting behavior of molecular segment pairs and secondly, sequence dependent, vibrational resonance in surrounding normal saline, protein-free water. The development of a molecular model to explore these systems phenomena, the results of several nanoscale molecular dynamics simulations, and analysis of behavior of interacting ΦX174 double-stranded DNA segment pair models in various configurations are presented. Fourier analysis revealed intriguing vibration frequencies within the solvent plane between the segments, while subsequent frequency domain transformation of the time domain waveforms revealed statistically significant resonating harmonic signals in the THz range.
Collapse
|
17
|
Varas J, Graumann K, Osman K, Pradillo M, Evans DE, Santos JL, Armstrong SJ. Absence of SUN1 and SUN2 proteins in Arabidopsis thaliana leads to a delay in meiotic progression and defects in synapsis and recombination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:329-46. [PMID: 25412930 DOI: 10.1111/tpj.12730] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/25/2014] [Accepted: 11/17/2014] [Indexed: 05/21/2023]
Abstract
The movement of chromosomes during meiosis involves location of their telomeres at the inner surface of the nuclear envelope. Sad1/UNC-84 (SUN) domain proteins are inner nuclear envelope proteins that are part of complexes linking cytoskeletal elements with the nucleoskeleton, connecting telomeres to the force-generating mechanism in the cytoplasm. These proteins play a conserved role in chromosome dynamics in eukaryotes. Homologues of SUN domain proteins have been identified in several plant species. In Arabidopsis thaliana, two proteins that interact with each other, named AtSUN1 and AtSUN2, have been identified. Immunolocalization using antibodies against AtSUN1 and AtSUN2 proteins revealed that they were associated with the nuclear envelope during meiotic prophase I. Analysis of the double mutant Atsun1-1 Atsun2-2 has revealed severe meiotic defects, namely a delay in the progression of meiosis, absence of full synapsis, the presence of unresolved interlock-like structures, and a reduction in the mean cell chiasma frequency. We propose that in Arabidopsis thaliana, overlapping functions of SUN1 and SUN2 ensure normal meiotic recombination and synapsis.
Collapse
Affiliation(s)
- Javier Varas
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Subramanian VV, Hochwagen A. The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb Perspect Biol 2014; 6:a016675. [PMID: 25274702 DOI: 10.1101/cshperspect.a016675] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The generation of haploid gametes by meiosis is a highly conserved process for sexually reproducing organisms that, in almost all cases, involves the extensive breakage of chromosomes. These chromosome breaks occur during meiotic prophase and are essential for meiotic recombination as well as the subsequent segregation of homologous chromosomes. However, their formation and repair must be carefully monitored and choreographed with nuclear dynamics and the cell division program to avoid the creation of aberrant chromosomes and defective gametes. It is becoming increasingly clear that an intricate checkpoint-signaling network related to the canonical DNA damage response is deeply interwoven with the meiotic program and preserves order during meiotic prophase. This meiotic checkpoint network (MCN) creates a wide range of dependent relationships controlling chromosome movement, chromosome pairing, chromatin structure, and double-strand break (DSB) repair. In this review, we summarize our current understanding of the MCN. We discuss commonalities and differences in different experimental systems, with a particular emphasis on the emerging design principles that control and limit cross talk between signals to ultimately ensure the faithful inheritance of chromosomes by the next generation.
Collapse
Affiliation(s)
| | - Andreas Hochwagen
- Department of Biology, New York University, New York, New York 10003
| |
Collapse
|
19
|
Sau S, Conrad MN, Lee CY, Kaback DB, Dresser ME, Jayaram M. A selfish DNA element engages a meiosis-specific motor and telomeres for germ-line propagation. ACTA ACUST UNITED AC 2014; 205:643-61. [PMID: 24914236 PMCID: PMC4050733 DOI: 10.1083/jcb.201312002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The yeast 2 micron plasmid engages a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. The chromosome-like mitotic stability of the yeast 2 micron plasmid is conferred by the plasmid proteins Rep1-Rep2 and the cis-acting locus STB, likely by promoting plasmid-chromosome association and segregation by hitchhiking. Our analysis reveals that stable plasmid segregation during meiosis requires the bouquet proteins Ndj1 and Csm4. Plasmid relocalization from the nuclear interior in mitotic cells to the periphery at or proximal to telomeres rises from early meiosis to pachytene. Analogous to chromosomes, the plasmid undergoes Csm4- and Ndj1-dependent rapid prophase movements with speeds comparable to those of telomeres. Lack of Ndj1 partially disrupts plasmid–telomere association without affecting plasmid colocalization with the telomere-binding protein Rap1. The plasmid appears to engage a meiosis-specific motor that orchestrates telomere-led chromosome movements for its telomere-associated segregation during meiosis I. This hitherto uncharacterized mode of germ-line transmission by a selfish genetic element signifies a mechanistic variation within the shared theme of chromosome-coupled plasmid segregation during mitosis and meiosis.
Collapse
Affiliation(s)
- Soumitra Sau
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Michael N Conrad
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Chih-Ying Lee
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - David B Kaback
- Department of Microbiology and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07101
| | - Michael E Dresser
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
20
|
Klutstein M, Cooper JP. The Chromosomal Courtship Dance-homolog pairing in early meiosis. Curr Opin Cell Biol 2014; 26:123-31. [PMID: 24529254 DOI: 10.1016/j.ceb.2013.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 02/02/2023]
Abstract
The intermingling of genomes that characterizes sexual reproduction requires haploid gametes in which parental homologs have recombined. For this, homologs must pair during meiosis. In a crowded nucleus where sequence homology is obscured by the enormous scale and packaging of the genome, partner alignment is no small task. Here we review the early stages of this process. Chromosomes first establish an initial docking site, usually at telomeres or centromeres. The acquisition of chromosome-specific patterns of binding factors facilitates homolog recognition. Chromosomes are then tethered to the nuclear envelope (NE) and subjected to nuclear movements that 'shake off' inappropriate contacts while consolidating homolog associations. Thereafter, homolog connections are stabilized by building the synaptonemal complex or its equivalent and creating genetic crossovers. Recent perspectives on the roles of these stages will be discussed.
Collapse
Affiliation(s)
- Michael Klutstein
- Cancer Research UK, London Research Institute, NIH, London WC2A 3LY, United Kingdom; National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Julia Promisel Cooper
- Cancer Research UK, London Research Institute, NIH, London WC2A 3LY, United Kingdom; National Cancer Institute, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
21
|
|
22
|
Pch2 is a hexameric ring ATPase that remodels the chromosome axis protein Hop1. Proc Natl Acad Sci U S A 2013; 111:E44-53. [PMID: 24367111 DOI: 10.1073/pnas.1310755111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In budding yeast the pachytene checkpoint 2 (Pch2) protein regulates meiotic chromosome axis structure by maintaining the domain-like organization of the synaptonemal complex proteins homolog pairing 1 (Hop1) and molecular zipper 1 (Zip1). Pch2 has also been shown to modulate meiotic double-strand break repair outcomes to favor recombination between homologs, play an important role in the progression of meiotic recombination, and maintain ribosomal DNA stability. Pch2 homologs are present in fruit flies, worms, and mammals, however the molecular mechanism of Pch2 function is unknown. In this study we provide a unique and detailed biochemical analysis of Pch2. We find that purified Pch2 is an AAA+ (ATPases associated with diverse cellular activities) protein that oligomerizes into single hexameric rings in the presence of nucleotides. In addition, we show Pch2 binds to Hop1, a critical axial component of the synaptonemal complex that establishes interhomolog repair bias, in a nucleotide-dependent fashion. Importantly, we demonstrate that Pch2 displaces Hop1 from large DNA substrates and that both ATP binding and hydrolysis by Pch2 are required for Pch2-Hop1 transactions. Based on these and previous cell biological observations, we suggest that Pch2 impacts meiotic chromosome function by directly regulating Hop1 localization.
Collapse
|
23
|
Tsai IT, Lin JL, Chiang YH, Chuang YC, Liang SS, Chuang CN, Huang TN, Wang TF. Interorganelle interactions and inheritance patterns of nuclei and vacuoles in budding yeast meiosis. Autophagy 2013; 10:285-95. [PMID: 24345927 PMCID: PMC5396080 DOI: 10.4161/auto.27192] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Many of the mechanisms by which organelles are inherited by spores during meiosis are not well understood. Dramatic chromosome motion and bouquet formation are evolutionarily conserved characteristics of meiotic chromosomes. The budding yeast bouquet genes (NDJ1, MPS3, CSM4) mediate these movements via telomere attachment to the nuclear envelope (NE). Here, we report that during meiosis the NE is in direct contact with vacuoles via nucleus-vacuole junctions (NVJs). We show that in meiosis NVJs are assembled through the interaction of the outer NE-protein Nvj1 and the vacuolar membrane protein Vac8. Notably, NVJs function as diffusion barriers that exclude the nuclear pore complexes, the bouquet protein Mps3 and NE-tethered telomeres from the outer nuclear membrane and nuclear ER, resulting in distorted NEs during early meiosis. An increase in NVJ area resulting from Nvj1-GFP overexpression produced a moderate bouquet mutant-like phenotype in wild-type cells. NVJs, as the vacuolar contact sites of the nucleus, were found to undergo scission alongside the NE during meiotic nuclear division. The zygotic NE and NVJs were partly segregated into 4 spores. Lastly, new NVJs were also revealed to be synthesized de novo to rejoin the zygotic NE with the newly synthesized vacuoles in the mature spores. In conclusion, our results revealed that budding yeast nuclei and vacuoles exhibit dynamic interorganelle interactions and different inheritance patterns in meiosis, and also suggested that nvj1Δ mutant cells may be useful to resolve the technical challenges pertaining to the isolation of intact nuclei for the biochemical study of meiotic nuclear proteins.
Collapse
Affiliation(s)
- I-Ting Tsai
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei, Taiwan; Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Jyun-Liang Lin
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Yi-Hsuan Chiang
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei, Taiwan; Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Yu-Chien Chuang
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan; Taiwan International Graduate Program in Molecular and Cellular Biology; Academia Sinica; Taipei, Taiwan
| | - Shu-Shan Liang
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan; Institute of Biochemical Sciences; National Taiwan University; Taipei, Taiwan
| | - Chi-Ning Chuang
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Tzyy-Nan Huang
- Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan
| | - Ting-Fang Wang
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei, Taiwan; Institute of Molecular Biology; Academia Sinica; Taipei, Taiwan; Taiwan International Graduate Program in Molecular and Cellular Biology; Academia Sinica; Taipei, Taiwan; Institute of Biochemical Sciences; National Taiwan University; Taipei, Taiwan
| |
Collapse
|
24
|
Mirkin EV, Chang FS, Kleckner N. Protein-mediated chromosome pairing of repetitive arrays. J Mol Biol 2013; 426:550-7. [PMID: 24211468 DOI: 10.1016/j.jmb.2013.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/28/2013] [Accepted: 11/02/2013] [Indexed: 10/26/2022]
Abstract
Chromosomally integrated arrays of lacO and tetO operator sites visualized by LacI and TetR repressor proteins fused with GFP (green fluorescent protein) (or other fluorescent proteins) are widely used to monitor the behavior of chromosomal loci in various systems. However, insertion of such arrays and expression of the corresponding proteins is known to perturb genomic architecture. In several cases, juxtaposition of such arrays located on different chromosomes has been inferred to reflect pairing of the corresponding loci. Here, we report that a version of TetR-GFP mutated to disrupt GFP dimerization (TetR-A206KGFP or "TetR-kGFP") abolishes pairing of tetO arrays in vivo and brings spatial proximity of chromosomal loci marked with those arrays back to the wild-type level. These data argue that pairing of arrays is caused by GFP dimerization and thus presents an example of protein-assisted interaction in chromosomes. Arrays marked with another protein, TetR-tdTomato, which has a propensity to form intramolecular dimers instead of intermolecular dimers, also display reduced level of pairing, supporting this idea. TetR-kGFP provides an improved system for studying chromosomal loci with a low pairing background.
Collapse
Affiliation(s)
- Ekaterina V Mirkin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Frederick S Chang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
25
|
Labrador L, Barroso C, Lightfoot J, Müller-Reichert T, Flibotte S, Taylor J, Moerman DG, Villeneuve AM, Martinez-Perez E. Chromosome movements promoted by the mitochondrial protein SPD-3 are required for homology search during Caenorhabditis elegans meiosis. PLoS Genet 2013; 9:e1003497. [PMID: 23671424 PMCID: PMC3649994 DOI: 10.1371/journal.pgen.1003497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/21/2013] [Indexed: 11/29/2022] Open
Abstract
Pairing of homologous chromosomes during early meiosis is essential to prevent the formation of aneuploid gametes. Chromosome pairing includes a step of homology search followed by the stabilization of homolog interactions by the synaptonemal complex (SC). These events coincide with dramatic changes in nuclear organization and rapid chromosome movements that depend on cytoskeletal motors and are mediated by SUN-domain proteins on the nuclear envelope, but how chromosome mobility contributes to the pairing process remains poorly understood. We show that defects in the mitochondria-localizing protein SPD-3 cause a defect in homolog pairing without impairing nuclear reorganization or SC assembly, which results in promiscuous installation of the SC between non-homologous chromosomes. Preventing SC assembly in spd-3 mutants does not improve homolog pairing, demonstrating that SPD-3 is required for homology search at the start of meiosis. Pairing center regions localize to SUN-1 aggregates at meiosis onset in spd-3 mutants; and pairing-promoting proteins, including cytoskeletal motors and polo-like kinase 2, are normally recruited to the nuclear envelope. However, quantitative analysis of SUN-1 aggregate movement in spd-3 mutants demonstrates a clear reduction in mobility, although this defect is not as severe as that seen in sun-1(jf18) mutants, which also show a stronger pairing defect, suggesting a correlation between chromosome-end mobility and the efficiency of pairing. SUN-1 aggregate movement is also impaired following inhibition of mitochondrial respiration or dynein knockdown, suggesting that mitochondrial function is required for motor-driven SUN-1 movement. The reduced chromosome-end mobility of spd-3 mutants impairs coupling of SC assembly to homology recognition and causes a delay in meiotic progression mediated by HORMA-domain protein HTP-1. Our work reveals how chromosome mobility impacts the different early meiotic events that promote homolog pairing and suggests that efficient homology search at the onset of meiosis is largely dependent on motor-driven chromosome movement. Sexually reproducing organisms carry two copies of each chromosome (homologs), which must be separated during gamete formation to prevent chromosome duplication in each generation. This chromosome halving is achieved during meiosis, a type of cell division in which the homologs recognize and pair with one another before they become intimately glued together by a structure called the synaptonemal complex (SC). Homolog pairing and SC assembly coincide with movement of chromosomes inside the nucleus, but how chromosome mobility impacts these events is not understood. We find that the mitochondrial protein SPD-3 is required to ensure normal levels of motor-driven chromosome movement and that, although pairing-promoting proteins are normally recruited at the start of meiosis in spd-3 mutants, reduced chromosome mobility impairs homolog pairing. In contrast, SC assembly is normally started, leading to the installation of SC between non-homologous chromosomes and demonstrating a failure in the coordination of pairing and SC assembly. Reduced movement also causes a controlled delay in exit from early meiotic stages characterized by chromosome clustering and active homology search. Our findings show how the different events that lead to the correct association of homologous chromosomes during early meiosis are affected by chromosome mobility.
Collapse
Affiliation(s)
- Leticia Labrador
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
| | - Consuelo Barroso
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
| | - James Lightfoot
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
| | | | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Jon Taylor
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Anne M. Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Enrique Martinez-Perez
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Lui DY, Cahoon CK, Burgess SM. Multiple opposing constraints govern chromosome interactions during meiosis. PLoS Genet 2013; 9:e1003197. [PMID: 23341780 PMCID: PMC3547833 DOI: 10.1371/journal.pgen.1003197] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/12/2012] [Indexed: 11/24/2022] Open
Abstract
Homolog pairing and crossing over during meiosis I prophase is required for accurate chromosome segregation to form euploid gametes. The repair of Spo11-induced double-strand breaks (DSB) using a homologous chromosome template is a major driver of pairing in many species, including fungi, plants, and mammals. Inappropriate pairing and crossing over at ectopic loci can lead to chromosome rearrangements and aneuploidy. How (or if) inappropriate ectopic interactions are disrupted in favor of allelic interactions is not clear. Here we used an in vivo "collision" assay in budding yeast to test the contributions of cohesion and the organization and motion of chromosomes in the nucleus on promoting or antagonizing interactions between allelic and ectopic loci at interstitial chromosome sites. We found that deletion of the cohesin subunit Rec8, but not other chromosome axis proteins (e.g. Red1, Hop1, or Mek1), caused an increase in homolog-nonspecific chromosome interaction, even in the absence of Spo11. This effect was partially suppressed by expression of the mitotic cohesin paralog Scc1/Mdc1, implicating Rec8's role in cohesion rather than axis integrity in preventing nonspecific chromosome interactions. Disruption of telomere-led motion by treating cells with the actin polymerization inhibitor Latrunculin B (Lat B) elevated nonspecific collisions in rec8Δ spo11Δ. Next, using a visual homolog-pairing assay, we found that the delay in homolog pairing in mutants defective for telomere-led chromosome motion (ndj1Δ or csm4Δ) is enhanced in Lat B-treated cells, implicating actin in more than one process promoting homolog juxtaposition. We suggest that multiple, independent contributions of actin, cohesin, and telomere function are integrated to promote stable homolog-specific interactions and to destabilize weak nonspecific interactions by modulating the elastic spring-like properties of chromosomes.
Collapse
Affiliation(s)
- Doris Y. Lui
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Cori K. Cahoon
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| | - Sean M. Burgess
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
27
|
Abstract
Gametogenesis combines two important features: reduction of the genome content from diploid to haploid by carefully partitioning chromosomes, and the subsequent differentiation into fertilization-competent gametes, which in males is characterized by profound nuclear restructuring. These are quite difficult tasks and require a tight coordination of different cellular mechanisms. Recent studies in the field established a key role for LINC complexes in both meiosis and sperm head formation. LINC complexes comprise SUN and KASH domain proteins that form nuclear envelope (NE) bridges, linking the nucleoskeleton to the cytoskeleton. They are well known for their crucial roles in diverse cellular and developmental processes, such as nuclear positioning and cell polarization. In this review, we highlight key roles ascribed to LINC complexes and to the nucleocytoskeletal connection in gametogenesis. First, we give a short overview about the general features of LINC components and the profound reorganization of the NE in germ cells. We then focus on specific roles of LINC complexes in meiotic chromosome dynamics and their impact on pairing, synapsis, and recombination. Finally, we provide an update of the mechanisms controlling sperm head formation and discuss the role of sperm-specific LINC complexes in nuclear shaping and their relation to specialized cytoskeletal structures that form concurrently with nuclear restructuring and sperm elongation.
Collapse
Affiliation(s)
- Martin P Kracklauer
- Department of Physiology, Wayne State University Medical School, Detroit, Michigan, USA
| | | | | |
Collapse
|
28
|
Lake CM, Hawley RS. The molecular control of meiotic chromosomal behavior: events in early meiotic prophase in Drosophila oocytes. Annu Rev Physiol 2012; 74:425-51. [PMID: 22335798 DOI: 10.1146/annurev-physiol-020911-153342] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the critical events in early meiotic prophase in Drosophila melanogaster oocytes. We focus on four aspects of this process: the formation of the synaptonemal complex (SC) and its role in maintaining homologous chromosome pairings, the critical roles of the meiosis-specific process of centromere clustering in the formation of a full-length SC, the mechanisms by which preprogrammed double-strand breaks initiate meiotic recombination, and the checkpoints that govern the progression and coordination of these processes. Central to this discussion are the roles that somatic pairing events play in establishing the necessary conditions for proper SC formation, the roles of centromere pairing in synapsis initiation, and the mechanisms by which oocytes detect failures in SC formation and/or recombination. Finally, we correlate what is known in Drosophila oocytes with our understanding of these processes in other systems.
Collapse
Affiliation(s)
- Cathleen M Lake
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
29
|
Lee CY, Conrad MN, Dresser ME. Meiotic chromosome pairing is promoted by telomere-led chromosome movements independent of bouquet formation. PLoS Genet 2012; 8:e1002730. [PMID: 22654677 PMCID: PMC3359977 DOI: 10.1371/journal.pgen.1002730] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 04/11/2012] [Indexed: 11/19/2022] Open
Abstract
Chromosome pairing in meiotic prophase is a prerequisite for the high fidelity of chromosome segregation that haploidizes the genome prior to gamete formation. In the budding yeast Saccharomyces cerevisiae, as in most multicellular eukaryotes, homologous pairing at the cytological level reflects the contemporaneous search for homology at the molecular level, where DNA double-strand broken ends find and interact with templates for repair on homologous chromosomes. Synapsis (synaptonemal complex formation) stabilizes pairing and supports DNA repair. The bouquet stage, where telomeres have formed a transient single cluster early in meiotic prophase, and telomere-promoted rapid meiotic prophase chromosome movements (RPMs) are prominent temporal correlates of pairing and synapsis. The bouquet has long been thought to contribute to the kinetics of pairing, but the individual roles of bouquet and RPMs are difficult to assess because of common dependencies. For example, in budding yeast RPMs and bouquet both require the broadly conserved SUN protein Mps3 as well as Ndj1 and Csm4, which link telomeres to the cytoskeleton through the intact nuclear envelope. We find that mutants in these genes provide a graded series of RPM activity: wild-type>mps3-dCC>mps3-dAR>ndj1Δ>mps3-dNT = csm4Δ. Pairing rates are directly correlated with RPM activity even though only wild-type forms a bouquet, suggesting that RPMs promote homologous pairing directly while the bouquet plays at most a minor role in Saccharomyces cerevisiae. A new collision trap assay demonstrates that RPMs generate homologous and heterologous chromosome collisions in or before the earliest stages of prophase, suggesting that RPMs contribute to pairing by stirring the nuclear contents to aid the recombination-mediated homology search.
Collapse
Affiliation(s)
- Chih-Ying Lee
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Michael N. Conrad
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Michael E. Dresser
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
30
|
Rao HBDP, Shinohara M, Shinohara A. Mps3 SUN domain is important for chromosome motion and juxtaposition of homologous chromosomes during meiosis. Genes Cells 2012; 16:1081-96. [PMID: 22017544 DOI: 10.1111/j.1365-2443.2011.01554.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In budding yeast, Mps3 is essential for duplicating the spindle pole body (SPB) and is critical for promoting chromosome motion during meiosis. It is a member of the SUN (Sad1-Unc-84) domain family of proteins that localizes to the inner nuclear envelope (NE) in many eukaryotic organisms and preferentially localizes to the SPB in vegetative growth; in meiotic prophase I, it redistributes to many sites within the NE. We constructed an mps3 mutant, mps3-sun, which completely lacks the SUN domain. Surprisingly, the mps3-sun mutation does not disrupt SPB duplication or Mps3 localization to the NE in meiosis. However, it confers several defects during meiotic prophase I including reduced chromosome motion, premature synapsis between homologous chromosomes, and reduced levels of closely juxtaposed homologous loci in pachytene. These findings suggest that in meiosis, the Mps3 SUN domain is important for modulating chromosome motion events that act in meiotic chromosome juxtaposition and by extension, promoting proper morphogenesis of the synaptonemal complex.
Collapse
Affiliation(s)
- Hanumanthu B D Prasada Rao
- Institute for Protein Research, Graduate School of Science, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|