1
|
Liu L, Wu Y, Liu K, Zhu M, Guang S, Wang F, Liu X, Yao X, He J, Fu C. The absence of the ribosomal protein Rpl2702 elicits the MAPK-mTOR signaling to modulate mitochondrial morphology and functions. Redox Biol 2024; 73:103174. [PMID: 38701646 PMCID: PMC11088351 DOI: 10.1016/j.redox.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024] Open
Abstract
Ribosomes mediate protein synthesis, which is one of the most energy-demanding activities within the cell, and mitochondria are one of the main sources generating energy. How mitochondrial morphology and functions are adjusted to cope with ribosomal defects, which can impair protein synthesis and affect cell viability, is poorly understood. Here, we used the fission yeast Schizosaccharomyces Pombe as a model organism to investigate the interplay between ribosome and mitochondria. We found that a ribosomal insult, caused by the absence of Rpl2702, activates a signaling pathway involving Sty1/MAPK and mTOR to modulate mitochondrial morphology and functions. Specifically, we demonstrated that Sty1/MAPK induces mitochondrial fragmentation in a mTOR-independent manner while both Sty1/MAPK and mTOR increases the levels of mitochondrial membrane potential and mitochondrial reactive oxygen species (mROS). Moreover, we demonstrated that Sty1/MAPK acts upstream of Tor1/TORC2 and Tor1/TORC2 and is required to activate Tor2/TORC1. The enhancements of mitochondrial membrane potential and mROS function to promote proliferation of cells bearing ribosomal defects. Hence, our study reveals a previously uncharacterized Sty1/MAPK-mTOR signaling axis that regulates mitochondrial morphology and functions in response to ribosomal insults and provides new insights into the molecular and physiological adaptations of cells to impaired protein synthesis.
Collapse
Affiliation(s)
- Ling Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yifan Wu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Mengdan Zhu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Shouhong Guang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Fengsong Wang
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jiajia He
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
2
|
Anderson CL, Brown KA, North RJ, Walters JK, Kaska ST, Wolff MR, Kamp TJ, Ge Y, Eckhardt LL. Global Proteomic Analysis Reveals Alterations in Differentially Expressed Proteins between Cardiopathic Lamin A/C Mutations. J Proteome Res 2024; 23:1970-1982. [PMID: 38718259 PMCID: PMC11218822 DOI: 10.1021/acs.jproteome.3c00853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Lamin A/C (LMNA) is an important component of nuclear lamina. Mutations cause arrhythmia, heart failure, and sudden cardiac death. While LMNA-associated cardiomyopathy typically has an aggressive course that responds poorly to conventional heart failure therapies, there is variability in severity and age of penetrance between and even within specific mutations, which is poorly understood at the cellular level. Further, this heterogeneity has not previously been captured to mimic the heterozygous state, nor have the hundreds of clinical LMNA mutations been represented. Herein, we have overexpressed cardiopathic LMNA variants in HEK cells and utilized state-of-the-art quantitative proteomics to compare the global proteomic profiles of (1) aggregating Q353 K alone, (2) Q353 K coexpressed with WT, (3) aggregating N195 K coexpressed with WT, and (4) nonaggregating E317 K coexpressed with WT to help capture some of the heterogeneity between mutations. We analyzed each data set to obtain the differentially expressed proteins (DEPs) and applied gene ontology (GO) and KEGG pathway analyses. We found a range of 162 to 324 DEPs from over 6000 total protein IDs with differences in GO terms, KEGG pathways, and DEPs important in cardiac function, further highlighting the complexity of cardiac laminopathies. Pathways disrupted by LMNA mutations were validated with redox, autophagy, and apoptosis functional assays in both HEK 293 cells and in induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) for LMNA N195 K. These proteomic profiles expand our repertoire for mutation-specific downstream cellular effects that may become useful as druggable targets for personalized medicine approach for cardiac laminopathies.
Collapse
Affiliation(s)
- Corey L. Anderson
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Kyle A. Brown
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705
| | - Ryan J. North
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Janay K. Walters
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Sara T. Kaska
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Mathew R. Wolff
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Timothy J. Kamp
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705
| | - Lee L. Eckhardt
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
3
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
4
|
Jejina A, Ayala Y, Beuchle D, Höhener T, Dörig RE, Vazquez-Pianzola P, Hernández G, Suter B. Role of BicDR in bristle shaft construction and support of BicD functions. J Cell Sci 2024; 137:jcs261408. [PMID: 38264934 PMCID: PMC10917063 DOI: 10.1242/jcs.261408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Cell polarization requires asymmetric localization of numerous mRNAs, proteins and organelles. The movement of cargo towards the minus end of microtubules mostly depends on cytoplasmic dynein motors. In the dynein-dynactin-Bicaudal-D transport machinery, Bicaudal-D (BicD) links the cargo to the motor. Here, we focus on the role of Drosophila BicD-related (BicDR, CG32137) in the development of the long bristles. Together with BicD, it contributes to the organization and stability of the actin cytoskeleton in the not-yet-chitinized bristle shaft. BicD and BicDR also support the stable expression and distribution of Rab6 and Spn-F in the bristle shaft, including the distal tip localization of Spn-F, pointing to the role of microtubule-dependent vesicle trafficking for bristle construction. BicDR supports the function of BicD, and we discuss the hypothesis whereby BicDR might transport cargo more locally, with BicD transporting cargo over long distances, such as to the distal tip. We also identified embryonic proteins that interact with BicDR and appear to be BicDR cargo. For one of them, EF1γ (also known as eEF1γ), we show that the encoding gene EF1γ interacts with BicD and BicDR in the construction of the bristles.
Collapse
Affiliation(s)
- Aleksandra Jejina
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, CH-3012 Bern, Switzerland
| | - Yeniffer Ayala
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), 14080 Tlalpan, Mexico City, Mexico
| | - Dirk Beuchle
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Thomas Höhener
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | - Ruth E. Dörig
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| | | | - Greco Hernández
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), 14080 Tlalpan, Mexico City, Mexico
| | - Beat Suter
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
5
|
Jejina A, Ayala Y, Hernández G, Suter B. Role of BicDR in bristle shaft construction, tracheal development, and support of BicD functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545245. [PMID: 37398393 PMCID: PMC10312712 DOI: 10.1101/2023.06.16.545245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cell polarization requires asymmetric localization of numerous mRNAs, proteins, and organelles. The movement of cargo towards the minus end of microtubules mostly depends on cytoplasmic dynein motors, which function as multiprotein complexes. In the dynein/dynactin/Bicaudal-D (DDB) transport machinery, Bicaudal-D (BicD) links the cargo to the motor. Here we focus on the role of BicD-related (BicDR) and its contribution to microtubule-dependent transport processes. Drosophila BicDR is required for the normal development of bristles and dorsal trunk tracheae. Together with BicD, it contributes to the organization and stability of the actin cytoskeleton in the not-yet-chitinized bristle shaft and the localization of Spn-F and Rab6 at the distal tip. We show that BicDR supports the function of BicD in bristle development and our results suggest that BicDR transports cargo more locally whereas BicD is more responsible for delivering functional cargo over the long distance to the distal tip. We identified the proteins that interact with BicDR and appear to be BicDR cargo in embryonic tissues. For one of them, EF1γ, we showed that EF1γ genetically interacts with BicD and BicDR in the construction of the bristles.
Collapse
Affiliation(s)
- Aleksandra Jejina
- Institute of Cell Biology, University of Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Yeniffer Ayala
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), Mexico City, Mexico
| | - Greco Hernández
- Laboratory of Translation and Cancer, Unit of Biomedical Research on Cancer, Instituto Nacional de Cancerologıá (INCan), Mexico City, Mexico
| | - Beat Suter
- Institute of Cell Biology, University of Bern, Switzerland
| |
Collapse
|
6
|
Zhou H, Astore C, Skolnick J. PHEVIR: an artificial intelligence algorithm that predicts the molecular role of pathogens in complex human diseases. Sci Rep 2022; 12:20889. [PMID: 36463386 PMCID: PMC9719543 DOI: 10.1038/s41598-022-25412-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Infectious diseases are known to cause a wide variety of post-infection complications. However, it's been challenging to identify which diseases are most associated with a given pathogen infection. Using the recently developed LeMeDISCO approach that predicts comorbid diseases associated with a given set of putative mode of action (MOA) proteins and pathogen-human protein interactomes, we developed PHEVIR, an algorithm which predicts the corresponding human disease comorbidities of 312 viruses and 57 bacteria. These predictions provide an understanding of the molecular bases of complications and means of identifying appropriate drug targets to treat them. As an illustration of its power, PHEVIR is applied to identify putative driver pathogens and corresponding human MOA proteins for Type 2 diabetes, atherosclerosis, Alzheimer's disease, and inflammatory bowel disease. Additionally, we explore the origins of the oncogenicity/oncolyticity of certain pathogens and the relationship between heart disease and influenza. The full PHEVIR database is available at https://sites.gatech.edu/cssb/phevir/ .
Collapse
Affiliation(s)
- Hongyi Zhou
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, N.W., Atlanta, GA, 30332, USA
| | - Courtney Astore
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, N.W., Atlanta, GA, 30332, USA
| | - Jeffrey Skolnick
- Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, N.W., Atlanta, GA, 30332, USA.
| |
Collapse
|
7
|
The Identification and Validation of Hub Genes Associated with Acute Myocardial Infarction Using Weighted Gene Co-Expression Network Analysis. J Cardiovasc Dev Dis 2022; 9:jcdd9010030. [PMID: 35050240 PMCID: PMC8778825 DOI: 10.3390/jcdd9010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Acute myocardial infarction (AMI), one of the most severe and fatal cardiovascular diseases, remains the main cause of mortality and morbidity worldwide. The objective of this study is to investigate the potential biomarkers for AMI based on bioinformatics analysis. A total of 2102 differentially expressed genes (DEGs) were screened out from the data obtained from the gene expression omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) explored the co-expression network of DEGs and determined the key module. The brown module was selected as the key one correlated with AMI. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses demonstrated that genes in the brown module were mainly enriched in ‘ribosomal subunit’ and ‘Ribosome’. Gene Set Enrichment Analysis revealed that ‘TNFA_SIGNALING_VIA_NFKB’ was remarkably enriched in AMI. Based on the protein–protein interaction network, ribosomal protein L9 (RPL9) and ribosomal protein L26 (RPL26) were identified as the hub genes. Additionally, the polymerase chain reaction (PCR) results indicated that the expression levels of RPL9 and RPL26 were both downregulated in AMI patients compared with controls, in accordance with the bioinformatics analysis. In summary, the identified DEGs, modules, pathways, and hub genes provide clues and shed light on the potential molecular mechanisms of AMI.
Collapse
|
8
|
Nim HT, Dang L, Thiyagarajah H, Bakopoulos D, See M, Charitakis N, Sibbritt T, Eichenlaub MP, Archer SK, Fossat N, Burke RE, Tam PPL, Warr CG, Johnson TK, Ramialison M. A cis-regulatory-directed pipeline for the identification of genes involved in cardiac development and disease. Genome Biol 2021; 22:335. [PMID: 34906219 PMCID: PMC8672579 DOI: 10.1186/s13059-021-02539-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Congenital heart diseases are the major cause of death in newborns, but the genetic etiology of this developmental disorder is not fully known. The conventional approach to identify the disease-causing genes focuses on screening genes that display heart-specific expression during development. However, this approach would have discounted genes that are expressed widely in other tissues but may play critical roles in heart development. RESULTS We report an efficient pipeline of genome-wide gene discovery based on the identification of a cardiac-specific cis-regulatory element signature that points to candidate genes involved in heart development and congenital heart disease. With this pipeline, we retrieve 76% of the known cardiac developmental genes and predict 35 novel genes that previously had no known connectivity to heart development. Functional validation of these novel cardiac genes by RNAi-mediated knockdown of the conserved orthologs in Drosophila cardiac tissue reveals that disrupting the activity of 71% of these genes leads to adult mortality. Among these genes, RpL14, RpS24, and Rpn8 are associated with heart phenotypes. CONCLUSIONS Our pipeline has enabled the discovery of novel genes with roles in heart development. This workflow, which relies on screening for non-coding cis-regulatory signatures, is amenable for identifying developmental and disease genes for an organ without constraining to genes that are expressed exclusively in the organ of interest.
Collapse
Affiliation(s)
- Hieu T. Nim
- Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC Australia
- Murdoch Children’s Research Institute, Parkville, VIC Australia
| | - Louis Dang
- Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC Australia
| | - Harshini Thiyagarajah
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC Australia
| | - Daniel Bakopoulos
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC Australia
| | - Michael See
- Murdoch Children’s Research Institute, Parkville, VIC Australia
- Monash Bioinformatics Platform, Monash University, Clayton, VIC Australia
| | - Natalie Charitakis
- Murdoch Children’s Research Institute, Parkville, VIC Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC Australia
| | - Tennille Sibbritt
- Embryology Research Unit, Children’s Medical Research Institute, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales Australia
| | - Michael P. Eichenlaub
- Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC Australia
| | - Stuart K. Archer
- Monash Bioinformatics Platform, Monash University, Clayton, VIC Australia
| | - Nicolas Fossat
- Embryology Research Unit, Children’s Medical Research Institute, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales Australia
- Present address: Copenhagen Hepatitis C Program, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
- Present address: Department of Infectious Diseases, Hvidovre Hospital, Hvidovre, Denmark
| | - Richard E. Burke
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC Australia
| | - Patrick P. L. Tam
- Embryology Research Unit, Children’s Medical Research Institute, and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales Australia
| | - Coral G. Warr
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC Australia
- School of Molecular Sciences, La Trobe University, Bundoora, Victoria 3083 Australia
| | - Travis K. Johnson
- School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute and Systems Biology Institute Australia, Monash University, Clayton, VIC Australia
- Murdoch Children’s Research Institute, Parkville, VIC Australia
| |
Collapse
|
9
|
Wu B, Yu J, Liu Y, Dou G, Hou Y, Zhang Z, Pan X, Wang H, Zhou P, Zhu D. Potential Pathogenic Genes and Mechanism of Ankylosing Spondylitis: A Study Based on WGCNA and Bioinformatics Analysis. World Neurosurg 2021; 158:e543-e556. [PMID: 34775094 DOI: 10.1016/j.wneu.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The purpose of this study is to explore the high-risk pathogenic driver genes for the occurrence and development of ankylosing spondylitis (AS) based on the bioinformatics method at the molecular level, to further elaborate the molecular mechanism of the pathogenesis of AS, and to provide potential biological targets for the diagnosis and treatment of clinical AS. METHODS The gene expression profile data GSE16879 were downloaded from the GEO (Gene Expression Omnibus) database, and weighted gene coexpression network analysis was performed. Highly correlated genes were divided into 14 modules, and 582 genes contained in the yellow (classic module) and 59 genes contained in grey60 (hematologic module) modules had the strongest correlation with AS. After protein-protein interaction (PPI) analysis, the top 20 genes with the highest scores were obtained from classic module and hematologic module, respectively. The DAVID (Database for Annotation, Visualization, and Integrated Discovery) database was used for Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes analysis to analyze the biological functions of high-risk genes related to AS. RESULTS The results showed that the process of signal recognition particle-dependent cotranslational protein targeting to membrane, ribosome, nicotinamide adenine diphosphate hydride dehydrogenase (ubiquinone) activity, platelet activation, integrin complex, and extracellular matrix binding were enriched. CONCLUSIONS In this study, weighted gene coexpression network analysis, an efficient system biology algorithm, was used to analyze the high-risk pathogenic driver gene of AS. We provide new targets for the diagnosis and treatment of clinical AS and new ideas for further study.
Collapse
Affiliation(s)
- Bo Wu
- Department of Orthopaedics, the First Bethune Hospital of Jilin University, Changchun, China; Clinical College, Jilin University, Changchun, China
| | - Jing Yu
- Operating Theatre No. 1, the First Bethune Hospital of Jilin University, Changchun, China
| | - Yibing Liu
- Clinical College, Jilin University, Changchun, China
| | - Gaojing Dou
- Clinical College, Jilin University, Changchun, China; Department of Breast Surgery, the First Bethune Hospital of Jilin University, Changchun, China
| | - Yuanyuan Hou
- Clinical College, Jilin University, Changchun, China
| | - Zhiyun Zhang
- Clinical College, Jilin University, Changchun, China
| | - Xuefeng Pan
- Department of Obstetrics, the First Bethune Hospital of Jilin University, Changchun, China
| | - Hongyu Wang
- Clinical College, Jilin University, Changchun, China
| | - Pengcheng Zhou
- Department of Orthopaedics, the First Bethune Hospital of Jilin University, Changchun, China
| | - Dong Zhu
- Department of Orthopaedics, the First Bethune Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Schroeder AM, Allahyari M, Vogler G, Missinato MA, Nielsen T, Yu MS, Theis JL, Larsen LA, Goyal P, Rosenfeld JA, Nelson TJ, Olson TM, Colas AR, Grossfeld P, Bodmer R. Model system identification of novel congenital heart disease gene candidates: focus on RPL13. Hum Mol Genet 2020; 28:3954-3969. [PMID: 31625562 DOI: 10.1093/hmg/ddz213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/28/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
Genetics is a significant factor contributing to congenital heart disease (CHD), but our understanding of the genetic players and networks involved in CHD pathogenesis is limited. Here, we searched for de novo copy number variations (CNVs) in a cohort of 167 CHD patients to identify DNA segments containing potential pathogenic genes. Our search focused on new candidate disease genes within 19 deleted de novo CNVs, which did not cover known CHD genes. For this study, we developed an integrated high-throughput phenotypical platform to probe for defects in cardiogenesis and cardiac output in human induced pluripotent stem cell (iPSC)-derived multipotent cardiac progenitor (MCPs) cells and, in parallel, in the Drosophila in vivo heart model. Notably, knockdown (KD) in MCPs of RPL13, a ribosomal gene and SON, an RNA splicing cofactor, reduced proliferation and differentiation of cardiomyocytes, while increasing fibroblasts. In the fly, heart-specific RpL13 KD, predominantly at embryonic stages, resulted in a striking 'no heart' phenotype. KD of Son and Pdss2, among others, caused structural and functional defects, including reduced or abolished contractility, respectively. In summary, using a combination of human genetics and cardiac model systems, we identified new genes as candidates for causing human CHD, with particular emphasis on ribosomal genes, such as RPL13. This powerful, novel approach of combining cardiac phenotyping in human MCPs and in the in vivo Drosophila heart at high throughput will allow for testing large numbers of CHD candidates, based on patient genomic data, and for building upon existing genetic networks involved in heart development and disease.
Collapse
Affiliation(s)
- Analyne M Schroeder
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Massoud Allahyari
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA, USA
| | - Georg Vogler
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maria A Missinato
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Tanja Nielsen
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael S Yu
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jeanne L Theis
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Preeya Goyal
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Timothy J Nelson
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy M Olson
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexandre R Colas
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Paul Grossfeld
- Department of Pediatrics, UCSD School of Medicine, La Jolla, CA, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
11
|
Ghosh A, Shcherbik N. Effects of Oxidative Stress on Protein Translation: Implications for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E2661. [PMID: 32290431 PMCID: PMC7215667 DOI: 10.3390/ijms21082661] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVDs) are a group of disorders that affect the heart and blood vessels. Due to their multifactorial nature and wide variation, CVDs are the leading cause of death worldwide. Understanding the molecular alterations leading to the development of heart and vessel pathologies is crucial for successfully treating and preventing CVDs. One of the causative factors of CVD etiology and progression is acute oxidative stress, a toxic condition characterized by elevated intracellular levels of reactive oxygen species (ROS). Left unabated, ROS can damage virtually any cellular component and affect essential biological processes, including protein synthesis. Defective or insufficient protein translation results in production of faulty protein products and disturbances of protein homeostasis, thus promoting pathologies. The relationships between translational dysregulation, ROS, and cardiovascular disorders will be examined in this review.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| |
Collapse
|
12
|
Nukala SB, Regazzoni L, Aldini G, Zodda E, Tura-Ceide O, Mills NL, Cascante M, Carini M, D'Amato A. Differentially Expressed Proteins in Primary Endothelial Cells Derived From Patients With Acute Myocardial Infarction. Hypertension 2019; 74:947-956. [PMID: 31446798 DOI: 10.1161/hypertensionaha.119.13472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endothelial dysfunction is one of the primary factors in the onset and progression of atherothrombosis resulting in acute myocardial infarction (AMI). However, the pathological and cellular mechanisms of endothelial dysfunction in AMI have not been systematically studied. Protein expression profiling in combination with a protein network analysis was used by the mass spectrometry-based label-free quantification approach. This identified and quantified 2246 proteins, of which 335 were differentially regulated in coronary arterial endothelial cells from patients with AMI compared with controls. The differentially regulated protein profiles reveal the alteration of (1) metabolism of RNA, (2) platelet activation, signaling, and aggregation, (3) neutrophil degranulation, (4) metabolism of amino acids and derivatives, (5) cellular responses to stress, and (6) response to elevated platelet cytosolic Ca2+ pathways. Increased production of oxidants and decreased production of antioxidant biomarkers as well as downregulation of proteins with antioxidant properties suggests a role for oxidative stress in mediating endothelial dysfunction during AMI. In conclusion, this is the first quantitative proteomics study to evaluate the cellular mechanisms of endothelial dysfunction in patients with AMI. A better understanding of the endothelial proteome and pathophysiology of AMI may lead to the identification of new drug targets.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.).,Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Spain (S.B.N., E.Z., M. Cascante)
| | - Luca Regazzoni
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.)
| | - Giancarlo Aldini
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.)
| | - Erika Zodda
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Spain (S.B.N., E.Z., M. Cascante)
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Spain (O.T.-C.).,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain (O.T.-C.)
| | - Nicholas L Mills
- BHF Centre for Cardiovascular Science, University of Edinburgh, United Kingdom (N.L.M.).,Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, UK (N.L.M.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine and Institute of Biomedicine (IBUB), Faculty of Biology, University of Barcelona, Spain (S.B.N., E.Z., M. Cascante).,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD) and metabolomics node at INB-Bioinfarmatics Platform, Instituto de Salud Carlos III (ISCIII), Madrid, Spain (M. Cascante)
| | - Marina Carini
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.)
| | - Alfonsina D'Amato
- From the Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy (S.B.N., L.R., G.A., M. Carini, A.D.A.)
| |
Collapse
|
13
|
Long PA, Theis JL, Shih YH, Maleszewski JJ, Abell Aleff PC, Evans JM, Xu X, Olson TM. Recessive TAF1A mutations reveal ribosomopathy in siblings with end-stage pediatric dilated cardiomyopathy. Hum Mol Genet 2018; 26:2874-2881. [PMID: 28472305 DOI: 10.1093/hmg/ddx169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/27/2017] [Indexed: 12/14/2022] Open
Abstract
Non-ischemic dilated cardiomyopathy (DCM) has been recognized as a heritable disorder for over 25 years, yet clinical genetic testing is non-diagnostic in >50% of patients, underscoring the ongoing need for DCM gene discovery. Here, whole exome sequencing uncovered a novel molecular basis for idiopathic end-stage heart failure in two sisters who underwent cardiac transplantation at three years of age. Compound heterozygous recessive mutations in TAF1A, encoding an RNA polymerase I complex protein, were associated with marked fibrosis of explanted hearts and gene-specific nucleolar segregation defects in cardiomyocytes, indicative of impaired ribosomal RNA synthesis. Knockout of the homologous gene in zebrafish recapitulated a heart failure phenotype with pericardial edema, decreased ventricular systolic function, and embryonic mortality. These findings expand the clinical spectrum of ribosomopathies to include pediatric DCM.
Collapse
Affiliation(s)
- Pamela A Long
- Mayo Graduate School of Biomedical Sciences, Molecular Pharmacology and Experimental Therapeutics Track.,Cardiovascular Genetics Research Laboratory
| | | | - Yu-Huan Shih
- Department of Biochemistry and Molecular Biology
| | - Joseph J Maleszewski
- Department of Cardiovascular Medicine.,Department of Laboratory Medicine and Pathology
| | | | - Jared M Evans
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology.,Department of Cardiovascular Medicine
| | - Timothy M Olson
- Cardiovascular Genetics Research Laboratory.,Department of Cardiovascular Medicine.,Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Gopisetty G, Thangarajan R. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease. Gene 2016; 589:27-35. [PMID: 27170550 DOI: 10.1016/j.gene.2016.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/06/2016] [Indexed: 12/25/2022]
Abstract
Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology.
Collapse
Affiliation(s)
- Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, India
| | | |
Collapse
|
15
|
Abstract
Throughout their lifetime, cells may suffer insults that reduce their fitness and disrupt their function, and it is unclear how these potentially harmful cells are managed in adult tissues. We address this question using the adult Drosophila posterior midgut as a model of homeostatic tissue and ribosomal Minute mutations to reduce fitness in groups of cells. We take a quantitative approach combining lineage tracing and biophysical modeling and address how cell competition affects stem cell and tissue population dynamics. We show that healthy cells induce clonal extinction in weak tissues, targeting both stem and differentiated cells for elimination. We also find that competition induces stem cell proliferation and self-renewal in healthy tissue, promoting selective advantage and tissue colonization. Finally, we show that winner cell proliferation is fueled by the JAK-STAT ligand Unpaired-3, produced by Minute−/+ cells in response to chronic JNK stress signaling. In the adult fly gut, wild-type cells outcompete subfit Minute−/+ cells Both stem and differentiated Minute−/+ cells are eliminated by cell competition Cell competition promotes proliferation and self-renewal of normal stem cells The growth of healthy cells is boosted by JAK-STAT signaling
Collapse
|
16
|
Liu D, Han L, Wu X, Yang X, Zhang Q, Jiang F. Genome-wide microRNA changes in human intracranial aneurysms. BMC Neurol 2014; 14:188. [PMID: 25300531 PMCID: PMC4210474 DOI: 10.1186/s12883-014-0188-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 09/22/2014] [Indexed: 01/14/2023] Open
Abstract
Background Intracranial aneurysms are pathological dilatations of the cerebral artery, while rupture of intracranial aneurysms causes life-threatening subarachnoid hemorrhage. The molecular mechanisms of pathogenesis of intracranial aneurysms are poorly understood. MicroRNAs have fundamental roles in modulating vascular biology and disease. In the present study, we carried out a genome-wide characterization on expressions of microRNAs, and performed integrative analyses in conjunction with changes of the transcriptome in human intracranial aneurysms. Methods Genome-wide microRNA screening was performed in 6 intracranial aneurysmal samples and 6 normal superficial temporal arteries. Each case and control pair was individually matched with gender, age (±5 years), and high blood pressure history. Microarray analysis was performed using Agilent Human miRNA arrays. Results As compared to normal arteries, we identified 157 microRNAs that were differentially expressed in the aneurysmal tissue (P < 0.05 and fold change ≥ 2), including 72 upregulated and 85 downregulated. The changed microRNAs included endothelium-enriched microRNAs such as members of the let-7 family, miR-17, miR-23b, miR-126, hsa-miR-24-1 and miR-222, and vascular smooth muscle-enriched miRNAs such as miR-143 and miR-145. Moreover, miR-1, miR-10a, miR-125b, and miR-26a, which were implicated in modulating vascular smooth muscle cell functions such as proliferation, apoptosis and shift of phenotype, were also changed. In contrast, microRNAs involved in monocyte and macrophage functions, such as miR-155, miR-146a, miR-223, and miR-124a, were not significantly changed. Bioinformatic analysis revealed that the changed microRNAs were associated with several biological processes related to aneurysm formation, including inflammation, dysregulation of extracellular matrix, smooth muscle cell proliferation, programmed cell death, and response to oxidative stress. Interestingly, we found that a subset of the potential microRNA target genes belonged to the protein translation machinery, including various eukaryotic translation initiation factors and ribosomal proteins, and this finding was highly correlated with our previous transcriptome data showing that multiple genes of the ribosomal proteins and translation initiation and elongation factors were significantly downregulated in human intracranial aneurysms. Conclusions Our results support that dysregulated microRNAs may have a pathogenic role in intracranial aneurysms. Disruption of the protein translation process may have a pathogenic role in the development of intracranial aneurysms. Electronic supplementary material The online version of this article (doi:10.1186/s12883-014-0188-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, 107 Wenhuaxi Road, Jinan 250012, Shandong Province, China.
| | | |
Collapse
|
17
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
18
|
Frédéric MY, Lundin VF, Whiteside MD, Cueva JG, Tu DK, Kang SYC, Singh H, Baillie DL, Hutter H, Goodman MB, Brinkman FSL, Leroux MR. Identification of 526 conserved metazoan genetic innovations exposes a new role for cofactor E-like in neuronal microtubule homeostasis. PLoS Genet 2013; 9:e1003804. [PMID: 24098140 PMCID: PMC3789837 DOI: 10.1371/journal.pgen.1003804] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 08/03/2013] [Indexed: 11/30/2022] Open
Abstract
The evolution of metazoans from their choanoflagellate-like unicellular ancestor coincided with the acquisition of novel biological functions to support a multicellular lifestyle, and eventually, the unique cellular and physiological demands of differentiated cell types such as those forming the nervous, muscle and immune systems. In an effort to understand the molecular underpinnings of such metazoan innovations, we carried out a comparative genomics analysis for genes found exclusively in, and widely conserved across, metazoans. Using this approach, we identified a set of 526 core metazoan-specific genes (the ‘metazoanome’), approximately 10% of which are largely uncharacterized, 16% of which are associated with known human disease, and 66% of which are conserved in Trichoplax adhaerens, a basal metazoan lacking neurons and other specialized cell types. Global analyses of previously-characterized core metazoan genes suggest a prevalent property, namely that they act as partially redundant modifiers of ancient eukaryotic pathways. Our data also highlights the importance of exaptation of pre-existing genetic tools during metazoan evolution. Expression studies in C. elegans revealed that many metazoan-specific genes, including tubulin folding cofactor E-like (TBCEL/coel-1), are expressed in neurons. We used C. elegans COEL-1 as a representative to experimentally validate the metazoan-specific character of our dataset. We show that coel-1 disruption results in developmental hypersensitivity to the microtubule drug paclitaxel/taxol, and that overexpression of coel-1 has broad effects during embryonic development and perturbs specialized microtubules in the touch receptor neurons (TRNs). In addition, coel-1 influences the migration, neurite outgrowth and mechanosensory function of the TRNs, and functionally interacts with components of the tubulin acetylation/deacetylation pathway. Together, our findings unveil a conserved molecular toolbox fundamental to metazoan biology that contains a number of neuronally expressed and disease-related genes, and reveal a key role for TBCEL/coel-1 in regulating microtubule function during metazoan development and neuronal differentiation. The evolution of multicellular animals (metazoans) from their single-celled ancestor required new molecular tools to create and coordinate the various biological functions involved in a communal, or multicellular, lifestyle. This would eventually include the unique cellular and physiological demands of specialized tissues like the nervous system. To identify and understand the genetic bases of such unique metazoan traits, we used a comparative genomics approach to identify 526 metazoan-specific genes which have been evolutionarily conserved throughout the diversification of the animal kingdom. Interestingly, we found that some of those genes are still completely uncharacterized or poorly studied. We used the metazoan model organism C. elegans to examine the expression of some poorly characterized metazoan-specific genes and found that many, including one encoding tubulin folding cofactor E-like (TBCEL; C. elegans COEL-1), are expressed in cells of the nervous system. Using COEL-1 as an example to understand the metazoan-specific character of our dataset, our studies reveal a new role for this protein in regulating the stability of the microtubule cytoskeleton during development, and function of the touch receptor neurons. In summary, our findings help define a conserved molecular toolbox important for metazoan biology, and uncover an important role for COEL-1/TBCEL during development and in the nervous system of the metazoan C. elegans.
Collapse
Affiliation(s)
- Melissa Y. Frédéric
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Victor F. Lundin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Matthew D. Whiteside
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Juan G. Cueva
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Domena K. Tu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - S. Y. Catherine Kang
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Cancer Control Research, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Hansmeet Singh
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - David L. Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Harald Hutter
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Miriam B. Goodman
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
| | - Fiona S. L. Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
19
|
Abraham DM, Wolf MJ. Disruption of sarcoendoplasmic reticulum calcium ATPase function in Drosophila leads to cardiac dysfunction. PLoS One 2013; 8:e77785. [PMID: 24098595 PMCID: PMC3789689 DOI: 10.1371/journal.pone.0077785] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
Abnormal sarcoendoplasmic reticulum Calcium ATPase (SERCA) function has been associated with poor cardiac function in humans. While modifiers of SERCA function have been identified and studied using animal models, further investigation has been limited by the absence of a model system that is amenable to large-scale genetic screens. Drosophila melanogaster is an ideal model system for the investigation of SERCA function due to the significant homology to human SERCA and the availability of versatile genetic screening tools. To further the use of Drosophila as a model for examining the role of SERCA in cardiac function, we examined cardiac function in adult flies. Using optical coherence tomography (OCT) imaging in awake, adult Drosophila, we have been able to characterize cardiac chamber dimensions in flies with disrupted in Drosophila SERCA (CaP60A). We found that the best studied CaP60A mutant, the conditional paralytic mutant CaP60Akum170, develops marked bradycardia and chamber enlargement that is closely linked to the onset of paralysis and dependent on extra cardiac CaP60A. In contrast to prior work, we show that disruption of CaP60A in a cardiac specific manner results in cardiac dilation and dysfunction rather than alteration in heart rate. In addition, the co-expression of a calcium release channel mutation with CaP60A kum170 is sufficient to rescue the cardiac phenotype but not paralysis. Finally, we show that CaP60A overexpression is able to rescue cardiac function in a model of Drosophila cardiac dysfunction similar to what is observed in mammals. Thus, we present a cardiac phenotype associated with Drosophila SERCA dysfunction that would serve as additional phenotyping for further large-scale genetic screens for novel modifiers of SERCA function.
Collapse
Affiliation(s)
- Dennis M. Abraham
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthew J. Wolf
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
20
|
Rackham O, Filipovska A. Supernumerary proteins of mitochondrial ribosomes. Biochim Biophys Acta Gen Subj 2013; 1840:1227-32. [PMID: 23958563 DOI: 10.1016/j.bbagen.2013.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Messenger RNAs encoded by mitochondrial genomes are translated on mitochondrial ribosomes that have unique structure and protein composition compared to prokaryotic and cytoplasmic ribosomes. Mitochondrial ribosomes are a patchwork of core proteins that share homology with prokaryotic ribosomal proteins and new, supernumerary proteins that can be unique to different organisms. In mammals, there are specific supernumerary ribosomal proteins that are not present in other eukaryotes. SCOPE OF REVIEW Here we discuss the roles of supernumerary proteins in the regulation of mitochondrial gene expression and compare them among different eukaryotic systems. Furthermore, we consider if differences in the structure and organization of mitochondrial genomes may have contributed to the acquisition of mitochondrial ribosomal proteins with new functions. MAJOR CONCLUSIONS The distinct and diverse compositions of mitochondrial ribosomes illustrate the high evolutionary divergence found between mitochondrial genetic systems. GENERAL SIGNIFICANCE Elucidating the role of the organism-specific supernumerary proteins may provide a window into the regulation of mitochondrial gene expression through evolution in response to distinct evolutionary paths taken by mitochondria in different organisms. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Oliver Rackham
- Western Australian Institute for Medical Research, Western Australia 6000, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Western Australian Institute for Medical Research, Western Australia 6000, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Western Australia 6009, Australia.
| |
Collapse
|
21
|
Casad ME, Yu L, Daniels JP, Wolf MJ, Rockman HA. Deletion of Siah-interacting protein gene in Drosophila causes cardiomyopathy. Mol Genet Genomics 2012; 287:351-60. [PMID: 22398840 DOI: 10.1007/s00438-012-0684-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/22/2012] [Indexed: 01/18/2023]
Abstract
Drosophila is a useful model organism in which the genetics of human diseases, including recent advances in identification of the genetics of heart development and disease in the fly, can be studied. To identify novel genes that cause cardiomyopathy, we performed a deficiency screen in adult Drosophila. Using optical coherence tomography to phenotype cardiac function in awake adult Drosophila, we identified Df(1)Exel6240 as having cardiomyopathy. Using a number of strategies including customized smaller deletions, screening of mutant alleles, and transgenic rescue, we identified CG3226 as the causative gene for this deficiency. CG3226 is an uncharacterized gene in Drosophila possessing homology to the mammalian Siah-interacting protein (SIP) gene. Mammalian SIP functions as an adaptor protein involved in one of the β-catenin degradation complexes. To investigate the effects of altering β-catenin/Armadillo signaling in the adult fly, we measured heart function in flies expressing either constitutively active Armadillo or transgenic constructs that block Armadillo signaling, specifically in the heart. While, increasing Armadillo signaling in the heart did not have an effect on adult heart function, decreasing Armadillo signaling in the fly heart caused the significant reduction in heart chamber size. In summary, we show that deletion of CG3226, which has homology to mammalian SIP, causes cardiomyopathy in adult Drosophila. Alterations in Armadillo signaling during development lead to important changes in the size and function of the adult heart.
Collapse
Affiliation(s)
- Michelle E Casad
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
22
|
Harrington L. Haploinsufficiency and telomere length homeostasis. Mutat Res 2012; 730:37-42. [PMID: 22100521 DOI: 10.1016/j.mrfmmm.2011.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 11/01/2011] [Indexed: 05/22/2023]
Abstract
In humans, autosomal dominant or X-linked disease can arise through a phenomenon termed haploinsufficiency, where one remaining wild-type allele is insufficient for function. In model organisms, the impact of heterozygosity can be tested directly with engineered mutant alleles or in a hemizygous state where the expression of one allele is abrogated completely. This review will focus on haploinsufficiency as it relates to telomerase and telomere length maintenance and, citing selected examples in various model organisms, it will discuss how the problem of gene dosage relates to telomere function in normal and diseased states.
Collapse
|