1
|
Yang W, Goh HJ, Han YT, Lee MH, Cha DS. Hispidol Regulates Behavioral Responses to Ethanol through Modulation of BK Channels: A Novel Candidate for the Treatment of Alcohol Use Disorder. Molecules 2024; 29:4531. [PMID: 39407462 PMCID: PMC11478065 DOI: 10.3390/molecules29194531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Alcohol use disorder (AUD) is the most common substance use disorder and poses a significant global health challenge. Despite pharmacological advances, no single drug effectively treats all AUD patients. This study explores the protective potential of hispidol, a 6,4'-dihydroxyaurone, for AUD using the Caenorhabditis elegans model system. Our findings demonstrate that hispidol-fed worms exhibited more pronounced impairments in thrashes, locomotory speed, and bending amplitude, indicating that hispidol exacerbated the detrimental effects of acute ethanol exposure. However, hispidol significantly improved ethanol withdrawal behaviors, such as locomotory speed and chemotaxis performance. These beneficial effects were absent in slo-1 worms (the ortholog of mammalian α-subunit of BK channel) but were restored with the slo-1(+) or hslo(+) transgene, suggesting the involvement of BK channel activity. Additionally, hispidol increased fluorescence intensity and puncta in the motor neurons of slo-1::mCherry-tagged worms, indicating enhanced BK channel expression and clustering. Notably, hispidol did not alter internal ethanol concentrations, suggesting that its action is independent of ethanol metabolism. In the mouse models, hispidol treatment also demonstrated anxiolytic activity against ethanol withdrawal. Overall, these findings suggest hispidol as a promising candidate for targeting the BK channel in AUD treatment.
Collapse
Affiliation(s)
- Wooin Yang
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Hee Jae Goh
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Young Taek Han
- College of Pharmacy, Dankook University, Cheonan 31116, Republic of Korea
| | - Myon-Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Dong Seok Cha
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| |
Collapse
|
2
|
Clites BL, Frohock B, Koury EJ, Andersen EC, Pierce JT. Natural variation in protein kinase D modifies alcohol sensitivity in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598102. [PMID: 38895441 PMCID: PMC11185769 DOI: 10.1101/2024.06.09.598102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Differences in naïve alcohol sensitivity between individuals are a strong predictor of later life alcohol use disorders (AUD). However, the genetic bases for alcohol sensitivity (beyond ethanol metabolism) and pharmacological approaches to modulate alcohol sensitivity remain poorly understood. We used a high-throughput behavioral screen to measure acute behavioral sensitivity to alcohol, a model of intoxication, in a genetically diverse set of over 150 wild strains of the nematode Caenorhabditis elegans. We performed a genome-wide association study to identify loci that underlie natural variation in alcohol sensitivity. We identified five quantitative trait loci (QTL) and further show that variants in the C. elegans ortholog of protein kinase D, dkf-2, likely underlie the chromosome V QTL. We found that resistance to intoxication was conferred by dkf-2 loss-of-function mutations as well as partly by a PKD inhibitor in a dkf-2-dependent manner. Protein kinase D might represent a conserved, druggable target to modify alcohol sensitivity with application towards AUD.
Collapse
Affiliation(s)
- Benjamin L Clites
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| | - Brooke Frohock
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| | - Emily J Koury
- Department of Biology, Johns Hopkins University, Baltimore MD
| | - Erik C Andersen
- Department of Biology, Johns Hopkins University, Baltimore MD
| | - Jonathan T Pierce
- Waggoner Center for Alcohol & Addiction Research, Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin TX
| |
Collapse
|
3
|
van der Most MA, Bakker W, Wesseling S, van den Brink NW. Toxicokinetics of the Antidepressant Fluoxetine and Its Active Metabolite Norfluoxetine in Caenorhabditis elegans and Their Comparative Potency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38343161 PMCID: PMC10882974 DOI: 10.1021/acs.est.3c07744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The nematode Caenorhabditis elegans is a valuable model for ecotoxicological research, yet limited attention has been given to understanding how it absorbs, distributes, metabolizes, and excretes chemicals. This is crucial for C. elegans because the organism is known to have strong uptake barriers that are known to be susceptible to potential confounding effects of the presence of Escherichia coli as a food source. One frequently studied compound in C. elegans is the antidepressant fluoxetine, which has an active metabolite norfluoxetine. In this study, we evaluated the toxicokinetics and relative potency of norfluoxetine and fluoxetine in chemotaxis and activity tests. Toxicokinetics experiments were conducted with varying times, concentrations of fluoxetine, and in the absence or presence of E. coli, simulated with a one-compartment model. Our findings demonstrate that C. elegans can take up fluoxetine and convert it into norfluoxetine. Norfluoxetine proved slightly more potent and had a longer elimination half-life. The bioconcentration factor, uptake, and elimination rate constants depended on exposure levels, duration, and the presence of E. coli in the exposure medium. These findings expand our understanding of toxicokinetic modeling in C. elegans for different exposure scenarios, underlining the importance of considering norfluoxetine formation in exposure and bioactivity assessments of fluoxetine.
Collapse
Affiliation(s)
- Merel A van der Most
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Wouter Bakker
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Sebastiaan Wesseling
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| | - Nico W van den Brink
- Division of Toxicology, Wageningen University and Research, Wageningen 6708 WE, The Netherlands
| |
Collapse
|
4
|
Martins AC, Virgolini MB, Ávila DS, Scharf P, Li J, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Aschner M. Mitochondria in the Spotlight: C. elegans as a Model Organism to Evaluate Xenobiotic-Induced Dysfunction. Cells 2023; 12:2124. [PMID: 37681856 PMCID: PMC10486742 DOI: 10.3390/cells12172124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Miriam B. Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Jung Li
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
5
|
van Wijk MH, Davies AG, Sterken MG, Mathies LD, Quamme EC, Blackwell GG, Riksen JAG, Kammenga JE, Bettinger JC. Natural allelic variation modifies acute ethanol response phenotypes in wild strains of C. elegans. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1505-1517. [PMID: 37356915 DOI: 10.1111/acer.15139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUND Genetic variation contributes to the likelihood that an individual will develop an alcohol use disorder (AUD). Traditional laboratory studies in animal models have elucidated the molecular pharmacology of ethanol, but laboratory-derived genetic manipulations rarely model the naturally occurring genetic variation observed in wild populations. Rather, these manipulations are biased toward identifying genes of central importance in the phenotypes. Because changes in such genes can confer selective disadvantages, they are not ideal candidates for carrying AUD risk alleles in humans. We sought to exploit Caenorhabditis elegans to identify allelic variation existing in the wild that modulates ethanol response behaviors. METHODS We tested the acute ethanol responses of four strains recently isolated from the wild (JU1511, JU1926, JU1931, and JU1941) and 41 multiparental recombinant inbred lines (mpRILs) derived from them. We assessed locomotion at 10, 30, and 50 min on low and high ethanol concentrations. We performed principal component analyses (PCA) on the different phenotypes, tested for transgressive behavior, calculated heritability, and determined the correlations between behavioral responses. RESULTS We observed a range of responses to ethanol across the strains. We detected a low-concentration locomotor activation effect in some of the mpRILs not seen in the laboratory wild-type strain. PCA showed different ethanol response behaviors to be independent. We observed transgressive behavior for many of the measured phenotypes and found that multiple behaviors were uncorrelated. The average broad-sense heritability for all phenotypes was 23.2%. CONCLUSIONS Genetic variation significantly affects multiple acute ethanol response behaviors, many of which are independent of one another. This suggests that the genetic variation captured by these strains likely affects multiple biological mechanisms through which ethanol acts. Further study of these strains may allow these distinct mechanisms to be identified.
Collapse
Affiliation(s)
- Marijke H van Wijk
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Laura D Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Elizabeth C Quamme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - GinaMari G Blackwell
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
6
|
Scholz H. From Natural Behavior to Drug Screening: Invertebrates as Models to Study Mechanisms Associated with Alcohol Use Disorders. Curr Top Behav Neurosci 2023. [PMID: 36598738 DOI: 10.1007/7854_2022_413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Humans consume ethanol-containing beverages, which may cause an uncontrollable or difficult-to-control intake of ethanol-containing liquids and may result in alcohol use disorders. How the transition at the molecular level from "normal" ethanol-associated behaviors to addictive behaviors occurs is still unknown. One problem is that the components contributing to normal ethanol intake and their underlying molecular adaptations, especially in neurons that regulate behavior, are not clear. The fruit fly Drosophila melanogaster and the earthworm Caenorhabditis elegans show behavioral similarities to humans such as signs of intoxication, tolerance, and withdrawal. Underlying the phenotypic similarities, invertebrates and vertebrates share mechanistic similarities. For example in Drosophila melanogaster, the dopaminergic neurotransmitter system regulates the positive reinforcing properties of ethanol and in Caenorhabditis elegans, serotonergic neurons regulate feeding behavior. Since these mechanisms are fundamental molecular mechanisms and are highly conserved, invertebrates are good models for uncovering the basic principles of neuronal adaptation underlying the behavioral response to ethanol. This review will focus on the following aspects that might shed light on the mechanisms underlying normal ethanol-associated behaviors. First, the current status of what is required at the behavioral and cellular level to respond to naturally occurring levels of ethanol is summarized. Low levels of ethanol delay the development and activate compensatory mechanisms that in turn might be beneficial for some aspects of the animal's physiology. Repeated exposure to ethanol however might change brain structures involved in mediating learning and memory processes. The smell of ethanol is already a key component in the environment that is able to elicit behavioral changes and molecular programs. Minimal networks have been identified that regulate normal ethanol consumption. Other environmental factors that influence ethanol-induced behaviors include the diet, dietary supplements, and the microbiome. Second, the molecular mechanisms underlying neuronal adaptation to the cellular stressor ethanol are discussed. Components of the heat shock and oxidative stress pathways regulate adaptive responses to low levels of ethanol and in turn change behavior. The adaptive potential of the brain cells is challenged when the organism encounters additional cellular stressors caused by aging, endosymbionts or environmental toxins or excessive ethanol intake. Finally, to underline the conserved nature of these mechanisms between invertebrates and higher organisms, recent approaches to identify drug targets for ethanol-induced behaviors are provided. Already approved drugs regulate ethanol-induced behaviors and they do so in part by interfering with cellular stress pathways. In addition, invertebrates have been used to identify new compounds targeting molecules involved in the regulation in ethanol withdrawal-like symptoms. This review primarily highlights the advances of the last 5 years concerning Drosophila melanogaster, but also provides intriguing examples of Caenorhabditis elegans and Apis mellifera in support.
Collapse
Affiliation(s)
- Henrike Scholz
- Department of Biology, Institute for Zoology, University of Köln, Köln, Germany.
| |
Collapse
|
7
|
Guzman DM, Chakka K, Shi T, Marron A, Fiorito AE, Rahman NS, Ro S, Sucich DG, Pierce JT. Transgenerational effects of alcohol on behavioral sensitivity to alcohol in Caenorhabditis elegans. PLoS One 2022; 17:e0271849. [PMID: 36256641 PMCID: PMC9578632 DOI: 10.1371/journal.pone.0271849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Alcohol abuse and dependence have a substantial heritable component. Although the genome has been considered the sole vehicle of heritable phenotypes, recent studies suggest that drug or alcohol exposure may induce alterations in gene expression that are transmitted across generations. Still, the transgenerational impact of alcohol use (and abuse) remains largely unexplored in part because multigenerational studies using rodent models present challenges for time, sample size, and genetic heterogeneity. Here, we took advantage of the extremely short generation time, large broods, and clonal form of reproduction of the nematode Caenorhabditis elegans. We developed a model of pre-fertilization parental alcohol exposure to test alterations in behavioral responses to acute alcohol treatment (referred to in short as intoxication) in subsequent F1, F2 and F3 generations. We found that chronic and intermittent alcohol-treatment paradigms resulted in opposite changes to intoxication sensitivity of F3 progeny that were only apparent when controlling for yoked trials. Chronic alcohol-treatment paradigm in the parental generation resulted in alcohol-naïve F3 progeny displaying moderate resistance to intoxication. Intermittent treatment resulted in alcohol-naïve F3 progeny displaying moderate hypersensitivity to intoxication. Further study of these phenomena using this new C. elegans model may yield mechanistic insights into how transgenerational effects may occur in other animals.
Collapse
Affiliation(s)
- Dawn M. Guzman
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Keerthana Chakka
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Ted Shi
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Alyssa Marron
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Ansley E. Fiorito
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Nima S. Rahman
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Stephanie Ro
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| | - Dylan G. Sucich
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jonathan T. Pierce
- Department of Neuroscience, Waggoner Center for Alcohol and Addiction Research, Center for Learning and Memory, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
8
|
Albrecht PA, Fernandez-Hubeid LE, Deza-Ponzio R, Virgolini MB. The intertwining between lead and ethanol in the model organism Caenorhabditis elegans. FRONTIERS IN TOXICOLOGY 2022; 4:991787. [PMID: 36204698 PMCID: PMC9531147 DOI: 10.3389/ftox.2022.991787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Caenorhabditis elegans (C. elegans) is a model organism widely used to evaluate the mechanistic aspects of toxicants with the potential to predict responses comparable to those of mammals. We report here the consequences of developmental lead (Pb) exposure on behavioral responses to ethanol (EtOH) in C. elegans. In addition, we present data on morphological alterations in the dopamine (DA) synapse and DA-dependent behaviors aimed to dissect the neurobiological mechanisms that underlie the relationship between these neurotoxicants. Finally, the escalation to superior animals that parallels the observed effects in both experimental models with references to EtOH metabolism and oxidative stress is also discussed. Overall, the literature revised here underpins the usefulness of C. elegans to evidence behavioral responses to a combination of neurotoxicants in mechanistic-orientated studies.
Collapse
Affiliation(s)
- P A Albrecht
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L E Fernandez-Hubeid
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - R Deza-Ponzio
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M B Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Científicas y Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
9
|
Liu H, Qiu Y, Wang D. Alteration in expressions of ion channels in Caenorhabditis elegans exposed to polystyrene nanoparticles. CHEMOSPHERE 2021; 273:129686. [PMID: 33486351 DOI: 10.1016/j.chemosphere.2021.129686] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/28/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Ion channels on cytoplasmic membrane function to sense various environmental stimuli. We here determined the changes of genes encoding ion channels in Caenorhabditis elegans after exposure to polystyrene nanoparticles (PS-NPs). Exposure to 1-1000 μg/L PS-NPs could increase expressions of egl-19, mec-10, trp-4, trp-2, tax-4, cca-1, unc-2, and unc-93, and decrease the expressions of cng-3, mec-6, ocr-2, deg-1, exc-4, kvs-1, and eat-2. Among these 15 ion channel genes, RNAi knockdown of cng-3 or eat-2 caused resistance to PS-NPs toxicity and RNAi knockdown of egl-19, cca-1, tax-4, or unc-93 induced susceptibility to PS-NPs toxicity, suggesting that cng-3, eat-2, egl-19, cca-1, tax-4, and unc-93 were involved in the control of PS-NPs toxicity. EGL-19 and CCA-1 functioned in intestinal cells to control PS-NPs toxicity, and CNG-3, EAT-2, EGL-19, TAX-4, and UNC-93 functioned in neuronal cells to control PS-NPs. Moreover, in intestinal cells of PS-NPs exposed worms, cca-1 RNAi knockdown decreased elt-2 expression, and egl-19 RNAi knockdown decreased daf-16 and elt-2 expressions. In neuronal cells of PS-NPs exposed worms, eat-2 RNAi knockdown increased jnk-1, mpk-1, and dbl-1 expressions, unc-93 RNAi knockdown decreased mpk-1 and daf-7 expressions, and tax-4 RNAi knockdown decreased jnk-1 and daf-7 expressions. Therefore, two molecular networks mediated by ion channels in intestinal cells and neuronal cells were dysregulated by PS-NPs exposure in C. elegans. Our data suggested that the dysregulation in expressions of these ion channels mediated a protective response to PS-NPs in the range of μg/L in worms.
Collapse
Affiliation(s)
- Huanliang Liu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Yuexiu Qiu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing, 210009, China; Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China; College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404100, China.
| |
Collapse
|
10
|
Sterken MG, van Wijk MH, Quamme EC, Riksen JAG, Carnell L, Mathies LD, Davies AG, Kammenga JE, Bettinger JC. Transcriptional analysis of the response of C. elegans to ethanol exposure. Sci Rep 2021; 11:10993. [PMID: 34040055 PMCID: PMC8155136 DOI: 10.1038/s41598-021-90282-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/07/2021] [Indexed: 11/30/2022] Open
Abstract
Ethanol-induced transcriptional changes underlie important physiological responses to ethanol that are likely to contribute to the addictive properties of the drug. We examined the transcriptional responses of Caenorhabditis elegans across a timecourse of ethanol exposure, between 30 min and 8 h, to determine what genes and genetic pathways are regulated in response to ethanol in this model. We found that short exposures to ethanol (up to 2 h) induced expression of metabolic enzymes involved in metabolizing ethanol and retinol, while longer exposure (8 h) had much more profound effects on the transcriptome. Several genes that are known to be involved in the physiological response to ethanol, including direct ethanol targets, were regulated at 8 h of exposure. This longer exposure to ethanol also resulted in the regulation of genes involved in cilia function, which is consistent with an important role for the effects of ethanol on cilia in the deleterious effects of chronic ethanol consumption in humans. Finally, we found that food deprivation for an 8-h period induced gene expression changes that were somewhat ameliorated by the presence of ethanol, supporting previous observations that worms can use ethanol as a calorie source.
Collapse
Affiliation(s)
- Mark G Sterken
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Marijke H van Wijk
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Elizabeth C Quamme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Lucinda Carnell
- Department of Biological Sciences, Central Washington University, Ellensburg, WA, 98926, USA
| | - Laura D Mathies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA
- Virginia Commonwealth University Alcohol Research Center, Richmond, VA, USA
| | - Andrew G Davies
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA
- Virginia Commonwealth University Alcohol Research Center, Richmond, VA, USA
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Jill C Bettinger
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Box 980613, Richmond, VA, 23298, USA.
- Virginia Commonwealth University Alcohol Research Center, Richmond, VA, USA.
| |
Collapse
|
11
|
Barkley-Levenson AM, Lee A, Palmer AA. Genetic and Pharmacological Manipulations of Glyoxalase 1 Mediate Ethanol Withdrawal Seizure Susceptibility in Mice. Brain Sci 2021; 11:127. [PMID: 33478138 PMCID: PMC7835754 DOI: 10.3390/brainsci11010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/03/2022] Open
Abstract
Central nervous system (CNS) hyperexcitability is a clinically significant feature of acute ethanol withdrawal. There is evidence for a genetic contribution to withdrawal severity, but specific genetic risk factors have not been identified. The gene glyoxalase 1 (Glo1) has been previously implicated in ethanol consumption in mice, and GLO1 inhibition can attenuate drinking in mice and rats. Here, we investigated whether genetic and pharmacological manipulations of GLO1 activity can also mediate ethanol withdrawal seizure severity in mice. Mice from two transgenic lines overexpressing Glo1 on different genetic backgrounds (C57BL/6J (B6) and FVB/NJ (FVB)) were tested for handling-induced convulsions (HICs) as a measure of acute ethanol withdrawal. Following an injection of 4 g/kg alcohol, both B6 and FVB mice overexpressing Glo1 showed increases in HICs compared to wild-type littermates, though only the FVB line showed a statistically significant difference. We also administered daily ethanol injections (2 g/kg + 9 mg/kg 4-methylpyrazole) to wild-type B6 mice for 10 days and tested them for HICs on the 10th day following treatment with either a vehicle or a GLO1 inhibitor (S-bromobenzylglutathione cyclopentyl diester (pBBG)). Treatment with pBBG reduced HICs, although this effect was only statistically significant following two 10-day cycles of ethanol exposure and withdrawal. These results provide converging genetic and pharmacological evidence that GLO1 can mediate ethanol withdrawal seizure susceptibility.
Collapse
Affiliation(s)
- Amanda M. Barkley-Levenson
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (A.L.); (A.A.P.)
| | - Amy Lee
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (A.L.); (A.A.P.)
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; (A.L.); (A.A.P.)
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Oh KH, Sheoran S, Richmond JE, Kim H. Alcohol induces mitochondrial fragmentation and stress responses to maintain normal muscle function in Caenorhabditis elegans. FASEB J 2020; 34:8204-8216. [PMID: 32294300 DOI: 10.1096/fj.201903166r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
Abstract
Chronic excessive ethanol consumption has distinct toxic and adverse effects on a variety of tissues. In skeletal muscle, ethanol causes alcoholic myopathy, which is characterized by myofiber atrophy and the loss of muscle strength. Alcoholic myopathy is more prevalent than all inherited muscle diseases combined. Current evidence indicates that ethanol directly impairs muscle organization and function. However, the underlying mechanism by which ethanol causes toxicity in muscle is poorly understood. Here, we show that the nematode Caenorhabditis elegans exhibits the key features of alcoholic myopathy when exposed to ethanol. As in mammals, ethanol exposure impairs muscle strength and induces the expression of protective genes, including oxidative stress response genes. In addition, ethanol exposure causes the fragmentation of mitochondrial networks aligned with myofibril lattices. This ethanol-induced mitochondrial fragmentation is dependent on the mitochondrial fission factor DRP-1 (dynamin-related protein 1) and its receptor proteins on the outer mitochondrial membrane. Our data indicate that this fragmentation contributes to the activation of the mitochondrial unfolded protein response (UPR). We also found that robust, perpetual mitochondrial UPR activation effectively reduces muscle weakness caused by ethanol exposure. Our results strongly suggest that the modulation of mitochondrial stress responses may provide a method to ameliorate alcohol toxicity and damage to muscle.
Collapse
Affiliation(s)
- Kelly H Oh
- Department of Cell Biology & Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Seema Sheoran
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Janet E Richmond
- Department of Biological Science, University of Illinois at Chicago, Chicago, IL, USA
| | - Hongkyun Kim
- Department of Cell Biology & Anatomy, Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.,School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
14
|
Scholz H. Unraveling the Mechanisms of Behaviors Associated With AUDs Using Flies and Worms. Alcohol Clin Exp Res 2019; 43:2274-2284. [PMID: 31529787 DOI: 10.1111/acer.14199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022]
Abstract
Alcohol use disorders (AUDs) are very common worldwide and negatively affect both individuals and societies. To understand how normal behavior turns into uncontrollable use of alcohol, several approaches have been utilized in the last decades. However, we still do not completely understand how AUDs evolve or how they are maintained in the brains of affected individuals. In addition, efficient and effective treatment is still in need of development. This review focuses on alternative approaches developed over the last 20 years using Drosophila melanogaster (Drosophila) and Caenorhabditis elegans (C. elegans) as genetic model systems to determine the mechanisms underlying the action of ethanol (EtOH) and behaviors associated with AUDs. All the results and insights of studies over the last 20 years cannot be comprehensively summarized. Thus, a few prominent examples are provided highlighting the principles of the genes and mechanisms that have been uncovered and are involved in the action of EtOH at the cellular level. In addition, examples are provided of the genes and mechanisms that regulate behaviors relevant to acquiring and maintaining excessive alcohol intake, such as decision making, reward and withdrawal, and/or relapse regulation. How the insight gained from the results of Drosophila and C. elegans models can be translated to higher organisms, such as rodents and/or humans, is discussed, as well as whether these insights have any relevance or impact on our understanding of the mechanisms underlying AUDs in humans. Finally, future directions are presented that might facilitate the identification of drugs to treat AUDs.
Collapse
Affiliation(s)
- Henrike Scholz
- From the, Department of Biology, Institute for Zoology, Albertus-Magnus University of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Scott LL, Iyer S, Philpo AE, Avalos MN, Wu NS, Shi T, Prakash BA, Nguyen TT, Mihic SJ, Aldrich RW, Pierce JT. A Novel Peptide Restricts Ethanol Modulation of the BK Channel In Vitro and In Vivo. J Pharmacol Exp Ther 2018; 367:282-290. [PMID: 30158242 DOI: 10.1124/jpet.118.251918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Alcohol is a widely used and abused substance. A major unresolved issue in the alcohol research field is determining which of the many alcohol target proteins identified to date is responsible for shaping each specific alcohol-related behavior. The large-conductance, calcium- and voltage-activated potassium channel (BK channel) is a conserved target of ethanol. Genetic manipulation of the highly conserved BKα channel influences alcohol-related behaviors across phylogenetically diverse species that include worm, fly, mouse, and man. A pharmacological tool that prevents alcohol's action at a single target, like the BK channel, would complement genetic approaches in the quest to define the behavioral consequences of alcohol at each target. To identify agents that specifically modulate the action of ethanol at the BK channel, we executed a high-throughput phagemid-display screen in combination with a Caenorhabditis elegans behavioral genetics assay. This screen selected a novel nonapeptide, LS10, which moderated acute ethanol intoxication in a BK channel-humanized C. elegans strain without altering basal behavior. LS10's action in vivo was dependent upon BK channel functional activity. Single-channel electrophysiological recordings in vitro showed that preincubation with a submicromolar concentration of LS10 restricted ethanol-induced changes in human BKα channel gating. In contrast, no substantial changes in basal human BKα channel function were observed after LS10 application. The results obtained with the LS10 peptide provide proof-of-concept evidence that a combined phagemid-display/behavioral genetics screening approach can provide novel tools for understanding the action of alcohol at the BK channel and how this, in turn, exerts influence over central nervous system function.
Collapse
Affiliation(s)
- Luisa L Scott
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Sangeetha Iyer
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Ashley E Philpo
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Melva N Avalos
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Natalie S Wu
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Ted Shi
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Brooke A Prakash
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Thanh-Tu Nguyen
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - S John Mihic
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Richard W Aldrich
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| | - Jonathan T Pierce
- Waggoner Center for Alcohol and Addiction Research (L.L.S., S.I., A.E.P., M.N.A., N.S.W., T.S., B.A.P., T.-T.N., S.J.M., R.W.A., J.T.P.), Department of Neuroscience (S.J.M., R.W.A., J.T.P.), and Center for Learning and Memory (R.W.A., J.T.P.), The University of Texas at Austin, Austin, Texas
| |
Collapse
|
16
|
Small molecule modulators of σ2R/Tmem97 reduce alcohol withdrawal-induced behaviors. Neuropsychopharmacology 2018; 43:1867-1875. [PMID: 29728649 PMCID: PMC6046036 DOI: 10.1038/s41386-018-0067-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/09/2018] [Accepted: 04/05/2018] [Indexed: 12/29/2022]
Abstract
Repeated cycles of intoxication and withdrawal enhance the negative reinforcing properties of alcohol and lead to neuroadaptations that underlie withdrawal symptoms driving alcohol dependence. Pharmacotherapies that target these neuroadaptations may help break the cycle of dependence. The sigma-1 receptor (σ1R) subtype has attracted interest as a possible modulator of the rewarding and reinforcing effects of alcohol. However, whether the sigma-2 receptor, recently cloned and identified as transmembrane protein 97 (σ2R/TMEM97), plays a role in alcohol-related behaviors is currently unknown. Using a Caenorhabditis elegans model, we identified two novel, selective σ2R/Tmem97 modulators that reduce alcohol withdrawal behavior via an ortholog of σ2R/TMEM97. We then show that one of these compounds blunted withdrawal-induced excessive alcohol drinking in a well-established rodent model of alcohol dependence. These discoveries provide the first evidence that σ2R/TMEM97 is involved in alcohol withdrawal behaviors and that this receptor is a potential new target for treating alcohol use disorder.
Collapse
|
17
|
Pierce JT. Calnexin revealed as an ether-a-go-go chaperone by getting mutant worms up and going. J Gen Physiol 2018; 150:1059-1061. [PMID: 29970410 PMCID: PMC6080892 DOI: 10.1085/jgp.201812068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pierce examines new work revealing that calnexin controls the biogenesis of ERG-type K+ channels in Caenorhabditis elegans. The role of ion channels in cell excitability was first revealed in a series of voltage clamp experiments by Hodgkin and Huxley in the 1950s. However, it was not until the 1970s that patch-clamp recording ushered in a revolution that allowed physiologists to witness how ion channels flicker open and closed at angstrom scale and with microsecond resolution. The unexpectedly tight seal made by the patch pipette in the whole-cell configuration later allowed molecular biologists to suck up the insides of identified cells to unveil their unique molecular contents. By refining these techniques, researchers have scrutinized the surface and contents of excitable cells in detail over the past few decades. However, these powerful approaches do not discern which molecules are responsible for the dynamic control of the genesis, abundance, and subcellular localization of ion channels. In this dark territory, teams of unknown and poorly understood molecules guide specific ion channels through translation, folding, and modification, and then they shuttle them toward and away from distinct membrane domains via different subcellular routes. A central challenge in understanding these processes is the likelihood that these diverse regulatory molecules may be specific to ion channel subtypes, cell types, and circumstance. In work described in this issue, Bai et al. (2018. J. Gen. Physiol.https://doi.org/10.1085/jgp.201812025) begin to shed light on the biogenesis of UNC-103, a K+ channel found in Caenorhabditis elegans.
Collapse
Affiliation(s)
- Jonathan T Pierce
- Institute for Neuroscience, Institute for Cellular and Molecular Biology, Center for Learning and Memory, Waggoner Center for Alcohol and Addiction Research, Department of Neuroscience, The University of Texas at Austin, Austin, TX
| |
Collapse
|
18
|
Niu LG, Liu P, Shui Y, Mailler R, Wang ZW, Chen B. BKIP-1, an auxiliary subunit critical to SLO-1 function, inhibits SLO-2 potassium channel in vivo. Sci Rep 2017; 7:17843. [PMID: 29259251 PMCID: PMC5736756 DOI: 10.1038/s41598-017-18052-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/28/2017] [Indexed: 11/20/2022] Open
Abstract
Auxiliary subunits are often needed to tailor K+ channel functional properties and expression levels. Many auxiliary subunits have been identified for mammalian Slo1, a high-conductance K+ channel gated by voltage and Ca2+. Experiments with heterologous expression systems show that some of the identified Slo1 auxiliary subunits can also regulate other Slo K+ channels. However, it is unclear whether a single auxiliary subunit may regulate more than one Slo channel in native tissues. BKIP-1, an auxiliary subunit of C. elegans SLO-1, facilitates SLO-1 membrane trafficking and regulates SLO-1 function in neurons and muscle cells. Here we show that BKIP-1 also serves as an auxiliary subunit of C. elegans SLO-2, a high-conductance K+ channel gated by membrane voltage and cytosolic Cl− and Ca2+. Comparisons of whole-cell and single-channel SLO-2 currents in native neurons and muscle cells between worm strains with and without BKIP-1 suggest that BKIP-1 reduces chloride sensitivity, activation rate, and single-channel open probability of SLO-2. Bimolecular fluorescence complementation assays indicate that BKIP-1 interacts with SLO-2 carboxyl terminal. Thus, BKIP-1 may serve as an auxiliary subunit of SLO-2. BKIP-1 appears to be the first example that a single auxiliary subunit exerts opposite effects on evolutionarily related channels in the same cells.
Collapse
Affiliation(s)
- Long-Gang Niu
- Department of Neuroscience, UConn Health, Farmington CT, USA
| | - Ping Liu
- Department of Neuroscience, UConn Health, Farmington CT, USA
| | - Yuan Shui
- Department of Neuroscience, UConn Health, Farmington CT, USA
| | - Roger Mailler
- Department of Computer Science, University of Tulsa, Tulsa, OK, USA
| | - Zhao-Wen Wang
- Department of Neuroscience, UConn Health, Farmington CT, USA
| | - Bojun Chen
- Department of Neuroscience, UConn Health, Farmington CT, USA.
| |
Collapse
|
19
|
Voltage-Sensitive Potassium Channels of the BK Type and Their Coding Genes Are Alcohol Targets in Neurons. Handb Exp Pharmacol 2017; 248:281-309. [PMID: 29204711 DOI: 10.1007/164_2017_78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among all members of the voltage-gated, TM6 ion channel superfamily, the proteins that constitute calcium- and voltage-gated potassium channels of large conductance (BK) and their coding genes are unique for their involvement in ethanol-induced disruption of normal physiology and behavior. Moreover, in vitro studies document that BK activity is modified by ethanol with an EC50~23 mM, which is near blood alcohol levels considered legal intoxication in most states of the USA (0.08 g/dL = 17.4 mM). Following a succinct introduction to our current understanding of BK structure and function in central neurons, with a focus on neural circuits that contribute to the neurobiology of alcohol use disorders (AUD), we review the modifications in organ physiology by alcohol exposure via BK and the different molecular elements that determine the ethanol response of BK in alcohol-naïve systems, including the role of an ethanol-recognizing site in the BK-forming slo1 protein, modulation of accessory BK subunits, and their coding genes. The participation of these and additional elements in determining the response of a system or an organism to protracted ethanol exposure is consequently analyzed, with insights obtained from invertebrate and vertebrate models. Particular emphasis is put on the role of BK and coding genes in different forms of tolerance to alcohol exposure. We finally discuss genetic results on BK obtained in invertebrate organisms and rodents in light of possible extrapolation to human AUD.
Collapse
|