1
|
Goyal A, Agrawal N, Jain A, Gupta JK, Garabadu D. Role of caveolin-eNOS platform and mitochondrial ATP-sensitive potassium channel in abrogated cardioprotective effect of ischemic preconditioning in postmenopausal women. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
| | | | - Ankit Jain
- Dr. Hari Singh Gour Central University, India
| | | | | |
Collapse
|
2
|
Sharma R, Randhawa PK, Singh N, Jaggi AS. Bradykinin in ischemic conditioning-induced tissue protection: Evidences and possible mechanisms. Eur J Pharmacol 2015; 768:58-70. [DOI: 10.1016/j.ejphar.2015.10.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 01/02/2023]
|
3
|
Takano M, Matsuyama S. Intracellular and nuclear bradykinin B2 receptors. Eur J Pharmacol 2014; 732:169-72. [DOI: 10.1016/j.ejphar.2014.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/06/2014] [Accepted: 03/10/2014] [Indexed: 01/11/2023]
|
4
|
Takano M, Kanoh A, Amako K, Otani M, Sano K, Kanazawa-Hamada M, Matsuyama S. Nuclear localization of bradykinin B2 receptors reflects binding to the nuclear envelope protein lamin C. Eur J Pharmacol 2014; 723:507-14. [DOI: 10.1016/j.ejphar.2013.09.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/24/2013] [Accepted: 09/26/2013] [Indexed: 11/25/2022]
|
5
|
Alizadeh AM, Mirzabeglo P. Is oxytocin a therapeutic factor for ischemic heart disease? Peptides 2013; 45:66-72. [PMID: 23659864 DOI: 10.1016/j.peptides.2013.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/24/2013] [Accepted: 04/27/2013] [Indexed: 12/20/2022]
Abstract
Ischemic heart disease (IHD) is among the most important and top ranked causes of death in the world, and its preventive and interventional mechanisms are actively being investigated. Preconditioning may still be beneficial in some situations such as IHD. Development of cardioprotective agents to improve myocardial function, to decrease the incidence of arrhythmias, to delay the onset of necrosis, and to limit the total extent of infarction during IHD is of great clinical importance. In order to reduce morbidity, a new treatment modality must be developed, and oxytocin may indeed be one of the candidates. There is increasing experimental evidence indicating that oxytocin may have cardioprotective effects either by decreasing the extent of reperfusion injury or by pharmacologic preconditioning activity. This review shows that in the presence of oxytocin, the cardioprotective effects may be increased to some extent. The presented board of evidence focuses on the valuable effects of oxytocin on myocardial function and candidates it for future clinical studies in the realm of ischemic heart diseases.
Collapse
|
6
|
Kim JM, Jang YH, Kim J. Morphine and remifentanil-induced cardioprotection: its experimental and clinical outcomes. Korean J Anesthesiol 2011; 61:358-66. [PMID: 22148082 PMCID: PMC3229012 DOI: 10.4097/kjae.2011.61.5.358] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 01/05/2023] Open
Abstract
During the past few decades, a large number of animal studies demonstrated that commonly used opioids could provide cardioprotection against ischemia-reperfusion (I/R) injury. Opioid-induced preconditioning or postconditioning mimics ischemic preconditioning (I-Pre) or ischemic postconditioning (I-Post). Both δ- and κ-opioid receptors (OPRs) play a crucial role in opioid-induced cardioprotection (OIC). Down stream signaling effectors of OIC include ATP-sensitive potassium (KATP) channels, protein kinase C (PKC), tyrosine kinase, phosphatidylinositol-3-kinase (PI3-kinase), extracellular signal regulated kinase1/2 (ERK1/2), glycogen synthase kinase-3β (GSK-3β), and mitochondrial permeability transition pore (MPTP), among others. Recently, various reports also suggest that opioids could provide cardioprotection in humans. This review will discuss OIC using mostly morphine and remifentanil which are widely used during cardiac anesthesia in addition to the clinical implications of OIC.
Collapse
Affiliation(s)
- Jin Mo Kim
- Department of Anesthesiology and Pain Medicine, School of Medicine, Keimyung University, Daegu, Korea
| | | | | |
Collapse
|
7
|
Wang Q, Kalogeris TJ, Wang M, Jones AW, Korthuis RJ. Antecedent ethanol attenuates cerebral ischemia/reperfusion-induced leukocyte-endothelial adhesive interactions and delayed neuronal death: role of large conductance, Ca2+-activated K+ channels. Microcirculation 2010; 17:427-38. [PMID: 20690981 DOI: 10.1111/j.1549-8719.2010.00041.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
EtOH-PC reduces postischemic neuronal injury in response to cerebral (I/R). We examined the mechanism underlying this protective effect by determining (i) whether it was associated with a decrease in I/R-induced leukocyte-endothelial adhesive interactions in postcapillary venules, and (ii) whether the protective effects were mediated by activation of large conductance, calcium-activated potassium (BK(Ca)) channels. Mice were administered ethanol by gavage or treated with the BK(Ca) channel opener, NS1619, 24 hours prior to I/R with or without prior treatment with the BK(Ca) channel blocker, PX. Both CCA were occluded for 20 minutes followed by two and three hours of reperfusion, and rolling (LR) and adherent (LA) leukocytes were quantified in pial venules using intravital microscopy. The extent of DND, apoptosis and glial activation in hippocampus were assessed four days after I/R. Compared with sham, I/R elicited increases in LR and LA in pial venules and DND and apoptosis as well as glial activation in the hippocampus. These effects were attenuated by EtOH-PC or antecedent NS1619 administration, and this protection was reversed by prior treatment with PX. Our results support a role for BK(Ca) channel activation in the neuroprotective effects of EtOH-PC in cerebral I/R.
Collapse
Affiliation(s)
- Qun Wang
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | |
Collapse
|
8
|
Civelek B, Selcuk T, Bilgen E, Demirbag E, Celebioglu S. Intermittent ischaemia of skin flaps shortens time taken to divide pedicles: an experimental study in rats. ACTA ACUST UNITED AC 2010; 43:241-4. [PMID: 19863425 DOI: 10.3109/02844310903138906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ischaemic preconditioning increases the survival of flaps. Random-pattern McFarlane dorsal flaps were raised in 30 female Wistar rats, which were divided into three groups. An ischaemic conditioning protocol with clamping of the pedicle was used. No clamping was used in the control group, and the pedicle was clamped for 15 minutes in the second group and 20 minutes in the third group daily to see if the duration of ischaemia had any effects on the viability of the flaps. The pedicles were divided earlier in the clamped groups than in the control group. The size of necrotic areas of the flaps in the clamped groups was smaller than on the control group. Daily postoperative intermittent ischaemic conditioning in the pedicles of the flaps had a protective effect on their survival and led to earlier division of the pedicles.
Collapse
Affiliation(s)
- Birol Civelek
- Department of Plastic and Reconstructive Surgery, Diskapi Y. Beyazit Training and Research Hospital, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
9
|
Alizadeh AM, Faghihi M, Sadeghipour HR, Mohammadghasemi F, Imani A, Houshmand F, Khori V. Oxytocin protects rat heart against ischemia-reperfusion injury via pathway involving mitochondrial ATP-dependent potassium channel. Peptides 2010; 31:1341-5. [PMID: 20417240 DOI: 10.1016/j.peptides.2010.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
Abstract
Cardiac preconditioning represents the most potent and consistently reproducible method of rescuing heart tissue from undergoing irreversible ischemic damage. One of the major goals of the current cardiovascular research is to identify a reliable cardioprotective intervention that can salvage ischemic myocardium. The aim of the present study is to evaluate the oxytocin (OT)-induced cardioprotection and the signaling pathway involved with mitochondrial ATP-dependent potassium (mitoKATP) channel in the anesthetized rat heart. Animals were divided into six groups (n=6): (1) IR; hearts were subjected to 25 min ischemia and 120 min reperfusion, (2) OT; oxytocin was administered (0.03 microg/kg i.p.) 25 min prior to ischemia, (3) ATO+OT; atosiban (ATO) was used as an OT-selective receptor antagonist (1.5 microg/kg i.p.) 10 min prior to OT administration, (4) ATO; atosiban was used 35 min prior to ischemia, (5) 5HD+OT; 5-hydroxydecanoic acid (5HD) was used as a specific inhibitor of mitoKATP channel (10mg/kg i.v.) 10 min prior to OT administration, (6) 5HD; 5HD was used 35min prior to ischemia. Then infarct size, ventricular arrhythmia and creatine kinase-MB isoenzyme (CK-MB) plasma level were measured. Hemodynamic parameters were recorded throughout the experiment. OT administration significantly decreased infarct size, CK-MB plasma level, severity and incidence of ventricular arrhythmia as compared to IR group. Administration of atosiban and 5HD abolished the cardiopreconditioning effect of OT. This study demonstrates that cardioprotective effects of OT are mediated through opening the mitoKATP channels.
Collapse
Affiliation(s)
- Ali Mohammad Alizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Enghelab Ave, Enghelab Squ, Tehran, Islamic Republic of Iran
| | | | | | | | | | | | | |
Collapse
|
10
|
Nezami BG, Ghazinezami B, Rahimpour S, Gholipour T, Ghasemi M, Sadeghipour H, Mehr SE, Emami-Razavi SH, Dehpour AR. Pharmacologic Preconditioning of Random-Pattern Skin Flap in Rats Using Local Cyclosporine and FK-506. Ann Plast Surg 2007; 59:435-40. [PMID: 17901737 DOI: 10.1097/01.sap.0000258982.86308.f0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It has been suggested that immunophilin ligands such as cyclosporine and FK-506 (tacrolimus) affect the survival of ischemic tissues. Our objective was to show an acute effect of local cyclosporin-A (CsA) and FK-506 on ischemic protection in a random-pattern skin-flap model in rats and investigate the effect of nitric oxide (NO) pathways as a modulator of protection of these agents. Ninety male Sprague-Dawley rats were randomly assigned to treatment groups. Bipedicled dorsal flaps (2 x 8 cm) were elevated at midline. Prior to cutting the cranial pedicle to induce permanent ischemia, pharmacologic preconditioning groups received local injection of CsA (0.3, 1, or 3 nmol/flap) or FK-506 (0.01, 0.03, or 0.1 pmol/flap), and the ischemic preconditioning (IPC) group underwent temporary clamping of the cranial pedicle. At the seventh day postoperatively, the survival of the flaps was measured. In other groups, nitric oxide synthase inhibitor N omega-nitro-l-arginine methyl ester hydrochloride (L-NAME) was administered with effective CsA and FK-506, and ischemic preconditioning. Nitric oxide precursor L-arginine doses were also studied, and a systemic subeffective dose (100 mg/kg) was coadministered with subeffective CsA and FK-506. Significant increase in flap survival was obtained with CsA (1 nmol/flap), FK-506 (0.1 pmol/flap), and IPC. These protections were abolished by systemic administration of L-NAME (10 mg/kg). Coadministration of subeffective doses of CsA (0.3 nmol/flap) and FK-506 (0.03 pmol/flap), with subeffective systemic l-arginine, significantly improved flap survival.Pharmacologic preconditioning with local, single, low doses of CsA or FK-506 is shown to be even more effective than IPC. Administration of the NOS substrate l-arginine potentiates these effects.
Collapse
Affiliation(s)
- Behtash Ghazi Nezami
- Basic Medical Sciences Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang Y, Ahmad N, Wang B, Ashraf M. Chronic preconditioning: a novel approach for cardiac protection. Am J Physiol Heart Circ Physiol 2007; 292:H2300-5. [PMID: 17208991 DOI: 10.1152/ajpheart.01163.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ischemic preconditioning is the most powerful protective mechanism known against lethal ischemia. Unfortunately, the protection lasts for only a few hours. Here we tested the hypothesis that the heart can be kept in a preconditioned state for constant protection against ischemia. In this study we chose BMS-191095 (BMS), a highly selective opener of mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channels. BMS (1 mg/kg ip) was administered to rats every 24 h until 96 h. In other groups, BMS plus wortmannin (WTN, 15 microg/kg ip), an inhibitor of the phosphatidylinositol 3-kinase (PI3-K), or BMS plus 5-hydroxydecanoic acid (5-HD, 5 mg/kg ip), an inhibitor of mitoK(ATP), or BMS plus N(omega)-nitro-L-arginine methyl ester (L-NAME) (30 microg/kg ip), an inhibitor of nitric oxide (NO) synthase, were administered to rats. Rats were then subjected to 30-min left anterior descending coronary artery occlusion and 120-min reperfusion. Cardiac function, infarct size, pathological changes, and apoptosis were assessed at the end of treatments. Saline-treated hearts displayed marked contractile dysfunction and underwent pathological changes. BMS-treated rats showed significant improvement in cardiac function, and infarct size was significantly reduced in BMS-treated hearts. However, protection by BMS was abolished by 5-HD, WTN, or L-NAME. These data demonstrate that hearts can be chronically preconditioned and retain their ability to remain resistant against lethal ischemia and that this protection is mediated by activation of mitoK(ATP) via NO and PI3-K/Akt signaling pathways.
Collapse
Affiliation(s)
- Yigang Wang
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | | | | | | |
Collapse
|