1
|
McAllester CS, Pool JE. Inversions Can Accumulate Balanced Sexual Antagonism: Evidence from Simulations and Drosophila Experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.02.560529. [PMID: 37873205 PMCID: PMC10592935 DOI: 10.1101/2023.10.02.560529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chromosomal inversion polymorphisms can be common, but the causes of their persistence are often unclear. We propose a model for the maintenance of inversion polymorphism, which requires that some variants contribute antagonistically to two phenotypes, one of which has negative frequency-dependent fitness. These conditions yield a form of frequency-dependent disruptive selection, favoring two predominant haplotypes segregating alleles that favor opposing antagonistic phenotypes. An inversion associated with one haplotype can reduce the fitness load incurred by generating recombinant offspring, reinforcing its linkage to the haplotype and enabling both haplotypes to accumulate more antagonistic variants than expected otherwise. We develop and apply a forward simulator to examine these dynamics under a tradeoff between survival and male display. These simulations indeed generate inversion-associated haplotypes with opposing sex-specific fitness effects. Antagonism strengthens with time, and can ultimately yield karyotypes at surprisingly predictable frequencies, with striking genotype frequency differences between sexes and between developmental stages. To test whether this model may contribute to well-studied yet enigmatic inversion polymorphisms in Drosophila melanogaster, we track inversion frequencies in laboratory crosses to test whether they influence male reproductive success or survival. We find that two of the four tested inversions show significant evidence for the tradeoff examined, with In(3R)K favoring survival and In(3L)Ok favoring male reproduction. In line with the apparent sex-specific fitness effects implied for both of those inversions, In(3L)Ok was also found to be less costly to the viability and/or longevity of males than females, whereas In(3R)K was more beneficial to female survival. Based on this work, we expect that balancing selection on antagonistically pleiotropic traits may provide a significant and underappreciated contribution to the maintenance of natural inversion polymorphism.
Collapse
Affiliation(s)
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin – Madison, USA
| |
Collapse
|
2
|
Di C, Lohmueller KE. Revisiting Dominance in Population Genetics. Genome Biol Evol 2024; 16:evae147. [PMID: 39114967 PMCID: PMC11306932 DOI: 10.1093/gbe/evae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 08/11/2024] Open
Abstract
Dominance refers to the effect of a heterozygous genotype relative to that of the two homozygous genotypes. The degree of dominance of mutations for fitness can have a profound impact on how deleterious and beneficial mutations change in frequency over time as well as on the patterns of linked neutral genetic variation surrounding such selected alleles. Since dominance is such a fundamental concept, it has received immense attention throughout the history of population genetics. Early work from Fisher, Wright, and Haldane focused on understanding the conceptual basis for why dominance exists. More recent work has attempted to test these theories and conceptual models by estimating dominance effects of mutations. However, estimating dominance coefficients has been notoriously challenging and has only been done in a few species in a limited number of studies. In this review, we first describe some of the early theoretical and conceptual models for understanding the mechanisms for the existence of dominance. Second, we discuss several approaches used to estimate dominance coefficients and summarize estimates of dominance coefficients. We note trends that have been observed across species, types of mutations, and functional categories of genes. By comparing estimates of dominance coefficients for different types of genes, we test several hypotheses for the existence of dominance. Lastly, we discuss how dominance influences the dynamics of beneficial and deleterious mutations in populations and how the degree of dominance of deleterious mutations influences the impact of inbreeding on fitness.
Collapse
Affiliation(s)
- Chenlu Di
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
3
|
Charlesworth B. The fitness consequences of genetic divergence between polymorphic gene arrangements. Genetics 2024; 226:iyad218. [PMID: 38147527 PMCID: PMC11090464 DOI: 10.1093/genetics/iyad218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023] Open
Abstract
Inversions restrict recombination when heterozygous with standard arrangements, but often have few noticeable phenotypic effects. Nevertheless, there are several examples of inversions that can be maintained polymorphic by strong selection under laboratory conditions. A long-standing model for the source of such selection is divergence between arrangements with respect to recessive or partially recessive deleterious mutations, resulting in a selective advantage to heterokaryotypic individuals over homokaryotypes. This paper uses a combination of analytical and numerical methods to investigate this model, for the simple case of an autosomal inversion with multiple independent nucleotide sites subject to mildly deleterious mutations. A complete lack of recombination in heterokaryotypes is assumed, as well as constancy of the frequency of the inversion over space and time. It is shown that a significantly higher mutational load will develop for the less frequent arrangement. A selective advantage to heterokaryotypes is only expected when the two alternative arrangements are nearly equal in frequency, so that their mutational loads are very similar in size. The effects of some Drosophila pseudoobscura polymorphic inversions on fitness traits seem to be too large to be explained by this process, although it may contribute to some of the observed effects. Several population genomic statistics can provide evidence for signatures of a reduced efficacy of selection associated with the rarer of two arrangements, but there is currently little published data that are relevant to the theoretical predictions.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
4
|
Berdan EL, Barton NH, Butlin R, Charlesworth B, Faria R, Fragata I, Gilbert KJ, Jay P, Kapun M, Lotterhos KE, Mérot C, Durmaz Mitchell E, Pascual M, Peichel CL, Rafajlović M, Westram AM, Schaeffer SW, Johannesson K, Flatt T. How chromosomal inversions reorient the evolutionary process. J Evol Biol 2023; 36:1761-1782. [PMID: 37942504 DOI: 10.1111/jeb.14242] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023]
Abstract
Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.
Collapse
Affiliation(s)
- Emma L Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas H Barton
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Roger Butlin
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Ecology and Evolutionary Biology, School of Bioscience, The University of Sheffield, Sheffield, UK
| | - Brian Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Rui Faria
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | - Inês Fragata
- CHANGE - Global Change and Sustainability Institute/Animal Biology Department, cE3c - Center for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - Paul Jay
- Center for GeoGenetics, University of Copenhagen, Copenhagen, Denmark
| | - Martin Kapun
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Central Research Laboratories, Natural History Museum of Vienna, Vienna, Austria
| | - Katie E Lotterhos
- Department of Marine and Environmental Sciences, Northeastern University, Boston, Massachusetts, USA
| | - Claire Mérot
- UMR 6553 Ecobio, Université de Rennes, OSUR, CNRS, Rennes, France
| | - Esra Durmaz Mitchell
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Functional Genomics & Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marta Pascual
- Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Catherine L Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Marina Rafajlović
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anja M Westram
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Stephen W Schaeffer
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kerstin Johannesson
- Linnaeus Centre for Marine Evolutionary Biology, University of Gothenburg, Gothenburg, Sweden
- Tjärnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, Strömstad, Sweden
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Kapun M, Mitchell ED, Kawecki TJ, Schmidt P, Flatt T. An Ancestral Balanced Inversion Polymorphism Confers Global Adaptation. Mol Biol Evol 2023; 40:msad118. [PMID: 37220650 PMCID: PMC10234209 DOI: 10.1093/molbev/msad118] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/17/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Since the pioneering work of Dobzhansky in the 1930s and 1940s, many chromosomal inversions have been identified, but how they contribute to adaptation remains poorly understood. In Drosophila melanogaster, the widespread inversion polymorphism In(3R)Payne underpins latitudinal clines in fitness traits on multiple continents. Here, we use single-individual whole-genome sequencing, transcriptomics, and published sequencing data to study the population genomics of this inversion on four continents: in its ancestral African range and in derived populations in Europe, North America, and Australia. Our results confirm that this inversion originated in sub-Saharan Africa and subsequently became cosmopolitan; we observe marked monophyletic divergence of inverted and noninverted karyotypes, with some substructure among inverted chromosomes between continents. Despite divergent evolution of this inversion since its out-of-Africa migration, derived non-African populations exhibit similar patterns of long-range linkage disequilibrium between the inversion breakpoints and major peaks of divergence in its center, consistent with balancing selection and suggesting that the inversion harbors alleles that are maintained by selection on several continents. Using RNA-sequencing, we identify overlap between inversion-linked single-nucleotide polymorphisms and loci that are differentially expressed between inverted and noninverted chromosomes. Expression levels are higher for inverted chromosomes at low temperature, suggesting loss of buffering or compensatory plasticity and consistent with higher inversion frequency in warm climates. Our results suggest that this ancestrally tropical balanced polymorphism spread around the world and became latitudinally assorted along similar but independent climatic gradients, always being frequent in subtropical/tropical areas but rare or absent in temperate climates.
Collapse
Affiliation(s)
- Martin Kapun
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
- Natural History Museum Vienna, Zentrale Forschungslaboratorien, Vienna, Austria
| | - Esra Durmaz Mitchell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Paul Schmidt
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Thomas Flatt
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Johri P, Pfeifer SP, Jensen JD. Developing an evolutionary baseline model for humans: jointly inferring purifying selection with population history. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536488. [PMID: 37090533 PMCID: PMC10120674 DOI: 10.1101/2023.04.11.536488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Building evolutionarily appropriate baseline models for natural populations is not only important for answering fundamental questions in population genetics - including quantifying the relative contributions of adaptive vs. non-adaptive processes - but it is also essential for identifying candidate loci experiencing relatively rare and episodic forms of selection ( e.g., positive or balancing selection). Here, a baseline model was developed for a human population of West African ancestry, the Yoruba, comprising processes constantly operating on the genome ( i.e. , purifying and background selection, population size changes, recombination rate heterogeneity, and gene conversion). Specifically, to perform joint inference of selective effects with demography, an approximate Bayesian approach was employed that utilizes the decay of background selection effects around functional elements, taking into account genomic architecture. This approach inferred a recent 6-fold population growth together with a distribution of fitness effects that is skewed towards effectively neutral mutations. Importantly, these results further suggest that, while strong and/or frequent recurrent positive selection is inconsistent with observed data, weak to moderate positive selection is consistent but unidentifiable if rare.
Collapse
|
7
|
Marion SB, Noor MAF. Interrogating the Roles of Mutation-Selection Balance, Heterozygote Advantage, and Linked Selection in Maintaining Recessive Lethal Variation in Natural Populations. Annu Rev Anim Biosci 2023; 11:77-91. [PMID: 36315650 DOI: 10.1146/annurev-animal-050422-092520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For nearly a century, evolutionary biologists have observed chromosomes that cause lethality when made homozygous persisting at surprisingly high frequencies (>25%) in natural populations of many species. The evolutionary forces responsible for the maintenance of such detrimental mutations have been heavily debated-are some lethal mutations under balancing selection? We suggest that mutation-selection balance alone cannot explain lethal variation in nature and the possibility that other forces play a role. We review the potential that linked selection in particular may drive maintenance of lethal alleles through associative overdominance or linkage to beneficial mutations or by reducing effective population size. Over the past five decades, investigation into this mystery has tapered. During this time, key scientific advances have provided the ability to collect more accurate data and analyze them in new ways, making the underlying genetic bases and evolutionary forces of lethal alleles timely for study once more.
Collapse
Affiliation(s)
- Sarah B Marion
- Department of Biology, Duke University, Durham, North Carolina, USA; ,
| | - Mohamed A F Noor
- Department of Biology, Duke University, Durham, North Carolina, USA; ,
| |
Collapse
|
8
|
Nikolakis ZL, Schield DR, Westfall AK, Perry BW, Ivey KN, Orton RW, Hales NR, Adams RH, Meik JM, Parker JM, Smith CF, Gompert Z, Mackessy SP, Castoe TA. Evidence that genomic incompatibilities and other multilocus processes impact hybrid fitness in a rattlesnake hybrid zone. Evolution 2022; 76:2513-2530. [PMID: 36111705 DOI: 10.1111/evo.14612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 06/24/2022] [Accepted: 08/15/2022] [Indexed: 01/22/2023]
Abstract
Hybrid zones provide valuable opportunities to understand the genomic mechanisms that promote speciation by providing insight into factors involved in intermediate stages of speciation. Here, we investigate introgression in a hybrid zone between two rattlesnake species (Crotalus viridis and Crotalus oreganus concolor) that have undergone historical allopatric divergence and recent range expansion and secondary contact. We use Bayesian genomic cline models to characterize genomic patterns of introgression between these lineages and identify loci potentially subject to selection in hybrids. We find evidence for a large number of genomic regions with biased ancestry that deviate from the genomic background in hybrids (i.e., excess ancestry loci), which tend to be associated with genomic regions with higher recombination rates. We also identify suites of excess ancestry loci that show highly correlated allele frequencies (including conspecific and heterospecific combinations) across physically unlinked genomic regions in hybrids. Our findings provide evidence for multiple multilocus evolutionary processes impacting hybrid fitness in this system.
Collapse
Affiliation(s)
- Zachary L Nikolakis
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Drew R Schield
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019.,Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309
| | - Aundrea K Westfall
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Blair W Perry
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Kathleen N Ivey
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Richard W Orton
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Nicole R Hales
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| | - Richard H Adams
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, Georgia, 31061
| | - Jesse M Meik
- Department of Biological Sciences, Tarleton State University, Stephenville, Texas, 76402
| | - Joshua M Parker
- Department of Life Sciences, Fresno City College, Fresno, California, 93741
| | - Cara F Smith
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, 80639
| | | | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, 80639
| | - Todd A Castoe
- Department of Biology, University of Texas at Arlington, Arlington, Texas, 76019
| |
Collapse
|
9
|
Whiteford S, van’t Hof AE, Krishna R, Marubbi T, Widdison S, Saccheri IJ, Guest M, Morrison NI, Darby AC. Recovering individual haplotypes and a contiguous genome assembly from pooled long-read sequencing of the diamondback moth (Lepidoptera: Plutellidae). G3 (BETHESDA, MD.) 2022; 12:jkac210. [PMID: 35980174 PMCID: PMC9526047 DOI: 10.1093/g3journal/jkac210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The assembly of divergent haplotypes using noisy long-read data presents a challenge to the reconstruction of haploid genome assemblies, due to overlapping distributions of technical sequencing error, intralocus genetic variation, and interlocus similarity within these data. Here, we present a comparative analysis of assembly algorithms representing overlap-layout-consensus, repeat graph, and de Bruijn graph methods. We examine how postprocessing strategies attempting to reduce redundant heterozygosity interact with the choice of initial assembly algorithm and ultimately produce a series of chromosome-level assemblies for an agricultural pest, the diamondback moth, Plutella xylostella (L.). We compare evaluation methods and show that BUSCO analyses may overestimate haplotig removal processing in long-read draft genomes, in comparison to a k-mer method. We discuss the trade-offs inherent in assembly algorithm and curation choices and suggest that "best practice" is research question dependent. We demonstrate a link between allelic divergence and allele-derived contig redundancy in final genome assemblies and document the patterns of coding and noncoding diversity between redundant sequences. We also document a link between an excess of nonsynonymous polymorphism and haplotigs that are unresolved by assembly or postassembly algorithms. Finally, we discuss how this phenomenon may have relevance for the usage of noisy long-read genome assemblies in comparative genomics.
Collapse
Affiliation(s)
- Samuel Whiteford
- Corresponding author: Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | - Arjen E van’t Hof
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Ritesh Krishna
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- IBM Research UK, STFC Daresbury Laboratory, Warrington WA4 4AD, UK
| | | | - Stephanie Widdison
- General Bioinformatics, Jealott's Hill International Research Centre, Bracknell RG42 6EY, UK
| | - Ilik J Saccheri
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Marcus Guest
- Syngenta, Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | | | - Alistair C Darby
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
10
|
Berdan EL, Blanckaert A, Butlin RK, Flatt T, Slotte T, Wielstra B. Mutation accumulation opposes polymorphism: supergenes and the curious case of balanced lethals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210199. [PMID: 35694750 PMCID: PMC9189497 DOI: 10.1098/rstb.2021.0199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Supergenes offer spectacular examples of long-term balancing selection in nature, but their origin and maintenance remain a mystery. Reduced recombination between arrangements, a critical aspect of many supergenes, protects adaptive multi-trait phenotypes but can lead to mutation accumulation. Mutation accumulation can stabilize the system through the emergence of associative overdominance (AOD), destabilize the system, or lead to new evolutionary outcomes. One outcome is the formation of maladaptive balanced lethal systems, where only heterozygotes remain viable and reproduce. We investigated the conditions under which these different outcomes occur, assuming a scenario of introgression after divergence. We found that AOD aided the invasion of a new supergene arrangement and the establishment of a polymorphism. However, this polymorphism was easily destabilized by further mutation accumulation, which was often asymmetric, disrupting the quasi-equilibrium state. Mechanisms that accelerated degeneration tended to amplify asymmetric mutation accumulation between the supergene arrangements and vice-versa. As the evolution of balanced lethal systems requires symmetric degeneration of both arrangements, this leaves only restricted conditions for their evolution, namely small population sizes and low rates of gene conversion. The dichotomy between the persistence of polymorphism and degeneration of supergene arrangements likely underlies the rarity of balanced lethal systems in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Emma L. Berdan
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
- Tjarnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, 45296 Stromstad, Sweden
| | - Alexandre Blanckaert
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Roger K. Butlin
- Tjarnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, 45296 Stromstad, Sweden
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Ben Wielstra
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
11
|
Chen DS, Clark AG, Wolfner MF. Octopaminergic/tyraminergic Tdc2 neurons regulate biased sperm usage in female Drosophila melanogaster. Genetics 2022; 221:6613932. [PMID: 35736370 DOI: 10.1093/genetics/iyac097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/04/2022] [Indexed: 11/14/2022] Open
Abstract
In polyandrous internally fertilizing species, a multiply-mated female can use stored sperm from different males in a biased manner to fertilize her eggs. The female's ability to assess sperm quality and compatibility is essential for her reproductive success, and represents an important aspect of postcopulatory sexual selection. In Drosophila melanogaster, previous studies demonstrated that the female nervous system plays an active role in influencing progeny paternity proportion, and suggested a role for octopaminergic/tyraminergic Tdc2 neurons in this process. Here, we report that inhibiting Tdc2 neuronal activity causes females to produce a higher-than-normal proportion of first-male progeny. This difference is not due to differences in sperm storage or release, but instead is attributable to the suppression of second-male sperm usage bias that normally occurs in control females. We further show that a subset of Tdc2 neurons innervating the female reproductive tract is largely responsible for the progeny proportion phenotype that is observed when Tdc2 neurons are inhibited globally. On the contrary, overactivation of Tdc2 neurons does not further affect sperm storage and release or progeny proportion. These results suggest that octopaminergic/tyraminergic signaling allows a multiply-mated female to bias sperm usage, and identify a new role for the female nervous system in postcopulatory sexual selection.
Collapse
Affiliation(s)
- Dawn S Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY 14853, USA
| |
Collapse
|
12
|
Soni V, Vos M, Eyre-Walker A. A new test suggests hundreds of amino acid polymorphisms in humans are subject to balancing selection. PLoS Biol 2022; 20:e3001645. [PMID: 35653351 PMCID: PMC9162324 DOI: 10.1371/journal.pbio.3001645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/25/2022] [Indexed: 11/18/2022] Open
Abstract
The role that balancing selection plays in the maintenance of genetic diversity remains unresolved. Here, we introduce a new test, based on the McDonald–Kreitman test, in which the number of polymorphisms that are shared between populations is contrasted to those that are private at selected and neutral sites. We show that this simple test is robust to a variety of demographic changes, and that it can also give a direct estimate of the number of shared polymorphisms that are directly maintained by balancing selection. We apply our method to population genomic data from humans and provide some evidence that hundreds of nonsynonymous polymorphisms are subject to balancing selection.
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn, United Kingdom
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Stolyarova AV, Neretina TV, Zvyagina EA, Fedotova AV, Kondrashov A, Bazykin GA. Complex fitness landscape shapes variation in a hyperpolymorphic species. eLife 2022; 11:76073. [PMID: 35532122 PMCID: PMC9187340 DOI: 10.7554/elife.76073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
It is natural to assume that patterns of genetic variation in hyperpolymorphic species can reveal large-scale properties of the fitness landscape that are hard to detect by studying species with ordinary levels of genetic variation. Here, we study such patterns in a fungus Schizophyllum commune, the most polymorphic species known. Throughout the genome, short-range linkage disequilibrium (LD) caused by attraction of minor alleles is higher between pairs of nonsynonymous than of synonymous variants. This effect is especially pronounced for pairs of sites that are located within the same gene, especially if a large fraction of the gene is covered by haploblocks, genome segments where the gene pool consists of two highly divergent haplotypes, which is a signature of balancing selection. Haploblocks are usually shorter than 1000 nucleotides, and collectively cover about 10% of the S. commune genome. LD tends to be substantially higher for pairs of nonsynonymous variants encoding amino acids that interact within the protein. There is a substantial correlation between LDs at the same pairs of nonsynonymous mutations in the USA and the Russian populations. These patterns indicate that selection in S. commune involves positive epistasis due to compensatory interactions between nonsynonymous alleles. When less polymorphic species are studied, analogous patterns can be detected only through interspecific comparisons. Changes to DNA known as mutations may alter how the proteins and other components of a cell work, and thus play an important role in allowing living things to evolve new traits and abilities over many generations. Whether a mutation is beneficial or harmful may differ depending on the genetic background of the individual – that is, depending on other mutations present in other positions within the same gene – due to a phenomenon called epistasis. Epistasis is known to affect how various species accumulate differences in their DNA compared to each other over time. For example, a mutation that is rare in humans and known to cause disease may be widespread in other primates because its negative effect is canceled out by another mutation that is standard for these species but absent in humans. However, it remains unclear whether epistasis plays a significant part in shaping genetic differences between individuals of the same species. A type of fungus known as Schizophyllum commune lives on rotting wood and is found across the world. It is one of the most genetically diverse species currently known, so there is a higher chance of pairs of compensatory mutations occurring and persisting for a long time in S. commune than in most other species, providing a unique opportunity to study epistasis. Here, Stolyarova et al. studied two distinct populations of S. commune, one from the USA and one from Russia. The team found that – unlike in humans, flies and other less genetically diverse species – epistasis maintains combinations of mutations in S. commune that individually would be harmful to the fungus but together compensate for each other. For example, pairs of mutations affecting specific molecules known as amino acids – the building blocks of proteins – that physically interact with each other tended to be found together in the same individuals. One potential downside of having pairs of compensatory mutations in the genome is that when the organism reproduces, the process of making sex cells may split up these pairs so that harmful mutations are inherited without their partner mutations. Thus, epistasis may have helped shape the way S. commune and other genetically diverse species have evolved.
Collapse
Affiliation(s)
| | - Tatiana V Neretina
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Elena A Zvyagina
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna V Fedotova
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Alexey Kondrashov
- Department of Ecology and Evolutionary Biology, University of Michigan-Ann Arbor, Ann Arbor, United States
| | - Georgii A Bazykin
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
14
|
Charlesworth B. The effects of weak selection on neutral diversity at linked sites. Genetics 2022; 221:iyac027. [PMID: 35150278 PMCID: PMC9071562 DOI: 10.1093/genetics/iyac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/04/2022] [Indexed: 11/15/2022] Open
Abstract
The effects of selection on variability at linked sites have an important influence on levels and patterns of within-population variation across the genome. Most theoretical models of these effects have assumed that selection is sufficiently strong that allele frequency changes at the loci concerned are largely deterministic. These models have led to the conclusion that directional selection for selectively favorable mutations, or against recurrent deleterious mutations, reduces nucleotide site diversity at linked neutral sites. Recent work has shown, however, that fixations of weakly selected mutations, accompanied by significant stochastic changes in allele frequencies, can sometimes cause higher diversity at linked sites when compared with the effects of fixations of neutral mutations. This study extends this work by deriving approximate expressions for the mean conditional times to fixation and loss of mutations subject to selection, and analyzing the conditions under which selection increases rather than reduces these times. Simulations are used to examine the relations between diversity at a neutral site and the fixation and loss times of mutations at a linked site that is subject to selection. It is shown that the long-term level of neutral diversity can be increased over the purely neutral value by recurrent fixations and losses of linked, weakly selected dominant or partially dominant favorable mutations, or linked recessive or partially recessive deleterious mutations. The results are used to examine the conditions under which associative overdominance, as opposed to background selection, is likely to operate.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
15
|
Friedlander E, Steinrücken M. A numerical framework for genetic hitchhiking in populations of variable size. Genetics 2022; 220:6526396. [PMID: 35143667 PMCID: PMC8893261 DOI: 10.1093/genetics/iyac012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Natural selection on beneficial or deleterious alleles results in an increase or decrease, respectively, of their frequency within the population. Due to chromosomal linkage, the dynamics of the selected site affect the genetic variation at nearby neutral loci in a process commonly referred to as genetic hitchhiking. Changes in population size, however, can yield patterns in genomic data that mimic the effects of selection. Accurately modeling these dynamics is thus crucial to understanding how selection and past population size changes impact observed patterns of genetic variation. Here, we model the evolution of haplotype frequencies with the Wright-Fisher diffusion to study the impact of selection on linked neutral variation. Explicit solutions are not known for the dynamics of this diffusion when selection and recombination act simultaneously. Thus, we present a method for numerically evaluating the Wright-Fisher diffusion dynamics of 2 linked loci separated by a certain recombination distance when selection is acting. We can account for arbitrary population size histories explicitly using this approach. A key step in the method is to express the moments of the associated transition density, or sampling probabilities, as solutions to ordinary differential equations. Numerically solving these differential equations relies on a novel accurate and numerically efficient technique to estimate higher order moments from lower order moments. We demonstrate how this numerical framework can be used to quantify the reduction and recovery of genetic diversity around a selected locus over time and elucidate distortions in the site-frequency-spectra of neutral variation linked to loci under selection in various demographic settings. The method can be readily extended to more general modes of selection and applied in likelihood frameworks to detect loci under selection and infer the strength of the selective pressure.
Collapse
Affiliation(s)
- Eric Friedlander
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA,Department of Mathematics, Saint Norbert College, Green Bay, WI 54115, USA
| | - Matthias Steinrücken
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA,Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA,Corresponding author: Department of Ecology & Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
16
|
Charlesworth B, Jensen JD. Effects of Selection at Linked Sites on Patterns of Genetic Variability. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2021; 52:177-197. [PMID: 37089401 PMCID: PMC10120885 DOI: 10.1146/annurev-ecolsys-010621-044528] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Patterns of variation and evolution at a given site in a genome can be strongly influenced by the effects of selection at genetically linked sites. In particular, the recombination rates of genomic regions correlate with their amount of within-population genetic variability, the degree to which the frequency distributions of DNA sequence variants differ from their neutral expectations, and the levels of adaptation of their functional components. We review the major population genetic processes that are thought to lead to these patterns, focusing on their effects on patterns of variability: selective sweeps, background selection, associative overdominance, and Hill–Robertson interference among deleterious mutations. We emphasize the difficulties in distinguishing among the footprints of these processes and disentangling them from the effects of purely demographic factors such as population size changes. We also discuss how interactions between selective and demographic processes can significantly affect patterns of variability within genomes.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Jeffrey D. Jensen
- School of Life Sciences, Arizona State University, Tempe, Arizona 85281, USA
| |
Collapse
|
17
|
Waller DM. Addressing Darwin's dilemma: Can pseudo-overdominance explain persistent inbreeding depression and load? Evolution 2021; 75:779-793. [PMID: 33598971 DOI: 10.1111/evo.14189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/06/2021] [Accepted: 01/30/2021] [Indexed: 01/01/2023]
Abstract
Darwin spent years investigating the effects of self-fertilization, concluding that "nature abhors perpetual self-fertilization." Given that selection purges inbred populations of strongly deleterious mutations and drift fixes mild mutations, why does inbreeding depression (ID) persist in highly inbred taxa and why do no purely selfing taxa exist? Background selection, associations and interference among loci, and drift within small inbred populations all limit selection while often increasing fixation. These mechanisms help to explain why more inbred populations in most species consistently show more fixed load. This drift load is manifest in the considerable heterosis regularly observed in between-population crosses. Such heterosis results in subsequent high ID, suggesting a mechanism by which small populations could retain variation and inbreeding load. Multiple deleterious recessive mutations linked in repulsion generate pseudo-overdominance. Many tightly linked load loci could generate a balanced segregating load high enough to sustain ID over many generations. Such pseudo-overdominance blocks (or "PODs") are more likely to occur in regions of low recombination. They should also result in clear genetic signatures including genomic hotspots of heterozygosity; distinct haplotypes supporting alleles at intermediate frequency; and high linkage disequilibrium in and around POD regions. Simulation and empirical studies tend to support these predictions. Additional simulations and comparative genomic analyses should explore POD dynamics in greater detail to resolve whether PODs exist in sufficient strength and number to account for why ID and load persist within inbred lineages.
Collapse
Affiliation(s)
- Donald M Waller
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
18
|
Konczal M, Przesmycka KJ, Mohammed RS, Hahn C, Cable J, Radwan J. Expansion of frozen hybrids in the guppy ectoparasite, Gyrodactylus turnbulli. Mol Ecol 2021; 30:1005-1016. [PMID: 33345416 PMCID: PMC7986700 DOI: 10.1111/mec.15781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 11/27/2022]
Abstract
Hybridization is one of the major factors contributing to the emergence of highly successful parasites. Hybrid vigour can play an important role in this process, but subsequent rounds of recombination in the hybrid population may dilute its effects. Increased fitness of hybrids can, however, be frozen by asexual reproduction. Here, we identify invasion of a 'frozen hybrid' genotype in natural populations of Gyrodactylus turnbulli, a facultatively sexual ectoparasitic flatworm that causes significant damage to its fish host. We resequenced genomes of these parasites infecting guppies from six Trinidad and Tobago populations, and found surprisingly high discrepancy in genome-wide nucleotide diversity between islands. The elevated heterozygosity on Tobago is maintained by predominantly clonal reproduction of hybrids formed from two diverged genomes. Hybridization has been followed by spread of the hybrids across the island, implying a selective advantage compared with native genotypes. Our results thus highlight that a single outcrossing event may be independently sufficient to cause pathogen expansion.
Collapse
Affiliation(s)
- Mateusz Konczal
- Faculty of BiologyEvolutionary Biology GroupAdam Mickiewicz UniversityPoznańPoland
| | | | - Ryan S. Mohammed
- Department of Life SciencesFaculty of Science and TechnologyThe University of the West Indies Zoology Museum, UWISt. AugustineTrinidad and Tobago
- School of BiosciencesCardiff UniversityCardiffUK
| | | | - Jo Cable
- School of BiosciencesCardiff UniversityCardiffUK
| | - Jacek Radwan
- Faculty of BiologyEvolutionary Biology GroupAdam Mickiewicz UniversityPoznańPoland
| |
Collapse
|
19
|
Charlesworth B. How Good Are Predictions of the Effects of Selective Sweeps on Levels of Neutral Diversity? Genetics 2020; 216:1217-1238. [PMID: 33106248 PMCID: PMC7768247 DOI: 10.1534/genetics.120.303734] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022] Open
Abstract
Selective sweeps are thought to play a significant role in shaping patterns of variability across genomes; accurate predictions of their effects are, therefore, important for understanding these patterns. A commonly used model of selective sweeps assumes that alleles sampled at the end of a sweep, and that fail to recombine with wild-type haplotypes during the sweep, coalesce instantaneously, leading to a simple expression for sweep effects on diversity. It is shown here that there can be a significant probability that a pair of alleles sampled at the end of a sweep coalesce during the sweep before a recombination event can occur, reducing their expected coalescent time below that given by the simple approximation. Expressions are derived for the expected reductions in pairwise neutral diversities caused by both single and recurrent sweeps in the presence of such within-sweep coalescence, although the effects of multiple recombination events during a sweep are only treated heuristically. The accuracies of the resulting expressions were checked against the results of simulations. For even moderate ratios of the recombination rate to the selection coefficient, the simple approximation can be substantially inaccurate. The selection model used here can be applied to favorable mutations with arbitrary dominance coefficients, to sex-linked loci with sex-specific selection coefficients, and to inbreeding populations. Using the results from this model, the expected differences between the levels of variability on X chromosomes and autosomes with selection at linked sites are discussed, and compared with data on a population of Drosophila melanogaster.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, EH9 3FL, United Kingdom
| |
Collapse
|
20
|
Near-chromosome level genome assembly of the fruit pest Drosophila suzukii using long-read sequencing. Sci Rep 2020; 10:11227. [PMID: 32641717 PMCID: PMC7343843 DOI: 10.1038/s41598-020-67373-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/02/2020] [Indexed: 12/31/2022] Open
Abstract
Over the past decade, the spotted wing Drosophila, Drosophila suzukii, has invaded Europe and America and has become a major agricultural pest in these areas, thereby prompting intense research activities to better understand its biology. Two draft genome assemblies already exist for this species but contain pervasive assembly errors and are highly fragmented, which limits their values. Our purpose here was to improve the assembly of the D. suzukii genome and to annotate it in a way that facilitates comparisons with D. melanogaster. For this, we generated PacBio long-read sequencing data and assembled a novel, high-quality D. suzukii genome assembly. It is one of the largest Drosophila genomes, notably because of the expansion of its repeatome. We found that despite 16 rounds of full-sib crossings the D. suzukii strain that we sequenced has maintained high levels of polymorphism in some regions of its genome. As a consequence, the quality of the assembly of these regions was reduced. We explored possible origins of this high residual diversity, including the presence of structural variants and a possible heterogeneous admixture pattern of North American and Asian ancestry. Overall, our assembly and annotation constitute a high-quality genomic resource that can be used for both high-throughput sequencing approaches, as well as manipulative genetic technologies to study D. suzukii.
Collapse
|
21
|
Saccheri IJ, Whiteford S, Yung CJ, Van't Hof AE. Recessive Z-linked lethals and the retention of haplotype diversity in a captive butterfly population. Heredity (Edinb) 2020; 125:28-39. [PMID: 32404940 DOI: 10.1038/s41437-020-0316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 11/09/2022] Open
Abstract
Sex chromosomes are predicted to harbour elevated levels of sexually antagonistic variation due to asymmetries in the heritability of recessive traits in the homogametic versus heterogametic sex. This evolutionary dynamic may manifest as high recessive load specifically affecting the homogametic sex, and the retention of haplotype diversity in small populations. We tested the hypothesis that the Z chromosome in the butterfly Bicyclus anynana carries a high inbred load for male fertility and viability. Homozygosity of Z chromosome blocks was produced by daughter-father backcrosses, and inferred from marker loci positioned via a linkage map. Male sterility was, in general, unrelated to homozygosity in any region of the Z, but there was an extreme deficit of homozygous males within a 2 cM interval in all families. In contrast, no corresponding skew in Z genotype was detected in their (hemizygous) sisters. The same pattern was observed in historically inbred lines, indicating a high frequency of recessive lethals in the ancestral population. Allele-frequency changes between 1993 and 2006 (70 generations at Ne ~ 160) show that, despite the loss of many haplotypes, diversity was retained significantly above the neutral expectation. Effective overdominance in the lethal region can account for this effect locally but not in other parts of the chromosome, that are also associated with persistent linkage disequilibrium. These unexpected patterns suggest the operation of other factors, such as epistatic selection, recombination suppression, assortative mating and meiotic drive. Our results highlight the role of balancing selection in maintaining the inbred load and linked genetic diversity.
Collapse
Affiliation(s)
- Ilik J Saccheri
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Samuel Whiteford
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Carl J Yung
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Arjen E Van't Hof
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
22
|
Kartje ME, Jing P, Payseur BA. Weak Correlation between Nucleotide Variation and Recombination Rate across the House Mouse Genome. Genome Biol Evol 2020; 12:293-299. [PMID: 32108880 PMCID: PMC7186785 DOI: 10.1093/gbe/evaa045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 01/01/2023] Open
Abstract
Positive selection and purifying selection reduce levels of variation at linked neutral loci. One consequence of these processes is that the amount of neutral diversity and the meiotic recombination rate are predicted to be positively correlated across the genome-a prediction met in some species but not others. To better document the prevalence of selection at linked sites, we used new and published whole-genome sequences to survey nucleotide variation in population samples of the western European house mouse (Mus musculus domesticus) from Germany, France, and Gough Island, a remote volcanic island in the south Atlantic. Correlations between sequence variation and recombination rates estimated independently from dense linkage maps were consistently very weak (ρ ≤ 0.06), though they exceeded conventional significance thresholds. This pattern persisted in comparisons between genomic regions with the highest and lowest recombination rates, as well as in models incorporating the density of transcribed sites, the density of CpG dinucleotides, and divergence between mouse and rat as covariates. We conclude that natural selection affects linked neutral variation in a restricted manner in the western European house mouse.
Collapse
Affiliation(s)
- Michael E Kartje
- Laboratory of Genetics, University of Wisconsin – Madison, Madison
| | - Peicheng Jing
- Laboratory of Genetics, University of Wisconsin – Madison, Madison
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin – Madison, Madison
| |
Collapse
|
23
|
Genetic Variation: Harmful Recessive Mutations Have Unexpected Effects on Variation. Curr Biol 2020; 30:R16-R18. [DOI: 10.1016/j.cub.2019.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Gilbert KJ, Pouyet F, Excoffier L, Peischl S. Transition from Background Selection to Associative Overdominance Promotes Diversity in Regions of Low Recombination. Curr Biol 2019; 30:101-107.e3. [PMID: 31866368 DOI: 10.1016/j.cub.2019.11.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/16/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022]
Abstract
Linked selection is a major driver of genetic diversity. Selection against deleterious mutations removes linked neutral diversity (background selection [BGS]) [1], creating a positive correlation between recombination rates and genetic diversity. Purifying selection against recessive variants, however, can also lead to associative overdominance (AOD) [2, 3], due to an apparent heterozygote advantage at linked neutral loci that opposes the loss of neutral diversity by BGS. Zhao and Charlesworth [3] identified the conditions under which AOD should dominate over BGS in a single-locus model and suggested that the effect of AOD could become stronger if multiple linked deleterious variants co-segregate. We present a model describing how and under which conditions multi-locus dynamics can amplify the effects of AOD. We derive the conditions for a transition from BGS to AOD due to pseudo-overdominance [4], i.e., a form of balancing selection that maintains complementary deleterious haplotypes that mask the effect of recessive deleterious mutations. Simulations confirm these findings and show that multi-locus AOD can increase diversity in low-recombination regions much more strongly than previously appreciated. While BGS is known to drive genome-wide diversity in humans [5], the observation of a resurgence of genetic diversity in regions of very low recombination is indicative of AOD. We identify 22 such regions in the human genome consistent with multi-locus AOD. Our results demonstrate that AOD may play an important role in the evolution of low-recombination regions of many species.
Collapse
Affiliation(s)
- Kimberly J Gilbert
- Institute of Ecology and Evolution, Baltzerstrasse 6, University of Bern, 3012 Bern, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Amphipole, 1015 Lausanne, Switzerland.
| | - Fanny Pouyet
- Institute of Ecology and Evolution, Baltzerstrasse 6, University of Bern, 3012 Bern, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Laurent Excoffier
- Institute of Ecology and Evolution, Baltzerstrasse 6, University of Bern, 3012 Bern, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Amphipole, 1015 Lausanne, Switzerland
| | - Stephan Peischl
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Amphipole, 1015 Lausanne, Switzerland; Interfaculty Bioinformatics Unit, Baltzerstrasse 6, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
25
|
Becher H, Jackson BC, Charlesworth B. Patterns of Genetic Variability in Genomic Regions with Low Rates of Recombination. Curr Biol 2019; 30:94-100.e3. [PMID: 31866366 DOI: 10.1016/j.cub.2019.10.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022]
Abstract
The amount of DNA sequence variability in a genomic region is often positively correlated with its rate of crossing over (CO) [1-3]. This pattern is caused by selection acting on linked sites, which reduces genetic variability and biases the frequency distribution of segregating variants toward more rare variants than are expected without selection (skew). These effects may involve the spread of beneficial mutations (selective sweeps [SSWs]), the elimination of deleterious mutations (background selection [BGS]), or both, and are expected to be stronger with lower CO rates [1-3]. However, in a recent study of human populations, the skew was reduced in the lowest CO regions compared with regions with somewhat higher CO rates [4]. A low skew in very low CO regions, compared with theoretical predictions, is seen in the population genomic studies of Drosophila simulans described here and in other Drosophila species. Here, we propose an explanation for lower than expected skew in low CO regions, and validate it using computer simulations; explanations for higher skew with higher CO rates, as in D. simulans, will be explored elsewhere. Partially recessive, linked deleterious mutations can increase neutral variability when the product of the effective population size (Ne) and the selection coefficient against homozygous carriers of mutations (s) is ≤1, i.e., there is associative overdominance (AOD) rather than BGS [5]. AOD can operate in low CO regions, producing a lower skew than in its absence. This opens up a new perspective on how selection affects patterns of variability at linked sites.
Collapse
Affiliation(s)
- Hannes Becher
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Benjamin C Jackson
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK
| |
Collapse
|
26
|
Abstract
Interspecific hybridization is the process where closely related species mate and produce offspring with admixed genomes. The genomic revolution has shown that hybridization is common, and that it may represent an important source of novel variation. Although most interspecific hybrids are sterile or less fit than their parents, some may survive and reproduce, enabling the transfer of adaptive variants across the species boundary, and even result in the formation of novel evolutionary lineages. There are two main variants of hybrid species genomes: allopolyploid, which have one full chromosome set from each parent species, and homoploid, which are a mosaic of the parent species genomes with no increase in chromosome number. The establishment of hybrid species requires the development of reproductive isolation against parental species. Allopolyploid species often have strong intrinsic reproductive barriers due to differences in chromosome number, and homoploid hybrids can become reproductively isolated from the parent species through assortment of genetic incompatibilities. However, both types of hybrids can become further reproductively isolated, gaining extrinsic isolation barriers, by exploiting novel ecological niches, relative to their parents. Hybrids represent the merging of divergent genomes and thus face problems arising from incompatible combinations of genes. Thus hybrid genomes are highly dynamic and undergo rapid evolutionary change, including genome stabilization in which selection against incompatible combinations results in fixation of compatible ancestry block combinations within the hybrid species. The potential for rapid adaptation or speciation makes hybrid genomes a particularly exciting subject of in evolutionary biology. Here we summarize how introgressed alleles or hybrid species can establish and how the resulting hybrid genomes evolve.
Collapse
Affiliation(s)
- Anna Runemark
- Department of Biology, Lund University, Lund, Sweden
- * E-mail:
| | - Mario Vallejo-Marin
- Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - Joana I. Meier
- St John's College, Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Charlesworth B. In defence of doing sums in genetics. Heredity (Edinb) 2019; 123:44-49. [PMID: 31189907 PMCID: PMC6781122 DOI: 10.1038/s41437-019-0195-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/29/2019] [Accepted: 01/31/2019] [Indexed: 11/08/2022] Open
Abstract
There has been a long history of the use of mathematics in genetics, ranging from the use of statistics to analyse genetic data to genetic models of evolutionary processes. Contemporary research into the genomic basis of disease and complex traits exemplifies the importance of statistical methods in genetics. Some examples of the development and application of population genetic models are described, which are intended to highlight the utility of such models for understanding variation and evolution in natural populations. The effects of selection on variability at sites linked to the targets of selection illustrate how fruitful interactions between theory and data can be.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH8 9FL, UK.
| |
Collapse
|
28
|
The Effects on Neutral Variability of Recurrent Selective Sweeps and Background Selection. Genetics 2019; 212:287-303. [PMID: 30923166 DOI: 10.1534/genetics.119.301951] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Levels of variability and rates of adaptive evolution may be affected by hitchhiking, the effect of selection on evolution at linked sites. Hitchhiking can be caused either by "selective sweeps" or by background selection, involving the spread of new favorable alleles or the elimination of deleterious mutations, respectively. Recent analyses of population genomic data have fitted models where both these processes act simultaneously, to infer the parameters of selection. Here, we investigate the consequences of relaxing a key assumption of some of these studies, that the time occupied by a selective sweep is negligible compared with the neutral coalescent time. We derive a new expression for the expected level of neutral variability in the presence of recurrent selective sweeps and background selection. We also derive approximate integral expressions for the effects of recurrent selective sweeps. The accuracy of the theoretical predictions was tested against multilocus simulations, with selection, recombination, and mutation parameters that are realistic for Drosophila melanogaster In the presence of crossing over, there is approximate agreement between the theoretical and simulation results. We show that the observed relationships between the rate of crossing over, and the level of synonymous site diversity and rate of adaptive evolution in Drosophila are probably mainly caused by background selection, whereas selective sweeps and population size changes are needed to produce the observed distortions of the site frequency spectrum.
Collapse
|
29
|
Charlesworth B, Charlesworth D. Neutral Variation in the Context of Selection. Mol Biol Evol 2019; 35:1359-1361. [PMID: 29659981 DOI: 10.1093/molbev/msy062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In its initial formulation by Motoo Kimura, the neutral theory was concerned solely with the level of variability maintained by random genetic drift of selectively neutral mutations, and the rate of molecular evolution caused by the fixation of such mutations. The original theory considered events at a single genetic locus in isolation from the rest of the genome. It did not take long, however, for theoreticians to wonder whether selection at one or more loci might influence neutral variability at linked sites. Once DNA sequence variability could be studied, and especially when resequencing of whole genomes became possible, it became clear that patterns of neutral variability in genomes are affected by selection at linked sites, and that these patterns could advance our understanding of natural selection, and can be used to detect the action of selection in genomic regions, including selection much weaker than could be detected by direct measurements of the relative fitnesses of different genotypes. We outline the different types of processes that have been studied, in approximate order of their historical development.
Collapse
Affiliation(s)
- Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
30
|
Abstract
For almost 20 years, many inference methods have been developed to detect selective sweeps and localize the targets of directional selection in the genome. These methods are based on population genetic models that describe the effect of a beneficial allele (e.g., a new mutation) on linked neutral variation (driven by directional selection from a single copy to fixation). Here, I discuss these models, ranging from selective sweeps in a panmictic population of constant size to evolutionary traffic when simultaneous sweeps at multiple loci interfere, and emphasize the important role of demography and population structure in data analysis. In the past 10 years, soft sweeps that may arise after an environmental change from directional selection on standing variation have become a focus of population genetic research. In contrast to selective sweeps, they are caused by beneficial alleles that were neutrally segregating in a population before the environmental change or were present at a mutation-selection balance in appreciable frequency.
Collapse
|
31
|
Emergence of a floral colour polymorphism by pollinator-mediated overdominance. Nat Commun 2019; 10:63. [PMID: 30622247 PMCID: PMC6325131 DOI: 10.1038/s41467-018-07936-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/05/2018] [Indexed: 12/28/2022] Open
Abstract
Maintenance of polymorphism by overdominance (heterozygote advantage) is a fundamental concept in evolutionary biology. In most examples known in nature, overdominance is a result of homozygotes suffering from deleterious effects. Here we show that overdominance maintains a non-deleterious polymorphism with black, red and white floral morphs in the Alpine orchid Gymnadenia rhellicani. Phenotypic, metabolomic and transcriptomic analyses reveal that the morphs differ solely in cyanidin pigments, which are linked to differential expression of an anthocyanidin synthase (ANS) gene. This expression difference is caused by a premature stop codon in an ANS-regulating R2R3-MYB transcription factor, which is heterozygous in the red colour morph. Furthermore, field observations show that bee and fly pollinators have opposite colour preferences; this results in higher fitness (seed set) of the heterozygous morph without deleterious effects in either homozygous morph. Together, these findings demonstrate that genuine overdominance exists in nature. Examples of overdominance are usually explained by deleterious effects in homozygotes. Here, Kellenberger et al. describe a case of overdominance in the floral color of the Alpine orchid Gymnadenia rhellicani apparently maintained by pollinator preferences without deleterious effects in homozygotes.
Collapse
|
32
|
Kapun M, Flatt T. The adaptive significance of chromosomal inversion polymorphisms inDrosophila melanogaster. Mol Ecol 2018; 28:1263-1282. [DOI: 10.1111/mec.14871] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Martin Kapun
- Department of BiologyUniversity of Fribourg Fribourg Switzerland
| | - Thomas Flatt
- Department of BiologyUniversity of Fribourg Fribourg Switzerland
| |
Collapse
|
33
|
Entropy, or Information, Unifies Ecology and Evolution and Beyond. ENTROPY 2018; 20:e20100727. [PMID: 33265816 PMCID: PMC7512290 DOI: 10.3390/e20100727] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/18/2018] [Accepted: 09/11/2018] [Indexed: 02/07/2023]
Abstract
This article discusses how entropy/information methods are well-suited to analyzing and forecasting the four processes of innovation, transmission, movement, and adaptation, which are the common basis to ecology and evolution. Macroecologists study assemblages of differing species, whereas micro-evolutionary biologists study variants of heritable information within species, such as DNA and epigenetic modifications. These two different modes of variation are both driven by the same four basic processes, but approaches to these processes sometimes differ considerably. For example, macroecology often documents patterns without modeling underlying processes, with some notable exceptions. On the other hand, evolutionary biologists have a long history of deriving and testing mathematical genetic forecasts, previously focusing on entropies such as heterozygosity. Macroecology calls this Gini-Simpson, and has borrowed the genetic predictions, but sometimes this measure has shortcomings. Therefore it is important to note that predictive equations have now been derived for molecular diversity based on Shannon entropy and mutual information. As a result, we can now forecast all major types of entropy/information, creating a general predictive approach for the four basic processes in ecology and evolution. Additionally, the use of these methods will allow seamless integration with other studies such as the physical environment, and may even extend to assisting with evolutionary algorithms.
Collapse
|
34
|
Comeron JM. Background selection as null hypothesis in population genomics: insights and challenges from Drosophila studies. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0471. [PMID: 29109230 PMCID: PMC5698629 DOI: 10.1098/rstb.2016.0471] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
The consequences of selection at linked sites are multiple and widespread across the genomes of most species. Here, I first review the main concepts behind models of selection and linkage in recombining genomes, present the difficulty in parametrizing these models simply as a reduction in effective population size (Ne) and discuss the predicted impact of recombination rates on levels of diversity across genomes. Arguments are then put forward in favour of using a model of selection and linkage with neutral and deleterious mutations (i.e. the background selection model, BGS) as a sensible null hypothesis for investigating the presence of other forms of selection, such as balancing or positive. I also describe and compare two studies that have generated high-resolution landscapes of the predicted consequences of selection at linked sites in Drosophila melanogaster. Both studies show that BGS can explain a very large fraction of the observed variation in diversity across the whole genome, thus supporting its use as null model. Finally, I identify and discuss a number of caveats and challenges in studies of genetic hitchhiking that have been often overlooked, with several of them sharing a potential bias towards overestimating the evidence supporting recent selective sweeps to the detriment of a BGS explanation. One potential source of bias is the analysis of non-equilibrium populations: it is precisely because models of selection and linkage predict variation in Ne across chromosomes that demographic dynamics are not expected to be equivalent chromosome- or genome-wide. Other challenges include the use of incomplete genome annotations, the assumption of temporally stable recombination landscapes, the presence of genes under balancing selection and the consequences of ignoring non-crossover (gene conversion) recombination events. This article is part of the themed issue ‘Evolutionary causes and consequences of recombination rate variation in sexual organisms’.
Collapse
Affiliation(s)
- Josep M Comeron
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA .,Interdisciplinary Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
35
|
Schou MF, Loeschcke V, Bechsgaard J, Schlötterer C, Kristensen TN. Unexpected high genetic diversity in small populations suggests maintenance by associative overdominance. Mol Ecol 2017; 26:6510-6523. [PMID: 28746770 DOI: 10.1111/mec.14262] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/17/2022]
Abstract
The effective population size (Ne ) is a central factor in determining maintenance of genetic variation. The neutral theory predicts that loss of variation depends on Ne , with less genetic drift in larger populations. We monitored genetic drift in 42 Drosophila melanogaster populations of different adult census population sizes (10, 50 or 500) using pooled RAD sequencing. In small populations, variation was lost at a substantially lower rate than expected. This observation was consistent across two ecological relevant thermal regimes, one stable and one with a stressful increase in temperature across generations. Estimated ratios between Ne and adult census size were consistently higher in small than in larger populations. The finding provides evidence for a slower than expected loss of genetic diversity and consequently a higher than expected long-term evolutionary potential in small fragmented populations. More genetic diversity was retained in areas of low recombination, suggesting that associative overdominance, driven by disfavoured homozygosity of recessive deleterious alleles, is responsible for the maintenance of genetic diversity in smaller populations. Consistent with this hypothesis, the X-chromosome, which is largely free of recessive deleterious alleles due to hemizygosity in males, fits neutral expectations even in small populations. Our experiments provide experimental answers to a range of unexpected patterns in natural populations, ranging from variable diversity on X-chromosomes and autosomes to surprisingly high levels of nucleotide diversity in small populations.
Collapse
Affiliation(s)
- Mads F Schou
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | | | | | | | - Torsten N Kristensen
- Department of Bioscience, Aarhus University, Aarhus C, Denmark.,Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
36
|
Charlesworth et al. on Background Selection and Neutral Diversity. Genetics 2017; 204:829-832. [PMID: 28114095 DOI: 10.1534/genetics.116.196170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|