1
|
Moorwood K, Smith FM, Garfield AS, Cowley M, Holt LJ, Daly RJ, Ward A. Grb7, Grb10 and Grb14, encoding the growth factor receptor-bound 7 family of signalling adaptor proteins have overlapping functions in the regulation of fetal growth and post-natal glucose metabolism. BMC Biol 2024; 22:221. [PMID: 39343875 PMCID: PMC11441139 DOI: 10.1186/s12915-024-02018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The growth factor receptor bound protein 7 (Grb7) family of signalling adaptor proteins comprises Grb7, Grb10 and Grb14. Each can interact with the insulin receptor and other receptor tyrosine kinases, where Grb10 and Grb14 inhibit insulin receptor activity. In cell culture studies they mediate functions including cell survival, proliferation, and migration. Mouse knockout (KO) studies have revealed physiological roles for Grb10 and Grb14 in glucose-regulated energy homeostasis. Both Grb10 KO and Grb14 KO mice exhibit increased insulin signalling in peripheral tissues, with increased glucose and insulin sensitivity and a modestly increased ability to clear a glucose load. In addition, Grb10 strongly inhibits fetal growth such that at birth Grb10 KO mice are 30% larger by weight than wild type littermates. RESULTS Here, we generate a Grb7 KO mouse model. We show that during fetal development the expression patterns of Grb7 and Grb14 each overlap with that of Grb10. Despite this, Grb7 and Grb14 did not have a major role in influencing fetal growth, either alone or in combination with Grb10. At birth, in most respects both Grb7 KO and Grb14 KO single mutants were indistinguishable from wild type, while Grb7:Grb10 double knockout (DKO) were near identical to Grb10 KO single mutants and Grb10:Grb14 DKO mutants were slightly smaller than Grb10 KO single mutants. In the developing kidney Grb7 had a subtle positive influence on growth. An initial characterisation of Grb7 KO adult mice revealed sexually dimorphic effects on energy homeostasis, with females having a significantly smaller renal white adipose tissue depot and an enhanced ability to clear glucose from the circulation, compared to wild type littermates. Males had elevated fasted glucose levels with a trend towards smaller white adipose depots, without improved glucose clearance. CONCLUSIONS Grb7 and Grb14 do not have significant roles as inhibitors of fetal growth, unlike Grb10, and instead Grb7 may promote growth of the developing kidney. In adulthood, Grb7 contributes subtly to glucose mediated energy homeostasis, raising the possibility of redundancy between all three adaptors in physiological regulation of insulin signalling and glucose handling.
Collapse
Affiliation(s)
- Kim Moorwood
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Florentia M Smith
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Alastair S Garfield
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Michael Cowley
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Present Address: Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Campus, Box 7633, Raleigh, NC, 27695, USA
| | - Lowenna J Holt
- Cancer Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Sydney, NSW, 2010, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew Ward
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
2
|
Moorwood K, Smith FM, Garfield AS, Ward A. Imprinted Grb10, encoding growth factor receptor bound protein 10, regulates fetal growth independently of the insulin-like growth factor type 1 receptor (Igf1r) and insulin receptor (Insr) genes. BMC Biol 2024; 22:127. [PMID: 38816743 PMCID: PMC11140863 DOI: 10.1186/s12915-024-01926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Optimal size at birth dictates perinatal survival and long-term risk of developing common disorders such as obesity, type 2 diabetes and cardiovascular disease. The imprinted Grb10 gene encodes a signalling adaptor protein capable of inhibiting receptor tyrosine kinases, including the insulin receptor (Insr) and insulin-like growth factor type 1 receptor (Igf1r). Grb10 restricts fetal growth such that Grb10 knockout (KO) mice are at birth some 25-35% larger than wild type. Using a mouse genetic approach, we test the widely held assumption that Grb10 influences growth through interaction with Igf1r, which has a highly conserved growth promoting role. RESULTS Should Grb10 interact with Igf1r to regulate growth Grb10:Igf1r double mutant mice should be indistinguishable from Igf1r KO single mutants, which are around half normal size at birth. Instead, Grb10:Igf1r double mutants were intermediate in size between Grb10 KO and Igf1r KO single mutants, indicating additive effects of the two signalling proteins having opposite actions in separate pathways. Some organs examined followed a similar pattern, though Grb10 KO neonates exhibited sparing of the brain and kidneys, whereas the influence of Igf1r extended to all organs. An interaction between Grb10 and Insr was similarly investigated. While there was no general evidence for a major interaction for fetal growth regulation, the liver was an exception. The liver in Grb10 KO mutants was disproportionately overgrown with evidence of excess lipid storage in hepatocytes, whereas Grb10:Insr double mutants were indistinguishable from Insr single mutants or wild types. CONCLUSIONS Grb10 acts largely independently of Igf1r or Insr to control fetal growth and has a more variable influence on individual organs. Only the disproportionate overgrowth and excess lipid storage seen in the Grb10 KO neonatal liver can be explained through an interaction between Grb10 and the Insr. Our findings are important for understanding how positive and negative influences on fetal growth dictate size and tissue proportions at birth.
Collapse
Affiliation(s)
- Kim Moorwood
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Florentia M Smith
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Alastair S Garfield
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Andrew Ward
- Department of Life Sciences, University of Bath, Building 4 South, Claverton Down, Bath, BA2 7AY, United Kingdom.
| |
Collapse
|
3
|
Higgs MJ, Hill MJ, John RM, Isles AR. Systematic investigation of imprinted gene expression and enrichment in the mouse brain explored at single-cell resolution. BMC Genomics 2022; 23:754. [PMID: 36384442 PMCID: PMC9670596 DOI: 10.1186/s12864-022-08986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Although a number of imprinted genes are known to be highly expressed in the brain, and in certain brain regions in particular, whether they are truly over-represented in the brain has never been formally tested. Using thirteen single-cell RNA sequencing datasets we systematically investigated imprinted gene over-representation at the organ, brain region, and cell-specific levels. RESULTS We established that imprinted genes are indeed over-represented in the adult brain, and in neurons particularly compared to other brain cell-types. We then examined brain-wide datasets to test enrichment within distinct brain regions and neuron subpopulations and demonstrated over-representation of imprinted genes in the hypothalamus, ventral midbrain, pons and medulla. Finally, using datasets focusing on these regions of enrichment, we identified hypothalamic neuroendocrine populations and the monoaminergic hindbrain neurons as specific hotspots of imprinted gene expression. CONCLUSIONS These analyses provide the first robust assessment of the neural systems on which imprinted genes converge. Moreover, the unbiased approach, with each analysis informed by the findings of the previous level, permits highly informed inferences about the functions on which imprinted gene expression converges. Our findings indicate the neuronal regulation of motivated behaviours such as feeding and sleep, alongside the regulation of pituitary function, as functional hotspots for imprinting. This adds statistical rigour to prior assumptions and provides testable predictions for novel neural and behavioural phenotypes associated with specific genes and imprinted gene networks. In turn, this work sheds further light on the potential evolutionary drivers of genomic imprinting in the brain.
Collapse
Affiliation(s)
- M J Higgs
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - M J Hill
- School of Medicine, UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - R M John
- School of Biosciences, Cardiff University, Cardiff, UK
| | - A R Isles
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
4
|
Black Tea Reduces Diet-Induced Obesity in Mice via Modulation of Gut Microbiota and Gene Expression in Host Tissues. Nutrients 2022; 14:nu14081635. [PMID: 35458198 PMCID: PMC9027533 DOI: 10.3390/nu14081635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/17/2022] Open
Abstract
Black tea was reported to alter the microbiome populations and metabolites in diet-induced obese mice and displays properties that prevent obesity, but the underlying mechanism of the preventative effect of black tea on high-fat diet (HFD) induced obesity has not been elucidated. Epigenetic studies are a useful tool for determining the relationship between obesity and environment. Here, we show that the water extract of black tea (Lapsang souchong, LS) reverses HFD-induced gut dysbiosis, alters the tissue gene expression, changes the level of a major epigenetic modification (DNA methylation), and prevents obesity in HFD feeding mice. The anti-obesity properties of black tea are due to alkaloids, which are the principal active components. Our data indicate that the anti-obesity benefits of black tea are transmitted via fecal transplantation, and the change of tissue gene expression and the preventative effects on HFD-induced obesity in mice of black tea are dependent on the gut microbiota. We further show that black tea could regulate the DNA methylation of imprinted genes in the spermatozoa of high-fat diet mice. Our results show a mechanistic link between black tea, changes in the gut microbiota, epigenetic processes, and tissue gene expression in the modulation of diet-induced metabolic dysfunction.
Collapse
|
5
|
Bonthuis PJ, Steinwand S, Stacher Hörndli CN, Emery J, Huang WC, Kravitz S, Ferris E, Gregg C. Noncanonical genomic imprinting in the monoamine system determines naturalistic foraging and brain-adrenal axis functions. Cell Rep 2022; 38:110500. [PMID: 35263575 PMCID: PMC9128000 DOI: 10.1016/j.celrep.2022.110500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Noncanonical genomic imprinting can cause biased expression of one parental allele in a tissue; however, the functional relevance of such biases is unclear. To investigate ethological roles for noncanonical imprinting in dopa decarboxylase (Ddc) and tyrosine hydroxylase (Th), we use machine learning to decompose naturalistic foraging in maternal and paternal allele mutant heterozygous mice. We uncover distinct roles for the maternal versus paternal alleles on foraging, where maternal alleles affect sons while daughters are under paternal allelic control. Each parental allele controls specific action sequences reflecting decisions in naive or familiar contexts. The maternal Ddc allele is preferentially expressed in subsets of hypothalamic GABAergic neurons, while the paternal allele predominates in subsets of adrenal cells. Each Ddc allele affects distinct molecular and endocrine components of the brain-adrenal axis. Thus, monoaminergic noncanonical imprinting has ethological roles in foraging and endocrine functions and operates by affecting discrete subsets of cells.
Collapse
Affiliation(s)
- Paul J Bonthuis
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign College of Veterinary Medicine, Urbana, IL, USA
| | - Susan Steinwand
- Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Cornelia N Stacher Hörndli
- Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Jared Emery
- Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Wei-Chao Huang
- Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Stephanie Kravitz
- Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Elliott Ferris
- Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA
| | - Christopher Gregg
- Department of Neurobiology, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA; Department of Human Genetics, University of Utah School of Medicine, Room 408B, Biopolymers Research Building, Bld. 570, 20 South 2030 East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Keshavarz M, Tautz D. The imprinted lncRNA Peg13 regulates sexual preference and the sex-specific brain transcriptome in mice. Proc Natl Acad Sci U S A 2021; 118:e2022172118. [PMID: 33658376 PMCID: PMC7958240 DOI: 10.1073/pnas.2022172118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mammalian genomes include many maternally and paternally imprinted genes. Most of these are also expressed in the brain, and several have been implicated in regulating specific behavioral traits. Here, we have used a knockout approach to study the function of Peg13, a gene that codes for a fast-evolving lncRNA (long noncoding RNA) and is part of a complex of imprinted genes on chromosome 15 in mice and chromosome 8 in humans. Mice lacking the 3' half of the transcript look morphologically wild-type but show distinct behavioral differences. They lose interest in the opposite sex, instead displaying a preference for wild-type animals of the same sex. Further, they show a higher level of anxiety, lowered activity and curiosity, and a deficiency in pup retrieval behavior. Brain RNA expression analysis reveals that genes involved in the serotonergic system, formation of glutamatergic synapses, olfactory processing, and estrogen signaling-as well as more than half of the other known imprinted genes-show significant expression changes in Peg13-deficient mice. Intriguingly, these pathways are differentially affected in the sexes, resulting in male and female brains of Peg13-deficient mice differing more from each other than those of wild-type mice. We conclude that Peg13 is part of a developmental pathway that regulates the neurobiology of social and sexual interactions.
Collapse
Affiliation(s)
- Maryam Keshavarz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Diethard Tautz
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
7
|
Dent CL, Rienecker KDA, Ward A, Wilkins JF, Humby T, Isles AR. Mice lacking paternal expression of imprinted Grb10 are risk-takers. GENES BRAIN AND BEHAVIOR 2020; 19:e12679. [PMID: 32488937 PMCID: PMC9393934 DOI: 10.1111/gbb.12679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/14/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
The imprinted genes Grb10 and Nesp influence impulsive behavior on a delay discounting task in an opposite manner. A recently developed theory suggests that this pattern of behavior may be representative of predicted effects of imprinted genes on tolerance to risk. Here we examine whether mice lacking paternal expression of Grb10 show abnormal behavior across a number of measures indicative of risk‐taking. Although Grb10+/p mice show no difference from wild type (WT) littermates in their willingness to explore a novel environment, their behavior on an explicit test of risk‐taking, namely the Predator Odor Risk‐Taking task, is indicative of an increased willingness to take risks. Follow‐up tests suggest that this risk‐taking is not simply because of a general decrease in fear, or a general increase in motivation for a food reward, but reflects a change in the trade‐off between cost and reward. These data, coupled with previous work on the impulsive behavior of Grb10+/p mice in the delayed reinforcement task, and taken together with our work on mice lacking maternal Nesp, suggest that maternally and paternally expressed imprinted genes oppositely influence risk‐taking behavior as predicted.
Collapse
Affiliation(s)
- Claire L Dent
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Kira D A Rienecker
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Andrew Ward
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | - Trevor Humby
- Behavioural Genetics Group, School of Psychology, Cardiff University, Cardiff, UK
| | - Anthony R Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Hitchcock TJ, Paracchini S, Gardner A. Genomic Imprinting As a Window into Human Language Evolution. Bioessays 2020; 41:e1800212. [PMID: 31132171 DOI: 10.1002/bies.201800212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/22/2019] [Indexed: 01/20/2023]
Abstract
Humans spend large portions of their time and energy talking to one another, yet it remains unclear whether this activity is primarily selfish or altruistic. Here, it is shown how parent-of-origin specific gene expression-or "genomic imprinting"-may provide an answer to this question. First, it is shown why, regarding language, only altruistic or selfish scenarios are expected. Second, it is pointed out that an individual's maternal-origin and paternal-origin genes may have different evolutionary interests regarding investment into language, and that this intragenomic conflict may drive genomic imprinting which-as the direction of imprint depends upon whether investment into language is relatively selfish or altruistic-may be used to discriminate between these two possibilities. Third, predictions concerning the impact of various mutations and epimutations at imprinted loci on language pathologies are derived. In doing so, a framework is developed that highlights avenues for using intragenomic conflicts to investigate the evolutionary drivers of language.
Collapse
Affiliation(s)
- Thomas J Hitchcock
- School of Biology, University of St Andrews, Dyers Brae, St Andrews, KY16 9TH, UK
| | - Silvia Paracchini
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - Andy Gardner
- School of Biology, University of St Andrews, Dyers Brae, St Andrews, KY16 9TH, UK
| |
Collapse
|
9
|
Wilkins JF, Bhattacharya T. Intragenomic conflict over bet-hedging. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180142. [PMID: 30966914 DOI: 10.1098/rstb.2018.0142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Genomic imprinting, where an allele's expression pattern depends on its parental origin, is thought to result primarily from an intragenomic evolutionary conflict. Imprinted genes are widely expressed in the brain and have been linked to various phenotypes, including behaviours related to risk tolerance. In this paper, we analyse a model of evolutionary bet-hedging in a system with imprinted gene expression. Previous analyses of bet-hedging have shown that natural selection may favour alleles and traits that reduce reproductive variance, even at the expense of reducing mean reproductive success, with the trade-off between mean and variance depending on the population size. In species where the sexes have different reproductive variances, this bet-hedging trade-off differs between maternally and paternally inherited alleles. Where males have the higher reproductive variance, alleles are more strongly selected to reduce variance when paternally inherited than when maternally inherited. We connect this result to phenotypes connected with specific imprinted genes, including delay discounting and social dominance. The empirical patterns are consistent with paternally expressed imprinted genes promoting risk-averse behaviours that reduce reproductive variance. Conversely, maternally expressed imprinted genes promote risk-tolerant, variance-increasing behaviours. We indicate how future research might further test the hypotheses suggested by our analysis. This article is part of the theme issue 'Risk taking and impulsive behaviour: fundamental discoveries, theoretical perspectives and clinical implications'.
Collapse
Affiliation(s)
- Jon F Wilkins
- 1 Ronin Institute , Montclair, NJ 07043 , USA.,2 Santa Fe Institute , 1399 Hyde Park Road, Santa Fe, NM 87501 , USA
| | - Tanmoy Bhattacharya
- 2 Santa Fe Institute , 1399 Hyde Park Road, Santa Fe, NM 87501 , USA.,3 Group T2, Los Alamos National Laboratory , PO Box 1663, Los Alamos, NM 87545 , USA
| |
Collapse
|
10
|
Burunat E. Love is a physiological motivation (like hunger, thirst, sleep or sex). Med Hypotheses 2019; 129:109225. [PMID: 31371074 DOI: 10.1016/j.mehy.2019.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/17/2019] [Accepted: 05/12/2019] [Indexed: 10/26/2022]
Abstract
The multitude of terms associated with love has given rise to a false perception of love. In this paper, only maternal and romantic love are considered. Love is usually regarded as a feeling, motivation, addiction, passion, and, above all, an emotion. This confusion has consequences in the lives of human beings, leading not only to divorces, suicides, femicides but possibly also to a number of mental illnesses and suffering. Therefore, it is crucial to first clarify what is meant by emotion, motivation and love. This work aims to finally place love within the category of physiological motivations, such as hunger, thirst, sleep, or sex, on the basis that love is also essential for human survival, especially in childhood. Love is presented from an evolutionary perspective. Some other similarities between love and other physiological motivations are pointed out, such as its importance for appropriate human development, both its ontogeny and its permanence, and the long-lasting consequences of abuse and neglect. There are summarized reasons that account for this, such as the fact that physiological motivations are essential for survival and that love is an essential motivation for the survival of human offspring. Other reasons are that minimum changes in the quantity and quality of love alters development, that there can be a variety of neurophysiological and behavioural states within a motivation, and that motivations (also love) appear and change throughout development. Also, motivations and love sometimes may lead to an addictive behaviour. Finally, it is recognized that once physiological motivations (and love) appear, they become permanent. In a third section, some potential social, cultural, clinical and scientific consequences of the proposed consideration of love as a motivation are discussed. Accordingly, love's recognition as a motivation in the clinical field would imply a better understanding of its disorders and its inclusion in classifications manuals such as The Diagnostic and Statistical Manual of Mental Disorders (DSM), or in the International Classification of Diseases (ICD). Considering love as a motivation rather than an emotion could also impact the results of scientific research (an example is included). A comprehensive understanding of these questions could potentially allow for a new therapeutic approach in the treatment of mental illness, while offering an all-inclusive evolutionary explanation of cultural phenomena such as the origin and diffusion of both language and art. Love should be understood as a physiological motivation, like hunger, sleep or sex, and not as an emotion as it is commonly considered.
Collapse
Affiliation(s)
- Enrique Burunat
- School of Health Sciences/School of Psychology, Department of Clinical Psychology, Psychobiology and Methodology, University of La Laguna, P.O. Box 456, 38200 Santa Cruz de Tenerife, Canary Islands, Spain.
| |
Collapse
|
11
|
Rienecker KDA, Chavasse AT, Moorwood K, Ward A, Isles AR. Detailed analysis of paternal knockout Grb10 mice suggests effects on stability of social behavior, rather than social dominance. GENES BRAIN AND BEHAVIOR 2019; 19:e12571. [PMID: 30932322 PMCID: PMC7050506 DOI: 10.1111/gbb.12571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/27/2019] [Accepted: 03/30/2019] [Indexed: 12/19/2022]
Abstract
Imprinted genes are highly expressed in monoaminergic regions of the midbrain and their functions in this area are thought to have an impact on mammalian social behaviors. One such imprinted gene is Grb10, of which the paternal allele is generally recognized as mediating social dominance behavior. However, there has been no detailed study of social dominance in Grb10+/p mice. Moreover, the original study examined tube‐test behavior in isolated mice 10 months of age. Isolation testing favors more territorial and aggressive behaviors, and does not address social dominance strategies employed in group housing contexts. Furthermore, isolation stress impacts midbrain function and dominance related behavior, often through alterations in monoaminergic signaling. Thus, we undertook a systematic study of Grb10+/p social rank and dominance behavior within the cage group, using a number of convergent behavioral tests. We examined both male and female mice to account for sex differences and tested cohorts aged 2, 6 and 10 months to examine any developments related to age. We found group‐housed Grb10+/p mice do not show evidence of enhanced social dominance, but cages containing Grb10+/p and wild‐type mice lacked the normal correlation between three different measures of social rank. Moreover, a separate study indicated isolation stress induced inconsistent changes in tube test behavior. Taken together, these data suggest future research on Grb10+/p mice should focus on the stability of social behaviors, rather than dominance per se.
Collapse
Affiliation(s)
- Kira D A Rienecker
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Alexander T Chavasse
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Kim Moorwood
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Andrew Ward
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
12
|
Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC. Genomic Imprinting and Physiological Processes in Mammals. Cell 2019; 176:952-965. [PMID: 30794780 DOI: 10.1016/j.cell.2019.01.043] [Citation(s) in RCA: 313] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/22/2022]
Abstract
Complex multicellular organisms, such as mammals, express two complete sets of chromosomes per nucleus, combining the genetic material of both parents. However, epigenetic studies have demonstrated violations to this rule that are necessary for mammalian physiology; the most notable parental allele expression phenomenon is genomic imprinting. With the identification of endogenous imprinted genes, genomic imprinting became well-established as an epigenetic mechanism in which the expression pattern of a parental allele influences phenotypic expression. The expanding study of genomic imprinting is revealing a significant impact on brain functions and associated diseases. Here, we review key milestones in the field of imprinting and discuss mechanisms and systems in which imprinted genes exert a significant role.
Collapse
Affiliation(s)
- Valter Tucci
- Department of Neuroscience and Brain Technologies - Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| | - Anthony R Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, CF24 44H, UK
| | - Gavin Kelsey
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
13
|
Isles AR, Winstanley CA, Humby T. Risk taking and impulsive behaviour: fundamental discoveries, theoretical perspectives and clinical implications. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180128. [PMID: 30966916 PMCID: PMC6335461 DOI: 10.1098/rstb.2018.0128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Our willingness to take risks, our ability to wait or the speed with which to make decisions are central features of our personality. However, it is now recognized that impulsive and risk-taking behaviours are not a unitary construct, and different aspects can be both psychologically and neurally dissociated. The range of neurochemicals and brain systems that govern these behaviours is extensive, and this may be a contributing factor to the phenotypic range seen in the human population. However, this variety can also be pathological as extremes in risk-taking and impulsive behaviours are characteristics of many neuropsychiatric and indeed neurodegenerative disorders. This spans obsessive-compulsive disorder, where behaviour becomes ridged and non-spontaneous, to the nonsensical risk-taking seen in gambling and drug taking. This article is part of the theme issue 'Risk taking and impulsive behaviour: fundamental discoveries, theoretical perspectives and clinical implications'.
Collapse
Affiliation(s)
- Anthony R. Isles
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Catharine A. Winstanley
- Department of Psychology, University of British Columbia, Vancouver Campus, 2136 West Mall, British Columbia, CanadaV6T 1Z4
| | - Trevor Humby
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
14
|
|
15
|
|
16
|
Coping-Style Behavior Identified by a Survey of Parent-of-Origin Effects in the Rat. G3-GENES GENOMES GENETICS 2018; 8:3283-3291. [PMID: 30135107 PMCID: PMC6169385 DOI: 10.1534/g3.118.200489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this study we investigate the effects of parent of origin on complex traits in the laboratory rat, with a focus on coping style behavior in stressful situations. We develop theory, based on earlier work, to partition heritability into a component due to a combination of parent of origin, maternal, paternal and shared environment, and another component that estimates classical additive genetic variance. We use this theory to investigate the effects on heritability of the parental origin of alleles in 798 outbred heterogeneous stock rats across 199 complex traits. Parent-of-origin-like heritability was on average 2.7fold larger than classical additive heritability. Among the phenotypes with the most enhanced parent-of-origin heritability were 10 coping style behaviors, with average 3.2 fold heritability enrichment. To confirm these findings on coping behavior, and to eliminate the possibility that the parent of origin effects are due to confounding with shared environment, we performed a reciprocal F1 cross between the behaviorally divergent RHA and RLA rat strains. We observed parent-of-origin effects on F1 rat anxiety/coping-related behavior in the Elevated Zero Maze test. Our study is the first to assess genetic parent-of-origin effects in rats, and confirm earlier findings in mice that such effects influence coping and impulsive behavior, and suggest these effects might be significant in other mammals, including humans.
Collapse
|