1
|
Okada H, Chen X, Wang K, Marquardt J, Bi E. Bni5 tethers myosin-II to septins to enhance retrograde actin flow and the robustness of cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566094. [PMID: 37986946 PMCID: PMC10659389 DOI: 10.1101/2023.11.07.566094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The collaboration between septins and myosin-II in driving processes outside of cytokinesis remains largely uncharted. Here, we demonstrate that Bni5 in the budding yeast S. cerevisiae interacts with myosin-II, septin filaments, and the septin-associated kinase Elm1 via distinct domains at its N- and C-termini, thereby tethering the mobile myosin-II to the stable septin hourglass at the division site from bud emergence to the onset of cytokinesis. The septin and Elm1-binding domains, together with a central disordered region, of Bni5 control timely remodeling of the septin hourglass into a double ring, enabling the actomyosin ring constriction. The Bni5-tethered myosin-II enhances retrograde actin cable flow, which contributes to the asymmetric inheritance of mitochondria-associated protein aggregates during cell division, and also strengthens cytokinesis against various perturbations. Thus, we have established a biochemical pathway involving septin-Bni5-myosin-II interactions at the division site, which can inform mechanistic understanding of the role of myosin-II in other retrograde flow systems.
Collapse
Affiliation(s)
- Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Current affiliation: Department of Biology, Western Kentucky University, Bowling Green, KY
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
2
|
Benson A, McMurray M. Simultaneous co-overexpression of Saccharomyces cerevisiae septins Cdc3 and Cdc10 drives pervasive, phospholipid-, and tag-dependent plasma membrane localization. Cytoskeleton (Hoboken) 2023; 80:199-214. [PMID: 37098755 PMCID: PMC10524705 DOI: 10.1002/cm.21762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023]
Abstract
Septin proteins contribute to many eukaryotic processes involving cellular membranes. In the budding yeast Saccharomyces cerevisiae, septin hetero-oligomers interact with the plasma membrane (PM) almost exclusively at the future site of cytokinesis. While multiple mechanisms of membrane recruitment have been identified, including direct interactions with specific phospholipids and curvature-sensitive interactions via amphipathic helices, these do not fully explain why yeast septins do not localize all over the inner leaflet of the PM. While engineering an inducible split-yellow fluorescent protein (YFP) system to measure the kinetics of yeast septin complex assembly, we found that ectopic co-overexpression of two tagged septins, Cdc3 and Cdc10, resulted in nearly uniform PM localization, as well as perturbation of endogenous septin function. Septin localization and function in gametogenesis were also perturbed. PM localization required the C-terminal YFP fragment fused to the C terminus of Cdc3, the septin-associated kinases Cla4 and Gin4, and phosphotidylinositol-4,5-bis-phosphate (PI[4,5]P2 ), but not the putative PI(4,5)P2 -binding residues in Cdc3. Endogenous Cdc10 was recruited to the PM, likely contributing to the functional interference. PM-localized septins did not exchange with the cytosolic pool, indicative of stable polymers. These findings provide new clues as to what normally restricts septin localization to specific membranes.
Collapse
Affiliation(s)
- Aleyna Benson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
González-Rubio G, Martín H, Molina M. The Mitogen-Activated Protein Kinase Slt2 Promotes Asymmetric Cell Cycle Arrest and Reduces TORC1-Sch9 Signaling in Yeast Lacking the Protein Phosphatase Ptc1. Microbiol Spectr 2023; 11:e0524922. [PMID: 37042757 PMCID: PMC10269544 DOI: 10.1128/spectrum.05249-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/18/2023] [Indexed: 04/13/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways regulate essential processes in eukaryotes. However, since uncontrolled activation of these cascades has deleterious effects, precise negative regulation of signaling flow through them, mainly executed by protein phosphatases, is crucial. Previous studies showed that the absence of Ptc1 protein phosphatase results in the upregulation of the MAPK of the cell wall integrity (CWI) pathway, Slt2, and numerous functional defects in Saccharomyces cerevisiae, including a failure to undergo cell separation under heat stress. In this study, we demonstrate that multibudded ptc1Δ cells also exhibit impaired mitochondrial inheritance and that excessive Slt2 kinase activity is responsible for their growth deficiency and daughter-specific G1 cell cycle arrest, as well as other physiological alterations, namely, mitochondrial hyperpolarization and reactive oxygen species (ROS) accumulation. We bring to light the fact that sustained Slt2 kinase activity inhibits signaling through the Sch9 branch of the TORC1 pathway in ptc1Δ cells, leading to increased autophagy. After cytokinesis, septin rings asymmetrically disassembled in ptc1Δ multibudded cells, abnormally remaining at the daughter cell side and eventually relocalizing at the daughter cell periphery, where they occasionally colocalized with the autophagic protein Atg9. Finally, we show that the inability of ptc1Δ cells to undergo cell separation is not due to a failure in the regulation of Ace2 and morphogenesis (RAM) pathway, since the transcription factor Ace2 correctly enters the daughter cell nuclei. However, the Ace2-regulated endochitinase Cts1 did not localize to the septum, preventing the proper degradation of this structure. IMPORTANCE This study provides further evidence that the cell cycle is regulated by complex signaling networks whose purpose is to guarantee a robust response to environmental threats. Using the S. cerevisiae eukaryotic model, we show that, under the stress conditions that activate the CWI MAPK pathway, the absence of the protein phosphatase Ptc1 renders Slt2 hyperactive, leading to numerous physiological alterations, including perturbed mitochondrial inheritance, oxidative stress, changes in septin dynamics, increased autophagy, TORC1-Sch9 inhibition, and ultimately cell cycle arrest and the failure of daughter cells to separate, likely due to the absence of key degradative enzymes at the septum. These results imply novel roles for the CWI pathway and unravel new cell cycle-regulatory controls that operate beyond the RAM pathway, arresting buds in G1 without compromising further division rounds in the mother cell.
Collapse
Affiliation(s)
- Gema González-Rubio
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias, Universidad Complutense de Madrid, Madrid, Spain
| | - Humberto Martín
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias, Universidad Complutense de Madrid, Madrid, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología. Facultad de Farmacia. Instituto Ramón y Cajal de Investigaciones Sanitarias, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
4
|
Grupp B, Gronemeyer T. A biochemical view on the septins, a less known component of the cytoskeleton. Biol Chem 2023; 404:1-13. [PMID: 36423333 DOI: 10.1515/hsz-2022-0263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/30/2022] [Indexed: 11/25/2022]
Abstract
The septins are a conserved family of guanine nucleotide binding proteins, often named the fourth component of the cytoskeleton. They self-assemble into non-polar filaments and further into higher ordered structures. Properly assembled septin structures are required for a wide range of indispensable intracellular processes such as cytokinesis, vesicular transport, polarity establishment and cellular adhesion. Septins belong structurally to the P-Loop NTPases. However, unlike the small GTPases like Ras, septins do not mediate signals to effectors through GTP binding and hydrolysis. The role of nucleotide binding and subsequent GTP hydrolysis by the septins is rather controversially debated. We compile here the structural features from the existing septin crystal- and cryo-EM structures regarding protofilament formation, inter-subunit interface architecture and nucleotide binding and hydrolysis. These findings are supplemented with a summary of available biochemical studies providing information regarding nucleotide binding and hydrolysis of fungal and mammalian septins.
Collapse
Affiliation(s)
- Benjamin Grupp
- Institute of Molecular Genetics and Cell Biology, Ulm University, James Franck Ring N27, 89081 Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, James Franck Ring N27, 89081 Ulm, Germany
| |
Collapse
|
5
|
Cavini IA, Leonardo DA, Rosa HVD, Castro DKSV, D'Muniz Pereira H, Valadares NF, Araujo APU, Garratt RC. The Structural Biology of Septins and Their Filaments: An Update. Front Cell Dev Biol 2021; 9:765085. [PMID: 34869357 PMCID: PMC8640212 DOI: 10.3389/fcell.2021.765085] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
In order to fully understand any complex biochemical system from a mechanistic point of view, it is necessary to have access to the three-dimensional structures of the molecular components involved. Septins and their oligomers, filaments and higher-order complexes are no exception. Indeed, the spontaneous recruitment of different septin monomers to specific positions along a filament represents a fascinating example of subtle molecular recognition. Over the last few years, the amount of structural information available about these important cytoskeletal proteins has increased dramatically. This has allowed for a more detailed description of their individual domains and the different interfaces formed between them, which are the basis for stabilizing higher-order structures such as hexamers, octamers and fully formed filaments. The flexibility of these structures and the plasticity of the individual interfaces have also begun to be understood. Furthermore, recently, light has been shed on how filaments may bundle into higher-order structures by the formation of antiparallel coiled coils involving the C-terminal domains. Nevertheless, even with these advances, there is still some way to go before we fully understand how the structure and dynamics of septin assemblies are related to their physiological roles, including their interactions with biological membranes and other cytoskeletal components. In this review, we aim to bring together the various strands of structural evidence currently available into a more coherent picture. Although it would be an exaggeration to say that this is complete, recent progress seems to suggest that headway is being made in that direction.
Collapse
Affiliation(s)
- Italo A Cavini
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Diego A Leonardo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Higor V D Rosa
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Danielle K S V Castro
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.,São Carlos Institute of Chemistry, University of São Paulo, São Carlos, Brazil
| | | | | | - Ana P U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
6
|
Woods BL, Cannon KS, Vogt EJD, Crutchley JM, Gladfelter AS. Interplay of septin amphipathic helices in sensing membrane-curvature and filament bundling. Mol Biol Cell 2021; 32:br5. [PMID: 34319771 PMCID: PMC8684760 DOI: 10.1091/mbc.e20-05-0303] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The curvature of the membrane defines cell shape. Septins are GTP-binding proteins that assemble into heteromeric complexes and polymerize into filaments at areas of micron-scale membrane curvature. An amphipathic helix (AH) domain within the septin complex is necessary and sufficient for septins to preferentially assemble onto micron-scale curvature. Here we report that the nonessential fungal septin, Shs1, also has an AH domain capable of recognizing membrane curvature. In a septin mutant strain lacking a fully functional Cdc12 AH domain (cdc12-6), the C-terminal extension of Shs1, containing an AH domain, becomes essential. Additionally, we find that the Cdc12 AH domain is important for regulating septin filament bundling, suggesting septin AH domains have multiple, distinct functions and that bundling and membrane binding may be coordinately controlled.
Collapse
Affiliation(s)
- Benjamin L Woods
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Kevin S Cannon
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Ellysa J D Vogt
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - John M Crutchley
- Biology Department, University of North Carolina, Chapel Hill, NC 27599
| | - Amy S Gladfelter
- Biology Department, University of North Carolina, Chapel Hill, NC 27599.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599.,Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
7
|
Synergistic role of nucleotides and lipids for the self-assembly of Shs1 septin oligomers. Biochem J 2021; 477:2697-2714. [PMID: 32726433 DOI: 10.1042/bcj20200199] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022]
Abstract
Budding yeast septins are essential for cell division and polarity. Septins assemble as palindromic linear octameric complexes. The function and ultra-structural organization of septins are finely governed by their molecular polymorphism. In particular, in budding yeast, the end subunit can stand either as Shs1 or Cdc11. We have dissected, here, for the first time, the behavior of the Shs1 protomer bound to membranes at nanometer resolution, in complex with the other septins. Using electron microscopy, we have shown that on membranes, Shs1 protomers self-assemble into rings, bundles, filaments or two-dimensional gauzes. Using a set of specific mutants we have demonstrated a synergistic role of both nucleotides and lipids for the organization and oligomerization of budding yeast septins. Besides, cryo-electron tomography assays show that vesicles are deformed by the interaction between Shs1 oligomers and lipids. The Shs1-Shs1 interface is stabilized by the presence of phosphoinositides, allowing the visualization of micrometric long filaments formed by Shs1 protomers. In addition, molecular modeling experiments have revealed a potential molecular mechanism regarding the selectivity of septin subunits for phosphoinositide lipids.
Collapse
|
8
|
Takagi J, Cho C, Duvalyan A, Yan Y, Halloran M, Hanson-Smith V, Thorner J, Finnigan GC. Reconstructed evolutionary history of the yeast septins Cdc11 and Shs1. G3-GENES GENOMES GENETICS 2021; 11:6025175. [PMID: 33561226 PMCID: PMC7849910 DOI: 10.1093/g3journal/jkaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022]
Abstract
Septins are GTP-binding proteins conserved across metazoans. They can polymerize into extended filaments and, hence, are considered a component of the cytoskeleton. The number of individual septins varies across the tree of life—yeast (Saccharomyces cerevisiae) has seven distinct subunits, a nematode (Caenorhabditis elegans) has two, and humans have 13. However, the overall geometric unit (an apolar hetero-octameric protomer and filaments assembled there from) has been conserved. To understand septin evolutionary variation, we focused on a related pair of yeast subunits (Cdc11 and Shs1) that appear to have arisen from gene duplication within the fungal clade. Either Cdc11 or Shs1 occupies the terminal position within a hetero-octamer, yet Cdc11 is essential for septin function and cell viability, whereas Shs1 is not. To discern the molecular basis of this divergence, we utilized ancestral gene reconstruction to predict, synthesize, and experimentally examine the most recent common ancestor (“Anc.11-S”) of Cdc11 and Shs1. Anc.11-S was able to occupy the terminal position within an octamer, just like the modern subunits. Although Anc.11-S supplied many of the known functions of Cdc11, it was unable to replace the distinct function(s) of Shs1. To further evaluate the history of Shs1, additional intermediates along a proposed trajectory from Anc.11-S to yeast Shs1 were generated and tested. We demonstrate that multiple events contributed to the current properties of Shs1: (1) loss of Shs1–Shs1 self-association early after duplication, (2) co-evolution of heterotypic Cdc11–Shs1 interaction between neighboring hetero-octamers, and (3) eventual repurposing and acquisition of novel function(s) for its C-terminal extension domain. Thus, a pair of duplicated proteins, despite constraints imposed by assembly into a highly conserved multi-subunit structure, could evolve new functionality via a complex evolutionary pathway.
Collapse
Affiliation(s)
- Julie Takagi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Christina Cho
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Angela Duvalyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Yao Yan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Megan Halloran
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Victor Hanson-Smith
- Department of Microbiology and Immunology, University of California, San Francisco, CA 94158, USA
| | - Jeremy Thorner
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202, USA
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
9
|
Jiao F, Cannon KS, Lin YC, Gladfelter AS, Scheuring S. The hierarchical assembly of septins revealed by high-speed AFM. Nat Commun 2020; 11:5062. [PMID: 33033254 PMCID: PMC7545167 DOI: 10.1038/s41467-020-18778-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022] Open
Abstract
Septins are GTP-binding proteins involved in diverse cellular processes including division and membrane remodeling. Septins form linear, palindromic heteromeric complexes that can assemble in filaments and higher-order structures. Structural studies revealed various septin architectures, but questions concerning assembly-dynamics and -pathways persist. Here we used high-speed atomic force microscopy (HS-AFM) and kinetic modeling which allowed us to determine that septin filament assembly was a diffusion-driven process, while formation of higher-order structures was complex and involved self-templating. Slightly acidic pH and increased monovalent ion concentrations favor filament-assembly, -alignment and -pairing. Filament-alignment and -pairing further favored diffusion-driven assembly. Pairing is mediated by the septin N-termini face, and may occur symmetrically or staggered, likely important for the formation of higher-order structures of different shapes. Multilayered structures are templated by the morphology of the underlying layers. The septin C-termini face, namely the C-terminal extension of Cdc12, may be involved in membrane binding.
Collapse
Affiliation(s)
- Fang Jiao
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Kevin S Cannon
- Department of Biology, University of North Carolina and Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yi-Chih Lin
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina and Chapel Hill, Chapel Hill, NC, 27599, USA
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, 10065, USA.
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
10
|
Farkašovský M. Septin architecture and function in budding yeast. Biol Chem 2020; 401:903-919. [PMID: 31913844 DOI: 10.1515/hsz-2019-0401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/28/2019] [Indexed: 01/22/2023]
Abstract
The septins constitute a conserved family of guanosine phosphate-binding and filament-forming proteins widespread across eukaryotic species. Septins appear to have two principal functions. One is to form a cortical diffusion barrier, like the septin collar at the bud neck of Saccharomyces cerevisiae, which prevents movement of membrane-associated proteins between the mother and daughter cells. The second is to serve as a polymeric scaffold for recruiting the proteins required for critical cellular processes to particular subcellular areas. In the last decade, structural information about the different levels of septin organization has appeared, but crucial structural determinants and factors responsible for septin assembly remain largely unknown. This review highlights recent findings on the architecture and function of septins and their remodeling with an emphasis on mitotically dividing budding yeasts.
Collapse
Affiliation(s)
- Marian Farkašovský
- Department of Biochemistry and Protein Structure, Institute of Molecular Biology SAS, Dubravska cesta 21, 84551 Bratislava, Slovak Republic
| |
Collapse
|
11
|
Transfer of the Septin Ring to Cytokinetic Remnants in ER Stress Directs Age-Sensitive Cell-Cycle Re-entry. Dev Cell 2019; 51:173-191.e5. [PMID: 31564614 DOI: 10.1016/j.devcel.2019.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 05/19/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
Abstract
During cell division, the inheritance of a functional endoplasmic reticulum (ER) is ensured by the endoplasmic reticulum stress surveillance (ERSU) pathway. Activation of ERSU causes the septin ring to mislocalize, which blocks ER inheritance and cytokinesis. Here, we uncover that the septin ring in fact translocates to previously utilized cell division sites called cytokinetic remnants (CRMs). This unconventional translocation requires Nba1, a negative polarity regulator that normally prevents repolarization and re-budding at CRMs. Furthermore, septin ring translocation relies on the recruitment and activation of a key ERSU component Slt2 by Bem1, without activating Cdc42. Failure to transfer all septin subunits to CRMs delays the cell's ability to re-enter the cell cycle when ER homeostasis is restored and hinders cell growth after ER stress recovery. Thus, these deliberate but unprecedented rearrangements of cell polarity factors during ER stress safeguard cell survival and the timely cell-cycle re-entry upon ER stress recovery.
Collapse
|
12
|
Perez AM, Thorner J. Septin-associated proteins Aim44 and Nis1 traffic between the bud neck and the nucleus in the yeast Saccharomyces cerevisiae. Cytoskeleton (Hoboken) 2019; 76:15-32. [PMID: 30341817 PMCID: PMC6474838 DOI: 10.1002/cm.21500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/25/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
Abstract
In budding yeast, a collar of septin filaments at the neck between a mother cell and its bud marks the incipient site for cell division and serves as a scaffold that recruits proteins required for proper spatial and temporal execution of cytokinesis. A set of interacting proteins that localize at or near the bud neck, including Aim44/Gps1, Nba1 and Nis1, also has been implicated in preventing Cdc42-dependent bud site re-establishment at the division site. We found that, at their endogenous level, Aim44 and Nis1 robustly localize sequentially at the septin collar. Strikingly, however, when overproduced, both proteins shift their subcellular distribution predominantly to the nucleus. Aim44 localizes with the inner nuclear envelope, as well as at the plasma membrane, whereas Nis1 accumulates within the nucleus, indicating that these proteins normally undergo nucleocytoplasmic shuttling. Of the 14 yeast karyopherins, Kap123/Yrb4 is the primary importin for Aim44, whereas several importins mediate Nis1 nuclear entry. Conversely, Kap124/Xpo1/Crm1 is the primary exportin for Nis1, whereas both Xpo1 and Cse1/Kap109 likely contribute to Aim44 nuclear export. Even when endogenously expressed, Nis1 accumulates in the nucleus when Nba1 is absent. When either Aim44 or Nis1 are overexpressed, Nba1 is displaced from the bud neck, further consistent with the mutual interactions of these proteins. Collectively, our results indicate that a previously unappreciated level at which localization of septin-associated proteins is controlled is via regulation of their nucleocytoplasmic shuttling, which places constraints on their availability for complex formation with other partners at the bud neck.
Collapse
Affiliation(s)
- Adam M. Perez
- Division of Biochemistry, Biophysics and Structural BiologyDepartment of Molecular and Cell Biology, University of CaliforniaBerkeleyCalifornia
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural BiologyDepartment of Molecular and Cell Biology, University of CaliforniaBerkeleyCalifornia
| |
Collapse
|
13
|
Mela A, Momany M. Septin mutations and phenotypes in S. cerevisiae. Cytoskeleton (Hoboken) 2018; 76:33-44. [PMID: 30171672 DOI: 10.1002/cm.21492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 11/07/2022]
Abstract
Septins are highly conserved guanosine triphosphate (GTP)-binding proteins that are a component of the cytoskeletal systems of virtually all eukaryotes (except higher plants). Septins play important roles in a multitude of cellular processes, including cytokinesis, establishment of cell polarity, and cellular partitioning. The ease of genetic screens and a fully sequenced genome have made Saccharomyces cerevisiae one of the most extensively studied and well-annotated model organisms in eukaryotic biology. Here, we present a synopsis of the known point mutations in the seven S. cerevisiae septin genes: CDC3, CDC10, CDC11, CDC12, SHS1, SPR3, and SPR28. We map these mutations onto septin protein structures, highlighting important conserved motifs, and relating the functional consequences of mutations in each domain.
Collapse
Affiliation(s)
- Alexander Mela
- Department of Plant Biology, University of Georgia, Athens, GA 30602
| | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
14
|
Khan A, Newby J, Gladfelter AS. Control of septin filament flexibility and bundling by subunit composition and nucleotide interactions. Mol Biol Cell 2018; 29:702-712. [PMID: 29321251 PMCID: PMC6003234 DOI: 10.1091/mbc.e17-10-0608] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 01/04/2018] [Indexed: 01/18/2023] Open
Abstract
Septins self-assemble into heteromeric rods and filaments to act as scaffolds and modulate membrane properties. How cells tune the biophysical properties of septin filaments to control filament flexibility and length, and in turn the size, shape, and position of higher-order septin structures, is not well understood. We examined how rod composition and nucleotide availability influence physical properties of septins such as annealing, fragmentation, bundling, and bending. We found that septin complexes have symmetric termini, even when both Shs1 and Cdc11 are coexpressed. The relative proportion of Cdc11/Shs1 septin complexes controls the biophysical properties of filaments and influences the rate of annealing, fragmentation, and filament flexibility. Additionally, the presence and apparent exchange of guanine nucleotide also alters filament length and bundling. An Shs1 mutant that is predicted to alter nucleotide hydrolysis has altered filament length and dynamics in cells and impacts cell morphogenesis. These data show that modulating filament properties through rod composition and nucleotide binding can control formation of septin assemblies that have distinct physical properties and functions.
Collapse
Affiliation(s)
- Anum Khan
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, Dartmouth College, Hanover, NH 03755
| | - Jay Newby
- Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Amy S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
15
|
HamediRad M, Lian J, Li H, Zhao H. RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization. Biotechnol Bioeng 2018; 115:1552-1560. [DOI: 10.1002/bit.26570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/28/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Mohammad HamediRad
- Department of Chemical and Biomolecular EngineeringCarl R. Woese Institute for Genomic BiologyUrbanaIllinois
| | - Jiazhang Lian
- Department of Chemical and Biomolecular EngineeringCarl R. Woese Institute for Genomic BiologyUrbanaIllinois
- College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
| | - Hejun Li
- Department of Agricultural and Biological EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Huimin Zhao
- Department of Chemical and Biomolecular EngineeringCarl R. Woese Institute for Genomic BiologyUrbanaIllinois
- Departments of Chemistry Biochemistry and BioengineeringUniversity of Illinois at UrbanaUrbanaIllinois
| |
Collapse
|
16
|
Basgall EM, Goetting SC, Goeckel ME, Giersch RM, Roggenkamp E, Schrock MN, Halloran M, Finnigan GC. Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. MICROBIOLOGY-SGM 2018; 164:464-474. [PMID: 29488867 PMCID: PMC5982135 DOI: 10.1099/mic.0.000635] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Given the widespread use and application of the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas gene editing system across many fields, a major focus has been the development, engineering and discovery of molecular means to precisely control and regulate the enzymatic function of the Cas9 nuclease. To date, a variety of Cas9 variants and fusion assemblies have been proposed to provide temporally inducible and spatially controlled editing functions. The discovery of a new class of ‘anti-CRISPR’ proteins, evolved from bacteriophage in response to the prokaryotic nuclease-based immune system, provides a new platform for control over genomic editing. One Cas9-based application of interest to the field of population control is that of the ‘gene drive’. Here, we demonstrate use of the AcrIIA2 and AcrIIA4 proteins to inhibit active gene drive systems in budding yeast. Furthermore, an unbiased mutational scan reveals that titration of Cas9 inhibition may be possible by modification of the anti-CRISPR primary sequence.
Collapse
Affiliation(s)
- Erianna M. Basgall
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Samantha C. Goetting
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Megan E. Goeckel
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Rachael M. Giersch
- Department of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Emily Roggenkamp
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Madison N. Schrock
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Megan Halloran
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Gregory C. Finnigan
- Department of Biochemistry and Molecular Biophysics, 141 Chalmers Hall, Kansas State University, Manhattan, KS 66506, USA
- *Correspondence: Gregory C. Finnigan,
| |
Collapse
|
17
|
Barve G, Sridhar S, Aher A, Sahani MH, Chinchwadkar S, Singh S, K N L, McMurray MA, Manjithaya R. Septins are involved at the early stages of macroautophagy in S. cerevisiae. J Cell Sci 2018; 131:jcs209098. [PMID: 29361537 PMCID: PMC5868950 DOI: 10.1242/jcs.209098] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/10/2018] [Indexed: 12/29/2022] Open
Abstract
Autophagy is a conserved cellular degradation pathway wherein double-membrane vesicles called autophagosomes capture long-lived proteins, and damaged or superfluous organelles, and deliver them to the lysosome for degradation. Septins are conserved GTP-binding proteins involved in many cellular processes, including phagocytosis and the autophagy of intracellular bacteria, but no role in general autophagy was known. In budding yeast, septins polymerize into ring-shaped arrays of filaments required for cytokinesis. In an unbiased genetic screen and in subsequent targeted analysis, we found autophagy defects in septin mutants. Upon autophagy induction, pre-assembled septin complexes relocalized to the pre-autophagosomal structure (PAS) where they formed non-canonical septin rings at PAS. Septins also colocalized with autophagosomes, where they physically interacted with the autophagy proteins Atg8 and Atg9. When autophagosome degradation was blocked in septin-mutant cells, fewer autophagic structures accumulated, and an autophagy mutant defective in early stages of autophagosome biogenesis (atg1Δ), displayed decreased septin localization to the PAS. Our findings support a role for septins in the early stages of budding yeast autophagy, during autophagosome formation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Gaurav Barve
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Shreyas Sridhar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Amol Aher
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Mayurbhai H Sahani
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sarika Chinchwadkar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Sunaina Singh
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Lakshmeesha K N
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Michael A McMurray
- University of Colorado, Anschutz Medical Campus, Department of Cell and Developmental Biology, Aurora, CO 80045, USA
| | - Ravi Manjithaya
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
18
|
Roggenkamp E, Giersch RM, Wedeman E, Eaton M, Turnquist E, Schrock MN, Alkotami L, Jirakittisonthon T, Schluter-Pascua SE, Bayne GH, Wasko C, Halloran M, Finnigan GC. CRISPR-UnLOCK: Multipurpose Cas9-Based Strategies for Conversion of Yeast Libraries and Strains. Front Microbiol 2017; 8:1773. [PMID: 28979241 PMCID: PMC5611381 DOI: 10.3389/fmicb.2017.01773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/31/2017] [Indexed: 11/29/2022] Open
Abstract
Saccharomyces cerevisiae continues to serve as a powerful model system for both basic biological research and industrial application. The development of genome-wide collections of individually manipulated strains (libraries) has allowed for high-throughput genetic screens and an emerging global view of this single-celled Eukaryote. The success of strain construction has relied on the innate ability of budding yeast to accept foreign DNA and perform homologous recombination, allowing for efficient plasmid construction (in vivo) and integration of desired sequences into the genome. The development of molecular toolkits and “integration cassettes” have provided fungal systems with a collection of strategies for tagging, deleting, or over-expressing target genes; typically, these consist of a C-terminal tag (epitope or fluorescent protein), a universal terminator sequence, and a selectable marker cassette to allow for convenient screening. However, there are logistical and technical obstacles to using these traditional genetic modules for complex strain construction (manipulation of many genomic targets in a single cell) or for the generation of entire genome-wide libraries. The recent introduction of the CRISPR/Cas gene editing technology has provided a powerful methodology for multiplexed editing in many biological systems including yeast. We have developed four distinct uses of the CRISPR biotechnology to generate yeast strains that utilizes the conversion of existing, commonly-used yeast libraries or strains. We present Cas9-based, marker-less methodologies for (i) N-terminal tagging, (ii) C-terminally tagging yeast genes with 18 unique fusions, (iii) conversion of fluorescently-tagged strains into newly engineered (or codon optimized) variants, and finally, (iv) use of a Cas9 “gene drive” system to rapidly achieve a homozygous state for a hypomorphic query allele in a diploid strain. These CRISPR-based methods demonstrate use of targeting universal sequences previously introduced into a genome.
Collapse
Affiliation(s)
- Emily Roggenkamp
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Rachael M Giersch
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Emily Wedeman
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Muriel Eaton
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Emily Turnquist
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Madison N Schrock
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Linah Alkotami
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Thitikan Jirakittisonthon
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State UniversityManhattan, KS, United States
| | | | - Gareth H Bayne
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Cory Wasko
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Megan Halloran
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| | - Gregory C Finnigan
- Department of Biochemistry and Molecular Biophysics, Kansas State UniversityManhattan, KS, United States
| |
Collapse
|
19
|
Weems A, McMurray M. The step-wise pathway of septin hetero-octamer assembly in budding yeast. eLife 2017; 6. [PMID: 28541184 PMCID: PMC5461111 DOI: 10.7554/elife.23689] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/24/2017] [Indexed: 01/22/2023] Open
Abstract
Septin proteins bind guanine nucleotides and form rod-shaped hetero-oligomers. Cells choose from a variety of available septins to assemble distinct hetero-oligomers, but the underlying mechanism was unknown. Using a new in vivo assay, we find that a stepwise assembly pathway produces the two species of budding yeast septin hetero-octamers: Cdc11/Shs1–Cdc12–Cdc3–Cdc10–Cdc10–Cdc3–Cdc12–Cdc11/Shs1. Rapid GTP hydrolysis by monomeric Cdc10 drives assembly of the core Cdc10 homodimer. The extended Cdc3 N terminus autoinhibits Cdc3 association with Cdc10 homodimers until prior Cdc3–Cdc12 interaction. Slow hydrolysis by monomeric Cdc12 and specific affinity of Cdc11 for transient Cdc12•GTP drive assembly of distinct trimers, Cdc11–Cdc12–Cdc3 or Shs1–Cdc12–Cdc3. Decreasing the cytosolic GTP:GDP ratio increases the incorporation of Shs1 vs Cdc11, which alters the curvature of filamentous septin rings. Our findings explain how GTP hydrolysis controls septin assembly, and uncover mechanisms by which cells construct defined septin complexes. DOI:http://dx.doi.org/10.7554/eLife.23689.001
Collapse
Affiliation(s)
- Andrew Weems
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
| | - Michael McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, United States
| |
Collapse
|
20
|
McQuilken M, Jentzsch MS, Verma A, Mehta SB, Oldenbourg R, Gladfelter AS. Analysis of Septin Reorganization at Cytokinesis Using Polarized Fluorescence Microscopy. Front Cell Dev Biol 2017; 5:42. [PMID: 28516085 PMCID: PMC5413497 DOI: 10.3389/fcell.2017.00042] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/05/2017] [Indexed: 11/16/2022] Open
Abstract
Septins are conserved filament-forming proteins that act in diverse cellular processes. They closely associate with membranes and, in some systems, components of the cytoskeleton. It is not well understood how filaments assemble into higher-order structures in vivo or how they are remodeled throughout the cell cycle. In the budding yeast S. cerevisiae, septins are found through most of the cell cycle in an hourglass organization at the mother-bud neck until cytokinesis when the collar splits into two rings that disassemble prior to the next cell cycle. Experiments using polarized fluorescence microscopy have suggested that septins are arranged in ordered, paired filaments in the hourglass and undergo a coordinated 90° reorientation during splitting at cytokinesis. This apparent reorganization could be due to two orthogonal populations of filaments disassembling and reassembling or being preferentially retained at cytokinesis. In support of this idea, we report a decrease in septin concentration at the mother-bud neck during cytokinesis consistent with other reports and the timing of the decrease depends on known septin regulators including the Gin4 kinase. We took a candidate-based approach to examine what factors control reorientation during splitting and used polarized fluorescence microscopy to screen mutant yeast strains deficient in septin interacting proteins. Using this method, we have linked known septin regulators to different aspects of the assembly, stability, and reorganization of septin assemblies. The data support that ring splitting requires Gin4 activity and an anillin-like protein Bud4, and normal accumulation of septins at the ring requires phosphorylation of Shs1. We found distinct regulatory requirements for septin organization in the hourglass compared to split rings. We propose that septin subpopulations can vary in their localization and assembly/disassembly behavior in a cell-cycle dependent manner at cytokinesis.
Collapse
Affiliation(s)
- Molly McQuilken
- Department of Biology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Department of Biological Sciences, Dartmouth CollegeHanover, NH, USA
| | | | - Amitabh Verma
- Marine Biological Laboratory, Bell Center for Regenerative MedicineWoods Hole, MA, USA
| | - Shalin B. Mehta
- Marine Biological Laboratory, Bell Center for Regenerative MedicineWoods Hole, MA, USA
| | - Rudolf Oldenbourg
- Marine Biological Laboratory, Bell Center for Regenerative MedicineWoods Hole, MA, USA
- Department of Physics, Brown UniversityProvidence, RI, USA
| | - Amy S. Gladfelter
- Department of Biology, University of North Carolina at Chapel HillChapel Hill, NC, USA
- Marine Biological Laboratory, Bell Center for Regenerative MedicineWoods Hole, MA, USA
| |
Collapse
|
21
|
Giersch RM, Finnigan GC. Method for Multiplexing CRISPR/Cas9 in Saccharomyces cerevisiae Using Artificial Target DNA Sequences. Bio Protoc 2017; 7:e2557. [PMID: 29082289 DOI: 10.21769/bioprotoc.2557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Genome manipulation has become more accessible given the advent of the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) editing technology. The Cas9 endonuclease binds a single stranded (single guide) RNA (sgRNA) fragment that recruits the complex to a corresponding genomic target sequence where it induces a double stranded break. Eukaryotic repair systems allow for the introduction of exogenous DNA, repair of existing mutations, or deletion of endogenous gene products. Targeting of Cas9 to multiple genomic positions (termed 'multiplexing') is achieved by the expression of multiple sgRNAs within the same nucleus. However, an ongoing concern of the CRISPR field has been the accidental targeting of Cas9 to alternative ('off-target') DNA locations within a genome. We describe the use (dubbed Multiplexing of Cas9 at Artificial Loci) of installed artificial Cas9 target sequences into the yeast genome that allow for (i) multiplexing with a single sgRNA; (ii) a reduction/elimination in possible off-target effects, and (iii) precise control of the placement of the intended target sequence(s).
Collapse
Affiliation(s)
- Rachael M Giersch
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, USA
| | - Gregory C Finnigan
- Department of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, USA
| |
Collapse
|
22
|
Booth EA, Sterling SM, Dovala D, Nogales E, Thorner J. Effects of Bni5 Binding on Septin Filament Organization. J Mol Biol 2016; 428:4962-4980. [PMID: 27806918 DOI: 10.1016/j.jmb.2016.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
Abstract
Septins are a protein family found in all eukaryotes (except higher plants) that have roles in membrane remodeling and formation of diffusion barriers and as a scaffold to recruit other proteins. In budding yeast, proper execution of cytokinesis and cell division requires the formation of a collar of circumferential filaments at the bud neck. These filaments are assembled from apolar septin hetero-octamers. Currently, little is known about the mechanisms that control the arrangement and dynamics of septin structures. In this study, we utilized both Förster resonance energy transfer and electron microscopy to analyze the biophysical properties of the septin-binding protein Bni5 and how its association with septin filaments affects their organization. We found that the interaction of Bni5 with the terminal subunit (Cdc11) at the junctions between adjacent hetero-octamers in paired filaments is highly cooperative. Both the C-terminal end of Bni5 and the C-terminal extension of Cdc11 make important contributions to their interaction. Moreover, this binding may stabilize the dimerization of Bni5, which, in turn, forms cross-filament braces that significantly narrow, and impose much more uniform spacing on, the gap between paired filaments.
Collapse
Affiliation(s)
- Elizabeth A Booth
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| | - Sarah M Sterling
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| | - Dustin Dovala
- Program in Microbial Pathogenesis and Host Defense, Department of Microbiology and Immunology, University of California School of Medicine, San Francisco, CA 94143, USA.
| | - Eva Nogales
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA; Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA.
| |
Collapse
|
23
|
Perez AM, Finnigan GC, Roelants FM, Thorner J. Septin-Associated Protein Kinases in the Yeast Saccharomyces cerevisiae. Front Cell Dev Biol 2016; 4:119. [PMID: 27847804 PMCID: PMC5088441 DOI: 10.3389/fcell.2016.00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/14/2016] [Indexed: 01/19/2023] Open
Abstract
Septins are a family of eukaryotic GTP-binding proteins that associate into linear rods, which, in turn, polymerize end-on-end into filaments, and further assemble into other, more elaborate super-structures at discrete subcellular locations. Hence, septin-based ensembles are considered elements of the cytoskeleton. One function of these structures that has been well-documented in studies conducted in budding yeast Saccharomyces cerevisiae is to serve as a scaffold that recruits regulatory proteins, which dictate the spatial and temporal control of certain aspects of the cell division cycle. In particular, septin-associated protein kinases couple cell cycle progression with cellular morphogenesis. Thus, septin-containing structures serve as signaling platforms that integrate a multitude of signals and coordinate key downstream networks required for cell cycle passage. This review summarizes what we currently understand about how the action of septin-associated protein kinases and their substrates control information flow to drive the cell cycle into and out of mitosis, to regulate bud growth, and especially to direct timely and efficient execution of cytokinesis and cell abscission. Thus, septin structures represent a regulatory node at the intersection of many signaling pathways. In addition, and importantly, the activities of certain septin-associated protein kinases also regulate the state of organization of the septins themselves, creating a complex feedback loop.
Collapse
Affiliation(s)
- Adam M Perez
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Françoise M Roelants
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, CA, USA
| |
Collapse
|
24
|
Glomb O, Gronemeyer T. Septin Organization and Functions in Budding Yeast. Front Cell Dev Biol 2016; 4:123. [PMID: 27857941 PMCID: PMC5093138 DOI: 10.3389/fcell.2016.00123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/19/2016] [Indexed: 12/14/2022] Open
Abstract
The septins are a conserved family of GTP-binding proteins present in all eukaryotic cells except plants. They were originally discovered in the baker's yeast Saccharomyces cerevisiae that serves until today as an important model organism for septin research. In yeast, the septins assemble into a highly ordered array of filaments at the mother bud neck. The septins are regulators of spatial compartmentalization in yeast and act as key players in cytokinesis. This minireview summarizes the recent findings about structural features and cell biology of the yeast septins.
Collapse
Affiliation(s)
- Oliver Glomb
- Department of Molecular Genetics and Cell Biology, Ulm University Ulm, Germany
| | - Thomas Gronemeyer
- Department of Molecular Genetics and Cell Biology, Ulm University Ulm, Germany
| |
Collapse
|
25
|
Partial Functional Diversification of Drosophila melanogaster Septin Genes Sep2 and Sep5. G3-GENES GENOMES GENETICS 2016; 6:1947-57. [PMID: 27172205 PMCID: PMC4938648 DOI: 10.1534/g3.116.028886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The septin family of hetero-oligomeric complex-forming proteins can be divided into subgroups, and subgroup members are interchangeable at specific positions in the septin complex. Drosophila melanogaster has five septin genes, including the two SEPT6 subgroup members Sep2 and Sep5. We previously found that Sep2 has a unique function in oogenesis, which is not performed by Sep5. Here, we find that Sep2 is uniquely required for follicle cell encapsulation of female germline cysts, and that Sep2 and Sep5 are redundant for follicle cell proliferation. The five D. melanogaster septins localize similarly in oogenesis, including as rings flanking the germline ring canals. Pnut fails to localize in Sep5; Sep2 double mutant follicle cells, indicating that septin complexes fail to form in the absence of both Sep2 and Sep5. We also find that mutations in septins enhance the mutant phenotype of bazooka, a key component in the establishment of cell polarity, suggesting a link between septin function and cell polarity. Overall, this work suggests that Sep5 has undergone partial loss of ancestral protein function, and demonstrates redundant and unique functions of septins.
Collapse
|
26
|
Finnigan GC, Thorner J. mCAL: A New Approach for Versatile Multiplex Action of Cas9 Using One sgRNA and Loci Flanked by a Programmed Target Sequence. G3 (BETHESDA, MD.) 2016; 6:2147-56. [PMID: 27185399 PMCID: PMC4938667 DOI: 10.1534/g3.116.029801] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Abstract
Genome editing exploiting CRISPR/Cas9 has been adopted widely in academia and in the biotechnology industry to manipulate DNA sequences in diverse organisms. Molecular engineering of Cas9 itself and its guide RNA, and the strategies for using them, have increased efficiency, optimized specificity, reduced inappropriate off-target effects, and introduced modifications for performing other functions (transcriptional regulation, high-resolution imaging, protein recruitment, and high-throughput screening). Moreover, Cas9 has the ability to multiplex, i.e., to act at different genomic targets within the same nucleus. Currently, however, introducing concurrent changes at multiple loci involves: (i) identification of appropriate genomic sites, especially the availability of suitable PAM sequences; (ii) the design, construction, and expression of multiple sgRNA directed against those sites; (iii) potential difficulties in altering essential genes; and (iv) lingering concerns about "off-target" effects. We have devised a new approach that circumvents these drawbacks, as we demonstrate here using the yeast Saccharomyces cerevisiae First, any gene(s) of interest are flanked upstream and downstream with a single unique target sequence that does not normally exist in the genome. Thereafter, expression of one sgRNA and cotransformation with appropriate PCR fragments permits concomitant Cas9-mediated alteration of multiple genes (both essential and nonessential). The system we developed also allows for maintenance of the integrated, inducible Cas9-expression cassette or its simultaneous scarless excision. Our scheme-dubbed mCAL for " M: ultiplexing of C: as9 at A: rtificial L: oci"-can be applied to any organism in which the CRISPR/Cas9 methodology is currently being utilized. In principle, it can be applied to install synthetic sequences into the genome, to generate genomic libraries, and to program strains or cell lines so that they can be conveniently (and repeatedly) manipulated at multiple loci with extremely high efficiency.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| |
Collapse
|
27
|
Finnigan GC, Duvalyan A, Liao EN, Sargsyan A, Thorner J. Detection of protein-protein interactions at the septin collar in Saccharomyces cerevisiae using a tripartite split-GFP system. Mol Biol Cell 2016; 27:2708-25. [PMID: 27385335 PMCID: PMC5007091 DOI: 10.1091/mbc.e16-05-0337] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/30/2016] [Indexed: 01/22/2023] Open
Abstract
A tripartite split-GFP system faithfully reports the order of the subunits in septin hetero-octamers (and thus can serve as a “molecular ruler”), conversely yields little or no false signal even with very highly expressed cytosolic proteins, and detects authentic interactions of other cellular proteins that are bona fide septin-binding proteins. Various methods can provide a readout of the physical interaction between two biomolecules. A recently described tripartite split-GFP system has the potential to report by direct visualization via a fluorescence signal the intimate association of minimally tagged proteins expressed at their endogenous level in their native cellular milieu and can capture transient or weak interactions. Here we document the utility of this tripartite split-GFP system to assess in living cells protein–protein interactions in a dynamic cytoskeletal structure—the septin collar at the yeast bud neck. We show, first, that for septin–septin interactions, this method yields a robust signal whose strength reflects the known spacing between the subunits in septin filaments and thus serves as a “molecular ruler.” Second, the method yields little or no spurious signal even with highly abundant cytosolic proteins readily accessible to the bud neck (including molecular chaperone Hsp82 and glycolytic enzyme Pgk1). Third, using two proteins (Bni5 and Hsl1) that have been shown by other means to bind directly to septins at the bud neck in vivo, we validate that the tripartite split-GFP method yields the same conclusions and further insights about specificity. Finally, we demonstrate the capacity of this approach to uncover additional new information by examining whether three other proteins reported to localize to the bud neck (Nis1, Bud4, and Hof1) are able to interact physically with any of the subunits in the septin collar and, if so, with which ones.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Angela Duvalyan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Elizabeth N Liao
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Aspram Sargsyan
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3202
| |
Collapse
|
28
|
Abstract
Polarized growth is critical for the development and maintenance of diverse organisms and tissues but particularly so in fungi, where nutrient uptake, communication, and reproduction all rely on cell asymmetries. To achieve polarized growth, fungi spatially organize both their cytosol and cortical membranes. Septins, a family of GTP-binding proteins, are key regulators of spatial compartmentalization in fungi and other eukaryotes. Septins form higher-order structures on fungal plasma membranes and are thought to contribute to the generation of cell asymmetries by acting as molecular scaffolds and forming diffusional barriers. Here we discuss the links between septins and polarized growth and consider molecular models for how septins contribute to cellular asymmetry in fungi.
Collapse
Affiliation(s)
- Anum Khan
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| | - Molly McQuilken
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| | - Amy S Gladfelter
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755;
| |
Collapse
|
29
|
Zander S, Baumann S, Weidtkamp-Peters S, Feldbrügge M. Endosomal assembly and transport of heteromeric septin complexes promote septin cytoskeleton formation. J Cell Sci 2016; 129:2778-92. [PMID: 27252385 DOI: 10.1242/jcs.182824] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 05/26/2016] [Indexed: 02/02/2023] Open
Abstract
Septins are conserved cytoskeletal structures functioning in a variety of biological processes including cytokinesis and cell polarity. A wealth of information exists on the heterooligomeric architecture of septins and their subcellular localization at distinct sites. However, the precise mechanisms of their subcellular assembly and their intracellular transport are unknown. Here, we demonstrate that endosomal transport of septins along microtubules is crucial for formation of higher-order structures in the fungus Ustilago maydis Importantly, endosomal septin transport is dependent on each individual septin providing strong evidence that septin heteromeric complexes are assembled on endosomes. Furthermore, endosomal trafficking of all four septin mRNAs is required for endosomal localization of their translation products. Based on these results, we propose that local translation promotes the assembly of newly synthesized septins in heteromeric structures on the surface of endosomes. This is important for the long-distance transport of septins and the efficient formation of the septin cytoskeleton.
Collapse
Affiliation(s)
- Sabrina Zander
- Department of Biology, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Sebastian Baumann
- Department of Biology, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Stefanie Weidtkamp-Peters
- Department of Biology, Center for Advanced Imaging (CAi), Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Michael Feldbrügge
- Department of Biology, Institute for Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
30
|
Au Yong JY, Wang YM, Wang Y. The Nim1 kinase Gin4 has distinct domains crucial for septin assembly, phospholipid binding and mitotic exit. J Cell Sci 2016; 129:2744-56. [PMID: 27231094 PMCID: PMC4958294 DOI: 10.1242/jcs.183160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/20/2016] [Indexed: 12/29/2022] Open
Abstract
In fungi, the Nim1 protein kinases, such as Gin4, are important regulators of multiple cell cycle events, including the G2–M transition, septin assembly, polarized growth and cytokinesis. Compelling evidence has linked some key functions of Gin4 with the large C-terminal non-kinase region which, however, is poorly defined. By systematically dissecting and functionally characterizing the non-kinase region of Gin4 in the human fungal pathogen Candida albicans, we report the identification of three new domains with distinct functions: a lipid-binding domain (LBD), a septin-binding domain (SBD) and a nucleolus-associating domain (NAD). The LBD and SBD are indispensable for the function of Gin4, and they alone could sufficiently restore septin ring assembly in GIN4-null mutants. The NAD localizes to the periphery of the nucleolus and physically associates with Cdc14, the ultimate effector of the mitotic exit network. Gin4 mutants that lack the NAD are defective in spindle orientation and exit mitosis prematurely. Furthermore, we show that Gin4 is a substrate of Cdc14. These findings provide novel insights into the roles and mechanisms of Nim1 kinases in the regulation of some crucial cell cycle events. Summary: Systematic dissection of the Gin4 kinase in the human pathogenic fungus Candida albicans uncovers three new functional domains that interact with distinct cellular components.
Collapse
Affiliation(s)
- Jie Ying Au Yong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673
| | - Yan-Ming Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673
| | - Yue Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| |
Collapse
|
31
|
Finnigan GC, Sterling SM, Duvalyan A, Liao EN, Sargsyan A, Garcia G, Nogales E, Thorner J. Coordinate action of distinct sequence elements localizes checkpoint kinase Hsl1 to the septin collar at the bud neck in Saccharomyces cerevisiae. Mol Biol Cell 2016; 27:2213-33. [PMID: 27193302 PMCID: PMC4945140 DOI: 10.1091/mbc.e16-03-0177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/13/2016] [Indexed: 01/05/2023] Open
Abstract
A long-standing conundrum is resolved about the underlying sequence determinants and molecular mechanism responsible for the recruitment of the protein kinase Hsl1 (an indispensable component of the so-called “morphogenesis checkpoint”) exclusively to the septin collar at the bud neck. Passage through the eukaryotic cell cycle requires processes that are tightly regulated both spatially and temporally. Surveillance mechanisms (checkpoints) exert quality control and impose order on the timing and organization of downstream events by impeding cell cycle progression until the necessary components are available and undamaged and have acted in the proper sequence. In budding yeast, a checkpoint exists that does not allow timely execution of the G2/M transition unless and until a collar of septin filaments has properly assembled at the bud neck, which is the site where subsequent cytokinesis will occur. An essential component of this checkpoint is the large (1518-residue) protein kinase Hsl1, which localizes to the bud neck only if the septin collar has been correctly formed. Hsl1 reportedly interacts with particular septins; however, the precise molecular determinants in Hsl1 responsible for its recruitment to this cellular location during G2 have not been elucidated. We performed a comprehensive mutational dissection and accompanying image analysis to identify the sequence elements within Hsl1 responsible for its localization to the septins at the bud neck. Unexpectedly, we found that this targeting is multipartite. A segment of the central region of Hsl1 (residues 611–950), composed of two tandem, semiredundant but distinct septin-associating elements, is necessary and sufficient for binding to septin filaments both in vitro and in vivo. However, in addition to 611–950, efficient localization of Hsl1 to the septin collar in the cell obligatorily requires generalized targeting to the cytosolic face of the plasma membrane, a function normally provided by the C-terminal phosphatidylserine-binding KA1 domain (residues 1379–1518) in Hsl1 but that can be replaced by other, heterologous phosphatidylserine-binding sequences.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Sarah M Sterling
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Angela Duvalyan
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Elizabeth N Liao
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Aspram Sargsyan
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Galo Garcia
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Eva Nogales
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 Life Sciences Division, Lawrence Berkeley National Laboratory, and Howard Hughes Medical Institute, Berkeley, CA 94720
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
32
|
McMurray MA. Assays for genetic dissection of septin filament assembly in yeast, from de novo folding through polymerization. Methods Cell Biol 2016; 136:99-116. [PMID: 27473905 DOI: 10.1016/bs.mcb.2016.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
In Saccharomyces cerevisiae, septin mutations have severe effects on colony-forming ability, particularly at high temperatures, allowing the full variety of genetic tools available in this model organism to be applied to the study of septin biology. Although many details of septin function remain unknown, one can exploit a small number of easily scored phenotypes-proliferation capacity, cell morphology, septin localization, and septin ring integrity-as sensitive readouts of properly assembled septin filaments. Accordingly, this chapter focuses on genetic approaches targeted toward understanding the molecular mechanisms of de novo septin folding, heterooligomerization, and polymerization into filaments. The same general methods can be used to interrogate septin function, although interpretation of results can be more complicated. As genetic-based methodologies are technically simple but particularly dependent on interpretation, here I focus on the logic underlying the most common interpretations of results using septin mutants.
Collapse
Affiliation(s)
- M A McMurray
- University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
33
|
Garcia G, Finnigan GC, Heasley LR, Sterling SM, Aggarwal A, Pearson CG, Nogales E, McMurray MA, Thorner J. Assembly, molecular organization, and membrane-binding properties of development-specific septins. J Cell Biol 2016; 212:515-29. [PMID: 26929450 PMCID: PMC4772501 DOI: 10.1083/jcb.201511029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/22/2016] [Indexed: 01/22/2023] Open
Abstract
Septin complexes display remarkable plasticity in subunit composition, yet how a new subunit assembled into higher-order structures confers different functions is not fully understood. Here, this question is addressed in budding yeast, where during meiosis Spr3 and Spr28 replace the mitotic septin subunits Cdc12 and Cdc11 (and Shs1), respectively. In vitro, the sole stable complex that contains both meiosis-specific septins is a linear Spr28-Spr3-Cdc3-Cdc10-Cdc10-Cdc3-Spr3-Spr28 hetero-octamer. Only coexpressed Spr3 and Spr28 colocalize with Cdc3 and Cdc10 in mitotic cells, indicating that incorporation requires a Spr28-Spr3 protomer. Unlike their mitotic counterparts, Spr28-Spr3-capped rods are unable to form higher-order structures in solution but assemble to form long paired filaments on lipid monolayers containing phosphatidylinositol-4,5-bisphosphate, mimicking presence of this phosphoinositide in the prospore membrane. Spr28 and Spr3 fail to rescue the lethality of a cdc11Δ cdc12Δ mutant, and Cdc11 and Cdc12 fail to restore sporulation proficiency to spr3Δ/spr3Δ spr28Δ/spr28Δ diploids. Thus, specific meiotic and mitotic subunits endow septin complexes with functionally distinct properties.
Collapse
Affiliation(s)
- Galo Garcia
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Gregory C Finnigan
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Lydia R Heasley
- Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Sarah M Sterling
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Adeeti Aggarwal
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Eva Nogales
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Howard Hughes Medical Institute, Chevy Chase, MD 20815
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
34
|
Renz C, Oeljeklaus S, Grinhagens S, Warscheid B, Johnsson N, Gronemeyer T. Identification of Cell Cycle Dependent Interaction Partners of the Septins by Quantitative Mass Spectrometry. PLoS One 2016; 11:e0148340. [PMID: 26871441 PMCID: PMC4752459 DOI: 10.1371/journal.pone.0148340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/15/2016] [Indexed: 01/21/2023] Open
Abstract
The septins are a conserved family of GTP-binding proteins that, in the baker's yeast, assemble into a highly ordered array of filaments at the mother bud neck. These filaments undergo significant structural rearrangements during the cell cycle. We aimed at identifying key components that are involved in or regulate the transitions of the septins. By combining cell synchronization and quantitative affinity-purification mass-spectrometry, we performed a screen for specific interaction partners of the septins at three distinct stages of the cell cycle. A total of 83 interaction partners of the septins were assigned. Surprisingly, we detected DNA-interacting/nuclear proteins and proteins involved in ribosome biogenesis and protein synthesis predominantly present in alpha-factor arrested that do not display an assembled septin structure. Furthermore, two distinct sets of regulatory proteins that are specific for cells at S-phase with a stable septin collar or at mitosis with split septin rings were identified. Complementary methods like SPLIFF and immunoprecipitation allowed us to more exactly define the spatial and temporal characteristics of selected hits of the AP-MS screen.
Collapse
Affiliation(s)
- Christian Renz
- Ulm University, Department of Molecular Genetics and Cell Biology, Ulm, Germany
| | - Silke Oeljeklaus
- University of Freiburg, Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Sören Grinhagens
- Ulm University, Department of Molecular Genetics and Cell Biology, Ulm, Germany
| | - Bettina Warscheid
- University of Freiburg, Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Nils Johnsson
- Ulm University, Department of Molecular Genetics and Cell Biology, Ulm, Germany
| | - Thomas Gronemeyer
- Ulm University, Department of Molecular Genetics and Cell Biology, Ulm, Germany
- * E-mail:
| |
Collapse
|
35
|
Abstract
Cytokinesis is the final process in the cell cycle that physically divides one cell into two. In budding yeast, cytokinesis is driven by a contractile actomyosin ring (AMR) and the simultaneous formation of a primary septum, which serves as template for cell wall deposition. AMR assembly, constriction, primary septum formation and cell wall deposition are successive processes and tightly coupled to cell cycle progression to ensure the correct distribution of genetic material and cell organelles among the two rising cells prior to cell division. The role of the AMR in cytokinesis and the molecular mechanisms that drive AMR constriction and septation are the focus of current research. This review summarizes the recent progresses in our understanding of how budding yeast cells orchestrate the multitude of molecular mechanisms that control AMR driven cytokinesis in a spatio-temporal manner to achieve an error free cell division.
Collapse
|
36
|
Brausemann A, Gerhardt S, Schott AK, Einsle O, Große-Berkenbusch A, Johnsson N, Gronemeyer T. Crystal structure of Cdc11, a septin subunit from Saccharomyces cerevisiae. J Struct Biol 2016; 193:157-161. [PMID: 26780475 DOI: 10.1016/j.jsb.2016.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/21/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
Abstract
Septins are a conserved family of GTP-binding proteins that assemble into a highly ordered array of filaments at the mother bud neck in Saccharomyces cerevisiae cells. Many molecular functions and mechanisms of the septins in S. cerevisiae were already uncovered. However, structural information is only available from modeling the crystallized subunits of the human septins into the EM cryomicroscopy data of the yeast hetero-octameric septin rod. Octameric rods are the building block of septin filaments in yeast. We present here the first crystal structure of Cdc11, the terminal subunit of the octameric rod and discuss its structure in relation to its human homologues. Size exclusion chromatography analysis revealed that Cdc11 forms homodimers through its C-terminal coiled coil tail.
Collapse
Affiliation(s)
- Anton Brausemann
- Institute for Biochemistry, Albert-Ludwigs University, 79104 Freiburg, Germany
| | - Stefan Gerhardt
- Institute for Biochemistry, Albert-Ludwigs University, 79104 Freiburg, Germany
| | - Anne-Kathrin Schott
- Institute for Biochemistry, Albert-Ludwigs University, 79104 Freiburg, Germany
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs University, 79104 Freiburg, Germany
| | | | - Nils Johnsson
- Institute of Molecular Genetics and Cell Biology, Ulm University, 89081 Ulm, Germany
| | - Thomas Gronemeyer
- Institute of Molecular Genetics and Cell Biology, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
37
|
Booth EA, Vane EW, Dovala D, Thorner J. A Förster Resonance Energy Transfer (FRET)-based System Provides Insight into the Ordered Assembly of Yeast Septin Hetero-octamers. J Biol Chem 2015; 290:28388-28401. [PMID: 26416886 PMCID: PMC4653696 DOI: 10.1074/jbc.m115.683128] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Indexed: 12/21/2022] Open
Abstract
Prior studies in both budding yeast (Saccharomyces cerevisiae) and in human cells have established that septin protomers assemble into linear hetero-octameric rods with 2-fold rotational symmetry. In mitotically growing yeast cells, five septin subunits are expressed (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1) and assemble into two types of rods that differ only in their terminal subunit: Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 and Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Shs1. EM analysis has shown that, under low salt conditions, the Cdc11-capped rods polymerize end to end to form long paired filaments, whereas Shs1-capped rods form arcs, spirals, and rings. To develop a facile method to study septin polymerization in vitro, we exploited our previous work in which we generated septin complexes in which all endogenous cysteine (Cys) residues were eliminated by site-directed mutagenesis, except an introduced E294C mutation in Cdc11 in these experiments. Mixing samples of a preparation of such single-Cys containing Cdc11-capped rods that have been separately derivatized with organic dyes that serve as donor and acceptor, respectively, for FRET provided a spectroscopic method to monitor filament assembly mediated by Cdc11-Cdc11 interaction and to measure its affinity under specified conditions. Modifications of this same FRET scheme also allow us to assess whether Shs1-capped rods are capable of end to end association either with themselves or with Cdc11-capped rods. This FRET approach also was used to follow the binding to septin filaments of a septin-interacting protein, the type II myosin-binding protein Bni5.
Collapse
Affiliation(s)
- Elizabeth A Booth
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Eleanor W Vane
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Dustin Dovala
- Program in Microbial Pathogenesis and Host Defense, Department of Microbiology and Immunology, University of California School of Medicine, San Francisco, California 94158-2200
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics, and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202.
| |
Collapse
|
38
|
The Carboxy-Terminal Tails of Septins Cdc11 and Shs1 Recruit Myosin-II Binding Factor Bni5 to the Bud Neck in Saccharomyces cerevisiae. Genetics 2015; 200:843-62. [PMID: 25971666 DOI: 10.1534/genetics.115.176503] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/08/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Septins are a conserved family of GTP-binding proteins that form heterooctameric complexes that assemble into higher-order structures. In yeast, septin superstructure at the bud neck serves as a barrier to separate a daughter cell from its mother and as a scaffold to recruit the proteins that execute cytokinesis. However, how septins recruit specific factors has not been well characterized. In the accompanying article in this issue, (Finnigan et al. 2015), we demonstrated that the C-terminal extensions (CTEs) of the alternative terminal subunits of septin heterooctamers, Cdc11 and Shs1, share a role required for optimal septin function in vivo. Here we describe our use of unbiased genetic approaches (both selection of dosage suppressors and analysis of synthetic interactions) that pinpointed Bni5 as a protein that interacts with the CTEs of Cdc11 and Shs1. Furthermore, we used three independent methods-construction of chimeric proteins, noncovalent tethering mediated by a GFP-targeted nanobody, and imaging by fluorescence microscopy-to confirm that a physiologically important function of the CTEs of Cdc11 and Shs1 is optimizing recruitment of Bni5 and thereby ensuring efficient localization at the bud neck of Myo1, the type II myosin of the actomyosin contractile ring.Related article in GENETICS Finnigan, G. C. et al., 2015 Comprehensive Genetic Analysis of Paralogous Terminal Septin Subunits Shs1 and Cdc11 in Saccharomyces cerevisiae. Genetics 200: 841-861.
Collapse
|