1
|
Wang Y, Ye X, Su W, Yan C, Pan H, Wang X, Shao S. Diosmin ameliorates inflammation, apoptosis and activates PI3K/AKT pathway in Alzheimer's disease rats. Metab Brain Dis 2024; 39:1405-1415. [PMID: 39105973 DOI: 10.1007/s11011-024-01388-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
Alzheimer's disease (AD), a prevalent cognitive disorder among the elderly, is frequently linked to the abnormal accumulation of myloid-β (Aβ), which is mainly as a result of neuronal death and inflammation. Diosmin, a flavonoid, is considered a potential drug for the treatment of AD. Our study aimed to uncover the molecular mechanism of diosmin in AD therapy. Here, rats were randomly divided into three groups: control, Aβ25-35, and Aβ25-35 + diosmin groups. AD model rats were induced by Aβ25-35 intraventricular injection, meanwhile 50 mg/kg diosmin was orally administered for 6-week intervention. Morris water maze test assessed learning and memory abilities. Hippocampal neuronal damage was determined by HE, Nissl, and TUNEL staining. These assays indicate that diosmin improves cognitive dysfunction and reduces hippocampal neuronal loss and apoptosis. Western blot showed that diosmin reduced Bax (1.21 ± 0.12) and cleaved caspase-3 (1.27 ± 0.12) expression, and increased Bcl-2 (0.70 ± 0.06), p-PI3K (0.71 ± 0.08), and p-AKT (0.96 ± 0.10) in the hippocampus. ELISA indicated diosmin reduces IL-1β, IL-6, and TNF-α levels, suggesting anti-inflammation effect. These results suggest that diosmin inhibits neuronal apoptosis and neuroinflammatory responses to improve cognitive dysfunction in AD rats, possibly related to upregulation of the PI3K/AKT pathway, providing a scientific basis for its use in AD treatment.
Collapse
Affiliation(s)
- Yanbo Wang
- Department of Neurology, the Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, 310000, China
| | - Xiaojun Ye
- Department of Neurology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Wenwen Su
- Department of Internal Medicine, CiXi Seventh People's Hospital, Ningbo, Zhejiang, 315000, China
| | - Ci Yan
- Departments of Psychiatry, Affiliated Mental Health Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Haiyan Pan
- Department of Endocrinology, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, 310000, China
| | - Xiaowei Wang
- Department of Respiratory Medicine, The Third Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, 310000, China
| | - Sen Shao
- Department of Neurology, Xixi Hospital of Hangzhou Affiliated to Zhejiang University School of Medicine, No. 2, Hengbu Street, Hangzhou, Zhejiang, 310023, China.
| |
Collapse
|
2
|
Ding B, Ma X, Liu Y, Ni B, Lu S, Chen Y, Liu X, Zhang W. Arsenic-Induced, Mitochondria-Mediated Apoptosis Is Associated with Decreased Peroxisome Proliferator-Activated Receptor γ Coactivator α in Rat Brains. TOXICS 2023; 11:576. [PMID: 37505542 PMCID: PMC10384476 DOI: 10.3390/toxics11070576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Chronic exposure to arsenic in drinking water damages cognitive function, and nerve cell apoptosis is one of the primary characteristics. The damage to mitochondrial structure and/or function is one of the main characteristics of apoptosis. Peroxisome proliferator-activated receptor γ coactivator α (PGC-1α) is involved in the regulation of mitochondrial biogenesis, energy metabolism, and apoptosis. In this study, we aimed to study the role of PGC-1α in sodium arsenite (NaAsO2)-induced mitochondrial apoptosis in rat hippocampal cells. We discovered that increased arsenic-induced apoptosis in rat hippocampus increased with NaAsO2 (0, 2, 10, and 50 mg/L, orally via drinking water for 12 weeks) exposure by TUNEL assay, and the structure of mitochondria was incomplete and swollen and had increased lysosomes, lipofuscins, and nuclear membrane shrinkage observed via transmission electron microscopy. Furthermore, NaAsO2 reduced the levels of Bcl-2 and PGC-1α and increased the levels of Bax and cytochrome C expression. Moreover, correlation analysis showed that brain arsenic content was negatively correlated with PGC-1α levels and brain ATP content; PGC-1α levels were negatively correlated with apoptosis rate; and brain ATP content was positively correlated with PGC-1α levels, but no significant correlation between ATP content and apoptosis has been observed in this study. Taken together, the results of this study indicate that NaAsO2-induced mitochondrial pathway apoptosis is related to the reduction of PGC-1α, accompanied by ATP depletion.
Collapse
Affiliation(s)
- Bo Ding
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Xinbo Ma
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Bangyao Ni
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Siqi Lu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Yuting Chen
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| | - Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, China
| |
Collapse
|
3
|
Qian R, Chen H, Lin H, Jiang Y, He P, Ding Y, Wu H, Peng Y, Wang L, Chen C, Wang D, Ji W, Guo X, Shan X. The protective roles of allicin on type 1 diabetes mellitus through AMPK/mTOR mediated autophagy pathway. Front Pharmacol 2023; 14:1108730. [PMID: 36817124 PMCID: PMC9937553 DOI: 10.3389/fphar.2023.1108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Background: Type 1 diabetes mellitus (T1DM) is one of the most common endocrine and metabolic diseases in children. Pancreatic β cells are thought to be critical cells involved in the progression of T1DM, and their injury would directly lead to impaired insulin secretion. Purpose: To investigate the protective effects of allicin on pancreatic β cell injury and elucidate the underlying mechanism. Methods: The streptozotocin (STZ)-induced mouse T1DM model in vivo and STZ-induced pancreatic β cell Min6 model in vitro were used to explore the effects of allicin on T1DM. The experiments include fasting blood glucose test, oral glucose tolerance detection, HE staining, immunohistochemistry, immunofluorescence, TUNEL staining, western blot, real-time quantitative PCR (RT-qPCR), and flow cytometry. Results: Allicin could significantly decrease blood glucose level, improve islet structure and insulin expression, and inhibit apoptosis to reduce STZ-induced pancreatic β cell injury and loss through activating AMPK/mTOR mediated autophagy pathway. Conclusion: Allicin treatment significantly reduced STZ-induced T1DM progression, suggesting that allicin may be a potential therapy option for T1DM patients.
Collapse
Affiliation(s)
- Rengcheng Qian
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huihui Chen
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongzhou Lin
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yalan Jiang
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping He
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinjuan Ding
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huilan Wu
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongmiao Peng
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingfei Wang
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congde Chen
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dexuan Wang
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiping Ji
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Weiping Ji, ; Xiaoling Guo, ; Xiaoou Shan,
| | - Xiaoling Guo
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Weiping Ji, ; Xiaoling Guo, ; Xiaoou Shan,
| | - Xiaoou Shan
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Weiping Ji, ; Xiaoling Guo, ; Xiaoou Shan,
| |
Collapse
|
4
|
Yin YL, Liu YH, Zhu ML, Wang HH, Qiu Y, Wan GR, Li P. Floralozone improves cognitive impairment in vascular dementia rats via regulation of TRPM2 and NMDAR signaling pathway. Physiol Behav 2022; 249:113777. [PMID: 35276121 DOI: 10.1016/j.physbeh.2022.113777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 12/11/2022]
Abstract
Vascular dementia (VD) is the second largest type of dementia after Alzheimer's disease. At present, the pathogenesis is complex and there is no effective treatment. Floralozone has been shown to reduce atherosclerosis in rats caused by a high-fat diet. However, whether it plays a role in VD remains elusive. In the present study, the protective activities and relevant mechanisms of Floralozone were evaluated in rats with cognitive impairment, which were induced by bilateral occlusion of the common carotid arteries (BCCAO) in rats. Cognitive function, pathological changes and oxidative stress condition in the brains of VD rats were assessed using Neurobehavioral tests, Morris water maze tests, hematoxylin-eosin staining, Neu N staining, TUNEL staining, Golgi staining, Western blot assay and antioxidant assays (MDA, SOD, GSH), respectively. The results indicated that VD model was established successfully and BCCAO caused a decline in spatial learning and memory and hippocampal histopathological abnormalities of rats. Floralozone (50, 100, 150 mg/kg) dose-dependently alleviated the pathological changes, decreased oxidative stress injury, which eventually reduced cognitive impairment in BCCAO rats. The same results were shown in further experiments with neurobehavioral tests. At the molecular biological level, Floralozone decreased the protein level of transient receptor potential melastatin-related 2 (TRPM2) in VD and normal rats, and increased the protein level of NR2B in hippocampus of N-methyl-D-aspartate receptor (NMDAR). Notably, Floralozone could markedly improved learning and memory function of BCCAO rats in Morris water maze (MWM) and improved neuronal cell loss, synaptic structural plasticity. In conclusion, Floralozone has therapeutic potential for VD, increased synaptic structural plasticity and alleviating neuronal cell apoptosis, which may be related to the TRPM2/NMDAR pathway.
Collapse
Affiliation(s)
- Ya-Ling Yin
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University,Xinxiang, China, 453003; College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Yan-Hua Liu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Mo-Li Zhu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Huan-Huan Wang
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Yue Qiu
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Guang-Rui Wan
- College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| | - Peng Li
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University,Xinxiang, China, 453003; College of Pharmacy, Henan international joint laboratory of cardiovascular remodeling and drug intervention, Xinxiang key laboratory of vascular remodeling intervention and molecular targeted therapy drug development, Xinxiang Medical University,Xinxiang, China, 453003.
| |
Collapse
|
5
|
Pandey R, Garg A, Gupta K, Shukla P, Mandrah K, Roy S, Chattopadhyay N, Bandyopadhyay S. Arsenic Induces Differential Neurotoxicity in Male, Female, and E2-Deficient Females: Comparative Effects on Hippocampal Neurons and Cognition in Adult Rats. Mol Neurobiol 2022; 59:2729-2744. [PMID: 35175559 DOI: 10.1007/s12035-022-02770-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023]
Abstract
We earlier reported that arsenic induced hippocampal neuronal loss, causing cognitive dysfunctions in male rats. This neuronal damage mechanism involved an altered bone morphogenetic protein (BMP2)/Smad and brain-derived neurotrophic factor (BDNF)/TrkB signaling. Susceptibility to toxicants is often sex-dependent, and hence we studied the comparative effects of arsenic in adult male and female rats. We observed that a lower dose of arsenic reduced learning-memory ability, examined through passive avoidance and Y-maze tests, in male but not female rats. Again, male rats exhibited greater learning-memory loss at a higher dose of arsenic. Supporting this, arsenic-treated male rats demonstrated larger reduction in the hippocampal NeuN and %-surviving neurons, together with increased apoptosis and altered BMP2/Smad and BDNF/TrkB pathways compared to their female counterparts. Since the primary female hormone, estrogen (E2), regulates normal brain functions, we next probed whether endogenous E2 levels in females offered resistance against arsenic-induced neurotoxicity. We used ovariectomized (OVX) rat as the model for E2 deficiency. We primarily identified that OVX itself induced hippocampal neuronal damage and cognitive decline, involving an increased BMP2/Smad and reduced BDNF/TrkB. Further, these effects appeared greater in arsenic + OVX compared to arsenic + sham (ovary intact) or OVX rats alone. The OVX-induced adverse effects were significantly reduced by E2 treatment. Overall, our study suggests that adult males could be more susceptible than females to arsenic-induced neurotoxicity. It also indicates that endogenous E2 regulates hippocampal BMP and BDNF signaling and restrains arsenic-induced neuronal dysfunctions in females, which may be inhibited in E2-deficient conditions, such as menopause or ovarian failure.
Collapse
Affiliation(s)
- Rukmani Pandey
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Asmita Garg
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Keerti Gupta
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pallavi Shukla
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Zhong G, Hu T, Tang L, Li T, Wu S, Duan X, Pan J, Zhang H, Tang Z, Feng X, Hu L. Arsenic causes mitochondrial biogenesis obstacles by inhibiting the AMPK/PGC-1α signaling pathway and also induces apoptosis and dysregulated mitophagy in the duck liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113117. [PMID: 34959015 DOI: 10.1016/j.ecoenv.2021.113117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Arsenic is a dangerous metalloid-material which is known to cause liver injury in many animals and humans. However, little is known about the underlying mechanism of arsenic-induced hepatotoxicity in poultry. This study was executed to systematically investigate the potential role of mitochondrial biogenesis, mitophagy and apoptosis in duck hepatotoxicity caused by arsenic. Results showed that the body weight and liver coefficient of duck had distinct changed after arsenic-exposure, and the arsenic content in serum and liver also increased significantly in a dose-dependent manner. Meanwhile, histopathological examination and metabolomics results showed that arsenic-exposure caused severe steatosis and metabolism disorder in liver tissues. Furthermore, arsenic-exposure significantly inhibited AMPK/PGC-1α-mediated mitochondrial biogenesis, determined by the ultrastructure observation and down-regulation of p-AMPKα/AMPKα, PGC-1α, NRF1, NRF2, TFAM, TFB1M, TFB2M and COX-Ⅳ expression levels. Besides, arsenic-treatment obviously increased the levels of mitophagy (PINK1, Parkin, LC3, P62) and pro-apoptotic (Caspase-3, Caspase-9, Cleaved Caspase-3, Cytc, Bax, P53) indexes, and simultaneously resulted in reductions in anti-apoptosis index (Bcl-2). Overall, our findings provided evidences that arsenic-induced duck hepatotoxicity may be caused by a combination of impaired mitochondrial biosynthesis, mitophagy, and mitochondrial-dependent apoptosis. To our knowledge, this is the first report to systematically investigate the potential mechanism of arsenic-induced hepatotoxicity in poultry.
Collapse
Affiliation(s)
- Gaolong Zhong
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Ting Hu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Lixuan Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Tong Li
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Shaofeng Wu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China.
| | - Jiaqiang Pan
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| | - Xia Feng
- Yanzhou District Bureau of Agriculture and Rural Development, Jining City, Shandong, China.
| | - Lianmei Hu
- College of Veterinary Medicine, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Zhu T, Zhu M, Qiu Y, Wu Z, Huang N, Wan G, Xu J, Song P, Wang S, Yin Y, Li P. Puerarin Alleviates Vascular Cognitive Impairment in Vascular Dementia Rats. Front Behav Neurosci 2021; 15:717008. [PMID: 34720898 PMCID: PMC8554240 DOI: 10.3389/fnbeh.2021.717008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Cerebral ischemia triggers vascular dementia (VD), which is characterized by memory loss, cognitive deficits, and vascular injury in the brain. Puerarin (Pur) represents the major isoflavone glycoside of Radix Puerariae, with verified neuroprotective activity and cardiovascular protective effects. However, whether Pur ameliorates cognitive impairment and vascular injury in rats with permanent occlusion of bilateral common carotid arteries (BCCAO) remains unknown. This work aimed to assess Pur's effects on BCCAO-induced VD and to dissect the underlying mechanisms, especially examining the function of transient receptor potential melastatin-related 2 (TRPM2) in alleviating cognitive deficits and vascular injuries. Rats with BCCAO developed VD. Pur (50, 100, and 150 mg/kg) dose-dependently attenuated the pathological changes, increased synaptic structural plasticity in the dorsal CA1 hippocampal region and decreased oxidative stress, which eventually reduced cognitive impairment and vascular injury in BCCAO rats. Notably, Pur-improved neuronal cell loss, synaptic structural plasticity, and endothelial vasorelaxation function might be mediated by the reactive oxygen species (ROS)-dependent TRPM2/NMDAR pathway, evidenced by decreased levels of ROS, malondialdehyde (MDA), Bax, Bax/Bcl2, and TRPM2, and increased levels of superoxide dismutase (SOD), Bcl2, and NR2A. In conclusion, Pur has therapeutic potential for VD, alleviating neuronal cell apoptosis and vascular injury, which may be related to the ROS-dependent TRPM2/NMDAR pathway.
Collapse
Affiliation(s)
- Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Moli Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yue Qiu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Zeqing Wu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ning Huang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Guangrui Wan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Jian Xu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Ping Song
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shuangxi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yaling Yin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China.,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| |
Collapse
|
8
|
Mehta K, Kaur B, Pandey KK, Dhar P, Kaler S. Resveratrol protects against inorganic arsenic-induced oxidative damage and cytoarchitectural alterations in female mouse hippocampus. Acta Histochem 2021; 123:151792. [PMID: 34634674 DOI: 10.1016/j.acthis.2021.151792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023]
Abstract
Prolonged inorganic arsenic (iAs) exposure is widely associated with brain damage particularly in the hippocampus via oxidative and apoptotic pathways. Resveratrol (RES) has gained considerable attention because of its benefits to human health. However, its neuroprotective potential against iAs-induced toxicity in CA1 region of hippocampus remains unexplored. Therefore, we investigated the neuroprotective efficacy of RES against arsenic trioxide (As2O3)-induced adverse effects on neuronal morphology, apoptotic markers and oxidative stress parameters in mouse CA1 region (hippocampus). Adult female Swiss albino mice of reproductive maturity were orally exposed to either As2O3 (2 and 4 mg/kg bw) alone or in combination with RES (40 mg/kg bw) for a period of 45 days. After animal sacrifice on day 46, the perfusion fixed brain samples were used for the observation of neuronal morphology and studying the morphometric features. While the freshly dissected hippocampi were processed for biochemical estimation of oxidative stress markers and western blotting of apoptosis-associated proteins. Chronic iAs exposure led to significant decrease in Stratum Pyramidale layer thickness along with reduction in cell density and area of Pyramidal neurons in contrast to the controls. Biochemical analysis showed reduced hippocampal GSH content but no change in total nitrite (NO) levels following iAs exposure. Western blotting showed apparent changes in the expression levels of Bax and Bcl-2 proteins following iAs exposure, however the change was statistically insignificant. Contrastingly, iAs +RES co-treatment exhibited substantial reversal in morphological and biochemical observations. Together, these findings provide preliminary evidence of neuroprotective role of RES on structural and biochemical alterations pertaining to mouse hippocampus following chronic iAs exposure.
Collapse
Affiliation(s)
- K Mehta
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - B Kaur
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - K K Pandey
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - P Dhar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - S Kaler
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
9
|
Fu SC, Lin JW, Liu JM, Liu SH, Fang KM, Su CC, Hsu RJ, Wu CC, Huang CF, Lee KI, Chen YW. Arsenic induces autophagy-dependent apoptosis via Akt inactivation and AMPK activation signaling pathways leading to neuronal cell death. Neurotoxicology 2021; 85:133-144. [PMID: 34038756 DOI: 10.1016/j.neuro.2021.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022]
Abstract
Inorganic arsenic (As3+), a well-known worldwide industrial and environmental pollutant, has been linked to neurodegenerative disorders (NDs). Autophagy plays an important role in controlling neuronal cell survival/death. However, limited information is available regarding the toxicological mechanism at the interplay between autophagy and As3+-induced neurotoxicity. The present study found that As3+ exposure induced a concomitant activation of apoptosis and autophagy in Neuro-2a cells, which was accompanied with the increase of phosphatidylserine exposure on outer membrane leaflets and apoptotic cell population, and the activation of caspase-3, -7, and PARP as well as the elevation of protein expressions of LC3-II, Atg-5, and Beclin-1, and the accumulation of autophagosome. Pretreatment of cells with autophagy inhibitor 3-MA, but not that of Z-VAD-FMK (a pan-caspase inhibitor), effectively prevented the As3+-induced autophagic and apoptotic responses, indicating that As3+-triggered autophagy was contributing to neuronal cell apoptosis. Furthermore, As3+ exposure evoked the dephosphorylation of Akt. Pretreatment with SC79, an Akt activator, could significantly attenuated As3+-induced Akt inactivation as well as autophagic and apoptotic events. Expectedly, inhibition of Akt signaling with LY294002 obviously enhanced As3+-triggered autophagy and apoptosis. Exposure to As3+ also dramatically increased the phosphorylation level of AMPKα. Pretreatment of AMPK inhibitor (Compound C) could markedly abrogate the As3+-induced phosphorylated AMPKα expression, and autophagy and apoptosis activation. Taken together, these results indicated that As3+ exerted its cytotoxicity in neuronal cells via the Akt inactivation/AMPK activation downstream-regulated autophagy-dependent apoptosis pathways, which ultimately lead to cell death. Our findings suggest that the regulation of Akt/AMPK signals may be a promising intervention to against As3+-induced neurotoxicity and NDs.
Collapse
Affiliation(s)
- Shih-Chang Fu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 330, Taiwan
| | - Jhe-Wei Lin
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jui-Ming Liu
- Division of Urology, Department of Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan, 330, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Kai-Min Fang
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chin-Chuan Su
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua County, 500, Taiwan; School of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Ren-Jun Hsu
- Department of Pathology and Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, Taiwan; Biobank Management Center of Tri-Service General Hospital and Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, 114, Taiwan
| | - Chin-Ching Wu
- Department of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Chun-Fa Huang
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 404, Taiwan; Department of Nursing, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Kuan-I Lee
- Department of Emergency, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, 427, Taiwan.
| | - Ya-Wen Chen
- Department of Physiology and Graduate Institute of Basic Medical Science, School of Medicine, College of Medicine, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
10
|
Mehta K, Kaur B, Pandey KK, Kaler S, Dhar P. Curcumin supplementation shows modulatory influence on functional and morphological features of hippocampus in mice subjected to arsenic trioxide exposure. Anat Cell Biol 2020; 53:355-365. [PMID: 32929054 PMCID: PMC7527119 DOI: 10.5115/acb.18.169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 06/13/2019] [Accepted: 09/16/2019] [Indexed: 12/20/2022] Open
Abstract
Since, oxidative stress has been suggested as one of the mechanisms underlying arsenic-induced toxicity, the present study focused on the role of antioxidant (curcumin) supplementation on behavioral, biochemical, and morphological alterations with context to mice hippocampus (CA1) following arsenic trioxide (As2O3) administration. Healthy male Swiss albino mice were divided into control and experimental groups. As2O3 (2 mg/kg bw) alone or along with curcumin (100 mg/kg bw) was administered to experimental groups by oral route for 45 days whereas the control groups received either no treatment or vehicle for curcumin. Animals were subjected to behavioral study towards the end of the experimental period (day 33-45). On day 46, the brain samples were obtained and subjected either to immersion fixation (for morphometric observations) or used afresh for biochemical test. Behavioral tests (open field, elevated plus maze, and Morris water maze) revealed enhanced anxiety levels and impairment of cognitive functions in As2O3 alone treated groups whereas a trend of recovery was evident in mice simultaneously treated with As2O3 and curcumin. Morphological observations showed noticeable reduction in stratum pyramidale thickness (CA1), along with decrease in density and size of pyramidal neurons in As2O3 alone exposed group as compared to As2O3+Cu co-treated group. Hippocampal glutathione levels were found to be downregulated in animals receiving As2O3 as against the levels of controls and curcumin supplemented animals, thereby, suggestive of beneficial role of curcumin on As2O3 induced adverse effects.
Collapse
Affiliation(s)
- Kamakshi Mehta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Balpreet Kaur
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kamlesh Kumar Pandey
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Saroj Kaler
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Pushpa Dhar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Biswas S, Banna HU, Jahan M, Anjum A, Siddique AE, Roy A, Nikkon F, Salam KA, Haque A, Himeno S, Hossain K, Saud ZA. In vivo evaluation of arsenic-associated behavioral and biochemical alterations in F 0 and F 1 mice. CHEMOSPHERE 2020; 245:125619. [PMID: 31846792 DOI: 10.1016/j.chemosphere.2019.125619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/18/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Groundwater contaminated with arsenic (As) is the biggest threat to public health in Bangladesh. The children of As-exposure parents are also exposing to As through drinking water. The effects of As on the children's health of As-exposure parents are poorly understood. An animal study was taken to evaluate the effects of As on behavioral and biochemical changes in F1 mice. Swiss albino mice were separated into three groups: a) control, b) As-treated F0 and c) As-treated F1. Elevated plus maze and Morris water maze tests were used for evaluating anxiety, spatial memory and learning, respectively. We found that the effect of As on anxiety like behavior, spatial memory and learning impairment in As-treated F1 mice was significantly higher than that of As-treated F0 mice and control group. Additionally, we also evaluated the effects of As on biochemical parameters by measuring ALT, AST, ALP, BChE, SOD activities and the level of creatinine in As-induced mice, where we found that all of the blood parameters were significantly changed in F1 generation. A significant portion of As accumulated in the brain, liver and kidney of F1 mice than F0 mice. Histological analysis revealed a significant change in tissue damage related to hepatic and renal dysfunctions that might be associated with As-induced biochemical alterations. In conclusion, arsenic plays an important role for the development of As-associated neurological disorders, hepatic toxicities, and renal dysfunctions in both F0 and F1 generations. Notably F1 mice were much more vulnerable to As-exposure than F0 mice.
Collapse
Affiliation(s)
- Sheta Biswas
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Hasan Ul Banna
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Momotaj Jahan
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Adiba Anjum
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Abu Eabrahim Siddique
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Apurba Roy
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farjana Nikkon
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Kazi Abdus Salam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Seiichiro Himeno
- Laboratory of Molecular Nutrition and Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
12
|
Zaki SM, Algaleel WAA, Imam RA, Soliman GF, Ghoneim FM. Nano-curcumin versus curcumin in amelioration of deltamethrin-induced hippocampal damage. Histochem Cell Biol 2020; 154:157-175. [PMID: 32227291 DOI: 10.1007/s00418-020-01871-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2020] [Indexed: 12/16/2022]
Abstract
We aimed to prove that oxidative stress is the main mechanism responsible for hippocampal neurotoxicity induced by deltamethrin (DLM). The protective role of curcumin (CMN) and nano-curcumin (NCMN) over this toxicity was studied. The rats were categorized into four groups: control, DLM, CMN and NCMN. The study continued for 30 days. Hippocampus was processed for histological, biochemical and immunohistochemical studies. Caspase-3, glial fibrillar acidic protein (GFAP), acetylcholinesterase (AChE), malondialdehyde (MDA), glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) were measured for DLM-induced oxidative stress (increased MDA by 354%/decreased GSH by 61%, SOD by 61%, CAT 57%). Oxidative stress induced apoptosis of hippocampal neurons through increasing Nrf2, gamma-glutamyl cysteine synthetase heavy subunit (GCS-HS) and light subunit (GCS-LS) and decreasing AChE. It increases the activity of astrocytes through increasing GFAP. Finally, oxidative stress has a bad impaction on cognitive function. Improvement of oxidative stress was observed with use of CMN and NCMN (decrease of MDA/increase of GSH, SOD, CAT). The level of Nrf2, GCS-HS and GCS-LS decreased, while AChE, GFAP increased. Improvement of cognitive function was observed in both groups. In conclusion, oxidative stress is the common mechanism responsible for DLM-induced hippocampal neurotoxicity. It exerts apoptosis of hippocampal neurons through increasing Nrf2, HS-GCS, LS-GCS and decreasing AChE. In addition, it activates astrocytes through increasing expression of GFAP. The protective role of CMN and CMMN is related to their potent antioxidant effect. Much improvement has been detected with NCMN as compared to CMN.
Collapse
Affiliation(s)
- Sherif Mohamed Zaki
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt. .,Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia.
| | - Waleed Ahmed Abd Algaleel
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt.,Faculty of Medicine, Cairo University, Giza, Egypt
| | - Reda Abdelnasser Imam
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Giza, Egypt.,Faculty of Medicine, Cairo University, Giza, Egypt
| | - Ghada F Soliman
- Department of Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt.,Faculty of Medicine, Cairo University, Giza, Egypt
| | - Fatma M Ghoneim
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
13
|
Lu X, Gong W, Wen Z, Hu L, Peng Z, Zha Y. Correlation Between Diabetic Cognitive Impairment and Diabetic Retinopathy in Patients With T2DM by 1H-MRS. Front Neurol 2019; 10:1068. [PMID: 31781013 PMCID: PMC6861416 DOI: 10.3389/fneur.2019.01068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 09/23/2019] [Indexed: 12/23/2022] Open
Abstract
Objective: To explore the correlation between diabetic cognitive impairment (DCI) and diabetic retinopathy (DR) through examining the cognitive function and the metabolism of the cerebrum in Type 2 diabetes mellitus (T2DM) by 1H-MRS. Methods: Fifty-three patients with T2DM were enrolled for this study. According to the fundus examination, the patients were divided into the DR group (n = 26) and the T2DM without DR group (T2DM group, n = 27). Thirty healthy adults were selected as a control group (HC group, n = 30). Cognitive function was measured by Montreal Cognitive Assessment (MoCA). The peak areas of N-acetylaspartate (NAA), Cho-line (Cho), Creatine (Cr), and Myo-inositol (mI) as well as their ratios were detected by proton magnetic resonance spectroscopy (1H-MRS). The difference analysis between the three groups was performed by one-way ANOVA. When p < 0.05, LSD-t was applied. A partial correlation analysis (with age as a covariate) was used to analyze the correlation between metabolites in the DR group and MoCA scores. Among all T2DM patients, Chi-square test age, gender, education level, BMI, SBP, DBP, FPG, HbA1c, TC, TG, HDL-C, LDL-C, DR, and DCI correlation were measured. Differences were statistically significant while P < 0.05. Results: 1. The scores of MoCA in the DR group or in the T2DM group were significantly less than those in the HC group (F = 3.54, P < 0.05), and the scores of MoCA in the DR group were significantly less than those in the other groups (F = 3.61, P < 0.05). 2. There were significant differences for NAA in the bilateral hippocampus in DR patients, T2DM patients, and healthy controls (P < 0.05). 3. The NAA/Cr was significantly positively correlated with the score of MoCA in DR patients' left hippocampus (r = 0.781, P < 0.01). 4. Chi-square analysis found that there was a correlation between DR and DCI (x2 = 4.6, df = 1, p = 0.032, plt: 0.05). There was no correlation between other influencing factors and DCI (P > 0.05). Conclusion: DCI is closely correlated with the DR in patients with T2DM. Hippocampal brain metabolism may have some changes in two sides of NAA in patients with DR, 1H-MRS may provide effective imaging strategies and methods for the early diagnosis of brain damage and quantitative assessment cognitive function in T2DM.
Collapse
Affiliation(s)
- Xuefang Lu
- Department of Radiology, Renmin Hospital, Wuhan, China
| | - Wei Gong
- Department of Radiology, Renmin Hospital, Wuhan, China
| | - Zhi Wen
- Department of Radiology, Renmin Hospital, Wuhan, China
| | - Lanhua Hu
- Department of Radiology, Renmin Hospital, Wuhan, China
| | - Zhoufeng Peng
- Department of Radiology, Renmin Hospital, Wuhan, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital, Wuhan, China
| |
Collapse
|
14
|
Luo M, Yan D, Sun Q, Tao J, Xu L, Sun H, Zhao H. Ginsenoside Rg1 attenuates cardiomyocyte apoptosis and inflammation via the TLR4/NF-kB/NLRP3 pathway. J Cell Biochem 2019; 121:2994-3004. [PMID: 31709615 DOI: 10.1002/jcb.29556] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/08/2019] [Indexed: 01/20/2023]
Abstract
Sepsis-induced myocardial dysfunction (SIMD) causes high mortality in seriously ill patients. Ginsenoside Rg1 has been proven to have effective anti-inflammatory and antiapoptotic properties. However, the specific role of Rg1 in SIMD and the molecular mechanism remain unclear. Hence, we aimed to investigate the latent effects of ginsenoside Rg1 against SIMD and explore its underlying mechanisms. Male C57BL/6J mice and neonatal rat cardiomyocytes (NRCMs) were used as in vivo and in vitro models, respectively. Western blot analysis was used to detect the level of protein expression, and reverse transcription polymerase chain reaction was conducted to determine the messenger RNA expression of inflammatory factors. The terminal deoxynucleotidyl transferase-mediated nick end labeling assay and flow cytometry were used to determine the apoptosis rate. Echocardiography was performed to assess cardiac function. The results showed that Rg1 improved cardiac function and attenuated lipopolysaccharide (LPS)-induced apoptosis and inflammation in mice. In addition, in NRCMs, Rg1 downregulated the expression of LPS-induced inflammatory cytokines and reversed the increased expression of Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB), and NOD-like receptor 3 (NLRP3). In addition, treatment with TLR4 small interfering RNA (siRNA), a p-NF-κB inhibitor, or NLRP3 siRNA suppressed LPS-induced apoptosis and inflammation. In conclusion, Rg1 can attenuate LPS-induced inflammation and apoptosis both in NRCMs and septic mice and restore impaired cardiac function. Moreover, Rg1 may exert its effect via blocking the TLR4/NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Man Luo
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Dongsheng Yan
- Department of Gastroenterological Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Qingsong Sun
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Jiali Tao
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Liang Xu
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Hong Sun
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| | - Hongmei Zhao
- Department of Emergency, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu, China
| |
Collapse
|
15
|
Lu J, Zhou N, Yang P, Deng L, Liu G. MicroRNA-27a-3p Downregulation Inhibits Inflammatory Response and Hippocampal Neuronal Cell Apoptosis by Upregulating Mitogen-Activated Protein Kinase 4 (MAP2K4) Expression in Epilepsy: In Vivo and In Vitro Studies. Med Sci Monit 2019; 25:8499-8508. [PMID: 31710596 PMCID: PMC6865231 DOI: 10.12659/msm.916458] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND This study aimed to discover the effect and mechanism of microRNA-27a-3p (miR-27a-3p) in epilepsy. MATERIAL AND METHODS To perform our investigation, in vivo and in vitro models of epilepsy were induced using kainic acid (KA). Expression of miR-27a-3p in the hippocampus of epileptic rats or normal rats or neuronal cells was detected using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Racine score was used to assess seizures in epileptic rats. Cell viability and cell apoptosis were analyzed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry. Enzyme-linked immunosorbent assay (ELISA) was performed to detect inflammatory factors expression. RESULTS Significantly higher expression of miR-27a-3p in the hippocampus of epileptic rats and in KA-induced neurons was observed. We found that miR-27a-3p inhibitor alleviated seizures in epileptic rats. miR-27a-3p inhibitor also inhibited apoptosis of hippocampal neurons in epileptic rats, promoted Bcl2 expression, and decreased Bax and Caspase3 expression. The results showed that miR-27a-3p inhibitor effectively reduced the expression levels of interleukin-1ß (IL-1ß), IL-6, and tumor necrosis factor-alpha (TNF-alpha) in hippocampal tissues of epileptic rats. Dual luciferase reporter assay showed that mitogen-activated protein kinase 4 (MAP2K4) was a direct target of miR-27a-3p. miR-27a-3p inhibitor significantly promoted the cell viability of KA-induced neurons, inhibited cell apoptosis, promoted the expression of Bcl-2, and decreased Bax and Caspase3 expression, and all these changes were abolished by MAP2K4-siRNA co-transfection. CONCLUSIONS Our preliminary findings indicated that miR-27a-3p inhibitor protected against epilepsy-induced inflammatory response and hippocampal neuronal apoptosis by targeting MAP2K4.
Collapse
Affiliation(s)
- Jun Lu
- Department of Neurosurgery, The Brain Hospital of Hunan Province, Changsha, Hunan, China (mainland)
| | - Nina Zhou
- Department of Neurosurgery, The Brain Hospital of Hunan Province, Changsha, Hunan, China (mainland)
| | - Ping Yang
- Department of Neurosurgery, The Brain Hospital of Hunan Province, Changsha, Hunan, China (mainland)
| | - Lanqiuzi Deng
- Department of Neurosurgery, The Brain Hospital of Hunan Province, Changsha, Hunan, China (mainland)
| | - Ganzhe Liu
- Department of Neurology, The Central Hospital of Wuhan, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
16
|
Chen X, Li C, Chen Y, Ni C, Chen X, Zhang L, Xu X, Chen M, Ma X, Zhan H, Xu A, Ge R, Guo X. Aflatoxin B1 impairs leydig cells through inhibiting AMPK/mTOR-mediated autophagy flux pathway. CHEMOSPHERE 2019; 233:261-272. [PMID: 31176127 DOI: 10.1016/j.chemosphere.2019.05.273] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Aflatoxin B1 (AFB1), a potential endocrine disrupter, has been shown to induce hepatotoxicity in animal models, but the effects of AFB1 on Leydig cell function are unclear. In this study, in vivo exposure to AFB1 at 15 and 150 μg/kg/day lowered serum testosterone (T), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels, reduced Leydig cell number, and down-regulated the expression of testosterone biosynthesis-related genes. In vitro study showed that AFB1 (10 μM) significantly increased ROS levels, and decreased T production in Leydig cells by suppressing certain T-biosynthesis gene expressions. Moreover, AFB1 induced Leydig cell apoptosis through lowering pAMPK/AMPK ratio and increasing pmTOR/mTOR ratio, and then further up-regulating autophagy and apoptosis proteins, LC3, BECLIN 1, and BAX, as well as down-regulating autophagy flux protein P62 and anti-apoptosis protein BCL-2. AFB1-induced toxicity in Leydig cells was characterized by inhibiting T-biosynthesis gene expression, reducing Leydig cell number, promoting ROS production, and inducing cell apoptosis via suppressing AMPK/mTOR-mediated autophagy flux pathway.
Collapse
Affiliation(s)
- Xianwu Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chao Li
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yong Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaobo Ni
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiuxiu Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linlei Zhang
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuni Xu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Chen
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinyi Ma
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huilu Zhan
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Aoyu Xu
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Renshan Ge
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoling Guo
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; The Second Clinical Medical School of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
17
|
Liu WG, Han LL, Xiang R. Retracted: Protection of miR-19b in hypoxia/reoxygenation-induced injury by targeting PTEN. J Cell Physiol 2019; 234:16226-16237. [PMID: 30767206 DOI: 10.1002/jcp.28286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To study the role and mechanism of microRNA 19b (miR-19b) in hypoxia/reoxygenation (H/R)-induced injury by targeting PTEN. METHODS PC12 and BV2 cells induced by H/R were treated with miR-19b mimics/inhibitors or small interfering PTEN (si-PTEN), respectively. Lactate dehydrogenase (LDH) level, malondialdehyde (MDA), and superoxide dismutase (SOD) content was detected. Besides, cell viability and apoptosis were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Hoechst33342 staining, and flow cytometry, whereas mitochondrial membrane potential (MMP) tested by JC-1 assay, and reactive oxygen species (ROS) evaluated by the dichloro-dihydro-fluorescein diacetate assay. The ischemia/reperfusion (I/R) rats model was used to investigate the effects of miR-19b in vivo test. The infarct area and apoptosis rates in brain tissues were detected by 2,3,5-triphenyltetrazolium chloride and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining, respectively. miR-19b and PTEN/PI3K/Akt pathway-related proteins were detected by quantitative reverse-transcription polymerase chain reaction and western blot analysis. RESULTS miR-19b mimics could reduce LDH, MDA, and ROS levels and decline cell apoptosis, but enhance the viability, MMP, and SOD activity with decreased PTEN and cleaved caspase, as well as increased p-Akt/Akt and Bcl-2/Bax ratios in H/R-induced PC12 and BV2 cells. However, miR-19b inhibitors led to completely opposite results to aggravate H/R-induced cell injury. Meanwhile, si-PTEN could reverse the effect of miR-19b inhibitors on H/R-induced injury. Moreover, treatment with miR-19b agomir after I/R in vivo sufficiently decreased infarct area and reduced apoptosis rates by targeting PTEN through the regulation of the PI3K/Akt pathway. CONCLUSION miR-19b could inhibit oxidative stress, enhance cell MMP, promote cell survival, and inhibit cell apoptosis by targeting PTEN via the regulation of the PI3K/Akt pathway, thus playing the neuronal protective effects.
Collapse
Affiliation(s)
- Wan-Gen Liu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Li-Li Han
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Rong Xiang
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| |
Collapse
|
18
|
Ahmed RG, El-Gareib AW. Gestational Arsenic Trioxide Exposure Acts as a Developing Neuroendocrine-Disruptor by Downregulating Nrf2/PPARγ and Upregulating Caspase-3/NF-ĸB/Cox2/BAX/iNOS/ROS. Dose Response 2019; 17:1559325819858266. [PMID: 31258454 PMCID: PMC6589982 DOI: 10.1177/1559325819858266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The goal of this investigation was to evaluate the effects of gestational administrations of arsenic trioxide (ATO; As2O3) on fetal neuroendocrine development (the thyroid-cerebrum axis). Pregnant Wistar rats were orally administered ATO (5 or 10 mg/kg) from gestation day (GD) 1 to 20. Both doses of ATO diminished free thyroxine and free triiodothyronine levels and augmented thyrotropin level in both dams and fetuses at GD 20. Also, the maternofetal hypothyroidism in both groups caused a dose-dependent reduction in the fetal serum growth hormone, insulin growth factor-I (IGF-I), and IGF-II levels at embryonic day (ED) 20. These disorders perturbed the maternofetal body weight, fetal brain weight, and survival of pregnant and their fetuses. In addition, destructive degeneration, vacuolation, hyperplasia, and edema were observed in the fetal thyroid and cerebrum of both ATO groups at ED 20. These disruptions appear to depend on intensification in the values of lipid peroxidation, nitric oxide, and H2O2, suppression of messenger RNA (mRNA) expression of nuclear factor erythroid 2-related factor 2 and peroxisome proliferator-activated receptor gamma, and activation of mRNA expression of caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, cyclooxygenase-2, Bcl-2–associated X protein, and inducible nitric oxide synthase in the fetal cerebrum. These data suggest that gestational ATO may disturb thyroid-cerebrum axis generating fetal neurodevelopmental toxicity.
Collapse
Affiliation(s)
- R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
19
|
Avram S, Udrea AM, Negrea A, Ciopec M, Duteanu N, Postolache C, Duda-Seiman C, Duda-Seiman D, Shaposhnikov S. Prevention of Deficit in Neuropsychiatric Disorders through Monitoring of Arsenic and Its Derivatives as Well as Through Bioinformatics and Cheminformatics. Int J Mol Sci 2019; 20:ijms20081804. [PMID: 31013686 PMCID: PMC6514589 DOI: 10.3390/ijms20081804] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/26/2022] Open
Abstract
Neuropsychiatric disorders are induced by various risk factors, including direct exposure to environmental chemicals. Arsenic exposure induces neurodegeneration and severe psychiatric disorders, but the molecular mechanisms by which brain damage is induced are not yet elucidated. Our aim is to better understand the molecular mechanisms of arsenic toxicity in the brain and to elucidate possible ways to prevent arsenic neurotoxicity, by reviewing significant experimental, bioinformatics, and cheminformatics studies. Brain damage induced by arsenic exposure is discussed taking in account: the correlation between neuropsychiatric disorders and the presence of arsenic and its derivatives in the brain; possible molecular mechanisms by which arsenic induces disturbances of cognitive and behavioral human functions; and arsenic influence during psychiatric treatments. Additionally, we present bioinformatics and cheminformatics tools used for studying brain toxicity of arsenic and its derivatives, new nanoparticles used as arsenic delivery systems into the human body, and experimental ways to prevent arsenic contamination by its removal from water. The main aim of the present paper is to correlate bioinformatics, cheminformatics, and experimental information on the molecular mechanism of cerebral damage induced by exposure to arsenic, and to elucidate more efficient methods used to reduce its toxicity in real groundwater.
Collapse
Affiliation(s)
- Speranta Avram
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Ana Maria Udrea
- National Institute for Laser Plasma and Radiation Physics, Atomistilor Street 409, 077125 Magurele, Romania.
| | - Adina Negrea
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, Piata Victoriei, 2, 300006 Timisoara, Romania.
| | - Mihaela Ciopec
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, Piata Victoriei, 2, 300006 Timisoara, Romania.
| | - Narcis Duteanu
- Politehnica University of Timisoara, Faculty of Industrial Chemistry and Environmental Engineering, Piata Victoriei, 2, 300006 Timisoara, Romania.
| | - Carmen Postolache
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania.
| | - Corina Duda-Seiman
- Faculty of Chemistry, Biology, Geography, West University of Timișoara, I.H.Pestalozzi 16, 300115 Timisoara, Romania.
| | - Daniel Duda-Seiman
- University of Medicine and Pharmacy "Victor Babes, Timişoara, Eftimie Murgu Square 2, 300041 Timisoara, Romania.
| | | |
Collapse
|
20
|
Zheng X, Wang X, Wang T, Zhang H, Wu H, Zhang C, Yu L, Guan Y. Gestational Exposure to Particulate Matter 2.5 (PM 2.5) Leads to Spatial Memory Dysfunction and Neurodevelopmental Impairment in Hippocampus of Mice Offspring. Front Neurosci 2019; 12:1000. [PMID: 30666183 PMCID: PMC6330280 DOI: 10.3389/fnins.2018.01000] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/11/2018] [Indexed: 12/19/2022] Open
Abstract
Prenatal exposure to air pollutants has long-term impact on growth retardation of nervous system development and is related to central nervous system diseases in children. However, it is not well-characterized whether gestational exposure to air pollutants affects the development of nervous system in offspring. Here, we investigated the effects of gestational exposure to particulate matter 2.5 (PM2.5) on hippocampus development in mice offspring, through neurobehavioral, ultrastructural, biochemical and molecular investigations. We found that spatial memory in mice offspring from PM2.5 high-dosage group was impaired. Next, hippocampal ultrastructure of the mice offspring in puberty exhibited mitochondrial damage related to PM2.5 exposure. Interestingly, EdU-positive cells in the subgranular zone (SGZ) of offspring from PM2.5 high-dosage group decreased, with NeuN+/EdU+cells reduced significantly. Furthermore, the numbers of NeuN+/TUNEL+, GFAP+/TUNEL+, and Iba1+/TUNEL+ double-labeled cells increased with PM2.5 exposure in a dosage-dependent manner. In addition, gestational exposure to PM2.5 resulted in increased levels of both mRNAs and proteins involved in apoptosis, including caspase-3, -8, -9, p53, and c-Fos, and decreased Bcl-2/Bax ratios in the hippocampus of mice offspring. Moreover, gestational exposure to PM2.5 was dosage-dependently associated with the increased secretions of inflammatory proteins, including NF-κB, TNF-α, and IL-1β. Collectively, our results suggest that gestational exposure to PM2.5 leads to spatial memory dysfunction and neurodevelopmental impairment by exerting effects on apoptotic and neuroinflammatory events, as well as the neurogenesis in hippocampus of mice offspring.
Collapse
Affiliation(s)
- Xinrui Zheng
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Xia Wang
- School of Public Health and Management, Weifang Medical University, Weifang, China
| | - Tingting Wang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Hongxia Zhang
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Hongjuan Wu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Can Zhang
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Li Yu
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| | - Yingjun Guan
- Neurologic Disorders and Regeneration Repair Lab of Shandong Higher Education, Department of Histology and Embryology, Weifang Medical University, Weifang, China
| |
Collapse
|
21
|
Li S, Yang L, Zhang Y, Zhang C, Shao J, Liu X, Li Y, Piao F. Taurine Ameliorates Arsenic-Induced Apoptosis in the Hippocampus of Mice Through Intrinsic Pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 975 Pt 1:183-192. [PMID: 28849454 DOI: 10.1007/978-94-024-1079-2_16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our group previously reported that arsenic (As) exposure induced apoptosis in hippocampus neurons. The aim of the present study was to clarify the protective capacity of taurine (Tau) on As-induced neuronal apoptosis and the related mechanism in mouse hippocampus. Mice were divided into: control group, Tau control group, As exposure group and Tau protective group, randomly. The apoptotic rate of mouse hippocampus was determined by TUNEL staining. The levels of Bcl-2 and Bax gene and protein were analyzed by real time RT-PCR and WB, respectively. Furthermore, cytochrome c (Cyt C) release, and the activity of caspase-8 and caspase-3 were also determined. The results showed that Tau treatment induced the decrease of TUNEL-positive cells, prohibited the disturbance of Bcl-2 and Bax expression, and inhibited Cyt C release and caspase-8 and caspase-3 activation significantly. The results indicated that Tau supplement markedly ameliorates As-induced apoptosis by mitochondria-related pathway in mouse hippocampus.
Collapse
Affiliation(s)
- Shuangyue Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Lijun Yang
- Dalian Center for Disease Control and Prevention, Dalian, China
| | - Yan Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
- Xunyi Center for Disease Control and Prevention, Xunyi, China
| | - Cong Zhang
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Jing Shao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Xiaohui Liu
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Yachen Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China
| | - Fengyuan Piao
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian, China.
| |
Collapse
|
22
|
Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG, Tinkov AA. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. ENVIRONMENTAL RESEARCH 2018; 166:234-250. [PMID: 29902778 DOI: 10.1016/j.envres.2018.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Japan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Heba A Yassa
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
23
|
R G A, El-Gareib AW. WITHDRAWN: Toxic effects of gestational arsenic trioxide on the neuroendocrine axis of developing rats. Food Chem Toxicol 2018:S0278-6915(18)30663-X. [PMID: 30218683 DOI: 10.1016/j.fct.2018.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ahmed R G
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
24
|
Wu DM, Zhang YT, Lu J, Zheng YL. Effects of microRNA-129 and its target gene c-Fos on proliferation and apoptosis of hippocampal neurons in rats with epilepsy via the MAPK signaling pathway. J Cell Physiol 2018; 233:6632-6643. [PMID: 29194604 DOI: 10.1002/jcp.26297] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/28/2017] [Indexed: 11/12/2022]
Abstract
This study aims to investigate the effect of microRNA-129 (miR-129) on proliferation and apoptosis of hippocampal neurons in epilepsy rats by targeting c-Fos via the MAPK signaling pathway. Thirty rats were equally classified into a model group (successfully established as chronic epilepsy models) and a normal group. Expression of miR-129, c-Fos, bax, and MAPK was detected by RT-qPCR and Western blotting. Hippocampal neurons were assigned into normal, blank, negative control (NC), miR-129 mimic, miR-129 inhibitor, siRNA-c-Fos, miR-129 inhibitor+siRNA-c-Fos groups. The targeting relationship between miR-129 and c-Fos was predicted and verified by bioinformatics websites and dual-luciferase reporter gene assay. Cell proliferation after transfection was measured by MTT assay, and cell cycle and apoptosis by flow cytometry. c-Fos is a potential target gene of miR-129. Compared with the normal group, the other six groups showed a decreased miR-129 expression; increased expression of expression of c-Fos, Bax, and MAPK; decreased proliferation; accelerated apoptosis; more cells arrested in the G1 phase; and fewer cells arrested in the S phase. Compared with the blank and NC groups, the miR-129 mimic group and the siRNA-c-Fos group showed decreased expression of c-Fos, Bax, and MAPK, increased cells proliferation, and decreased cell apoptosis, fewer cells arrested in the G1 phase and more cells arrested in the S phase. However, the miR-129 inhibitor groups showed reverse consequences. This study suggests that miR-129 could inhibit the occurrence and development of epilepsy by repressing c-Fos expression through inhibiting the MAPK signaling pathway.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P. R. China
| | - Yu-Tong Zhang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P. R. China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P. R. China
| |
Collapse
|
25
|
Zhang T, Zheng X, Wang X, Zhao H, Wang T, Zhang H, Li W, Shen H, Yu L. Maternal Exposure to PM 2.5 during Pregnancy Induces Impaired Development of Cerebral Cortex in Mice Offspring. Int J Mol Sci 2018; 19:ijms19010257. [PMID: 29337904 PMCID: PMC5796203 DOI: 10.3390/ijms19010257] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 12/13/2022] Open
Abstract
Air pollution is a serious environmental health problem closely related to the occurrence of central nervous system diseases. Exposure to particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) during pregnancy may affect the growth and development of infants. The present study was to investigate the effects of maternal exposure to PM2.5 during pregnancy on brain development in mice offspring. Pregnant mice were randomly divided into experimental groups of low-, medium-, or high-dosages of PM2.5, a mock-treated group which was treated with the same amount of phosphate buffer solution (PBS), and acontrol group which was untreated. The ethology of offspring mice on postnatal days 1, 7, 14, 21, and 30, along with neuronal development and apoptosis in the cerebral cortex were investigated. Compared with the control, neuronal mitochondrial cristae fracture, changed autophagy characteristics, significantly increased terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cell rate, and mRNA levels of apoptosis-related caspase-8 and caspase-9 were found in cerebral cortex of mice offspring from the treatment groups, with mRNA levels of Bcl-2 and ratio of Bcl-2 to Bax decreased. Treatment groups also demonstrated enhanced protein expressions of apoptosis-related cleaved caspase-3, cleaved caspase-8 and cleaved caspase-9, along with declined proliferating cell nuclear antigen (PCNA), Bcl-2, and ratio of Bcl-2 to Bax. Open field experiments and tail suspension experiments showed that exposure to high dosage of PM2.5 resulted in decreased spontaneous activities but increased static accumulation time in mice offspring, indicating anxiety, depression, and social behavioral changes. Our results suggested that maternal exposure to PM2.5 during pregnancy might interfere with cerebral cortex development in mice offspring by affecting cell apoptosis.
Collapse
Affiliation(s)
- Tianliang Zhang
- Experimental Center for Medical Research, Weifang Medical University, Weifang 261053, China.
| | - Xinrui Zheng
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Xia Wang
- School of Public Health and Management, Weifang Medical University, Weifang 261053, China.
| | - Hui Zhao
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Tingting Wang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Hongxia Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| | - Wanwei Li
- School of Public Health and Management, Weifang Medical University, Weifang 261053, China.
| | - Hua Shen
- Department of Mathematics and Statistics, University of Calgary, Calgary, AB T2N 1N4, Canada.
| | - Li Yu
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
26
|
Zhang F, Zhang CM, Li S, Wang KK, Guo BB, Fu Y, Liu LY, Zhang Y, Jiang HY, Wu CJ. Low dosage of arsenic trioxide inhibits vasculogenic mimicry in hepatoblastoma without cell apoptosis. Mol Med Rep 2017; 17:1573-1582. [PMID: 29138840 PMCID: PMC5780096 DOI: 10.3892/mmr.2017.8046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/12/2017] [Indexed: 01/03/2023] Open
Abstract
Hepatoblastoma (HB) is the most common type of pediatric liver malignancy, which predominantly occurs in young children (aged <5 years), and continues to be a therapeutic challenge in terms of metastasis and drug resistance. As a new pattern of tumor blood supply, vasculogenic mimicry (VM) is a channel structure lined by tumor cells rather than endothelial cells, which contribute to angiogenesis. VM occurs in a variety of solid tumor types, including liver cancer, such as hepatocellular carcinoma. The aim of the present study was to elucidate the effect of arsenic trioxide (As2O3) on VM. In vitro experiments identified that HB cell line HepG2 cells form typical VM structures on Matrigel, and the structures were markedly damaged by As2O3 at a low concentration before the cell viability significantly decreased. The western blot results indicated that As2O3 downregulated the expression level of VM-associated proteins prior to the appearance of apoptotic proteins. In vivo, VM has been observed in xenografts of HB mouse models and identified by periodic acid-Schiff+/CD105− channels lined by HepG2 cells without necrotic cells. As2O3 (2 mg/kg) markedly depresses tumor growth without causing serious adverse reactions by decreasing the number of VM channels via inhibiting the expression level of VM-associated proteins. Thus, the present data strongly indicate that low dosage As2O3 reduces the formation of VM in HB cell line HepG2 cells, independent of cell apoptosis in vivo and in vitro, and may represent as a candidate drug for HB targeting VM.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chun-Mei Zhang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shu Li
- Department of Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Kun-Kun Wang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Bin-Bin Guo
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yao Fu
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lu-Yang Liu
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yu Zhang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hai-Yu Jiang
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Chang-Jun Wu
- Department of Ultrasonography, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
27
|
Mo Q, Hu L, Weng J, Zhang Y, Zhou Y, Xu R, Zuo Z, Deng J, Ren Z, Zhong Z, Peng G, Nong X, Wei Y, Hu Y. Euptox A Induces G1 Arrest and Autophagy via p38 MAPK- and PI3K/Akt/mTOR-Mediated Pathways in Mouse Splenocytes. J Histochem Cytochem 2017; 65:543-558. [PMID: 28745544 DOI: 10.1369/0022155417722118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Euptox A (9-oxo-10, 11-dehydroageraphorone), the main toxin isolated from Eupatorium adenophorum, is known to induce immunotoxicity in animals. However, the precise mechanism underlying the effects of Euptox A on splenocytes is unclear. Here, we aimed to investigate the molecular mechanisms underlying the effect of Euptox A in mouse spleens after its intragastric administration and found that Euptox A exhibits proautophagic effects in splenocytes. Euptox A markedly arrested the splenocytes in the G0/G1 phase, which was accompanied by inhibition of the expression of the positive regulators CDK4, CDK2, cyclin D1, PCNA, and E2F1, and promotion of the expression of the negative regulators p53, p21 Waf1/Cip1, p27 Kip1, and Chk1. We also found that Euptox A did not markedly induce splenocyte apoptosis, but induced autophagy while increasing the subcellular localization of punctate LC3, ratio of LC3-II/LC3-I, and Beclin 1 levels, and decreasing p62 levels. Euptox A also significantly inhibited p-PI3K, p-p38 MAPK, p-Akt, and p-mTOR expression, but increased PTEN and p-AMPK expression. These results indicated that Euptox A induced splenocyte autophagy by inhibiting the PI3K/Akt/mTOR pathway, suppressing p38 MAPK expression, and activating AMPK. These findings provide new insights into the mechanisms involved in spleen toxicity caused by Euptox A in mice.
Collapse
Affiliation(s)
- Quan Mo
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Liwen Hu
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Jiahua Weng
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Yong Zhang
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Yancheng Zhou
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Ruiguang Xu
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Zhicai Zuo
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Junliang Deng
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Zhihua Ren
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Zhijun Zhong
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Guangneng Peng
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| | - Xiang Nong
- College of Life Science, Leshan Normal University, Leshan, China (XN)
| | - Yahui Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Science, Northwest University, Xi'an, China (YW)
| | - Yanchun Hu
- Key laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China (QM, LH, JW, YZ, YCZ, RX, ZCZ, JD, ZR, ZJZ, GP, YH)
| |
Collapse
|
28
|
Chen B, Li D, Li M, Li S, Peng K, Shi X, Zhou L, Zhang P, Xu Z, Yin H, Wang Y, Zhao X, Zhu Q. Induction of mitochondria-mediated apoptosis and PI3K/Akt/ mTOR-mediated autophagy by aflatoxin B2 in hepatocytes of broilers. Oncotarget 2016; 7:84989-84998. [PMID: 27863407 PMCID: PMC5356714 DOI: 10.18632/oncotarget.13356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022] Open
Abstract
Aflatoxins have been shown to induce hepatotoxicity in animal models, but the effects of aflatoxin B2 (AFB2) on broiler hepatocytes is unclear. This study aimed to investigate the effects of AFB2 on apoptosis and autophagy to provide an experimental basis for understanding the mechanism of aflatoxin-induced hepatotoxicity. One hundred-twenty Cobb500 broilers were allocated to four groups and exposed to 0 mg/kg, 0.2 mg/kg, 0.4 mg/kg, and 0.8 mg/kg of AFB2 per day for 21 d. AFB2 exerted potent proapoptotic and proautophagic effects on hepatocytes, with increased numbers of apoptotic and autophagic hepatocytes.Poly ADP-ribose polymerase (PARP) was cleaved and caspase-3 was activated in experimental groups, showing that the apoptosis of hepatocytes was triggered by AFB2. Increased levels of the autophagy factors Beclin-1 and LC3-II/LC3-I, as well as down-regulation of p62, a marker of autophagic flux, provided additional evidence for AFB2-triggered autophagy. AFB2 induced mitochondria-mediated apoptosis via the production of reactive oxygen species (ROS) and promotion of the translocation of Bax and cytochrome c (cyt c) between mitochondria and the cytosol, triggering the formation of apoptosomes. AFB2 also inhibited the phosphoinositide 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway by activating PI3K, Akt, and mTOR and inhibiting their phosphorylation, contributing to the proautophagic activity of AFB2. These findings provide new insights into the mechanisms involved in AFB2-induced hepatotoxicity in broilers.
Collapse
Affiliation(s)
- Binlong Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R.China, 611130
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R.China, 611130
| | - Miao Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R.China, 611130
| | - Sichen Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R.China, 611130
| | - Kenan Peng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R.China, 611130
| | - Xian Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R.China, 611130
| | - Lanyun Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R.China, 611130
| | - Pu Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R.China, 611130
| | - Zhongxian Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R.China, 611130
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R.China, 611130
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R.China, 611130
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R.China, 611130
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R.China, 611130
| |
Collapse
|
29
|
Hijacking microglial glutathione by inorganic arsenic impels bystander death of immature neurons through extracellular cystine/glutamate imbalance. Sci Rep 2016; 6:30601. [PMID: 27477106 PMCID: PMC4967897 DOI: 10.1038/srep30601] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022] Open
Abstract
Arsenic-induced altered microglial activity leads to neuronal death, but the causative mechanism remains unclear. The present study showed, arsenic-exposed (10 μM) microglial (N9) culture supernatant induced bystander death of neuro-2a (N2a), which was further validated with primary microglia and immature neuronal cultures. Results indicated that arsenic-induced GSH synthesis by N9 unfavorably modified the extracellular milieu for N2a by lowering cystine and increasing glutamate concentration. Similar result was observed in N9-N2a co-culture. Co-exposure of arsenic and 250 μM glutamate, less than the level (265 μM) detected in arsenic-exposed N9 culture supernatant, compromised N2a viability which was rescued by cystine supplementation. Therefore, microglia executes bystander N2a death by competitive inhibition of system Xc- (xCT) through extracellular cystine/glutamate imbalance. We confirmed the role of xCT in mediating bystander N2a death by siRNA inhibition studies. Ex-vivo primary microglia culture supernatant from gestationally exposed mice measured to contain lower cystine and higher glutamate compared to control and N-acetyl cysteine co-treated group. Immunofluorescence staining of brain cryosections from treated group showed more dead immature neurons with no such effect on microglia. Collectively, we showed, in presence of arsenic microglia alters cystine/glutamate balance through xCT in extracellular milieu leading to bystander death of immature neurons.
Collapse
|
30
|
Song K, Zhang M, Hu J, Liu Y, Liu Y, Wang Y, Ma X. Methane-rich saline attenuates ischemia/reperfusion injury of abdominal skin flaps in rats via regulating apoptosis level. BMC Surg 2015; 15:92. [PMID: 26228913 PMCID: PMC4520019 DOI: 10.1186/s12893-015-0075-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 07/16/2015] [Indexed: 11/25/2022] Open
Abstract
Background In plastic surgery, skin damage induced by ischemia/reperfusion (I/R) is a multifactorial process that often occurs. Methane gas has been reported to be a new therapeutic gas for attenuating I/R injury. In this study, we assessed the effects of methane-rich saline (MRS) in regulating apoptosis on skin flap I/R injury. Methods Male Sprague–Dawley rats, 6–8 weeks old, were divided randomly into three groups: one sham surgery group (SH) and two surgery groups. After undergoing 6 h of I/R management of an abdominal skin flap, surgery groups were treated with physiological saline (I/R-P) or methane-rich saline (I/R-M). On the 3rd postoperative day, a laser Doppler flowmeter was used to measure flap blood supply, and hematoxylin and eosin (H&E) staining was used to observe morphological changes. TdT-mediated dUTP-X nick end labeling (TUNEL) staining was also used to observe early apoptosis and is presented as the percentage of TUNEL-positive cells. Moreover, pASK-1, pJNK, Bcl-2 and Bax were detected by immunohistochemical technology. Caspase-3 activity was also measured to evaluate the effects of MRS. Results Compared to the I/R-P group, the flaps in the I/R-M group presented a larger survival area and better blood perfusion with less inflammatory infiltration and cell apoptosis, a higher expression of Bcl-2, a lower expression of pASK-1, pJNK and Bax, and a lower caspase-3 activity. Conclusion According to the results, MRS attenuated I/R injury by regulating apoptosis and has the potential to be applied as a new therapy for improving skin flap survival.
Collapse
Affiliation(s)
- Kexin Song
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Mingzi Zhang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Jianqiang Hu
- Department of Orthopaedics, Qingdao Huangdao District Hospital of Traditional Chinese Medicine, Qingdao, Shandong, China
| | - Yunqi Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Yifang Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China.
| | - Xuemei Ma
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|