1
|
Chemaly M, McAllister R, Peace A, Bjourson AJ, Watterson S, Parton A, Clauss M, McGilligan V. TACE/ADAM17 substrates associate with ACS (Ep-CAM, HB-EGF) and follow-up MACE (TNFR1 and TNFR2). ATHEROSCLEROSIS PLUS 2022; 50:40-49. [PMID: 36643799 PMCID: PMC9833260 DOI: 10.1016/j.athplu.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 01/18/2023]
Abstract
Background and aims TACE/ADAM17 is a membrane bound metalloprotease, which cleaves substrates involved in immune and inflammatory responses and plays a role in coronary artery disease (CAD). We measured TACE and its substrates in CAD patients to identify potential biomarkers within this molecular pathway with potential for acute coronary syndrome (ACS) and major adverse cardiovascular events (MACE) prediction. Methods Blood samples were obtained from consecutive patients (n = 229) with coronary angiographic evidence of CAD admitted with ACS or electively. MACE were recorded after a median 3-year follow-up. Controls (n = 115) had a <10% CAD risk as per the HeartSCORE. TACE and TIMP3 protein and mRNA levels were measured by ELISA and RT-qPCR respectively. TACE substrates were measured using a multiplex proximity extension assay. Results TACE mRNA and cell protein levels (p < 0.01) and TACE substrates LDLR (p = 0.006), TRANCE (p = 0.045), LAG-3 (p < 0.001) and ACE2 (p < 0.001) plasma levels were significantly higher in CAD patients versus controls. TACE inhibitor TIMP3 mRNA levels were significantly lower in CAD patients and tended to be lower in the ACS population (p < 0.05). TACE substrates TNFR1 (OR:3.237,CI:1.514-6.923,p = 0.002), HB-EGF (OR:0.484,CI:0.288-0.813,p = 0.006) and Ep-CAM (OR:0.555,CI:0.327-0.829,p = 0.004) accurately classified ACS patients with HB-EGF and Ep-CAM levels being lower compared to electively admitted patients. TNFR1 (OR:2.317,CI:1.377-3.898,p = 0.002) and TNFR2 (OR:1.902,CI:1.072-3.373,p = 0.028) were significantly higher on admission in those patients who developed MACE within 3 years. Conclusions We demonstrate a possible role of TACE substrates LAG-3, HB-EGF and Ep-CAM in atherosclerotic plaque development and stability. We also underline the importance of measuring TNFR1 and TNFR2 earlier than previously appreciated for MACE prediction. We report an important role of TIMP3 in regulating TACE levels.
Collapse
Affiliation(s)
- Melody Chemaly
- Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76 Solna, Sweden,Corresponding author.
| | - Roisin McAllister
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital, Londonderry, BT47 6SB, Northern Ireland, UK
| | - Aaron Peace
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital, Londonderry, BT47 6SB, Northern Ireland, UK,Cardiology Department, Western Health and Social Care Trust, Altnagelvin Hospital, Glenshane Road, Londonderry, BT47 6SB, Northern Ireland, UK
| | - Anthony John Bjourson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital, Londonderry, BT47 6SB, Northern Ireland, UK
| | - Steve Watterson
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital, Londonderry, BT47 6SB, Northern Ireland, UK
| | - Andrew Parton
- Ensembl Variation, EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Matthias Clauss
- Department of Cellular and Integrative Physiology, Indiana University, Indianapolis, IN, 46202, USA,Centre for Molecular Bioscience, Ulster University, Coleraine, BT52 1SA, Northern Ireland, UK
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, School of Biomedical Sciences, Ulster University, Altnagelvin Hospital, Londonderry, BT47 6SB, Northern Ireland, UK
| |
Collapse
|
2
|
Toll-Like Receptors/TNF-α Pathway Crosstalk and Impact on Different Sites of Recurrent Myocardial Infarction in Elderly Patients. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1280350. [PMID: 35425840 PMCID: PMC9005286 DOI: 10.1155/2022/1280350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
Background Recurrent myocardial infarction is associated with increased mortality. Risk and predictive factors of recurrent myocardial infarction in elderly patients after coronary stenting are not well known. This research sought to investigate the effects of proinflammatory cytokines and toll-like receptor on recurrent myocardial infarction after coronary stenting in elderly patients. Methods We measured the levels of toll-like receptor 2 (TLR2), toll-like receptor 3 (TLR3), toll-like receptor 4 (TLR4), tumor necrosis factor-α (TNF-α), soluble tumor necrosis factor-α receptor-1 (sTNFR-1), soluble tumor necrosis factor-α receptor-2 (sTNFR-2), endothelial progenitor cells (EPCs), and vascular endothelial growth factor (VEGF) in elderly patients with recurrent myocardial infarction and assessed the changes of proinflammatory cytokines and toll-like receptors in elderly patients with recurrent myocardial infarction after coronary stenting. Results Levels of TLR2, TLR3, TLR4, TNF-α, sTNFR-1, and sTNFR-2 were remarkably increased (P < 0.001), and EPCs and VEGF were remarkably lowered (P < 0.001) in the elderly patients with recurrent myocardial infarction after coronary stent implantation. Increased expressions of proinflammatory cytokines and toll-like receptors induced recurrent myocardial infarction after coronary stenting. Elevated expressions of proinflammatory cytokines and toll-like receptors may be used to identify elderly patients who have an increased risk of developing recurrent myocardial infarction after coronary stenting. Conclusion The increase levels of proinflammatory cytokines and toll-like receptors were associated with recurrent myocardial infarction after coronary stenting. Increased expressions of proinflammatory cytokines and toll-like receptors may be clinically useful biomarkers for predicting recurrent myocardial infarction in the elderly patients after coronary stent implantation.
Collapse
|
3
|
Khadrawy YA, Hosny EN, El-Gizawy MM, Sawie HG, Aboul Ezz HS. The Effect of Curcumin Nanoparticles on Cisplatin-Induced Cardiotoxicity in Male Wistar Albino Rats. Cardiovasc Toxicol 2021; 21:433-443. [PMID: 33548025 DOI: 10.1007/s12012-021-09636-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/25/2021] [Indexed: 01/06/2023]
Abstract
The cardiotoxicity of chemotherapeutic drugs as cisplatin has become a major issue in recent years. The present study investigates the efficacy of curcumin nanoparticles against the cardiotoxic effects of cisplatin by assessment of oxidative stress parameters, Na+,K+-ATPase, acetylcholinesterase (AchE) and tumor necrosis factor-alpha (TNF-α) in cardiac tissue in addition to serum lactate dehydrogenase (LDH). Rats were divided into three groups: control rats that received saline for 14 days; cisplatin-treated rats that received a single intraperitoneal (i.p.) injection of cisplatin (12 mg/kg) followed by a daily oral administration of saline (0.9%) for 14 days and rats treated with a single i.p. injection of cisplatin (12 mg/kg) followed by a daily oral administration of curcumin nanoparticles (50 mg/kg) for 14 days. Cisplatin resulted in a significant increase in lipid peroxidation, nitric oxide (NO), and TNF-α and a significant decrease in reduced glutathione (GSH) levels and Na+, K+- ATPase activity. Moreover, significant increases in cardiac AchE and serum lactate dehydrogenase activities were recorded. Treatment of cisplatin-injected animals with curcumin nanoparticles ameliorated all the alterations induced by cisplatin in the heart of rats. This suggests that curcumin nanoparticles can be used as an important therapeutic adjuvant in chemotherapeutic and other toxicities mediated by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Yasser A Khadrawy
- Medical Physiology Department, Medical Division, National Research Centre, El-Behouth St., Giza, Egypt.
| | - Eman N Hosny
- Medical Physiology Department, Medical Division, National Research Centre, El-Behouth St., Giza, Egypt
| | - Mayada M El-Gizawy
- Medical Physiology Department, Medical Division, National Research Centre, El-Behouth St., Giza, Egypt
| | - Hussein G Sawie
- Medical Physiology Department, Medical Division, National Research Centre, El-Behouth St., Giza, Egypt
| | - Heba S Aboul Ezz
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Mahjoubin-Tehran M, Rezaei S, Atkin SL, Montecucco F, Sahebkar A. Decoys as potential therapeutic tools for diabetes. Drug Discov Today 2021; 26:1669-1679. [PMID: 33862194 DOI: 10.1016/j.drudis.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Current therapeutic approaches for diabetes are focused on improving glycemic control to prevent diabetes-related complications, but such approached are not completely successful. Decoy technologies such as decoy oligodeoxynucleotides (ODNs) and decoy peptides have emerged as therapeutic tools in diabetes. Decoy ODNs carry a DNA recognition motif for the binding of transcription factors in order to trap them and block their effects, whereas decoy peptides mimic the binding structure of the receptor protein, bind to the docking site of the target ligand, and prevent the interaction of the ligand and receptor. This review summarizes the technologies that have been developed to date and the studies that have investigated the therapeutic effects of decoy ODNs and peptides in diabetes.
Collapse
Affiliation(s)
- Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Rezaei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Sobieszek G, Powrózek T, Skwarek-Dziekanowska A, Małecka-Massalska T. Clinical Significance of TNFRSF1A36T/C Polymorphism in Cachectic Patients with Chronic Heart Failure. J Clin Med 2021; 10:jcm10051095. [PMID: 33807923 PMCID: PMC7961661 DOI: 10.3390/jcm10051095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction: One of the main factors contributing to the development of nutritional deficits in chronic heart failure (CHF) patients is the systemic inflammatory process. Progressing inflammatory response leads to exacerbation of the disease and could develop into cardiac cachexia (CC), characterized by involuntary weight loss followed by muscle wasting. The aim of this study was to assess the relationship between rs767455 (36 T/C) of the TNFRSF1A and the occurrence of nutritional disorders in CHF patients with cachexia. Materials and Methods: We enrolled 142 CHF individuals who underwent cardiac and nutritional screening in order to assess cardiac performance and nutritional status. The relationship between TNFRSF1A rs767455 genotypes and patients' features was investigated. Results: A greater distribution of the TT genotype among cachectic patients in contrast to non-cachectic individuals was found (TT frequencies of 62.9% and 37.1%, respectively; p = 0.013). We noted a significantly lower albumin concentration (p = 0.039) and higher C-reactive protein (CRP) levels (p = 0.019) in patients with the TT genotype. Regarding cardiac parameters, CHF individuals bearing the TT genotype demonstrated a significant reduction in ejection fraction (EF) (p = 0.033) in contrast to other genotype carriers; moreover, they had a significantly higher concentration of N-terminal prohormone of brain natriuretic peptide (NT-proBNP) in the blood (p = 0.018). We also noted a lower frequency of TT genotype carriers among individuals qualified as grades I or II of the New York Heart Association (NYHA) (p = 0.006). The multivariable analysis selected the TT genotype as an unfavorable factor related to a higher chance of cachexia in CHF patients (Odds ratio (OR) = 2.56; p = 0.036). Conclusions: The rs767455TT genotype of TNFRSF1A can be considered as an unfavorable factor related to a higher risk of cachexia in CHF patients.
Collapse
Affiliation(s)
- Grzegorz Sobieszek
- Department of Cardiology, 1st Military Clinical Hospital with the Outpatient Clinic, 20-080 Lublin, Poland;
- Correspondence: (G.S.); (T.P.); Tel.: +48-261-183-614 (G.S.); +48-814-486-080 (T.P.)
| | - Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, 20-059 Lublin, Poland;
- Correspondence: (G.S.); (T.P.); Tel.: +48-261-183-614 (G.S.); +48-814-486-080 (T.P.)
| | - Aneta Skwarek-Dziekanowska
- Department of Cardiology, 1st Military Clinical Hospital with the Outpatient Clinic, 20-080 Lublin, Poland;
| | | |
Collapse
|
6
|
Silva LB, dos Santos Neto AP, Maia SM, dos Santos Guimarães C, Quidute IL, Carvalho ADA, Júnior SA, Leão JC. The Role of TNF-α as a Proinflammatory Cytokine in Pathological Processes. Open Dent J 2019. [DOI: 10.2174/1874210601913010332] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
TNF-α is a member of the vast cytokine family being considered a proinflammatory substance produced many by macrophages and other cells belonging to the innate immunity, many of them classified as indeed Antigen Presenting Cells (APCs) involved in the complex chemotactic process of activation of the adaptive immunity. The aim of this work was to accomplish a literature review concerning the main pathologies that have TNF-α as a modulating agent in other to bring light to the main interactions present in the inflammation installed.
Collapse
|
7
|
Abstract
The natural history of heart failure (HF) is not linear, because changes in the heart structure and function start long before the disease becomes clinically evident. Many different cytokines originating from intracardiac tissues (cardiomyocytes, cardiac endothelial cells, cardiac fibroblasts, and cardiac infiltrated immune cells) or extracardiac tissues (adipose tissue, gut, and lymphoid organs) have been identified in HF. Because the levels of circulating cytokines correlate with the development and severity of HF, these mediators may have both pathophysiological importance, through their ability to modulate inflammation, myocyte stress/stretch, myocyte injury and apoptosis, fibroblast activation and extracellular matrix remodeling, and utility as clinical predictive biomarkers. A greater understanding of the mechanisms mediated by the multifaceted network of cytokines, leading to distinct HF phenotypes (HF with reduced or preserved ejection fraction), is urgently needed for the development of new treatment strategies. In this chapter, all these issues were thoroughly discussed, pointing on the practical considerations concerning the clinical use of the cytokines as prognostic biomarkers and potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Adina Elena Stanciu
- Department of Carcinogenesis and Molecular Biology, Institute of Oncology Bucharest, Bucharest, Romania.
| |
Collapse
|
8
|
Tizazu AM, Nyunt MSZ, Cexus O, Suku K, Mok E, Xian CH, Chong J, Tan C, How W, Hubert S, Combet E, Fulop T, Ng TP, Larbi A. Metformin Monotherapy Downregulates Diabetes-Associated Inflammatory Status and Impacts on Mortality. Front Physiol 2019; 10:572. [PMID: 31178745 PMCID: PMC6537753 DOI: 10.3389/fphys.2019.00572] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
Aging is the main risk factor for developing diabetes and other age-related diseases. One of the most common features of age-related comorbidities is the presence of low-grade chronic inflammation. This is also the case of metabolic syndrome and diabetes. At the subclinical level, a pro-inflammatory phenotype was shown to be associated with Type-2 diabetes mellitus (T2DM). This low to mid-grade inflammation is also present in elderly individuals and has been termed inflammaging. Whether inflammation is a component of aging or exclusively associated with age-related diseases in not entirely known. We used clinical data and biological readouts in a group of individuals stratified by age, diabetes status and comorbidities to investigate this aspect. While aging is the main predisposing factor for several diseases there is a concomitant increased level of pro-inflammatory cytokines. DM patients show an increased level of sTNFRll, sICAM-1, and TIMP-1 when compared to Healthy, Non-DM and Pre-DM individuals. These inflammatory molecules are also associated with insulin resistance and metabolic syndrome in Non-DM and pre-DM individuals. We also show that metformin monotherapy was associated with significantly lower levels of inflammatory molecules, like TNFα, sTNFRI, and sTNFRII, when compared to other monotherapies. Longitudinal follow up indicates a higher proportion of death occurs in individuals taking other monotherapies compared to metformin monotherapy. Together our finding shows that chronic inflammation is present in healthy elderly individuals and exacerbated with diabetes patients. Likewise, metformin could help target age-related chronic inflammation in general, and reduce the predisposition to comorbidities and mortality.
Collapse
Affiliation(s)
- Anteneh Mehari Tizazu
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ma Shwe Zin Nyunt
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Olivier Cexus
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Koolarina Suku
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Esther Mok
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Chin Hui Xian
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Joni Chong
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Crystal Tan
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Wilson How
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Sandra Hubert
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Emilie Combet
- Human Nutrition, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tamas Fulop
- Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Tze Pin Ng
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network, Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada.,Department of Biology, Faculty of Sciences, Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
9
|
Yang Y, Jiang Z, Zhuge D. Emodin Attenuates Lipopolysaccharide-Induced Injury via Down-Regulation of miR-223 in H9c2 Cells. Int Heart J 2019; 60:436-443. [PMID: 30745529 DOI: 10.1536/ihj.18-048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Emodin is a natural product extracted from Rheum palmatum. There are few recent studies on emodin in the treatment of myocarditis. This study aimed to investigate the effect of emodin on lipopolysaccharide (LPS)-induced inflammatory injury in cardiomyocytes. H9c2 cells were treated with 10 μM of LPS and different concentrations (0, 1, 5, 10, 15, and 20 μM) of emodin. The expression of miR-223 was changed by transient transfection. Thereafter, cell viability, apoptosis, the expression of CyclinD1 and Jnk-associated proteins, and the release of pro-inflammatory factors were assessed by cell Counting Kit-8, flow cytometry analysis, quantitative real-time polymerase chain reaction Western blot, and enzyme-linked immunosorbent assay respectively. The results showed that 20 μM of emodin significantly decreased H9c2 cells viability. LPS significantly damaged H9c2 cells, as cell viability was reduced, CyclinD1 was down-regulated, apoptosis was induced, the release of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-alpha were increased, and the phosphorylation of Jnk and c-Jun were promoted. Emodin protected H9c2 cells against LPS-induced inflammatory injury. miR-223 expression was significantly up-regulated by LPS exposure, while emodin lessened this up-regulation. LPS-injured H9c2 cells were attenuated by the overexpression of miR-223; emodin has protective actions on LPS-injured H9c2 cells and targets. Besides, SP600125 (an inhibitor of Jnk) eliminated miR-223-modulated inflammatory injury in H9c2 cells. These data demonstrated that emodin could attenuate LPS-induced inflammatory injury and deactivate Jnk signaling pathway through down-regulation of miR-223.
Collapse
Affiliation(s)
- Yuping Yang
- Department of General Medicine, East Medical District of Linyi People's Hospital
| | - Zijun Jiang
- Department of Emergency, East Medical District of Linyi People's Hospital
| | - Dong Zhuge
- Department of General Medicine, East Medical District of Linyi People's Hospital
| |
Collapse
|
10
|
Bartekova M, Radosinska J, Jelemensky M, Dhalla NS. Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev 2019; 23:733-758. [PMID: 29862462 DOI: 10.1007/s10741-018-9716-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By virtue of their actions on NF-κB, an inflammatory nuclear transcription factor, various cytokines have been documented to play important regulatory roles in determining cardiac function under both physiological and pathophysiological conditions. Several cytokines including TNF-α, TGF-β, and different interleukins such as IL-1 IL-4, IL-6, IL-8, and IL-18 are involved in the development of various inflammatory cardiac pathologies, namely ischemic heart disease, myocardial infarction, heart failure, and cardiomyopathies. In ischemia-related pathologies, most of the cytokines are released into the circulation and serve as biological markers of inflammation. Furthermore, there is an evidence of their direct role in the pathogenesis of ischemic injury, suggesting cytokines as potential targets for the development of some anti-ischemic therapies. On the other hand, certain cytokines such as IL-2, IL-4, IL-6, IL-8, and IL-10 are involved in the post-ischemic tissue repair and thus are considered to exert beneficial effects on cardiac function. Conflicting reports regarding the role of some cytokines in inducing cardiac dysfunction in heart failure and different types of cardiomyopathies seem to be due to differences in the nature, duration, and degree of heart disease as well as the concentrations of some cytokines in the circulation. In spite of extensive research work in this field of investigation, no satisfactory anti-cytokine therapy for improving cardiac function in any type of heart disease is available in the literature.
Collapse
Affiliation(s)
- Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Marek Jelemensky
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Center, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
11
|
Abstract
Heart failure (HF) is the end result of many different cardiac and non-cardiac abnormalities leading to a complex clinical entity. In this view, the use of biomarkers in HF should be deeply reconsidered; indeed, the same biomarker may carry a different significance in patients with preserved or reduced EF. The aim of this review is to reconsider the role of biomarkers in HF, based on the different clinical characteristics of this syndrome. The role of cardiac and non-cardiac biomarkers will be reviewed with respect of the different clinical manifestations of this syndrome.
Collapse
|
12
|
Gao X, Wu L, Wang K, Zhou X, Duan M, Wang X, Zhang Z, Liu X. Ubiquitin Carboxyl Terminal Hydrolase L1 Attenuates TNF-α-Mediated Vascular Smooth Muscle Cell Migration Through Suppression of NF-κB Activation. Int Heart J 2018; 59:1409-1415. [PMID: 30305579 DOI: 10.1536/ihj.17-541] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) is one of the deubiquitinating enzymes in the ubiquitin-proteasome system. It has been shown that UCH-L1 could markedly decrease neointima formation through suppressing vascular smooth muscle cell (VSMC) proliferation in the balloon-injured rat carotid. However, whether UCH-L1 plays roles in VSMC migration remains to be determined. In this study, the primary VSMCs were isolated from aortic media of rats and TNF-α to was used to induce VSMC migration. Using a modified Boyden chamber and wound healing assay, it was found that TNF-α can dose and time-dependently induce VSMC migration with a maximal effect at 10 ng/mL. Moreover, UCH-L1 expression increased gradually with the prolonged induction time at 10 ng/mL of TNF-α. UCH-L1 content in VSMC was then modulated by recombinant adenoviruses expressing UCH-L1 or RNA interference to evaluate its roles in cell migration. The results showed that over-expression of UCH-L1 attenuated VSMC migration, while knockdown of it enhanced cell migration significantly no matter whether TNF-α treatment or not. Finally, the effect of UCH-L1 on NF-κB activation was demonstrated by NF-κB nuclear translocation and DNA binding activity, and the levels of IL-6 and IL-8 in cell culture media were examined by ELISA. It was showed that UCH-L1 over-expression inhibited NF-κB activation and decrease IL-6 and IL-8 levels, while knockdown of it enhanced NF-κB activation and increase IL-6 and IL-8 levels during TNF-α treatment. These data suggest that UCH-L1 can inhibit TNF-α-induced VSMCs migration, and this kind of effect may partially due to its suppression role in NF-κB activation.
Collapse
Affiliation(s)
- Xiujie Gao
- Tianjin Institute of Health and Environmental Medicine
| | - Lei Wu
- Tianjin Institute of Health and Environmental Medicine
| | - Kun Wang
- Tianjin Institute of Health and Environmental Medicine
| | - Xuesi Zhou
- Tianjin Institute of Health and Environmental Medicine
| | - Meng Duan
- Tianjin Institute of Health and Environmental Medicine
| | - Xinxing Wang
- Tianjin Institute of Health and Environmental Medicine
| | - Zhiqing Zhang
- Tianjin Institute of Health and Environmental Medicine
| | - Xiaohua Liu
- Tianjin Institute of Health and Environmental Medicine
| |
Collapse
|
13
|
Ma L, Chen S, Mao X, Lu Y, Zhang X, Lao X, Qin X, Li S. The association between TNFR gene polymorphisms and the risk of Hepatitis B Virus-Related Liver Diseases in Chinese population. Sci Rep 2018; 8:9240. [PMID: 29915336 PMCID: PMC6006281 DOI: 10.1038/s41598-018-27623-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/05/2018] [Indexed: 12/14/2022] Open
Abstract
Tumor necrosis factor receptor superfamily 2 (TNFR2) plays an important role in controlling the progression of antiviral and antitumorr. Evidence suggests that TNFR2 is involved in the pathogenesis of HBV-induced liver injury. We therefore examined whether TNFR2 polymorphisms are associated with the risk of HBV-related liver disease in Chinese population. In this case-control study, 115 chronic hepatitis B (CHB) patients, 86 HBV-related liver cirrhosis patients (LC), 272 HBV-related hepatocellular carcinoma patients (HCC) and 269 healthy controls were recruited. TNFR2 rs1061622 and rs1061624 polymorphisms were examined using a polymerase chain reaction-restriction fragment length polymorphism analysis. Binary logistic regression analyses revealed that the A allele of rs1061624 was positively associated with the risk of CHB (AA vs. GG, P = 0.026; AA vs. GA+GG, P = 0.021), LC (AA vs. GG, P = 0.027; AA+GA vs. GG, P = 0.036), and HCC (GA vs. GG, P = 0.046; GA+AA vs. GG, P = 0.031). Moreover, subgroup analysis indicated that male subjects have increased risk in developing CHB and LC. Nevertheless, no association was found between rs1061622 polymorphism and HBV-related liver diseases in the overall or subgroup analyses. Our retrospective study suggests that the TNFR2 rs1061624 polymorphism is associated with HBV-related CHB, LC, and HCC in Chinese population, particularly in males.
Collapse
Affiliation(s)
- Liping Ma
- Department of Clinical Laboratory, Minzu Hospital of Guangxi Zhuang Autonomous Region, Affiliated Minzu Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Siyuan Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaohuan Mao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Lu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolian Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xianjun Lao
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Shan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|