1
|
Tan X, Zeng W, Yang Y, Lin Z, Li F, Liu J, Chen S, Liu YG, Xie W, Xie X. Genome-wide profiling of polymorphic short tandem repeats and their influence on gene expression and trait variation in diverse rice populations. J Genet Genomics 2025:S1673-8527(25)00078-5. [PMID: 40089018 DOI: 10.1016/j.jgg.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Short tandem repeats (STRs) modulate gene expression and contribute to trait variation. However, a systematic evaluation of the genomic characteristics of STRs has not been conducted, and their influence on gene expression in rice remains unclear. Here, we construct a map of 137,629 polymorphic STRs in the rice (Oryza sativa L.) genome using a population-scale resequencing dataset. A genome-wide survey encompassing 4,726 accessions shows that the occurrence frequency, mutational patterns, chromosomal distribution, and functional properties of STRs are correlated with the sequences and lengths of repeat motifs. Leveraging a transcriptome dataset from 127 rice accessions, we identify 44,672 expression STRs (eSTRs) by modeling gene expression in response to the length variation of STRs. These eSTRs are notably enriched in the regulatory regions of genes with active transcriptional signatures. Population analysis identifies numerous STRs that have undergone genetic divergence among different rice groups and 1,726 tagged STRs that may be associated with agronomic traits. By editing the (ACT)7 STR in OsFD1 promoter, we further experimentally validate its role in regulating gene expression and phenotype. Our study highlights the contribution of STRs to transcriptional regulation in plants and establishes the foundation for their potential use as alternative targets for genetic improvement.
Collapse
Affiliation(s)
- Xiyu Tan
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wanyong Zeng
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yujian Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhansheng Lin
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fuquan Li
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jianhong Liu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shaotong Chen
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yao-Guang Liu
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Xianrong Xie
- Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Ranathunge C, Welch ME. Clinal Variation in Short Tandem Repeats Linked to Gene Expression in Sunflower ( Helianthus annuus L.). Biomolecules 2024; 14:944. [PMID: 39199332 PMCID: PMC11352406 DOI: 10.3390/biom14080944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Short tandem repeat (STR) variation is rarely explored as a contributor to adaptive evolution. An intriguing mechanism involving STRs suggests that STRs function as "tuning knobs" of adaptation whereby stepwise changes in STR allele length have stepwise effects on phenotypes. Previously, we tested the predictions of the "tuning knob" model at the gene expression level by conducting an RNA-Seq experiment on natural populations of common sunflower (Helianthus annuus L.) transecting a well-defined cline from Kansas to Oklahoma. We identified 479 STRs with significant allele length effects on gene expression (eSTRs). In this study, we expanded the range to populations further north and south of the focal populations and used a targeted approach to study the relationship between STR allele length and gene expression in five selected eSTRs. Seeds from 96 individuals from six natural populations of sunflower from Nebraska and Texas were grown in a common garden. The individuals were genotyped at the five eSTRs, and gene expression was quantified with qRT-PCR. Linear regression models identified that eSTR length in comp26672 was significantly correlated with gene expression. Further, the length of comp26672 eSTR was significantly correlated with latitude across the range from Nebraska to Texas. The eSTR locus comp26672 was located in the CHUP1 gene, a gene associated with chloroplast movement in response to light intensity, which suggests a potential adaptive role for the eSTR locus. Collectively, our results from this targeted study show a consistent relationship between allele length and gene expression in some eSTRs across a broad geographical range in sunflower and suggest that some eSTRs may contribute to adaptive traits in common sunflower.
Collapse
|
3
|
Liang Y, Hao J, Wang J, Zhang G, Su Y, Liu Z, Wang T. Statistical Genomics Analysis of Simple Sequence Repeats from the Paphiopedilum Malipoense Transcriptome Reveals Control Knob Motifs Modulating Gene Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304848. [PMID: 38647414 PMCID: PMC11200097 DOI: 10.1002/advs.202304848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/26/2024] [Indexed: 04/25/2024]
Abstract
Simple sequence repeats (SSRs) are found in nonrandom distributions in genomes and are thought to impact gene expression. The distribution patterns of 48 295 SSRs of Paphiopedilum malipoense are mined and characterized based on the first full-length transcriptome and comprehensive transcriptome dataset from 12 organs. Statistical genomics analyses are used to investigate how SSRs in transcripts affect gene expression. The results demonstrate the correlations between SSR distributions, characteristics, and expression level. Nine expression-modulating motifs (expMotifs) are identified and a model is proposed to explain the effect of their key features, potency, and gene function on an intra-transcribed region scale. The expMotif-transcribed region combination is the most predominant contributor to the expression-modulating effect of SSRs, and some intra-transcribed regions are critical for this effect. Genes containing the same type of expMotif-SSR elements in the same transcribed region are likely linked in function, regulation, or evolution aspects. This study offers novel evidence to understand how SSRs regulate gene expression and provides potential regulatory elements for plant genetic engineering.
Collapse
Affiliation(s)
- Yingyi Liang
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jing Hao
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jieyu Wang
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhou510642China
| | - Guoqiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and ArtFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhen518107China
| | - Zhong‐Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture and ArtFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
4
|
Hodaei A, Werbrouck SPO. Unlocking Nature's Clock: CRISPR Technology in Flowering Time Engineering. PLANTS (BASEL, SWITZERLAND) 2023; 12:4020. [PMID: 38068655 PMCID: PMC10708119 DOI: 10.3390/plants12234020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2024]
Abstract
Flowering is a crucial process in the life cycle of most plants as it is essential for the reproductive success and genetic diversity of the species. There are situations in which breeders want to expedite, delay, or prevent flowering, for example, to shorten or prolong vegetative growth, to prevent unwanted pollination, to reduce the risk of diseases or pests, or to modify the plant's phenotypes. This review aims to provide an overview of the current state of knowledge to use CRISPR/Cas9, a powerful genome-editing technology to modify specific DNA sequences related to flowering induction. We discuss the underlying molecular mechanisms governing the regulation of the photoperiod, autonomous, vernalization, hormonal, sugar, aging, and temperature signal pathways regulating the flowering time. In addition, we are investigating the most effective strategies for nominating target genes. Furthermore, we have collected a dataset showing successful applications of CRISPR technology to accelerate flowering in several plant species from 2015 up to date. Finally, we explore the opportunities and challenges of using the potential of CRISPR technology in flowering time engineering.
Collapse
Affiliation(s)
| | - Stefaan P. O. Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
5
|
Shapulatov U, van Zanten M, van Hoogdalem M, Meisenburg M, van Hall A, Kappers I, Fasano C, Facella P, Loh CC, Perrella G, van der Krol A. The Mediator complex subunit MED25 interacts with HDA9 and PIF4 to regulate thermomorphogenesis. PLANT PHYSIOLOGY 2023; 192:582-600. [PMID: 36537119 PMCID: PMC10152658 DOI: 10.1093/plphys/kiac581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 05/03/2023]
Abstract
Thermomorphogenesis is, among other traits, characterized by enhanced hypocotyl elongation due to the induction of auxin biosynthesis genes like YUCCA8 by transcription factors, most notably PHYTOCHROME INTERACTING FACTOR 4 (PIF4). Efficient binding of PIF4 to the YUCCA8 locus under warmth depends on HISTONE DEACETYLASE 9 (HDA9) activity, which mediates histone H2A.Z depletion at the YUCCA8 locus. However, HDA9 lacks intrinsic DNA-binding capacity, and how HDA9 is recruited to YUCCA8, and possibly other PIF4-target sites, is currently not well understood. The Mediator complex functions as a bridge between transcription factors bound to specific promoter sequences and the basal transcription machinery containing RNA polymerase II. Mutants of Mediator component Mediator25 (MED25) exhibit reduced hypocotyl elongation and reduced expression of YUCCA8 at 27°C. In line with a proposed role for MED25 in thermomorphogenesis in Arabidopsis (Arabidopsis thaliana), we demonstrated an enhanced association of MED25 to the YUCCA8 locus under warmth and interaction of MED25 with both PIF4 and HDA9. Genetic analysis confirmed that MED25 and HDA9 operate in the same pathway. Intriguingly, we also showed that MED25 destabilizes HDA9 protein. Based on our findings, we propose that MED25 recruits HDA9 to the YUCCA8 locus by binding to both PIF4 and HDA9.
Collapse
Affiliation(s)
- Umidjon Shapulatov
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Temasek Life Science Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Martijn van Zanten
- Plant Stress Resilience, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Mark van Hoogdalem
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mara Meisenburg
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Alexander van Hall
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Iris Kappers
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Carlo Fasano
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research Centre, S.S. Ionica, km 419.5, 75026 Rotondella (Matera), Italy
| | - Paolo Facella
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research Centre, S.S. Ionica, km 419.5, 75026 Rotondella (Matera), Italy
| | - Chi Cheng Loh
- Temasek Life Science Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Giorgio Perrella
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Trisaia Research Centre, S.S. Ionica, km 419.5, 75026 Rotondella (Matera), Italy
| | - Alexander van der Krol
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
6
|
Lemus T, Mason GA, Bubb KL, Alexandre CM, Queitsch C, Cuperus JT. AGO1 and HSP90 buffer different genetic variants in Arabidopsis thaliana. Genetics 2023; 223:iyac163. [PMID: 36303325 PMCID: PMC9910400 DOI: 10.1093/genetics/iyac163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/18/2022] [Indexed: 11/14/2022] Open
Abstract
Argonaute 1 (AGO1), the principal protein component of microRNA-mediated regulation, plays a key role in plant growth and development. AGO1 physically interacts with the chaperone HSP90, which buffers cryptic genetic variation in plants and animals. We sought to determine whether genetic perturbation of AGO1 in Arabidopsis thaliana would also reveal cryptic genetic variation, and if so, whether AGO1-dependent loci overlap with those dependent on HSP90. To address these questions, we introgressed a hypomorphic mutant allele of AGO1 into a set of mapping lines derived from the commonly used Arabidopsis strains Col-0 and Ler. Although we identified several cases in which AGO1 buffered genetic variation, none of the AGO1-dependent loci overlapped with those buffered by HSP90 for the traits assayed. We focused on 1 buffered locus where AGO1 perturbation uncoupled the traits days to flowering and rosette leaf number, which are otherwise closely correlated. Using a bulk segregant approach, we identified a nonfunctional Ler hua2 mutant allele as the causal AGO1-buffered polymorphism. Introduction of a nonfunctional hua2 allele into a Col-0 ago1 mutant background recapitulated the Ler-dependent ago1 phenotype, implying that coupling of these traits involves different molecular players in these closely related strains. Taken together, our findings demonstrate that even though AGO1 and HSP90 buffer genetic variation in the same traits, these robustness regulators interact epistatically with different genetic loci, suggesting that higher-order epistasis is uncommon. Plain Language Summary Argonaute 1 (AGO1), a key player in plant development, interacts with the chaperone HSP90, which buffers environmental and genetic variation. We found that AGO1 buffers environmental and genetic variation in the same traits; however, AGO1-dependent and HSP90-dependent loci do not overlap. Detailed analysis of a buffered locus found that a nonfunctional HUA2 allele decouples days to flowering and rosette leaf number in an AGO1-dependent manner, suggesting that the AGO1-dependent buffering acts at the network level.
Collapse
Affiliation(s)
- Tzitziki Lemus
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Grace Alex Mason
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | | | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
7
|
Ranathunge C, Chimahusky ME, Welch ME. A comparative study of population genetic structure reveals patterns consistent with selection at functional microsatellites in common sunflower. Mol Genet Genomics 2022; 297:1329-1342. [PMID: 35786764 DOI: 10.1007/s00438-022-01920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Microsatellites, also known as short tandem repeats (STRs), have long been considered non-functional, neutrally evolving regions of the genome. Recent findings suggest that they can function as drivers of rapid adaptive evolution. Previous work on the common sunflower identified 479 transcribed microsatellites where allele length significantly correlates with gene expression (eSTRs) in a stepwise manner. Here, a population genetic approach is used to test whether eSTR allele length variation is under selection. Genotypic variation among and within populations at 13 eSTRs was compared with that at 19 anonymous microsatellites in 672 individuals from 17 natural populations of sunflower from across a cline running from Saskatchewan to Oklahoma (distance of approximately 1600 km). Expected heterozygosity, allelic richness, and allelic diversity were significantly lower at eSTRs, a pattern consistent with higher relative rates of purifying selection. Further, an analysis of variation in microsatellite allele lengths (lnRV), and heterozygosities (lnRH), indicate recent selective sweeps at the eSTRs. Mean microsatellite allele lengths at four eSTRs within populations are significantly correlated with latitude consistent with the predictions of the tuning-knob model which predicts stepwise relationships between microsatellite allele length and phenotypes. This finding suggests that shorter or longer alleles at eSTRs may be favored in climatic extremes. Collectively, our results imply that eSTRs are likely under selection and that they may be playing a role in facilitating local adaptation across a well-defined cline in the common sunflower.
Collapse
Affiliation(s)
- Chathurani Ranathunge
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA.
- School of Health Professions, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Melody E Chimahusky
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA
| | - Mark E Welch
- Department of Biological Sciences, Mississippi State University, Starkville, MS, 39762, USA
| |
Collapse
|
8
|
Mei H, Zhao T, Dong Z, Han J, Xu B, Chen R, Zhang J, Zhang J, Hu Y, Zhang T, Fang L. Population-Scale Polymorphic Short Tandem Repeat Provides an Alternative Strategy for Allele Mining in Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:916830. [PMID: 35599867 PMCID: PMC9120961 DOI: 10.3389/fpls.2022.916830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Short tandem repeats (STRs), which vary in size due to featuring variable numbers of repeat units, are present throughout most eukaryotic genomes. To date, few population-scale studies identifying STRs have been reported for crops. Here, we constructed a high-density polymorphic STR map by investigating polymorphic STRs from 911 Gossypium hirsutum accessions. In total, we identified 556,426 polymorphic STRs with an average length of 21.1 bp, of which 69.08% were biallelic. Moreover, 7,718 (1.39%) were identified in the exons of 6,021 genes, which were significantly enriched in transcription, ribosome biogenesis, and signal transduction. Only 5.88% of those exonic STRs altered open reading frames, of which 97.16% were trinucleotide. An alternative strategy STR-GWAS analysis revealed that 824 STRs were significantly associated with agronomic traits, including 491 novel alleles that undetectable by previous SNP-GWAS methods. For instance, a novel polymorphic STR consisting of GAACCA repeats was identified in GH_D06G1697, with its (GAACCA)5 allele increasing fiber length by 1.96-4.83% relative to the (GAACCA)4 allele. The database CottonSTRDB was further developed to facilitate use of STR datasets in breeding programs. Our study provides functional roles for STRs in influencing complex traits, an alternative strategy STR-GWAS for allele mining, and a database serving the cotton community as a valuable resource.
Collapse
Affiliation(s)
- Huan Mei
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zeyu Dong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Biyu Xu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rui Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Juncheng Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
9
|
Microsatellites as Agents of Adaptive Change: An RNA-Seq-Based Comparative Study of Transcriptomes from Five Helianthus Species. Symmetry (Basel) 2021. [DOI: 10.3390/sym13060933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutations that provide environment-dependent selective advantages drive adaptive divergence among species. Many phenotypic differences among related species are more likely to result from gene expression divergence rather than from non-synonymous mutations. In this regard, cis-regulatory mutations play an important part in generating functionally significant variation. Some proposed mechanisms that explore the role of cis-regulatory mutations in gene expression divergence involve microsatellites. Microsatellites exhibit high mutation rates achieved through symmetric or asymmetric mutation processes and are abundant in both coding and non-coding regions in positions that could influence gene function and products. Here we tested the hypothesis that microsatellites contribute to gene expression divergence among species with 50 individuals from five closely related Helianthus species using an RNA-seq approach. Differential expression analyses of the transcriptomes revealed that genes containing microsatellites in non-coding regions (UTRs and introns) are more likely to be differentially expressed among species when compared to genes with microsatellites in the coding regions and transcripts lacking microsatellites. We detected a greater proportion of shared microsatellites in 5′UTRs and coding regions compared to 3′UTRs and non-coding transcripts among Helianthus spp. Furthermore, allele frequency differences measured by pairwise FST at single nucleotide polymorphisms (SNPs), indicate greater genetic divergence in transcripts containing microsatellites compared to those lacking microsatellites. A gene ontology (GO) analysis revealed that microsatellite-containing differentially expressed genes are significantly enriched for GO terms associated with regulation of transcription and transcription factor activity. Collectively, our study provides compelling evidence to support the role of microsatellites in gene expression divergence.
Collapse
|
10
|
Su T, Wang Y, Li S, Wang L, Kou K, Kong L, Cheng Q, Dong L, Liu B, Kong F, Lu S, Fang C. A flowering time locus dependent on E2 in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:35. [PMID: 37309325 PMCID: PMC10236059 DOI: 10.1007/s11032-021-01224-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/12/2021] [Indexed: 06/14/2023]
Abstract
Soybean [Glycine max (L.) Merrill] is very sensitive to changes in photoperiod as a typical short-day plant. Photoperiodic flowering influences soybean latitudinal adaptability and yield to a considerable degree. Identifying new quantitative trait loci (QTLs) controlling flowering time is a powerful initial approach for elucidating the mechanisms underlying flowering time and adaptation to different latitudes in soybean. In this study, we developed a Recombinant Inbred Lines (RILs) population and recorded flowering time under natural long-day conditions. We also constructed a high-density genetic map by genotyping-by-sequencing and used it for QTL mapping. In total, we detected twelve QTLs, four of which are stable and named by qR1-2, qR1-4, qR1-6.1, and qR1-10, respectively. Among these four QTLs, qR1-4 and qR1-6.1 are novel. QTL mapping in two sub-populations classified by the genotype of the maturity locus E2, genetic interaction evaluation between E2 and qR1-2, and qRT-PCR indicated that E2 has an epistatic effect on qR1-2, and that causal gene of qR1-2 acts upstream of E2. We presumed the most likely candidate genes according to the resequencing data and briefly analyzed the geographic distributions of these genes. These findings will be beneficial for our understanding of the mechanisms underlying photoperiodic flowering in soybean, contribute to further investigate of E2, and provide genetic resources for molecular breeding of soybean. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01224-1.
Collapse
Affiliation(s)
- Tong Su
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Wang
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, China
| | - Shichen Li
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingshuang Wang
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kun Kou
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lingping Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qun Cheng
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- The Innovative Academy of Seed Design, Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Sijia Lu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chao Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
11
|
The Important Function of Mediator Complex in Controlling the Developmental Transitions in Plants. Int J Mol Sci 2020; 21:ijms21082733. [PMID: 32326439 PMCID: PMC7215822 DOI: 10.3390/ijms21082733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/24/2022] Open
Abstract
Developmental transitions in plants are tightly associated with changes in the transcriptional regulation of gene expression. One of the most important regulations is conferred by cofactors of RNA polymerase II including the mediator complex, a large complex with a modular organization. The mediator complex recruits transcription factors to bind to the specific sites of genes including protein-coding genes and non-coding RNA genes to promote or repress the transcription initiation and elongation using a protein-protein interaction module. Mediator complex subunits have been isolated and identified in plants and the function of most mediator subunits in whole life cycle plants have been revealed. Studies have shown that the Mediator complex is indispensable for the regulation of plant developmental transitions by recruiting age-, flowering-, or hormone-related transcription factors. Here, we first overviewed the Mediator subunits in plants, and then we summarized the specific Mediator subunits involved in developmental transitions, including vegetative phase change and floral transition. Finally, we proposed the future directions to further explore their roles in plants. The link between Mediator subunits and developmental transitions implies the necessity to explore targets of this complex as a potential application in developing high quality crop varieties.
Collapse
|
12
|
Yao T, Park BS, Mao HZ, Seo JS, Ohama N, Li Y, Yu N, Mustafa NFB, Huang CH, Chua NH. Regulation of flowering time by SPL10/MED25 module in Arabidopsis. THE NEW PHYTOLOGIST 2019; 224:493-504. [PMID: 31125430 DOI: 10.1111/nph.15954] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Several SQUAMASA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors are involved in plant developmental transition from vegetative to reproductive growth. However, the function of SPL10 in regulating floral transition is largely unknown. It is also not known which Mediator subunit mediates SPL10 transcriptional activity. Here, we used overexpression lines and knockout mutants to examine the role of SPL10 in flowering-time regulation and we investigated possible interactions of SPL10 with several mediator subunits in vitro and in vivo. Plants overexpressing SPL10 showed precocious flowering, whereas the triple loss-of-function mutants of SPL10 and its two homologous genes, SPL2 and SPL11, flowered late compared with wild-type plants. We found that SPL10 interacts with MED25, a subunit of the Mediator complex, which bridges transcription factors and RNA polymerase II to facilitate transcription initiation. Genetic analysis showed that MED25 acts downstream of SPL10 to execute SPL10-regulated floral transition. Furthermore, SPL10 was required for MED25 association with the promoters of two target genes, FUL and LFY. We provide evidence that SPL10 recruits MED25 to the promoters of target genes to regulate flowering time. Our results on the SPL10/MED25 module are relevant to the molecular mechanism of other SPL family members.
Collapse
Affiliation(s)
- Tao Yao
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Bong Soo Park
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Hui-Zhu Mao
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Jun Sung Seo
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Naohiko Ohama
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Ying Li
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Niu Yu
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, NY, 10065-6399, USA
| | - Nur Fatimah Binte Mustafa
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Chung-Hao Huang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| |
Collapse
|
13
|
Cooper DG, Fassler JS. Med15: Glutamine-Rich Mediator Subunit with Potential for Plasticity. Trends Biochem Sci 2019; 44:737-751. [PMID: 31036407 DOI: 10.1016/j.tibs.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
The Mediator complex is required for basal activity of the RNA polymerase (Pol) II transcriptional apparatus and for responsiveness to some activator proteins. Med15, situated in the Mediator tail, plays a role in transmitting regulatory information from distant DNA-bound transcription factors to the transcriptional apparatus poised at promoters. Yeast Med15 and its orthologs share an unusual, glutamine-rich amino acid composition. Here, we discuss this sequence feature and the tendency of polyglutamine tracts to vary in length among strains of Saccharomyces cerevisiae, and we propose that different polyglutamine tract lengths may be adaptive within certain domestication habitats.
Collapse
Affiliation(s)
- David G Cooper
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Jan S Fassler
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
14
|
A Variable Polyglutamine Repeat Affects Subcellular Localization and Regulatory Activity of a Populus ANGUSTIFOLIA Protein. G3-GENES GENOMES GENETICS 2018; 8:2631-2641. [PMID: 29884614 PMCID: PMC6071607 DOI: 10.1534/g3.118.200188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polyglutamine (polyQ) stretches have been reported to occur in proteins across many organisms including animals, fungi and plants. Expansion of these repeats has attracted much attention due their associations with numerous human diseases including Huntington’s and other neurological maladies. This suggests that the relative length of polyQ stretches is an important modulator of their function. Here, we report the identification of a Populus C-terminus binding protein (CtBP) ANGUSTIFOLIA (PtAN1) which contains a polyQ stretch whose functional relevance had not been established. Analysis of 917 resequenced Populus trichocarpa genotypes revealed three allelic variants at this locus encoding 11-, 13- and 15-glutamine residues. Transient expression assays using Populus leaf mesophyll protoplasts revealed that the 11Q variant exhibited strong nuclear localization whereas the 15Q variant was only found in the cytosol, with the 13Q variant exhibiting localization in both subcellular compartments. We assessed functional implications by evaluating expression changes of putative PtAN1 targets in response to overexpression of the three allelic variants and observed allele-specific differences in expression levels of putative targets. Our results provide evidence that variation in polyQ length modulates PtAN1 function by altering subcellular localization.
Collapse
|
15
|
Press MO, McCoy RC, Hall AN, Akey JM, Queitsch C. Massive variation of short tandem repeats with functional consequences across strains of Arabidopsis thaliana. Genome Res 2018; 28:1169-1178. [PMID: 29970452 PMCID: PMC6071631 DOI: 10.1101/gr.231753.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/26/2018] [Indexed: 11/24/2022]
Abstract
Short tandem repeat (STR) mutations may comprise more than half of the mutations in eukaryotic coding DNA, yet STR variation is rarely examined as a contributor to complex traits. We assessed this contribution across a collection of 96 strains of Arabidopsis thaliana, genotyping 2046 STR loci each, using highly parallel STR sequencing with molecular inversion probes. We found that 95% of examined STRs are polymorphic, with a median of six alleles per STR across these strains. STR expansions (large copy number increases) are found in most strains, several of which have evident functional effects. These include three of six intronic STR expansions we found to be associated with intron retention. Coding STRs were depleted of variation relative to noncoding STRs, and we detected a total of 56 coding STRs (11%) showing low variation consistent with the action of purifying selection. In contrast, some STRs show hypervariable patterns consistent with diversifying selection. Finally, we detected 133 novel STR-phenotype associations under stringent criteria, most of which could not be detected with SNPs alone, and validated some with follow-up experiments. Our results support the conclusion that STRs constitute a large, unascertained reservoir of functionally relevant genomic variation.
Collapse
Affiliation(s)
- Maximilian O Press
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Rajiv C McCoy
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Ashley N Hall
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Joshua M Akey
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
16
|
Evolutionary Conservation and Emerging Functional Diversity of the Cytosolic Hsp70:J Protein Chaperone Network of Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2017; 7:1941-1954. [PMID: 28450372 PMCID: PMC5473770 DOI: 10.1534/g3.117.042291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heat shock proteins of 70 kDa (Hsp70s) partner with structurally diverse Hsp40s (J proteins), generating distinct chaperone networks in various cellular compartments that perform myriad housekeeping and stress-associated functions in all organisms. Plants, being sessile, need to constantly maintain their cellular proteostasis in response to external environmental cues. In these situations, the Hsp70:J protein machines may play an important role in fine-tuning cellular protein quality control. Although ubiquitous, the functional specificity and complexity of the plant Hsp70:J protein network has not been studied. Here, we analyzed the J protein network in the cytosol of Arabidopsis thaliana and, using yeast genetics, show that the functional specificities of most plant J proteins in fundamental chaperone functions are conserved across long evolutionary timescales. Detailed phylogenetic and functional analysis revealed that increased number, regulatory differences, and neofunctionalization in J proteins together contribute to the emerging functional diversity and complexity in the Hsp70:J protein network in higher plants. Based on the data presented, we propose that higher plants have orchestrated their "chaperome," especially their J protein complement, according to their specialized cellular and physiological stipulations.
Collapse
|
17
|
Malik N, Agarwal P, Tyagi A. Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit Rev Biochem Mol Biol 2017; 52:475-502. [DOI: 10.1080/10409238.2017.1325830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naveen Malik
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Akhilesh Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
18
|
Kazan K. The Multitalented MEDIATOR25. FRONTIERS IN PLANT SCIENCE 2017; 8:999. [PMID: 28659948 PMCID: PMC5467580 DOI: 10.3389/fpls.2017.00999] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/26/2017] [Indexed: 05/19/2023]
Abstract
The multi-subunit Mediator complex, which links DNA-bound transcription factors to RNA Pol II during transcription, is an essential regulator of gene expression in all eukaryotes. Individual subunits of the Mediator complex integrate numerous endogenous and exogenous signals. In this paper, diverse regulatory functions performed by MEDIATOR25 (MED25), one of the subunits of the plant Mediator complex are reviewed. MED25 was first identified as a regulator of flowering time and named PHYTOCHROME AND FLOWERING TIME1 (PFT1). Since then, MED25 has been implicated in a range of other plant functions that vary from hormone signaling (JA, ABA, ethylene, and IAA) to biotic and abiotic stress tolerance and plant development. MED25 physically interacts with transcriptional activators (e.g., AP2/ERFs, MYCs, and ARFs), repressors (e.g., JAZs and Aux/IAAs), and other Mediator subunits (MED13 and MED16). In addition, various genetic and epigenetic interactions involving MED25 have been reported. These features make MED25 one of the most multifunctional Mediator subunits and provide new insights into the transcriptional control of gene expression in plants.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Research Organisation Agriculture and Food, BrisbaneQLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, The University of Queensland, BrisbaneQLD, Australia
- *Correspondence: Kemal Kazan,
| |
Collapse
|
19
|
Johansson M, Staiger D. Time to flower: interplay between photoperiod and the circadian clock. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:719-30. [PMID: 25371508 DOI: 10.1093/jxb/eru441] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants precisely time the onset of flowering to ensure reproductive success. A major factor in seasonal control of flowering time is the photoperiod. The length of the daily light period is measured by the circadian clock in leaves, and a signal is conveyed to the shoot apex to initiate floral transition accordingly. In the last two decades, the molecular players in the photoperiodic pathway have been identified in Arabidopsis thaliana. Moreover, the intricate connections between the circadian clockwork and components of the photoperiodic pathway have been unravelled. In particular, the molecular basis of time-of-day-dependent sensitivity to floral stimuli, as predicted by Bünning and Pittendrigh, has been elucidated. This review covers recent insights into the molecular mechanisms underlying clock regulation of photoperiodic responses and the integration of the photoperiodic pathway into the flowering time network in Arabidopsis. Furthermore, examples of conservation and divergence in photoperiodic flower induction in other plant species are discussed.
Collapse
Affiliation(s)
- Mikael Johansson
- Molecular Cell Physiology, Faculty for Biology, Bielefeld University, Germany
| | - Dorothee Staiger
- Molecular Cell Physiology, Faculty for Biology, Bielefeld University, Germany
| |
Collapse
|