1
|
Feng Y, Huang Z, Ma X, Zong X, Xu P, Lin HW, Zhang Q. Intermittent theta-burst stimulation alleviates hypoxia-ischemia-caused myelin damage and neurologic disability. Exp Neurol 2024; 378:114821. [PMID: 38782349 PMCID: PMC11214828 DOI: 10.1016/j.expneurol.2024.114821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Neonatal hypoxia-ischemia (HI) results in behavioral deficits, characterized by neuronal injury and retarded myelin formation. To date, limited treatment methods are available to prevent or alleviate neurologic sequelae of HI. Intermittent theta-burst stimulation (iTBS), a non-invasive therapeutic procedure, is considered a promising therapeutic tool for treating some neurocognitive disorders and neuropsychiatric diseases. Hence, this study aims to investigate whether iTBS can prevent the negative behavioral manifestations of HI and explore the mechanisms for associations. We exposed postnatal day 10 Sprague-Dawley male and female rats to 2 h of hypoxia (6% O2) following right common carotid artery ligation, resulting in oligodendrocyte (OL) dysfunction, including reduced proliferation and differentiation of oligodendrocyte precursor cells (OPCs), decreased OL survival, and compromised myelin in the corpus callosum (CC) and hippocampal dentate gyrus (DG). These alterations were concomitant with cognitive dysfunction and depression-like behaviors. Crucially, early iTBS treatment (15 G, 190 s, seven days, initiated one day post-HI) significantly alleviated HI-caused myelin damage and mitigated the neurologic sequelae both in male and female rats. However, the late iTBS treatment (initiated 18 days after HI insult) could not significantly impact these behavioral deficits. In summary, our findings support that early iTBS treatment may be a promising strategy to improve HI-induced neurologic disability. The underlying mechanisms of iTBS treatment are associated with promoting the differentiation of OPCs and alleviating myelin damage.
Collapse
Affiliation(s)
- Yu Feng
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Xiaohui Ma
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Xuemei Zong
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Peisheng Xu
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, College of Pharmacy, 715 Sumter Street, CLS609D, Columbia, SC 29208, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, Shreveport, 1501 Kings Highway, LA 71103, USA.
| |
Collapse
|
2
|
Turner MJ, Dietz RM. Potential Adjuncts to Therapeutic Hypothermia to Mitigate Multiorgan Injury in Perinatal Hypoxia-Ischemia. Neoreviews 2023; 24:e771-e782. [PMID: 38036441 DOI: 10.1542/neo.24-12-e771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Over the last 2 decades, therapeutic hypothermia has become the standard of care to reduce morbidity and mortality in neonates affected by moderate-to-severe hypoxic-ischemic encephalopathy (HIE). There is a significant interest in improving the neurologic outcomes of neonatal HIE, ranging from adjunctive therapy to therapeutic hypothermia. Importantly, the pathophysiologic mechanisms underlying HIE also affect multiple other organs, contributing to high morbidity and mortality in this patient population. This review focuses on the adjunct therapies currently under investigation to mitigate the impact of hypoxic-ischemic injury on the brain, kidneys, liver, heart, and gastrointestinal system.
Collapse
Affiliation(s)
- Megan J Turner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
- Department of Pediatrics, Denver Health Medical Center, Denver, CO
| | - Robert M Dietz
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
3
|
Guidotti I, Lugli L, Ori L, Roversi MF, Casa Muttini ED, Bedetti L, Pugliese M, Cavalleri F, Stefanelli F, Ferrari F, Berardi A. Neonatal seizures treatment based on conventional multichannel EEG monitoring: an overview of therapeutic options. Expert Rev Neurother 2022; 22:623-638. [PMID: 35876114 DOI: 10.1080/14737175.2022.2105698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Seizures are the main neurological emergency during the neonatal period and are mostly acute and focal. The prognosis mainly depends on the underlying etiology. Conventional multichannel video-electroencephalographic (cEEG) monitoring is the gold standard for diagnosis, but treatment remains a challenge. AREAS COVERED : This review, based on PubMed search over the last 4 decades, focuses on the current treatment options for neonatal seizures based on cEEG monitoring. There is still no consensus on seizure therapy, owing to poor scientific evidence. Traditionally, the first-line treatments are phenobarbital and phenytoin, followed by midazolam and lidocaine, but their efficacy is limited. Therefore, current evidence strongly suggests the use of alternative antiseizure medications. Randomized controlled trials of new drugs are ongoing. EXPERT OPINION : Therapy for neonatal seizures should be prompt and tailored, based on semeiology, mirror of the underlying cause, and cEEG features. Further research should focus on antiseizure medications that directly act on the etiopathogenetic mechanism responsible for seizures and are therefore more effective in seizure control.
Collapse
Affiliation(s)
- Isotta Guidotti
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Licia Lugli
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Luca Ori
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Maria Federica Roversi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Elisa Della Casa Muttini
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Luca Bedetti
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Marisa Pugliese
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Francesca Cavalleri
- Division of Neuroradiology, Department of Neuroscience, Nuovo Ospedale Civile S. Agostino-Estense, Modena, Italy
| | - Francesca Stefanelli
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Post Graduate School of Pediatrics, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabrizio Ferrari
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| | - Alberto Berardi
- Division of Neonatology and Neonatal Intensive Care Unit, Department of Pediatrics, University Hospital, Modena, Italy
| |
Collapse
|
4
|
Das T, Kamle A, Kumar A, Chakravarty S. Hypoxia Induced Sex-Difference in Zebrafish Brain Proteome Profile Reveals the Crucial Role of H3K9me3 in Recovery From Acute Hypoxia. Front Genet 2022; 12:635904. [PMID: 35173759 PMCID: PMC8841817 DOI: 10.3389/fgene.2021.635904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/29/2021] [Indexed: 11/13/2022] Open
Abstract
Understanding the molecular basis of sex differences in neural response to acute hypoxic insult has profound implications for the effective prevention and treatment of ischemic stroke. Global hypoxic-ischemic induced neural damage has been studied recently under well-controlled, non-invasive, reproducible conditions using a zebrafish model. Our earlier report on sex difference in global acute hypoxia-induced neural damage and recovery in zebrafish prompted us to conduct a comprehensive study on the mechanisms underlying the recovery. An omics approach for studying quantitative changes in brain proteome upon hypoxia insult following recovery was undertaken using iTRAQ-based LC-MS/MS approach. The results shed light on the altered expression of many regulatory proteins in the zebrafish brain upon acute hypoxia following recovery. The sex difference in differentially expressed proteins along with the proteins expressed in a uniform direction in both the sexes was studied. Core expression analysis by Ingenuity Pathway Analysis (IPA) showed a distinct sex difference in the disease function heatmap. Most of the upstream regulators obtained through IPA were validated at the transcriptional level. Translational upregulation of H3K9me3 in males led us to elucidate the mechanism of recovery by confirming transcriptional targets through ChIP-qPCR. The upregulation of H3K9me3 level in males at 4 h post-hypoxia appears to affect the early neurogenic markers nestin, klf4, and sox2, which might explain the late recovery in males, compared to females. Acute hypoxia-induced sex-specific comparison of brain proteome led us to reveal many differentially expressed proteins, which can be further studied for the development of novel targets for better therapeutic strategy.
Collapse
Affiliation(s)
- Tapatee Das
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Avijeet Kamle
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Arvind Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Sumana Chakravarty
- Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- *Correspondence: Sumana Chakravarty,
| |
Collapse
|
5
|
Murden S, Borbélyová V, Laštůvka Z, Mysliveček J, Otáhal J, Riljak V. Gender differences involved in the pathophysiology of the perinatal hypoxic-ischemic damage. Physiol Res 2020; 68:S207-S217. [PMID: 31928039 DOI: 10.33549/physiolres.934356] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a neonatal condition that occurs as a consequence of perinatal asphyxia, which is caused by a number of factors, commonly via compression of the umbilical cord, placental abruption, severe meconium aspiration, congenital cardiac or pulmonary anomalies and birth trauma. Experimental studies have confirmed that male rat pups show a higher resistance to HIE treatment. Moreover, the long-term consequences of hypoxia in male are more severe in comparison to female rat pups. These sex differences can be attributed to the pathophysiology of hypoxia-ischemia, whereby studies are beginning to establish such gender-specific distinctions. The current and sole treatment for HIE is hypothermia, in which a reduction in temperature prevents long-term effects, such as cerebral palsy or seizures. However, in most cases hypothermia is not a sufficient treatment as indicated by a high mortality rate. In the present review, we discuss the gender differences within the pathophysiology of hypoxia-ischemia and delve into the role of gender in the incidence, progression and severity of the disease. Furthermore, this may result in the development of potential novel treatment approaches for targeting and preventing the long-term consequences of HIE.
Collapse
Affiliation(s)
- S Murden
- Department of Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
6
|
Chen G, Chen Y, Xie Y, Huang R, Chen T, Shi P, Zhang Z, Hou Y, Xing W, Wei L. Topiramate for hypoxic ischemic encephalopathy: A systematic review protocol. Medicine (Baltimore) 2020; 99:e18704. [PMID: 32332593 PMCID: PMC7220522 DOI: 10.1097/md.0000000000018704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Hypoxic ischemic encephalopathy (HIE) is brain injury caused by different reasons and the most common diagnosed is neonatal HIE. Most of the existing treatments have their own shortcomings or there are still some unexplained mechanisms in it. Topiramate (TPM) is a new drug for the treatment for seizures in neonates with HIE, but is currently used off-label. Our protocol aims to access the efficiency and safety of TPM for HIE. METHODS AND ANALYSIS Eight databases will be searched by 2 independent researchers for the article on the topic of using TPM as treatment for HIE, including PubMed, the Cochrane Central Register of Controlled Trials (Cochrane Library), Embase, and Web of Science, China National Knowledge Infrastructure (CNKI), Chinese Biomedical Literature Database (CBM), Wang Fang Database and Chinese Science and Technology Periodical database (VIP). The included papers are those published from the established date of the databases to 2019. The therapeutic effects based on the grade of neonatal behavioral neurological assessment will be regarded as the primary outcomes. RevMan V5.3 will be used to compute the data synthesis and carry out meta-analysis. The risk of bias will be appraised by the Cochrane risk of bias tool. Rare ratio for dichotomous outcomes and mean different for continuous data will be expressed with 95% confidence intervals (CI) for analysis. A random effects model or a fixed effects model will be employed, when heterogeneity is found or not. Subgroup analysis and sensitivity analysis will be applied if the heterogeneity is obvious. RESULTS This study will provide the recent evidence of TPM for HIE from reducing seizure acticity. CONCLUSION The conclusion of this study will provide proof to evaluate if TPM is effective and safe in the treatment of HIE.PROSPERO registration number: PROSPERO CRD42018117981.
Collapse
Affiliation(s)
| | - Yijun Chen
- First Affiliated Hospital of Guangzhou Medical University
- National Clinical Research Center for Respiratory Disease
| | - Yaying Xie
- Guangzhou University of Chinese Medicine
| | | | | | - Peiyu Shi
- Guangzhou University of Chinese Medicine
| | | | | | - Wanli Xing
- Guangzhou University of Chinese Medicine
| | - Li Wei
- Department of Pharmacy, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Borjini N, Sivilia S, Giuliani A, Fernandez M, Giardino L, Facchinetti F, Calzà L. Potential biomarkers for neuroinflammation and neurodegeneration at short and long term after neonatal hypoxic-ischemic insult in rat. J Neuroinflammation 2019; 16:194. [PMID: 31660990 PMCID: PMC6819609 DOI: 10.1186/s12974-019-1595-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hypoxic-ischemic (HI) encephalopathy causes life-long morbidity and premature mortality in term neonates. Therapies in addition to whole-body cooling are under development to treat the neonate at risk for HI encephalopathy, but are not a quickly measured serum inflammatory or neuronal biomarkers to rapidly and accurately identify brain injury in order to follow the efficacy of therapies. METHODS In order to identify potential biomarkers for early inflammatory and neurodegenerative events after neonatal hypoxia-ischemia, both male and female Wistar rat pups at postnatal day 7 (P7) were used and had their right carotid artery permanently doubly occluded and exposed to 8% oxygen for 90 min. Sensory and cognitive parameters were assessed by open field, rotarod, CatWalk, and Morris water maze (MWM) test. Plasma and CSF biomarkers were investigated on the acute (24 h and 72 h) and chronic phase (4 weeks). Brains were assessed for gene expression analysis by quantitative RT-PCR Array. RESULTS We found a delay of neurological reflex maturation in HI rats. We observed anxiolytic-like baseline behavior in males more than females following HI injury. HI rats held on the rotarod for a shorter time comparing to sham. HI injury impaired spatial learning ability on MWM test. The CatWalk assessment demonstrated a long-term deficit in gait parameters related to the hind paw. Proinflammatory biomarkers such as IL-6 in plasma and CCL2 and TNF-α in CSF showed an upregulation at 24 h after HI while other cytokines, such as IL-17A and CCL5, were upregulated after 72 h in CSF. At 24 h post-injury, we observed an increase of Edn1, Hif1-α, and Mmp9 mRNA levels in the ipsilateral vs the contralateral hemisphere of HI rats. An upregulation of genes involved with clotting and hematopoietic processes was observed 72 h post-injury. CONCLUSIONS Our work showed that, in the immature brain, the HI injury induced an early increased production of several proinflammatory mediators detectable in plasma and CSF, followed by tissue damage in the hypoxic hemisphere and short-term as well as long-lasting neurobehavioral deficits.
Collapse
Affiliation(s)
- Nozha Borjini
- Corporate Pre-clinical R&D, Chiesi Farmaceutici S.p.A, Largo Belloli 11/A, 43122, Parma, Italy. .,Health Science and Technologies Interdepartmental Center for Industrial Research, University of Bologna, Via Tolara di Sopra 41/E, I-40064, Ozzano Emilia, BO, Italy. .,IRET Foundation, Via Tolara di Sopra 41/E, 40064, Ozzano Emilia, BO, Italy.
| | - Sandra Sivilia
- IRET Foundation, Via Tolara di Sopra 41/E, 40064, Ozzano Emilia, BO, Italy
| | - Alessandro Giuliani
- IRET Foundation, Via Tolara di Sopra 41/E, 40064, Ozzano Emilia, BO, Italy.,Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Mercedes Fernandez
- IRET Foundation, Via Tolara di Sopra 41/E, 40064, Ozzano Emilia, BO, Italy.,Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Luciana Giardino
- Health Science and Technologies Interdepartmental Center for Industrial Research, University of Bologna, Via Tolara di Sopra 41/E, I-40064, Ozzano Emilia, BO, Italy.,IRET Foundation, Via Tolara di Sopra 41/E, 40064, Ozzano Emilia, BO, Italy.,Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064, Ozzano Emilia, BO, Italy
| | - Fabrizio Facchinetti
- Corporate Pre-clinical R&D, Chiesi Farmaceutici S.p.A, Largo Belloli 11/A, 43122, Parma, Italy
| | - Laura Calzà
- Health Science and Technologies Interdepartmental Center for Industrial Research, University of Bologna, Via Tolara di Sopra 41/E, I-40064, Ozzano Emilia, BO, Italy.,IRET Foundation, Via Tolara di Sopra 41/E, 40064, Ozzano Emilia, BO, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Via Tolara di Sopra 41, 40064, Ozzano Emilia, BO, Italy
| |
Collapse
|
8
|
Zhu ZH, Peng KP, Liu MH, Tian GX. Acoustic Radiation Force Impulse Imaging With Virtual Touch Tissue Quantification Enables Characterization of Mild Hypoxic-Ischemic Brain Damage in Neonatal Rats. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:1797-1805. [PMID: 30480831 DOI: 10.1002/jum.14869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/25/2018] [Accepted: 10/13/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVES The aim of this study was to investigate whether the measurement of brain tissue stiffness using acoustic radiation force impulse (ARFI) elastography with virtual touch tissue quantification can improve the early detection of neonatal hypoxic-ischemic brain damage in rats. METHODS Seven-day-old Sprague-Dawley rats were randomly assigned to 3 groups: the mild asphyxia (n = 30), moderate asphyxia (n = 30), and sham control (n = 10) groups. Rats in the mild and moderate asphyxia groups were exposed to 8% oxygen (hypoxia) for 30 and 60 minutes, respectively, at 1 hour after ligation of the right common carotid artery. An ultrasound diagnostic instrument was used to obtain 2-dimensional ultrasound images, and ARFI with virtual touch tissue quantification was used to measure shear wave velocity preoperatively and at 12, 24, 48, and 72 hours postoperatively. Hematoxylin-eosin staining was used to evaluate brain damage. RESULTS Two-dimensional ultrasound imaging detected swelling and increased echogenicity at 48 to 72 hours in the mild asphyxia group and at 24 to 72 hours in the moderate asphyxia group. The shear wave velocity substantially increased from 0.65 ± 0.04 m/s preoperatively to 0.78 ± 0.07 m/s at 72 hours in the moderate asphyxia group and from 0.64 ± 0.04 m/s preoperatively to 0.70 ± 0.03 m/s at 72 hours in the mild asphyxia group. The changes in the shear wave velocity coincided with the histopathologic changes in the brain, which included neuronal demyelination, hyperplasia, and necrosis; edema around vascular structures; and hemorrhage in the ependymal and periventricular areas. CONCLUSION Shear wave velocity data obtained with the virtual touch tissue quantification technique may be used for early diagnosis of neonatal hypoxic-ischemic brain damage.
Collapse
Affiliation(s)
- Zhen-Hua Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Hospital, Hunan University of Chinese Medical, Hunan Province, China
| | - Ke-Ping Peng
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Hospital, Hunan University of Chinese Medical, Hunan Province, China
| | - Ming-Hui Liu
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Hunan Province, China
| | - Gui-Xiang Tian
- Department of Ultrasound, The Second Xiangya Hospital, Central South University, Hunan Province, China
| |
Collapse
|
9
|
Toribio RE. Equine Neonatal Encephalopathy: Facts, Evidence, and Opinions. Vet Clin North Am Equine Pract 2019; 35:363-378. [PMID: 31088699 DOI: 10.1016/j.cveq.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Neonatal encephalopathy (NE) and neonatal maladjustment syndrome (NMS) are terms used for newborn foals that develop noninfectious neurologic signs in the immediate postpartum period. Cerebral ischemia, hypoxia, and inflammation leading to neuronal and glial dysfunction and excitotoxicity are considered key mechanisms behind NE/NMS. Attention has been placed on endocrine and paracrine factors that alter brain cell function. Abnormal steroid concentrations (progestogens, neurosteroids) have been measured in critically ill and NE foals. In addition to supportive treatment, antimicrobials should be considered. Controversies regarding the pathophysiology, diagnosis, and treatment of NE and NMS will remain until controlled mechanistic and therapeutic studies are conducted.
Collapse
Affiliation(s)
- Ramiro E Toribio
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 601 Vernon Tharp Street, Columbus, OH 43210, USA.
| |
Collapse
|
10
|
Narang R, Carter K, Muncie C, Pang Y, Fan LWW, Feng Y, Ojeda NB, Bhatt AJ. Intrauterine growth restriction and neonatal hypoxic ischemic brain injury causes sex-specific long-term neurobehavioral abnormalities in rats. J Neurosci Res 2019; 97:661-672. [PMID: 30843634 DOI: 10.1002/jnr.24389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 12/28/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022]
Abstract
There is a lack of knowledge of factors preventing an adequate response to moderate hypothermia after hypoxic ischemic (HI) brain injury. We hypothesized that growth restriction from reduced intrauterine perfusion would predispose neonatal rats to have a worse outcome with HI brain injury. IUGR was induced by placental insufficiency in dams at 14 days of gestation. HI was induced at postnatal day (P) 10 by permanent right carotid artery ligation followed by 90 min of hypoxia (8% oxygen). Tests for early brain injury and neurobehavioral outcomes were subsequently done. All statistical analysis was done using Two-way ANOVA; post hoc Holm-Sidak test. HI in control and IUGR groups decreased the success rate of the contralateral vibrissa-elicited forelimb test, increased response latency in movement initiation test and increased the time to finish elevated beam walk test at P40 and P60. IUGR augmented HI-induced abnormality in vibrissa-elicited forelimb test at P40 but showed higher success rate when compared to HI only group at P60. IUGR's negative effect on HI-induced changes on the elevated beam walk test was sex-specific and exaggerated in P60 males. Increased TUNEL positive cells in the cortex were noted at 72 h after in HI in control but not in IUGR groups. In conclusion, the consequences of IUGR on subsequent neonatal HI varied based on age, sex and outcomes examined, and overall, male sex and IUGR had worse effects on the long-term neurobehavioral outcomes following HI.
Collapse
Affiliation(s)
- Radhika Narang
- Division of Newborn Medicine, Valley Children's Healthcare, Madera, California
| | - Kathleen Carter
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Colin Muncie
- Department of Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yi Pang
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Lir-Wan W Fan
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yangzheng Feng
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Norma B Ojeda
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Abhay J Bhatt
- Department of Pediatrics, Division of Newborn Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
11
|
Paprocka J, Kijonka M, Rzepka B, Sokół M. Melatonin in Hypoxic-Ischemic Brain Injury in Term and Preterm Babies. Int J Endocrinol 2019; 2019:9626715. [PMID: 30915118 PMCID: PMC6402213 DOI: 10.1155/2019/9626715] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/23/2019] [Accepted: 01/30/2019] [Indexed: 12/05/2022] Open
Abstract
Melatonin may serve as a potential therapeutic free radical scavenger and broad-spectrum antioxidant. It shows neuroprotective properties against hypoxic-ischemic brain injury in animal models. The authors review the studies focusing on the neuroprotective potential of melatonin and its possibility of treatment after perinatal asphyxia. Melatonin efficacy, low toxicity, and ability to readily cross through the blood-brain barrier make it a promising molecule. A very interesting thing is the difference between the half-life of melatonin in preterm neonates (15 hours) and adults (45-60 minutes). Probably, the use of synergic strategies-hypothermia coupled with melatonin treatment-may be promising in improving antioxidant action. The authors discuss and try to summarize the evidence surrounding the use of melatonin in hypoxic-ischemic events in term and preterm babies.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marek Kijonka
- Department of Medical Physics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Poland
| | - Beata Rzepka
- Students' Scientific Society, Department Pediatric Neurology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology Gliwice Branch, Poland
| |
Collapse
|
12
|
[Risk factors associated with the development of perinatal asphyxia in neonates at the Hospital Universitario del Valle, Cali, Colombia, 2010-2011]. BIOMEDICA 2017; 37:51-56. [PMID: 28527266 DOI: 10.7705/biomedica.v37i1.2844] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/01/2016] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Perinatal asphyxia is one of the main causes of perinatal mortality and morbidity worldwide and it generates high costs for health systems; however, it has modifiable risk factors. OBJECTIVE To identify the risk factors associated with the development of perinatal asphyxia in newborns at Hospital Universitario del Valle, Cali, Colombia. MATERIALS AND METHODS Incident cases and concurrent controls were examined. Cases were defined as newborns with moderate to severe perinatal asphyxia who were older than or equal to 36 weeks of gestational age, needed advanced resuscitation and presented one of the following: early neurological disorders, multi-organ commitment or a sentinel event. The controls were newborns without asphyxia who were born one week apart from the case at the most and had a comparable gestational age. Patients with major congenital malformations and syndromes were excluded. RESULTS Fifty-six cases and 168 controls were examined. Premature placental abruption (OR=41.09; 95%CI: 4.61-366.56), labor with a prolonged expulsive phase (OR=31.76; 95%CI: 8.33-121.19), lack of oxytocin use (OR=2.57; 95% CI: 1.08 - 6.13) and mothers without a partner (OR=2.56; 95% CI: 1.21-5.41) were risk factors for the development of perinatal asphyxia in the study population. Social difficulties were found in a greater proportion among the mothers of cases. CONCLUSIONS Proper control and monitoring of labor, development of a thorough partograph, and active searches are recommended to ensure that all pregnant women have adequate prenatal care with the provision of social support to reduce the frequency and negative impact of perinatal asphyxia.
Collapse
|
13
|
Bi M, Li Q, Guo D, Ding X, Bi W, Zhang Y, Zou Y. Sulphoraphane Improves Neuronal Mitochondrial Function in Brain Tissue in Acute Carbon Monoxide Poisoning Rats. Basic Clin Pharmacol Toxicol 2017; 120:541-549. [PMID: 27983767 DOI: 10.1111/bcpt.12728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
Carbon monoxide (CO) poisoning is one of the leading causes of toxicity-related mortality and morbidity worldwide, primarily manifested by acute and delayed central nervous system (CNS) injuries and other organ damages. However, its definite pathogenesis is poorly understood. The aim of this study was to explore the pathogenesis of the ultrastructural and functional impairment of mitochondria and the protection of sulphoraphane (SFP) at different dosages on hippocampus neurons in rats after exposure to CO. We found that CO poisoning could induce advanced cognitive dysfunction, while the mitochondrial ultrastructure of neurons in rats of the CO poisoning group was seriously damaged and mitochondrial membrane potential (ΔΨm) was accordingly reduced by transmission electron microscopy (TEM) and JC-1 fluorescent probe assay. CO poisoning could also increase the expressions of both nuclear factor erythroid 2-related factor 2 (Nrf-2) and thioredoxin-1 (Trx-1) proteins and their mRNA in brain tissue with immunohistochemistry and quantitative PCR (qPCR) techniques. Early administration of either middle-dose or high-dose SFP could efficiently improve mitochondrial structure and function and enhance the antioxidative stress ability, thus exerting a positive effect against brain damage induced by acute CO poisoning.
Collapse
Affiliation(s)
- Mingjun Bi
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Emergency Center, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Qin Li
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Dadong Guo
- Eye Institute of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaoyu Ding
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.,Department of Clinical Medicine, Qingdao University Medical College, Qingdao, China
| | - Weikang Bi
- Department of Clinical Medicine, Qingdao University Medical College, Qingdao, China
| | - Yueheng Zhang
- Department of Clinical Medicine, Binzhou Medical University, Yantai, China
| | - Yong Zou
- Department of Integration of Chinese and Western Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
14
|
Lv HY, Wu SJ, Wang QL, Yang LH, Ren PS, Qiao BJ, Wang ZY, Li JH, Gu XL, Li LX. Effect of erythropoietin combined with hypothermia on serum tau protein levels and neurodevelopmental outcome in neonates with hypoxic-ischemic encephalopathy. Neural Regen Res 2017; 12:1655-1663. [PMID: 29171431 PMCID: PMC5696847 DOI: 10.4103/1673-5374.217338] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although hypothermia therapy is effective to treat neonatal hypoxic-ischemic encephalopathy, many neonatal patients die or suffer from severe neurological dysfunction. Erythropoietin is considered one of the most promising neuroprotective agents. We hypothesized that erythropoietin combined with hypothermia will improve efficacy of neonatal hypoxic-ischemic encephalopathy treatment. In this study, 41 neonates with moderate/severe hypoxic-ischemic encephalopathy were randomly divided into a control group (hypothermia alone for 72 hours, n = 20) and erythropoietin group (hypothermia + erythropoietin 200 IU/kg for 10 days, n = 21). Our results show that compared with the control group, serum tau protein levels were lower and neonatal behavioral neurological assessment scores higher in the erythropoietin group at 8 and 12 days. However, neurodevelopmental outcome was similar between the two groups at 9 months of age. These findings suggest that erythropoietin combined with hypothermia reduces serum tau protein levels and improves neonatal behavioral neurology outcome but does not affect long-term neurodevelopmental outcome.
Collapse
Affiliation(s)
- Hong-Yan Lv
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province; Department of Neonatal Pathology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Su-Jing Wu
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Qiu-Li Wang
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Li-Hong Yang
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Peng-Shun Ren
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Bao-Jun Qiao
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Zhi-Ying Wang
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Jia-Hong Li
- Department of Neonatology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Xiu-Ling Gu
- Department of Children's Rehabilitation, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province, China
| | - Lian-Xiang Li
- Department of Neonatal Pathology, Handan Maternal and Child Health Care Hospital, Handan, Hebei Province; Department of Neural Development and Neural Pathology, Hebei University of Engineering School of Medicine, Handan, Hebei Province, China
| |
Collapse
|
15
|
Erythropoietin improves hypoxic-ischemic encephalopathy in neonatal rats after short-term anoxia by enhancing angiogenesis. Brain Res 2016; 1651:104-113. [DOI: 10.1016/j.brainres.2016.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/09/2016] [Accepted: 09/17/2016] [Indexed: 01/05/2023]
|
16
|
Li Q, Cheng Y, Bi M, Lin H, Chen Y, Zou Y, Liu Y, Kang H, Guo Y. Effects of N-butylphthalide on the activation of Keap1/Nrf-2 signal pathway in rats after carbon monoxide poisoning. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:22-9. [PMID: 26056974 DOI: 10.1016/j.etap.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 05/13/2015] [Accepted: 05/16/2015] [Indexed: 05/16/2023]
Abstract
UNLABELLED Carbon monoxide (CO) is the leading cause of death by poisoning all over the world and may result in neuropathologic changes and cognitive and neurologic sequelae, yet little is known regarding its outcomes. The present study aimed to evaluate the neuroprotective effects of N-butylphthalide (NBP) against brain damage after acute CO poisoning. The animal model of CO poisoning was established by exposed to 1000 ppm CO in air for 40 min and then to 3000 ppm for another 20 min. RT-PCR was used to assess the expressions of apoptosis-associated genes Bcl-2 mRNA and Bax mRNA. Mitochondrial membrane potential (MMP) was detected by fluorescent probe JC-1. Immunohistochemistry stain and Western blot assay were used to evaluate the expression levels of Kelch-like ECH-associated protein 1 (Keapl), nuclear factor erythroid 2-related factor 2 (Nrf-2) and NAD(P)H quinone oxidoreductase 1(NQO-1). CO poisoning could increase the levels of Bcl-2 mRNA and Bax mRNA expressions, and obviously decrease the MMP of cells. NBP treatment could maintain the high MMP, significantly up-regulate Bcl-2 mRNA and down-regulate Bax mRNA expression, and the ratio of Bcl-2 mRNA/Bax mRNA expressions was higher than that in the CO poisoning group (P<0.05). CO poisoning could start oxidative stress response. The expressions of Keap1, Nrf-2 and NQO-1 proteins significantly increased at 1, 3 and 7 day after NBP administration as compared with the CO poisoning group (P<0.01). These findings suggest that N-butylphthalide may protect mitochondrial function, balance the expressions of anti-apoptosis genes and pro-apoptosis genes, be in part associated with activation of Keap1-Nrf-2/antioxidant response element (ARE) signaling pathway, and play a neuroprotective role in brain damage after acute CO poisoning.
Collapse
Affiliation(s)
- Qin Li
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China
| | - Yongmei Cheng
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China.
| | - MingJun Bi
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China.
| | - Hongyang Lin
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China
| | - Yufei Chen
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China
| | - Yong Zou
- Department of Clinical Medicine, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China
| | - Yuanyuan Liu
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China
| | - Hai Kang
- Emergency Centre, Yantai Yuhuangding Hospital Affiliated Hospital of Qingdao University Medical College, Yantai Yudong 20 Road, PR China
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Affiliated Hospital of Qingdao University Medical College, Qingdao Jiangsu 16 Road, PR China
| |
Collapse
|