1
|
Yu JB, Lv X, Liu Q, Tu JY, Yu XP, Xu YP. Death-Associated Protein-1 Plays a Role in the Reproductive Development of Nilaparvata lugens and the Transovarial Transmission of Its Yeast-Like Symbiont. INSECTS 2024; 15:425. [PMID: 38921140 PMCID: PMC11204009 DOI: 10.3390/insects15060425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Death-associated protein-1 (DAP-1) plays a crucial role in cell growth, migration, autophagy, and apoptosis in mammals. However, its function in insects remains unclear. In the present study, we cloned and identified Nilaparvata lugens DAP-1 (NlDAP-1). NlDAP-1 was expressed during all developmental stages and in all tissues of N. lugens, being particularly higher in the ovaries of female adults. RNAi with double-stranded NlDAP-1 RNA significantly inhibited the expression of NlDAP-1, leading to premature death (dying seven days earlier), delayed ovarian development, and fewer offspring (76.7% reduction in eggs with 77.4% reduction in egg hatching rate). Additionally, an immunofluorescence experiment showed that NlDAP-1 was highly expressed when yeast-like symbionts (YLSs) entered N. lugens oocytes, and inhibiting the expression of NlDAP-1 disturbed the process; the RNAi of NlDAP-1 caused a 34.9% reduction in the YLSs that entered oocytes. These results indicate that NlDAP-1 plays a crucial role in the reproductive development of N. lugens and the transovarial transmission of its YLSs.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi-Peng Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (J.-B.Y.); (X.L.); (Q.L.); (J.-Y.T.); (X.-P.Y.)
| |
Collapse
|
2
|
Wang YH, Rivera DE, Klobasa W, Lorenzen MD. Evaluation of Peregrinus maidis transformer-2 as a target for CRISPR-based control. PLoS One 2024; 19:e0295335. [PMID: 38635824 PMCID: PMC11025951 DOI: 10.1371/journal.pone.0295335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/21/2023] [Indexed: 04/20/2024] Open
Abstract
The corn planthopper, Peregrinus maidis, is an economically important pest of corn and sorghum. Here we report the initial steps towards developing a CRISPR-based control method, precision guided sterile insect technique (pgSIT), for this hemipteran pest. Specifically, we evaluated the potential of transformer-2 (tra-2) as a target for sterilizing insects. First, we identified tra-2 transcripts within our P. maidis transcriptome database and performed RNA interference (RNAi) to confirm functional conservation. RNAi-mediated knockdown of Pmtra-2 in nymphs transformed females into pseudomales with deformed ovipositors resembling male claspers. While males showed no overt difference in appearance, they were indeed sterile. Importantly, the results were similar to those observed in another planthopper, Nilaparvata lugens. We also used CRISPR/Cas9 genome editing to assess the impact of tra-2 knockout in injectees. CRISPR-mediated knockout of Pmtra-2 had lethal effects on embryos, and hence not many injectees reached adulthood. However, mosaic knockout of Pmtra-2 did impact female and male fertility, which supports the use of tra-2 as a target for pgSIT in this hemipteran species.
Collapse
Affiliation(s)
- Yu-Hui Wang
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| | - Dina Espinoza Rivera
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| | - William Klobasa
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| | - Marcé D. Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
3
|
Ying J, Wang H, Wang B, Mao Z, Chen Y, Li J, Zhang C, Zhuo J. The Roles of transformer-2 ( tra-2) in the Sex Determination and Fertility of Riptortus pedestris, a Hemimetabolous Agricultural Pest. INSECTS 2023; 14:834. [PMID: 37999033 PMCID: PMC10672195 DOI: 10.3390/insects14110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
In most holometabolous insects, transformer-2 (tra-2) is an auxiliary gene required for sex determination, exerting a crucial role in regulating sexual differentiation; however, the study of tra-2 in hemimetabolous insects remains very sparse and limited to just a few species. In this study, we investigated the sequence and expression profile of the tra-2 gene in the bean bug, Riptortus pedestris, an agricultural pest belonging to the Heteroptera order. Three non-sex-specific splicing isoforms of Rptra-2 were found, Rptra-2293, Rptra-2284, and Rptra-2299, which shared most exons and exhibited similar expression throughout all stages of development, with particularly elevated levels in the embryo, ovary, and testis. RNAi knockdown experiments revealed that the suppression of Rptra-2 in nymphs led to abnormal females, characterized the formation of male-specific external genital, and also caused longer nymph duration. Knockdown of the expression of the Rptra-2 gene in newly emergent virgin females would cause ovarian arrest, and injecting the 8th-day virgin females with dsRptra-2 also caused a noticeable decline in the offspring numbers. Conversely, in dsRptra-2-treated males, the testes maintained normal morphology but experienced impaired reproductive capacity, attributed to diminished sperm viability. These findings highlight the crucial role of Rptra-2 in the sex determination and fertility of R. pedestris, providing valuable insights into the sex determination mechanisms of hemimetabolous insects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jichong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (J.Y.); (H.W.); (B.W.); (Z.M.); (Y.C.); (J.L.); (C.Z.)
| |
Collapse
|
4
|
Huang HJ, Zhang JL, Zhang CX. Insight into phenotypic plasticity in planthoppers. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101106. [PMID: 37625640 DOI: 10.1016/j.cois.2023.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Planthoppers possess an impressive ability to exhibit phenotypic plasticity, which allows them to adjust their morphology for migration, overwintering, and adaptation to different environmental conditions. The wing and color polyphenism are the two most outward morphologies. Wing polyphenism serves as a classic illustration of a life history trade-off between reproduction and migration, while color polyphenism is potentially correlated with the insect development and immunity. In this review, we present the important contributions that link environment cues to wing and color polyphenism, and highlight recent advances in insulin/insulin-like growth factor signaling-forkhead transcription factor subgroup O (FoxO) pathway-mediated wing development and tyrosine-melanin pathway-mediated coloration. Further work, particularly in the identification of the genes that FoxO regulates and in the elucidation of the intracellular signals that link the stimuli to the tyrosine-melanin pathway, is required.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jin-Li Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; Institute of Insect Science, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Yuan Y, Wang Y, Ye W, Yuan E, Di J, Chen X, Xing Y, Sun Y, Ge F. Functional evaluation of the insulin/insulin-like growth factor signaling pathway in determination of wing polyphenism in pea aphid. INSECT SCIENCE 2023; 30:816-828. [PMID: 36178731 DOI: 10.1111/1744-7917.13121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/03/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Wing polyphenism is a common phenomenon that plays key roles in environmental adaptation of insects. Insulin/insulin-like growth factor signaling (IIS) pathway is a highly conserved pathway in regulation of metabolism, development, and growth in metazoans. It has been reported that IIS is required for switching of wing morph in brown planthopper via regulating the development of the wing pad. However, it remains elusive whether and how IIS pathway regulates transgenerational wing dimorphism in aphid. In this study, we found that pairing and solitary treatments can induce pea aphids to produce high and low percentage winged offspring, respectively. The expression level of ILP5 (insulin-like peptide 5) in maternal head was significantly higher upon solitary treatment in comparison with pairing, while silencing of ILP5 caused no obvious change in the winged offspring ratio. RNA interference-mediated knockdown of FoxO (Forkhead transcription factor subgroup O) in stage 20 embryos significantly increased the winged offspring ratio. The results of pharmacological and quantitative polymerase chain reaction experiments showed that the embryonic insulin receptors may not be involved in wing polyphenism. Additionally, ILP4 and ILP11 exhibited higher expression levels in 1st wingless offspring than in winged offspring. We demonstrate that FoxO negatively regulates the wing morph development in embryos. ILPs may regulate aphid wing polyphenism in a developmental stage-specific manner. However, the regulation may be not mediated by the canonical IIS pathway. The findings advance our understanding of IIS pathway in insect transgenerational wing polyphenism.
Collapse
Affiliation(s)
- Yiyang Yuan
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Plant Virology, Jinan, China
| | - Yanyan Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Hebei University, Baoding, Hebei Province, China
| | - Wanwan Ye
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Hebei University, Baoding, Hebei Province, China
| | - Erliang Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Di
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Cangzhou Normal University, Cangzhou, Hebei Province, China
| | - Xin Chen
- College of Life Sciences, Cangzhou Normal University, Cangzhou, Hebei Province, China
| | - Yanling Xing
- College of Life Sciences, Cangzhou Normal University, Cangzhou, Hebei Province, China
| | - Yucheng Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Shandong Province Key Laboratory of Plant Virology, Jinan, China
| |
Collapse
|
6
|
Cai Q, Wang Z, Yang F, Zhang B, Wang E, Lv J, Xu X. Expression and functional analysis of transformer-2 in Phytoseiulus persimilis and other genes potentially participating in reproductive regulation. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 89:345-362. [PMID: 37027055 DOI: 10.1007/s10493-023-00786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/14/2023] [Indexed: 05/09/2023]
Abstract
Transformer-2 (tra-2) is an important sex-determining gene in insects. It also plays a role in the reproduction of phytoseiid mites. We performed bioinformatic analyses for the tra-2 ortholog in Phytoseiulus persimilis (termed Pptra-2), measured its expression at different stages and quantitatively identified its function in reproduction. This gene encodes 288 amino acids with a conserved RRM domain. The peak of its expression was observed in adult females, especially ca. 5 days after mating. In addition, expression is also higher in eggs than in other stages and adult males. When Pptra-2 was silenced through RNA interference with oral delivery of dsRNA, 56% of the females had their egg hatching rates decreased in the first 5 days, from ca. 100% to ca. 20%, and maintained at low levels during the rest of the oviposition period. To detect other genes functionally related to Pptra-2, transcriptome analyses were performed on day 5 after mating. We compared mRNA expressions among interfered females with significantly reduced egg hatching rate, interfered females without significant hatching rate and CK. In total 403 differential genes were identified, of which 42 functional genes involved in the regulation of female reproduction and embryonic development were screened and discussed.
Collapse
Affiliation(s)
- Qi Cai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenghui Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Yang
- Beijing Hooseen Biotechnology Co., Ltd, Beijing, China
| | - Bo Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Endong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiale Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China.
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xuenong Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, China.
- Lab of Predatory Mites, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
7
|
Biological Characteristics and Energy Metabolism of Migrating Insects. Metabolites 2023; 13:metabo13030439. [PMID: 36984878 PMCID: PMC10055822 DOI: 10.3390/metabo13030439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Through long-distance migration, insects not only find suitable breeding locations and increase the survival space and opportunities for the population but also facilitate large-scale material, energy, and information flow between regions, which is important in maintaining the stability of agricultural ecosystems and wider natural ecosystems. In this study, we summarize the changes in biological characteristics such as morphology, ovarian development, reproduction, and flight capability during the seasonal migration of the insect. In consideration of global research work, the interaction between flight and reproduction, the influence and regulation of the insulin-like and juvenile hormone on the flight and reproductive activities of migrating insects, and the types of energy substances, metabolic processes, and hormone regulation processes during insect flight are elaborated. This systematic review of the latest advances in the studies on insect migration biology and energy metabolism will help readers to better understand the biological behavior and regulation mechanism of the energy metabolism of insect migration.
Collapse
|
8
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
9
|
Zhang X, Zhu X, Bi X, Huang J, Zhou L. The Insulin Receptor: An Important Target for the Development of Novel Medicines and Pesticides. Int J Mol Sci 2022; 23:7793. [PMID: 35887136 PMCID: PMC9325136 DOI: 10.3390/ijms23147793] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
The insulin receptor (IR) is a transmembrane protein that is activated by ligands in insulin signaling pathways. The IR has been considered as a novel therapeutic target for clinical intervention, considering the overexpression of its protein and A-isoform in multiple cancers, Alzheimer's disease, and Type 2 diabetes mellitus in humans. Meanwhile, it may also serve as a potential target in pest management due to its multiple physiological influences in insects. In this review, we provide an overview of the structural and molecular biology of the IR, functions of IRs in humans and insects, physiological and nonpeptide small molecule modulators of the IR, and the regulating mechanisms of the IR. Xenobiotic compounds and the corresponding insecticidal chemicals functioning on the IR are also discussed. This review is expected to provide useful information for a better understanding of human IR-related diseases, as well as to facilitate the development of novel small-molecule activators and inhibitors of the IR for use as medicines or pesticides.
Collapse
Affiliation(s)
| | | | | | - Jiguang Huang
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| | - Lijuan Zhou
- Key Laboratory of Natural Pesticides & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (X.Z.); (X.B.)
| |
Collapse
|
10
|
Zhuo JC, Zhang HH, Hu QL, Zhang JL, Lu JB, Li HJ, Xie YC, Wang WW, Zhang Y, Wang HQ, Huang HJ, Lu G, Chen JP, Li JM, Tu ZJ, Zhang CX. A feminizing switch in a hemimetabolous insect. SCIENCE ADVANCES 2021; 7:eabf9237. [PMID: 34826246 PMCID: PMC8626073 DOI: 10.1126/sciadv.abf9237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
The mechanism of sex determination remains poorly understood in hemimetabolous insects. Here, in the brown planthopper (BPH), Nilaparvata lugens, a hemipteran rice pest, we identified a feminizing switch or a female determiner (Nlfmd) that encodes a serine/arginine-rich protein. Knockdown of Nlfmd in female nymphs resulted in masculinization of both the somatic morphology and doublesex splicing. The female-specific isoform of Nlfmd, Nlfmd-F, is maternally deposited and zygotically transcribed. Depletion of Nlfmd by maternal RNAi or CRISPR-Cas9 resulted in female-specific embryonic lethality. Knockdown of an hnRNP40 family gene named female determiner 2 (Nlfmd2) also conferred masculinization. In vitro experiments showed that an Nlfmd2 isoform, NlFMD2340, bound the RAAGAA repeat motif in the Nldsx pre-mRNA and formed a protein complex with NlFMD-F to modulate Nldsx splicing, suggesting that NlFMD2 may function as an RNA binding partner of the feminizing switch NlFMD. Our results provide novel insights into the diverse mechanisms of insect sex determination.
Collapse
Affiliation(s)
- Ji-Chong Zhuo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Hou-Hong Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Qing-Ling Hu
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Jin-Li Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Han-Jing Li
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Yu-Cheng Xie
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| | - Wei-Wei Wang
- Institute of Biochemistry, Zhejiang University, Hangzhou 310058, China
| | - Yan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hai-Qiang Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhi-Jian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Institute of Insect Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Yang M, Liang S, Wang F. Differential DNA methylation between long-winged and short-winged adults of Nilaparvata lugens. 3 Biotech 2021; 11:476. [PMID: 34777933 DOI: 10.1007/s13205-021-03026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022] Open
Abstract
Nilaparvata lugens, a catastrophic rice pest in South East Asia, has adults with wing dimorphism. DNA methylation has been proved to play an important role in regulation of phenotype differentiation in insects. In this study, methylation sensitive amplification polymorphism (MSAP) was used to investigate the cytosine methylation state at CCGG sites in macropterous male adults (MMA) and brachypterous male adults (BMA) of brown planthopper. In MMA, the fully methylated ratio was 2.96%, hemi-methylated ratio 3.83% and total methylated ratio 6.79%. In BMA, they were 5.53%, 4.19% and 9.72%, respectively. There were significant differences in the methylation of the target sites (CCGG) between MMA and BMA (ØST = 0.2614, P = 0.0354). Based the PCoA results, a much clear separation were also shown between MMA and BMA along the first coordinate (38.8% of variance explained). We also cloned and got nine satisfactory sequences with different methylation states between MMA and BMA. Two of them have similarity with male-specific sequence in chromosome Y and lipophorin receptor gene in N. lugens, respectively. The result showed that the methylation patterns and levels were different between two wing phenotypes of N. lugens, and will facilitate research on the epigenetic mechanism of insect wing dimorphism.
Collapse
|
12
|
Pleiotropic Roles of the Orthologue of the Drosophila melanogaster Intersex Gene in the Brown Planthopper. Genes (Basel) 2021; 12:genes12030379. [PMID: 33800002 PMCID: PMC8000406 DOI: 10.3390/genes12030379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
Intersex(ix), a gene involved in the sex-determining cascade of Drosophila melanogaster, works in concert with the female-specific product of doublesex (dsx) at the end of the hierarchy to implement the sex-specific differentiation of sexually dimorphic characters in female individuals. In this study, the ix homolog was identified in the brown planthopper (BPH), Nilaparvata lugens, which contained two splice variants expressed in both female and male insects. We found that Nlix played a vital role in the early nymphal development of BPH, showing an accumulated effect. RNAi-mediated knockdown of Nlix at 4th instar led to the external genital defects in both sexes, consequently resulting in the loss of reproductive ability in female and male individuals. After dsRNA injection, the males were normal on testes, while the females had defective ovarian development. Nlix was also required for early embryogenesis. Notably, when the dsNlix microinjection was performed in newly emerged females, the copulatory bursas were abnormally enlarged while the other tissues of the reproductive system developed normally. Our results demonstrated the pleiotropic roles of Nlix in embryogenesis and development of the reproductive system in a hemimetabolous insect species.
Collapse
|
13
|
Zhou X, Ye YZ, Ogihara MH, Takeshima M, Fujinaga D, Liu CW, Zhu Z, Kataoka H, Bao YY. Functional analysis of ecdysteroid biosynthetic enzymes of the rice planthopper, Nilaparvata lugens. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 123:103428. [PMID: 32553573 DOI: 10.1016/j.ibmb.2020.103428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Ecdysteroids, insect steroid hormones, play key roles in regulating insect development and reproduction. Hemipteran insects require ecdysteroids for egg production; however, ecdysteroid synthesis (ecdysteroidogenesis) details have not been elucidated. We identified all known genes encoding ecdysteroidogenic enzymes in Nilaparvata lugens and clarified their necessity during nymphal and ovarian development. We confirmed that N. lugens utilized 20-hydroxyecdysone as an active hormone. Assays using heterologous expression of enzymes in Drosophila S2 cells showed conserved functions of enzymes Neverland, CYP306A2, CYP314A1 and CYP315A1, but not CYP302A1. RNA interference and rescue analysis using 20-hydroxyecdysone demonstrated that most of the genes were necessary for nymphal development. The identified N. lugens enzymes showed conserved functions and pathways for ecdysteroidogenesis. Knockdown of ecdysteroidogenic enzyme genes in newly molted females caused failure of egg production: less vitellogenic and mature eggs in ovaries, fewer laid eggs and embryonic development deficiency of laid eggs. Considering the high expressions of ecdysteroidogenic enzyme genes in adults and ovaries, ecdysteroidogenesis in ovaries was critical for N. lugens ovarian development. Our study presents initial evidence that hemipteran insects require ecdysteroidogenesis for ovarian development.
Collapse
Affiliation(s)
- Xiang Zhou
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi-Zhou Ye
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Mari H Ogihara
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan; Present Address: Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Mika Takeshima
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Daiki Fujinaga
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Cheng-Wen Liu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Zhu
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan
| | - Hiroshi Kataoka
- Department of Integrated Biosciences, Graduated School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8562, Japan.
| | - Yan-Yuan Bao
- State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
14
|
Mathers TC, Mugford ST, Percival-Alwyn L, Chen Y, Kaithakottil G, Swarbreck D, Hogenhout SA, van Oosterhout C. Sex-specific changes in the aphid DNA methylation landscape. Mol Ecol 2019; 28:4228-4241. [PMID: 31472081 PMCID: PMC6857007 DOI: 10.1111/mec.15216] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
Aphids present an ideal system to study epigenetics as they can produce diverse, but genetically identical, morphs in response to environmental stimuli. Here, using whole genome bisulphite sequencing and transcriptome sequencing of the green peach aphid (Myzus persicae), we present the first detailed analysis of cytosine methylation in an aphid and investigate differences in the methylation and transcriptional landscapes of male and asexual female morphs. We found that methylation primarily occurs in a CG dinucleotide (CpG) context and that exons are highly enriched for methylated CpGs, particularly at the 3' end of genes. Methylation is positively associated with gene expression, and methylated genes are more stably expressed than unmethylated genes. Male and asexual female morphs have distinct methylation profiles. Strikingly, these profiles are divergent between the sex chromosome and the autosomes; autosomal genes are hypomethylated in males compared to asexual females, whereas genes belonging to the sex chromosome, which is haploid in males, are hypermethylated. Overall, we found correlated changes in methylation and gene expression between males and asexual females, and this correlation was particularly strong for genes located on the sex chromosome. Our results suggest that differential methylation of sex-biased genes plays a role in aphid sexual differentiation.
Collapse
Affiliation(s)
- Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sam T Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Yazhou Chen
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
15
|
Comparative transcriptomics of social insect queen pheromones. Nat Commun 2019; 10:1593. [PMID: 30962449 PMCID: PMC6453924 DOI: 10.1038/s41467-019-09567-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Queen pheromones are chemical signals that mediate reproductive division of labor in eusocial animals. Remarkably, queen pheromones are composed of identical or chemically similar compounds in some ants, wasps and bees, even though these taxa diverged >150MYA and evolved queens and workers independently. Here, we measure the transcriptomic consequences of experimental exposure to queen pheromones in workers from two ant and two bee species (genera: Lasius, Apis, Bombus), and test whether they are similar across species. Queen pheromone exposure affected transcription and splicing at many loci. Many genes responded consistently in multiple species, and the set of pheromone-sensitive genes was enriched for functions relating to lipid biosynthesis and transport, olfaction, production of cuticle, oogenesis, and histone (de)acetylation. Pheromone-sensitive genes tend to be evolutionarily ancient, positively selected, peripheral in the gene coexpression network, hypomethylated, and caste-specific in their expression. Our results reveal how queen pheromones achieve their effects, and suggest that ants and bees use similar genetic modules to achieve reproductive division of labor.
Collapse
|
16
|
Abstract
Many insects are capable of developing into either long-winged or short-winged (or wingless) morphs, which enables them to rapidly match heterogeneous environments. Thus, the wing polymorphism is an adaptation at the root of their ecological success. Wing polymorphism is orchestrated at various levels, starting with the insect's perception of environmental cues, then signal transduction and signal execution, and ultimately the transmitting of signals into physiological adaption in accordance with the particular morph produced. Juvenile hormone and ecdysteroid pathways have long been proposed to regulate wing polymorphism in insects, but rigorous experimental evidence is lacking. The breakthrough findings of ecdysone receptor regulation on transgenerational wing dimorphism in the aphid Acyrthosiphon pisum and of insulin signaling in the planthopper Nilaparvata lugens greatly broaden our understanding of wing polymorphism at the molecular level. Recently, the advent of high-throughput sequencing coupled with functional genomics provides powerful genetic tools for future insights into the molecular bases underlying wing polymorphism in insects.
Collapse
Affiliation(s)
- Chuan-Xi Zhang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; ,
| | - Jennifer A Brisson
- Department of Biology, University of Rochester, Rochester, New York 14627, USA;
| | - Hai-Jun Xu
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou 310058, China
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, China
- Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; ,
| |
Collapse
|
17
|
Huang HJ, Cui JR, Guo Y, Sun JT, Hong XY. Roles of LsCYP4DE1 in wheat adaptation and ethiprole tolerance in Laodelphax striatellus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:14-23. [PMID: 30075238 DOI: 10.1016/j.ibmb.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/18/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
The cytochrome P450 monooxygenase (P450) gene family has an important role in detoxifying host plant allelochemicals and pesticides. In this study, we screened differentially expressed genes of the small brown planthopper (Laodelphax striatellus, SBPHs) that were reared for more than ten generations on rice and wheat plants, and found that only a few P450s were associated with host adaptation. LsCYP4DE1, whose expression was 9.5-fold higher in the wheat-adapted SBPH (wSBPH) than in the rice-adapted SBPH (rSBPH), appeared to have an important role in the colonization of wheat plants. Knocking down the expression of LsCYP4DE1 led to increased mortality, as well as decreased performance of SBPHs reared on wheat. However, no significant difference was found in dsLsCYP4DE1-treated SBPHs on rice plants. In addition, LsCYP4DE1 was potentially associated with pesticide tolerance, and suppression of its expression led to increased sensitivity to the pesticide ethiprole. Our results revealed potential roles of LsCYP4DE1 in wheat adaptation and ethiprole tolerance, and provide useful information for pest management.
Collapse
Affiliation(s)
- Hai-Jian Huang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jia-Rong Cui
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yan Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
18
|
Ren ZW, Zhuo JC, Zhang CX, Wang D. Characterization of NlHox3, an essential gene for embryonic development in Nilaparvata lugens. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 98:e21448. [PMID: 29369417 DOI: 10.1002/arch.21448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hox genes encode transcriptional regulatory proteins that control axial patterning in all bilaterians. The brown planthopper (BPH), Nilaparvata lugens (Hemiptera: Delphacidae), is a destructive insect pest of rice plants in Asian countries. During analysis of the N. lugens transcriptome, we identified a Hox3-like gene (NlHox3) that was highly and specifically expressed in the embryonic stage. We performed functional analysis on the gene to identify its roles in embryonic development and its potential use as a target in RNA interference (RNAi) based pest control. The sequence analysis showed that NlHox3 was homologous to the Hox3 gene and was most closely related with zen of Drosophila. There were no significant differences in oviposition between the treated and control females after injecting double-stranded RNA of NlHox3 (dsNlHox3) into newly emerged female adult BPHs; however, there was a significant difference in the hatchability of those eggs laid, which no egg from the treated group hatched normally. Injecting female adult BPHs with dsNlHox3 led to necrosis of these offspring embryos, with eye reversal and undeveloped organs, suggesting that NlHox3 was an essential gene for embryonic development and might be a potential target for RNAi-based control of this insect pest.
Collapse
Affiliation(s)
- Ze-Wei Ren
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ji-Chong Zhuo
- Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dun Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|