1
|
Hui SCN, Andescavage N, Limperopoulos C. The Role of Proton Magnetic Resonance Spectroscopy in Neonatal and Fetal Brain Research. J Magn Reson Imaging 2025. [PMID: 39835523 DOI: 10.1002/jmri.29709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
The biochemical composition and structure of the brain are in a rapid change during the exuberant stage of fetal and neonatal development. 1H-MRS is a noninvasive tool that can evaluate brain metabolites in healthy fetuses and infants as well as those with neurological diseases. This review aims to provide readers with an understanding of 1) the basic principles and technical considerations relevant to 1H-MRS in the fetal-neonatal brain and 2) the role of 1H-MRS in early fetal-neonatal development brain research. We performed a PubMed search to identify original studies using 1H-MRS in neonates and fetuses to establish the clinical applications of 1H-MRS. The eligible studies for this review included original research with 1H-MRS applications to the fetal-neonatal brain in healthy and high-risk conditions. We ran our search between 2000 and 2023, then added in several high-impact landmark publications from the 1990s. A total of 366 results appeared. After, we excluded original studies that did not include fetuses or neonates, non-proton MRS and non-neurological studies. Eventually, 110 studies were included in this literature review. Overall, the function of 1H-MRS in healthy fetal-neonatal brain studies focuses on measuring the change of metabolite concentrations during neurodevelopment and the physical properties of the metabolites such as T1/T2 relaxation times. For high-risk neonates, studies in very low birth weight preterm infants and full-term neonates with hypoxic-ischemic encephalopathy, along with examining the associations between brain biochemistry and cognitive neurodevelopment are most common. Additional high-risk conditions included infants with congenital heart disease or metabolic diseases, as well as fetuses of pregnant women with hypertensive disorders were of specific interest to researchers using 1H-MRS. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Steve C N Hui
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
| | - Nickie Andescavage
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
- Division of Neonatology, Children's National Hospital, Washington, D.C., USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Children's National Hospital, Washington, D.C., USA
- Department of Radiology, The George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, D.C., USA
- Prenatal Pediatric Institute, Children's National Hospital, Washington, D.C., USA
| |
Collapse
|
2
|
Fink EL, Kochanek PM, Beers SR, Clark RRSB, Berger RP, Bayir H, Topjian AA, Newth C, Press C, Maddux AB, Willyerd F, Hunt EA, Siems A, Chung MG, Smith L, Doughty L, Diddle JW, Patregnani J, Piantino J, Walson KH, Balakrishnan B, Meyer MT, Friess S, Pineda J, Maloney D, Rubin P, Haller TL, Treble-Barna A, Wang C, Lee V, Wisnowski JL, Subramanian S, Narayanan S, Blüml S, Fabio A, Panigrahy A. Assessment of Brain Magnetic Resonance and Spectroscopy Imaging Findings and Outcomes After Pediatric Cardiac Arrest. JAMA Netw Open 2023; 6:e2320713. [PMID: 37389874 PMCID: PMC10314315 DOI: 10.1001/jamanetworkopen.2023.20713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/28/2023] [Indexed: 07/01/2023] Open
Abstract
Importance Morbidity and mortality after pediatric cardiac arrest are chiefly due to hypoxic-ischemic brain injury. Brain features seen on magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) after arrest may identify injury and aid in outcome assessments. Objective To analyze the association of brain lesions seen on T2-weighted MRI and diffusion-weighted imaging and N-acetylaspartate (NAA) and lactate concentrations seen on MRS with 1-year outcomes after pediatric cardiac arrest. Design, Setting, and Participants This multicenter cohort study took place in pediatric intensive care units at 14 US hospitals between May 16, 2017, and August 19, 2020. Children aged 48 hours to 17 years who were resuscitated from in-hospital or out-of-hospital cardiac arrest and who had a clinical brain MRI or MRS performed within 14 days postarrest were included in the study. Data were analyzed from January 2022 to February 2023. Exposure Brain MRI or MRS. Main Outcomes and Measures The primary outcome was an unfavorable outcome (either death or survival with a Vineland Adaptive Behavior Scales, Third Edition, score of <70) at 1 year after cardiac arrest. MRI brain lesions were scored according to region and severity (0 = none, 1 = mild, 2 = moderate, 3 = severe) by 2 blinded pediatric neuroradiologists. MRI Injury Score was a sum of T2-weighted and diffusion-weighted imaging lesions in gray and white matter (maximum score, 34). MRS lactate and NAA concentrations in the basal ganglia, thalamus, and occipital-parietal white and gray matter were quantified. Logistic regression was performed to determine the association of MRI and MRS features with patient outcomes. Results A total of 98 children, including 66 children who underwent brain MRI (median [IQR] age, 1.0 [0.0-3.0] years; 28 girls [42.4%]; 46 White children [69.7%]) and 32 children who underwent brain MRS (median [IQR] age, 1.0 [0.0-9.5] years; 13 girls [40.6%]; 21 White children [65.6%]) were included in the study. In the MRI group, 23 children (34.8%) had an unfavorable outcome, and in the MRS group, 12 children (37.5%) had an unfavorable outcome. MRI Injury Scores were higher among children with an unfavorable outcome (median [IQR] score, 22 [7-32]) than children with a favorable outcome (median [IQR] score, 1 [0-8]). Increased lactate and decreased NAA in all 4 regions of interest were associated with an unfavorable outcome. In a multivariable logistic regression adjusted for clinical characteristics, increased MRI Injury Score (odds ratio, 1.12; 95% CI, 1.04-1.20) was associated with an unfavorable outcome. Conclusions and Relevance In this cohort study of children with cardiac arrest, brain features seen on MRI and MRS performed within 2 weeks after arrest were associated with 1-year outcomes, suggesting the utility of these imaging modalities to identify injury and assess outcomes.
Collapse
Affiliation(s)
- Ericka L. Fink
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sue R. Beers
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Robert R. S. B. Clark
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rachel P. Berger
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Hülya Bayir
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Safar Center for Resuscitation Research, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alexis A. Topjian
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Christopher Newth
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Los Angeles, Los Angeles, California
| | - Craig Press
- Department of Anesthesia and Critical Care Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Aline B. Maddux
- Department of Pediatrics, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora
| | | | - Elizabeth A. Hunt
- Departments of Anesthesiology and Critical Care Medicine, and Pediatrics, Johns Hopkins Children’s Center, Baltimore, Maryland
| | - Ashley Siems
- Departments of Anesthesiology and Critical Care Medicine, and Pediatrics, Johns Hopkins Children’s Center, Baltimore, Maryland
| | - Melissa G. Chung
- Department of Pediatrics, Division of Critical Care Medicine, and Pediatric Neurology, Nationwide Children’s Hospital, Columbus, Ohio
| | - Lincoln Smith
- Department of Pediatrics, University of Washington School of Medicine, Seattle
| | - Leslie Doughty
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - J. Wesley Diddle
- Department of Pediatrics, Children’s National Medical Center, Washington, DC
| | - Jason Patregnani
- Department of Pediatrics, Children’s National Medical Center, Washington, DC
| | - Juan Piantino
- Department of Pediatrics, Oregon Health & Science University, Portland
| | | | - Binod Balakrishnan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Michael T. Meyer
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison
| | - Stuart Friess
- Department of Pediatrics, St Louis Children’s Hospital, St Louis, Missouri
| | - Jose Pineda
- Department of Anesthesia Critical Care, Mattel Children’s Hospital, University of California, Los Angeles
| | - David Maloney
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pamela Rubin
- Department of Critical Care Medicine, Division of Pediatric Critical Care Medicine, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tamara L. Haller
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amery Treble-Barna
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Chunyan Wang
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Vince Lee
- Department of Radiology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jessica L. Wisnowski
- Department of Radiology, Children’s Hospital of Los Angeles, Los Angeles, California
| | - Subramanian Subramanian
- Department of Radiology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Srikala Narayanan
- Department of Radiology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stefan Blüml
- Department of Radiology, Children’s Hospital of Los Angeles, Los Angeles, California
| | - Anthony Fabio
- Department of Epidemiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh Medical Center, Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | |
Collapse
|
3
|
Zafer D, Adams T, Olson E, Stenman L, Taparli O, Eickhoff J, Cengiz P, Mezu-Ndubuisi OJ. Retinal vascular recovery revealed by retinal imaging following neonatal hypoxia ischemia in mice: Is there a role for tyrosine kinase receptor modulation? Brain Res 2022; 1796:148093. [PMID: 36116486 PMCID: PMC10013450 DOI: 10.1016/j.brainres.2022.148093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Hypoxic ischemic encephalopathy (HIE) secondary to perinatal asphyxia leads to long-term visual disabilities. Dilated retinal exams in human newborns with HIE is an emerging diagnostic tool, but phenotypes of hypoxia ischemia (HI) related retinal vascular injury are unclear. 7,8-Dihydroxyflavone (7,8-DHF) is a TrkB agonist with protective effects on HI-related brain damage. We studied retinal vessels in a mouse model of neonatal HIE and the efficacy of 7,8-DHF in ameliorating HI-related retinal vascular injury. METHODS C57BL6/J mice at post-natal day (P) 9 received unilateral left carotid artery ligation followed by exposure to 10 % oxygen for 50 min. Phosphate buffered saline or 7,8-DHF (5 mg/kg) were administered daily for 7 days intraperitoneally. Control groups of naïve or carotid artery ligation only mice were studied. Fluorescein angiography was performed in acute (two weeks post-exposure) and chronic (four weeks post-exposure) time points. Retinal artery width, retinal vein width, and collateral vessel length were quantified. RESULTS Ligation of the common carotid artery alone caused retinal artery dilation in acute and chronic time points, but had no effect on retinal veins. At acute time point, HI caused increased retinal artery vasodilation, but was reversed by 7,8-DHF. HI caused short collateral vessel formation in ipsilateral eyes, rescued by 7,8-DHF treatment. CONCLUSION Retinal artery vasodilation and collateral vessel formation due to HI were rescued by 7,8-DHF treatment. Retinal and collateral vessel monitoring could be diagnostic biomarkers for HI severity. Studies to elucidate mechanisms of 7,8-DHF action on retinal vessels could aid development of therapies for neonatal HI.
Collapse
Affiliation(s)
- Dila Zafer
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA; Waisman Center, University of Wisconsin, Madison, WI, USA
| | - Thao Adams
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Ellie Olson
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| | - Lauren Stenman
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA.
| | - Onur Taparli
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA; Waisman Center, University of Wisconsin, Madison, WI, USA.
| | - Jens Eickhoff
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA.
| | - Pelin Cengiz
- Department of Pediatrics, University of Wisconsin, Madison, WI, USA; Waisman Center, University of Wisconsin, Madison, WI, USA.
| | - Olachi J Mezu-Ndubuisi
- Department of Pediatrics, University of Rochester, Rochester, NY, USA; Department of Ophthalmology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
4
|
Zhou Y, Yang L, Liu X, Wang H. Lactylation may be a Novel Posttranslational Modification in Inflammation in Neonatal Hypoxic-Ischemic Encephalopathy. Front Pharmacol 2022; 13:926802. [PMID: 35721121 PMCID: PMC9202888 DOI: 10.3389/fphar.2022.926802] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 01/22/2023] Open
Abstract
Perinatal hypoxia-ischemia remains the most common cause of acute neonatal brain injury and is associated with a high death rate and long-term neurological abnormalities such as memory and cognitive deficits and dyskinesia. Hypoxia-ischemia triggers an inflammatory cascade in the brain that is amplified by the activation of immune cells and the influx of peripheral immune cells into the brain parenchyma in response to cellular injury. Thus, acute cerebral hypoxic-ischemic inflammation is a major contributor to the pathogenesis of newborn hypoxic-ischemic brain injury. Lactate is a glycolysis end product that can regulate inflammation through histone lactylation, a unique posttranslational modification that was identified in recent studies. The purpose of this review is to outline the recent improvements in our understanding of microglia-mediated hypoxic-ischemic inflammation and to further discuss how histone lactylation regulates inflammation by affecting macrophage activation. These findings may suggest that epigenetic reprogramming-associated lactate input is linked to disease outcomes such as acute neonatal brain injury pathogenesis and the therapeutic effects of drugs and other strategies in relieving neonatal hypoxic-ischemic brain injury. Therefore, improving our knowledge of the reciprocal relationships between histone lactylation and inflammation could lead to the development of new immunomodulatory therapies for brain damage in newborns.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Li Yang
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Xiaoying Liu
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| | - Hao Wang
- Department of Pharmacy, Xindu District People's Hospital of Chengdu, Chengdu, China
| |
Collapse
|
5
|
Proton MR Spectroscopy of Pediatric Brain Disorders. Diagnostics (Basel) 2022; 12:diagnostics12061462. [PMID: 35741272 PMCID: PMC9222059 DOI: 10.3390/diagnostics12061462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
In vivo MR spectroscopy is a non -invasive methodology that provides information about the biochemistry of tissues. It is available as a “push-button” application on state-of-the-art clinical MR scanners. MR spectroscopy has been used to study various brain diseases including tumors, stroke, trauma, degenerative disorders, epilepsy/seizures, inborn errors, neuropsychiatric disorders, and others. The purpose of this review is to provide an overview of MR spectroscopy findings in the pediatric population and its clinical use.
Collapse
|
6
|
Elshal FIS, Elshehaby WA, Dawoud MAE, Shaban EA. Magnetic resonance imaging and spectroscopy in evaluation of hypoxic ischemic encephalopathy in pediatric age group. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hypoxic ischemic encephalopathy is a major cause of pediatric mortality and morbidity, with possible long-term neurologic sequel, such as cerebral palsy. With improvements in care of at-risk neonates, more children survive. This makes it increasingly important to assess, soon after birth, the prognosis of children with hypoxic-ischemic encephalopathy. The aim of the study was to assess the additive role of magnetic resonance spectroscopy over conventional MRI in diagnosis and early prediction of pathological motor development in neonates with hypoxic ischemic encephalopathy.
Results
MRS ratios showed significant difference between unfavorable and normal outcome infants. MRS ratios as Lac/Cr, NAA/Cr and NAA/Cho within basal ganglia, thalamus and white matter can significantly differentiate between patients with normal and pathological outcome at 1 year.
Lac/Cr positively correlates with the severity of HIE. Both NAA/Cr and NAA/Cho negatively correlate with the severity of the disease. Ratios cutoff values as Lac/Cr above 0.38 and 0.42 in basal ganglia and white matter, respectively, NAA/Cr below 0.9 and 0.8 in basal ganglia and occipital white matter, respectively, and NAA/Cho below 0.29 and 0.31 in basal ganglia and frontal white matter, respectively, were significantly predictive of pathological outcome.
Conclusion
High Lac/Cr, low NAA/Cr and low NAA/Cho ratios within examined regions of the brain including deep grey matter nuclei as well as white matter are associated with an adverse outcome in infants with perinatal asphyxia. MRS is an accurate quantitative MR biomarker within the neonatal period for prediction of neurodevelopmental outcome after perinatal HIE. MRS may be useful in early clinical management decisions, and counseling parents thereby ensuring appropriate early intervention and rehabilitation.
Collapse
|
7
|
Whitehead MT, Bluml S. Proton and Multinuclear Spectroscopy of the Pediatric Brain. Magn Reson Imaging Clin N Am 2021; 29:543-555. [PMID: 34717844 DOI: 10.1016/j.mric.2021.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is a valuable adjunct to structural brain imaging. State-of-the-art MRS has benefited greatly from recent technical advancements. Neurometabolic alterations in pediatric brain diseases have implications for diagnosis, prognosis, and therapy. Herein, the authors discuss MRS technical considerations and applications in the setting of various pediatric disease processes including tumors, metabolic diseases, hypoxic/ischemic encephalopathy/stroke, epilepsy, demyelinating disease, and infection.
Collapse
Affiliation(s)
- Matthew T Whitehead
- Department of Radiology, Children's National Hospital, 111 Michigan Avenue NW, Washington, DC 20010, USA; Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA; The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| | - Stefan Bluml
- Department of Radiology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, 450 Sunset Boulevard, Los Angeles, CA 90027, USA; Rudi Schulte Research Institute, Santa Barbara, CA, USA
| |
Collapse
|
8
|
Abstract
Magnetic resonance spectroscopy (MRS), being able to identify and measure some brain components (metabolites) in pathologic lesions and in normal-appearing tissue, offers a valuable additional diagnostic tool to assess several pediatric neurological diseases. In this review we will illustrate the basic principles and clinical applications of brain proton (H1; hydrogen) MRS (H1MRS), by now the only MRS method widely available in clinical practice. Performing H1MRS in the brain is inherently less complicated than in other tissues (e.g., liver, muscle), in which spectra are heavily affected by magnetic field inhomogeneities, respiration artifacts, and dominating signals from the surrounding adipose tissues. H1MRS in pediatric neuroradiology has some advantages over acquisitions in adults (lack of motion due to children sedation and lack of brain iron deposition allow optimal results), but it requires a deep knowledge of pediatric pathologies and familiarity with the developmental changes in spectral patterns, particularly occurring in the first two years of life. Examples from our database, obtained mainly from a 1.5 Tesla clinical scanner in a time span of 15 years, will demonstrate the efficacy of H1MRS in the diagnosis of a wide range of selected pediatric pathologies, like brain tumors, infections, neonatal hypoxic-ischemic encephalopathy, metabolic and white matter disorders.
Collapse
Affiliation(s)
- Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Lorenzo Pinelli
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
9
|
Abstract
Hypoxic-ischemic encephalopathy is a subtype of neonatal encephalopathy and a major contributor to global neonatal morbidity and mortality. Despite advances in obstetric and neonatal care there are still challenges in accurate determination of etiology of neonatal encephalopathy. Thus, identification of intrapartum risk factors and comprehensive evaluation of the neonate is important to determine the etiology and severity of neonatal encephalopathy. In developed countries, therapeutic hypothermia as a standard of care therapy for neonates with hypoxic-ischemic encephalopathy has proven to decrease incidence of death and neurodevelopmental disabilities, including cerebral palsy in surviving children. Advances in neuroimaging, brain monitoring modalities, and biomarkers of brain injury have improved the ability to diagnose, monitor, and treat newborns with encephalopathy. However, challenges remain in early identification of neonates at risk for hypoxic-ischemic brain injury, and determination of the timing and extent of brain injury. Using imaging studies such as Neonatal MRI and MR spectroscopy have proven to be most useful in predicting outcomes in infants with encephalopathy within the first week of life, although comprehensive neurodevelopmental assessments still remains the gold standard for determining long term outcomes. Future studies are needed to identify other newborns with encephalopathy that might benefit from therapeutic hypothermia and to determine the efficacy of other adjunctive neuroprotective strategies. This review focuses on newer evidence and advances in diagnoses and management of infants with neonatal encephalopathy, including novel therapies, as well as prognostication of outcomes to childhood.
Collapse
|
10
|
Abstract
Hypoxic-ischemic encephalopathy is associated with a high risk of morbidity and mortality in the neonatal period. Long-term neurodevelopmental disability is also frequent in survivors. Conventional MRI defines typical patterns of injury that reflect specific pathophysiologic mechanisms. Advanced magnetic resonance techniques now provide unique perspectives on neonatal brain metabolism, microstructure, and connectivity. The application of these imaging techniques has revealed that brain injury commonly occurs at or near the time of birth and evolves over the first weeks of life. Amplitude-integrated electroencephalogram and near-infrared spectroscopy are increasingly used as bedside tools in neonatal intensive care units to monitor brain function.
Collapse
Affiliation(s)
- Stephanie L Merhar
- Division of Neonatology, Cincinnati Children's Hospital Medical Center, Perinatal Institute, ML 7009, Cincinnati, OH 45229, USA.
| | - Vann Chau
- Division of Neurology (Pediatrics), The Hospital for Sick Children, University of Toronto and Neuroscience & Mental Health Research Institute, 555 University Avenue, Room 6536B, Hill Wing, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
11
|
McKenna MC, Scafidi S, Robertson CL. Metabolic Alterations in Developing Brain After Injury: Knowns and Unknowns. Neurochem Res 2015; 40:2527-43. [PMID: 26148530 PMCID: PMC4961252 DOI: 10.1007/s11064-015-1600-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/10/2015] [Accepted: 05/02/2015] [Indexed: 12/21/2022]
Abstract
Brain development is a highly orchestrated complex process. The developing brain utilizes many substrates including glucose, ketone bodies, lactate, fatty acids and amino acids for energy, cell division and the biosynthesis of nucleotides, proteins and lipids. Metabolism is crucial to provide energy for all cellular processes required for brain development and function including ATP formation, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining ionic gradients and redox status, and myelination. The rapidly growing population of infants and children with neurodevelopmental and cognitive impairments and life-long disability resulting from developmental brain injury is a significant public health concern. Brain injury in infants and children can have devastating effects because the injury is superimposed on the high metabolic demands of the developing brain. Acute injury in the pediatric brain can derail, halt or lead to dysregulation of the complex and highly regulated normal developmental processes. This paper provides a brief review of metabolism in developing brain and alterations found clinically and in animal models of developmental brain injury. The metabolic changes observed in three major categories of injury that can result in life-long cognitive and neurological disabilities, including neonatal hypoxia-ischemia, pediatric traumatic brain injury, and brain injury secondary to prematurity are reviewed.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore St., Room 13-019, Baltimore, MD, 21201, USA.
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney L Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Xu S, Waddell J, Zhu W, Shi D, Marshall AD, McKenna MC, Gullapalli RP. In vivo longitudinal proton magnetic resonance spectroscopy on neonatal hypoxic-ischemic rat brain injury: Neuroprotective effects of acetyl-L-carnitine. Magn Reson Med 2015; 74:1530-42. [PMID: 25461739 PMCID: PMC4452442 DOI: 10.1002/mrm.25537] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/04/2014] [Accepted: 10/30/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE This study evaluated the longitudinal metabolic alterations after neonatal hypoxia-ischemia (HI) in rats and tested the neuroprotective effect of acetyl-L-carnitine (ALCAR) using in vivo proton short-TE Point-RESolved Spectroscopy method. METHODS Rice-Vannucci model was used on 7-day-old Sprague-Dawley rats. Data were acquired from contralateral and ipsilateral cortex and hippocampus, respectively at 4 time points (24-h, 72-h, 7-days, 28-days) post-HI. The effect of subcutaneous administration of ALCAR (100 mg/kg) immediately after HI, at 4-h, 24-h, and 48-h post-HI was determined. RESULTS Significant reductions in glutathione (P < 0.005), myo-inositol (P < 0.002), taurine (P < 0.001), and total creatine (P < 0.005) were observed at 24-h postinjury compared with the control group in the ipsilateral hippocampus of the HI rat pups. ALCAR-treated-HI rats had lower levels of lactate and maintained total creatine at 24-h and had smaller lesion size compared with the HI only rats. CONCLUSION Severe oxidative, osmotic stress, impaired phosphorylation, and a preference for anaerobic glycolysis were found in the ipsilateral hippocampus in the HI pups at 24-h postinjury. ALCAR appeared to have a neuroprotective effect if administered early after HI by serving as an energy substrate and promote oxidative cerebral energy producing and minimize anaerobic glycolysis.
Collapse
Affiliation(s)
- Su Xu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Core for Translational Research in Imaging @ Maryland, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jaylyn Waddell
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wenjun Zhu
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Core for Translational Research in Imaging @ Maryland, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Da Shi
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Andrew D Marshall
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Core for Translational Research in Imaging @ Maryland, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rao P Gullapalli
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Core for Translational Research in Imaging @ Maryland, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
McKenna MC, Scafidi S, Robertson CL. Metabolic Alterations in Developing Brain After Injury: Knowns and Unknowns. Neurochem Res 2015. [PMID: 26148530 DOI: 10.1007/s11064‐015‐1600‐7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Brain development is a highly orchestrated complex process. The developing brain utilizes many substrates including glucose, ketone bodies, lactate, fatty acids and amino acids for energy, cell division and the biosynthesis of nucleotides, proteins and lipids. Metabolism is crucial to provide energy for all cellular processes required for brain development and function including ATP formation, synaptogenesis, synthesis, release and uptake of neurotransmitters, maintaining ionic gradients and redox status, and myelination. The rapidly growing population of infants and children with neurodevelopmental and cognitive impairments and life-long disability resulting from developmental brain injury is a significant public health concern. Brain injury in infants and children can have devastating effects because the injury is superimposed on the high metabolic demands of the developing brain. Acute injury in the pediatric brain can derail, halt or lead to dysregulation of the complex and highly regulated normal developmental processes. This paper provides a brief review of metabolism in developing brain and alterations found clinically and in animal models of developmental brain injury. The metabolic changes observed in three major categories of injury that can result in life-long cognitive and neurological disabilities, including neonatal hypoxia-ischemia, pediatric traumatic brain injury, and brain injury secondary to prematurity are reviewed.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, 655 W. Baltimore St., Room 13-019, Baltimore, MD, 21201, USA.
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney L Robertson
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Abstract
MRI performed in the neonatal period has become a tool widely used by clinicians and researchers to evaluate the developing brain. MRI can provide detailed anatomical resolution, enabling identification of brain injuries due to various perinatal insults. This review will focus on the link between neonatal MRI findings and later neurodevelopmental outcomes in high-risk term infants. In particular, the role of conventional and advanced MR imaging in prognosticating outcomes in neonates with hypoxic-ischemic encephalopathy, ischemic perinatal stroke, need for extracorporeal membrane oxygenation life support, congenital heart disease, and other neonatal neurological conditions will be discussed.
Collapse
Affiliation(s)
- An N Massaro
- Department of Pediatrics, The George Washington University School of Medicine, 111 Michigan Ave, NW Washington, DC 20010.
| |
Collapse
|
15
|
Degraeuwe PL, Jaspers GJ, Robertson NJ, Kessels AG. Magnetic resonance spectroscopy as a prognostic marker in neonatal hypoxic-ischemic encephalopathy: a study protocol for an individual patient data meta-analysis. Syst Rev 2013; 2:96. [PMID: 24156407 PMCID: PMC4016296 DOI: 10.1186/2046-4053-2-96] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 10/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The prognostic accuracy of 1H (proton) magnetic resonance spectroscopy (MRS) in neonatal hypoxic-ischemic encephalopathy has been assessed by a criticized study-based meta-analysis. An individual patient data meta-analysis may overcome some of the drawbacks encountered in the aggregate data meta-analysis. Moreover, the prognostic marker can be assessed quantitatively and the effect of covariates can be estimated. METHODS Diagnostic accuracy studies relevant to the study topic were retrieved. The primary authors will be invited to share the raw de-identified study data. These individual patient data will be analyzed using logistic regression analysis. A prediction tool calculating the individualized risk of very adverse outcome will be devised. DISCUSSION The proposed individual patient data meta-analysis provides several advantages. Inclusion and exclusion criteria can be applied more uniformly. Furthermore, adjustment is possible for confounding factors and subgroup analyses can be conducted. Our goal is to develop a prediction model for outcome in newborns with hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
- Pieter Lj Degraeuwe
- Department of Pediatrics, Maastricht University Medical Centre, P, Debyelaan 25, PO Box 5800, 6202AZ Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
16
|
He L, Parikh NA. Automated detection of white matter signal abnormality using T2 relaxometry: application to brain segmentation on term MRI in very preterm infants. Neuroimage 2012; 64:328-40. [PMID: 22974556 DOI: 10.1016/j.neuroimage.2012.08.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022] Open
Abstract
Hyperintense white matter signal abnormalities, also called diffuse excessive high signal intensity (DEHSI), are observed in up to 80% of very preterm infants on T2-weighted MRI scans at term-equivalent age. DEHSI may represent a developmental stage or diffuse microstructural white matter abnormalities. Automated quantitative assessment of DEHSI severity may help resolve this debate and improve neonatal brain tissue segmentation. For T2-weighted sequence without fluid attenuation, the signal intensity distribution of DEHSI greatly overlaps with that of cerebrospinal fluid (CSF) making its detection difficult. Furthermore, signal intensities of T2-weighted images are susceptible to magnetic field inhomogeneity. Increased signal intensities caused by field inhomogeneity may be confused with DEHSI. To overcome these challenges, we propose an algorithm to detect DEHSI using T2 relaxometry, whose reflection of the rapid changes in free water content provides improved distinction between CSF and DEHSI over that of conventional T2-weighted imaging. Moreover, the parametric transverse relaxation time T2 is invulnerable to magnetic field inhomogeneity. We conducted computer simulations to select an optimal detection parameter and to validate the proposed method. We also demonstrated that brain tissue segmentation is further enhanced by incorporating DEHSI detection for both simulated preterm infant brain images and in vivo in very preterm infants imaged at term-equivalent age.
Collapse
Affiliation(s)
- Lili He
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA.
| | | |
Collapse
|
17
|
The prognostic value of multivoxel magnetic resonance spectroscopy determined metabolite levels in white and grey matter brain tissue for adverse outcome in term newborns following perinatal asphyxia. Eur Radiol 2011; 22:772-8. [PMID: 22057247 PMCID: PMC3297743 DOI: 10.1007/s00330-011-2315-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/06/2011] [Accepted: 10/06/2011] [Indexed: 11/06/2022]
Abstract
Objective Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia by providing ratios of metabolites, such as choline (Cho), creatine (Cr), N-acetyl aspartate (NAA) and lactate (Lact) [Cho/Cr, Lact/NAA, etc.]. The purpose of this study was to quantify the separate white and grey matter metabolites in a slab cranial to the ventricles and relate these to the outcome. Methods A standard 2D-chemical shift imaging protocol was used for measuring a transverse volume of interest located cranial to the ventricles allowing for direct comparison of the metabolites in white and grey matter brain tissue in 24 term asphyxiated newborns aged 3 to 16 days. Results Cho, NAA and Lact showed significant differences between four subgroups of asphyxiated infants with more and less favourable outcomes. High levels of Cho and Lact in the grey matter differentiated non-survivors from survivors (P = 0.003 and P = 0.017, respectively). Conclusion In perinatal asphyxia the levels of Cho, NAA and Lact in both white and grey matter brain tissue are affected. The levels of Cho and Lact measured in the grey matter are the most indicative of survival. It is therefore advised to include grey matter brain tissue in the region of interest examined by multivoxel MR spectroscopy. Key Points • Magnetic resonance spectroscopy can identify brain metabolic changes in perinatal asphyxia. • Choline and lactate levels in grey matter seem the best indicators of survival. • Both grey and white matter should be examined during spectroscopy for perinatal asphyxia.
Collapse
|
18
|
Alderliesten T, de Vries LS, Benders MJNL, Koopman C, Groenendaal F. MR Imaging and Outcome of Term Neonates with Perinatal Asphyxia: Value of Diffusion-weighted MR Imaging and H MR Spectroscopy. Radiology 2011; 261:235-42. [DOI: 10.1148/radiol.11110213] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Wachtel EV, Hendricks-Muñoz KD. Current management of the infant who presents with neonatal encephalopathy. Curr Probl Pediatr Adolesc Health Care 2011; 41:132-53. [PMID: 21458747 DOI: 10.1016/j.cppeds.2010.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neonatal encephalopathy after perinatal hypoxic-ischemic insult is a major contributor to global child mortality and morbidity. Brain injury in term infants in response to hypoxic-ischemic insult is a complex process evolving over hours to days, which provides a unique window of opportunity for neuroprotective treatment interventions. Advances in neuroimaging, brain monitoring techniques, and tissue biomarkers have improved the ability to diagnose, monitor, and care for newborn infants with neonatal encephalopathy as well as predict their outcome. However, challenges remain in early identification of infants at risk for neonatal encephalopathy, determination of timing and extent of hypoxic-ischemic brain injury, as well as optimal management and treatment duration. Therapeutic hypothermia is the most promising neuroprotective intervention to date for infants with moderate to severe neonatal encephalopathy after perinatal asphyxia and has currently been incorporated in many neonatal intensive care units in developed countries. However, only 1 in 6 babies with encephalopathy will benefit from hypothermia therapy; many infants still develop significant adverse outcomes. To enhance the outcome, specific diagnostic predictors are needed to identify patients likely to benefit from hypothermia treatment. Studies are needed to determine the efficacy of combined therapeutic strategies with hypothermia therapy to achieve maximal neuroprotective effect. This review focuses on important concepts in the pathophysiology, diagnosis, and management of infants with neonatal encephalopathy due to perinatal asphyxia, including an overview of recently introduced novel therapies.
Collapse
Affiliation(s)
- Elena V Wachtel
- Department of Pediatrics, Division of Neonatology, New York University School of Medicine, New York, NY, USA
| | | |
Collapse
|
20
|
Azzopardi D, Edwards AD. Magnetic resonance biomarkers of neuroprotective effects in infants with hypoxic ischemic encephalopathy. Semin Fetal Neonatal Med 2010; 15:261-9. [PMID: 20359970 DOI: 10.1016/j.siny.2010.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Evaluation of infants with hypoxic ischemic encephalopathy by magnetic resonance spectroscopy and imaging is useful to direct clinical care, and may assist the evaluation of candidate neuroprotective therapies. Cerebral metabolites measured by magnetic resonance spectroscopy, and visual analysis of magnetic resonance images during the first 30 days after birth accurately predict later neurological outcome and are valid biomarkers of the key physiological processes underlying brain injury in neonatal hypoxic ischemic encephalopathy. Visual assessment of magnetic resonance images may also be a suitable surrogate outcome in studies of neuroprotective therapies but current magnetic resonance methods are relatively inefficient for use in early phase, first in human infant studies of novel neuroprotective therapies. However, diffusion tensor imaging and analysis of fractional anisotropy with tract-based spatial statistics promises to be a highly efficient biomarker and surrogate outcome for rapid preliminary evaluation of promising therapies for neonatal hypoxic ischemic injury. Standardisation of scanning protocols and data analysis between different scanners is essential.
Collapse
Affiliation(s)
- Denis Azzopardi
- Institute of Clinical Sciences, Imperial College London and MRC Clinical Sciences Centre, Hammersmith Hospital, London, UK.
| | | |
Collapse
|
21
|
Wilkinson D. MRI and withdrawal of life support from newborn infants with hypoxic-ischemic encephalopathy. Pediatrics 2010; 126:e451-8. [PMID: 20603255 DOI: 10.1542/peds.2009-3067] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The majority of deaths in infants with hypoxic-ischemic encephalopathy (HIE) follow decisions to withdraw life-sustaining treatment. Clinicians use prognostic tests including MRI to help determine prognosis and decide whether to consider treatment withdrawal. A recently published meta-analysis provided valuable information on the prognostic utility of magnetic resonance (MR) biomarkers in HIE and suggested, in particular, that proton MR spectroscopy is the most accurate predictor of neurodevelopmental outcome. How should this evidence influence treatment-limitation decisions? In this article I outline serious limitations in existing prognostic studies of HIE, including small sample size, selection bias, vague and overly inclusive outcome assessment, and potential self-fulfilling prophecies. Such limitations make it difficult to answer the most important prognostic question. Reanalysis of published data reveals that severe abnormalities on conventional MRI in the first week have a sensitivity of 71% (95% confidence interval: 59%-91%) and specificity of 84% (95% confidence interval: 68%-93%) for very adverse outcome in infants with moderate encephalopathy. On current evidence, MR biomarkers alone are not sufficiently accurate to direct treatment-limitation decisions. Although there may be a role for using MRI or MR spectroscopy in combination with other prognostic markers to identify infants with very adverse outcome, it is not possible from meta-analysis to define this group clearly. There is an urgent need for improved prognostic research into HIE.
Collapse
Affiliation(s)
- Dominic Wilkinson
- Department of Public Health and Primary Health Care, Ethox Centre, University of Oxford, Badenoch Building, Headington, UK.
| |
Collapse
|
22
|
Abstract
Brain and heart development occur simultaneously in the human fetus. Given the depth and complexity of these shared morphogenetic programs, it is perhaps not surprising that disruption of organogenesis in one organ will impact the development of the other. Newborns with congenital heart disease show a high frequency of acquired focal brain injury on sensitive magnetic resonance imaging studies in the perioperative period. The surprisingly high incidence of white matter injury in these term newborns suggests a unique vulnerability and may be related to a delay in brain development. These abnormalities in brain development identified with MRI in newborns with congenital heart disease might reflect abnormalities in cerebral blood flow while in utero. A complete understanding of the mechanisms of white matter injury in the term newborn with congenital heart disease will require further investigation of the timing, extent, and causes of delayed fetal brain development in the presence of congenital heart disease.
Collapse
Affiliation(s)
- Patrick S McQuillen
- Department of Pediatrics, University of California, San Francisco, California, USA
| | | |
Collapse
|
23
|
Thayyil S, Chandrasekaran M, Taylor A, Bainbridge A, Cady EB, Chong WKK, Murad S, Omar RZ, Robertson NJ. Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics 2010; 125:e382-95. [PMID: 20083516 DOI: 10.1542/peds.2009-1046] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Accurate prediction of neurodevelopmental outcome in neonatal encephalopathy (NE) is important for clinical management and to evaluate neuroprotective therapies. We undertook a meta-analysis of the prognostic accuracy of cerebral magnetic resonance (MR) biomarkers in infants with neonatal encephalopathy. METHODS We reviewed all studies that compared an MR biomarker performed during the neonatal period with neurodevelopmental outcome at > or =1 year. We followed standard methods recommended by the Cochrane Diagnostic Accuracy Method group and used a random-effects model for meta-analysis. Summary receiver operating characteristic curves and forest plots of each MR biomarker were calculated. chi(2) tests examined heterogeneity. RESULTS Thirty-two studies (860 infants with NE) were included in the meta-analysis. For predicting adverse outcome, conventional MRI during the neonatal period (days 1-30) had a pooled sensitivity of 91% (95% confidence interval [CI]: 87%-94%) and specificity of 51% (95% CI: 45%-58%). Late MRI (days 8-30) had higher sensitivity but lower specificity than early MRI (days 1-7). Proton MR spectroscopy deep gray matter lactate/N-acetyl aspartate (Lac/NAA) peak-area ratio (days 1-30) had 82% overall pooled sensitivity (95% CI: 74%-89%) and 95% specificity (95% CI: 88%-99%). On common study analysis, Lac/NAA had better diagnostic accuracy than conventional MRI performed at any time during neonatal period. The discriminatory powers of the posterior limb of internal capsule sign and brain-water apparent diffusion coefficient were poor. CONCLUSIONS Deep gray matter Lac/NAA is the most accurate quantitative MR biomarker within the neonatal period for prediction of neurodevelopmental outcome after NE. Lac/NAA may be useful in early clinical management decisions and counseling parents and as a surrogate end point in clinical trials that evaluate novel neuroprotective therapies.
Collapse
Affiliation(s)
- Sudhin Thayyil
- MBBS, MRCPCH, UCL Institute for Women's Health, Department of Neonatology, 86-96 Chenies Mews, London WC1E 6HX, England.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol 2010; 40:3-30. [PMID: 19937238 DOI: 10.1007/s00247-009-1450-z] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/01/2009] [Accepted: 10/19/2009] [Indexed: 10/20/2022]
Abstract
Magnetic resonance spectroscopy (MRS) offers a unique, noninvasive approach to assess pediatric neurological abnormalities at microscopic levels by quantifying cellular metabolites. The most widely available MRS method, proton ((1)H; hydrogen) spectroscopy, is FDA approved for general use and can be ordered by clinicians for pediatric neuroimaging studies if indicated. There are a multitude of both acquisition and post-processing methods that can be used in the implementation of MR spectroscopy. MRS in pediatric neuroimaging is challenging to interpret because of dramatic normal developmental changes that occur in metabolites, particularly in the first year of life. Still, MRS has been proven to provide additional clinically relevant information for several pediatric neurological disease processes such as brain tumors, infectious processes, white matter disorders, and neonatal injury. MRS can also be used as a powerful quantitative research tool. In this article, specific research applications using MRS will be demonstrated in relation to neonatal brain injury and pediatric brain tumor imaging.
Collapse
|
25
|
Hagmann CF, De Vita E, Bainbridge A, Gunny R, Kapetanakis AB, Chong WK, Cady EB, Gadian DG, Robertson NJ. T2 at MR Imaging Is an Objective Quantitative Measure of Cerebral White Matter Signal Intensity Abnormality in Preterm Infants at Term-equivalent Age. Radiology 2009; 252:209-17. [PMID: 19561257 DOI: 10.1148/radiol.2522080589] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cornelia F Hagmann
- Elizabeth Garrett Anderson University College London Institute for Women's Health, University College London Institute of Child Health, University College London, 86-96 Chenies Mews, London WC1E 6HW, England
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Advanced neuroimaging techniques for the term newborn with encephalopathy. Pediatr Neurol 2009; 40:181-8. [PMID: 19218031 DOI: 10.1016/j.pediatrneurol.2008.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 08/08/2008] [Accepted: 08/29/2008] [Indexed: 11/23/2022]
Abstract
Neonatal encephalopathy is associated with a high risk of morbidity and mortality in the neonatal period and of long-term neurodevelopmental disability in survivors. Advanced magnetic resonance techniques now play a major role in the clinical care of newborns with encephalopathy and in research addressing this important condition. From conventional magnetic resonance imaging, typical patterns of injury have been defined in neonatal encephalopathy. When applied in contemporary cohorts of newborns with encephalopathy, the patterns of brain injury on magnetic resonance imaging distinguish risk factors, clinical presentation, and risk of abnormal outcome. Advanced magnetic resonance techniques such as magnetic resonance spectroscopy, diffusion-weighted imaging, and diffusion tensor imaging provide novel perspectives on neonatal brain metabolism, microstructure, and connectivity. With the application of these imaging tools, it is increasingly apparent that brain injury commonly occurs at or near the time of birth and evolves over the first weeks of life. These observations have complemented findings from trials of emerging strategies of brain protection, such as hypothermia. Application of these advanced magnetic resonance techniques may enable the earliest possible identification of newborns at risk of neurodevelopmental impairment, thereby ensuring appropriate follow-up with rehabilitation and psychoeducational resources.
Collapse
|
27
|
De Vita E, Bainbridge A, Cheong JLY, Hagmann C, Lombard R, Chong WK, Wyatt JS, Cady EB, Ordidge RJ, Robertson NJ. Magnetic resonance imaging of neonatal encephalopathy at 4.7 tesla: initial experiences. Pediatrics 2006; 118:e1812-21. [PMID: 17101714 DOI: 10.1542/peds.2006-1499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The goals were to develop safe 4.7-T MRI examination protocols for newborn infants and to explore the advantages of this field strength in neonatal encephalopathy. METHODS Nine ventilated newborn infants with moderate or severe encephalopathy were studied at 4.7 T, with ethical approval and informed parental consent. The custom-made, 4.7-T-compatible, neonatal patient management system included acoustic noise protection and physiologic monitoring. An adult head coil was used. Acquisition parameters for T2-weighted fast spin echo MRI and a variety of T1-weighted methods were adapted for MRI of neonatal brain at 4.7 T. The pulse sequences used had a radiofrequency specific absorption rate of <2 W/kg. RESULTS Physiologic measures were normal throughout each scan. T2-weighted fast spin echo imaging provided better anatomic resolution and gray/white matter contrast than typically obtained at 1.5 T; T1-weighted images were less impressive. CONCLUSIONS With appropriate safety precautions, MRI of newborn infants undergoing intensive care is as feasible at 4.7 T as it is at 1.5 T; our initial studies produced T2-weighted fast spin echo images with more detail than commonly obtained at 1.5 T. Although T1-weighted images were not adequately informative, additional pulse sequence optimization may be advantageous. A smaller neonatal head coil should also permit greater flexibility in acquisition parameters and even more anatomic resolution and tissue contrast. In neonatal encephalopathy, interpretation of the T2-weighted pathologic detail in combination with comprehensive neurodevelopmental follow-up should improve prognostic accuracy and enable more patient-specific therapeutic interventions. In addition, more precise relationships between structural changes and functional impairment may be defined.
Collapse
Affiliation(s)
- Enrico De Vita
- Department of Medical Physics and Bio-Engineering, Elizabeth Garrett Anderson Hospital, University College London Hospitals National Health Service Foundation Trust, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|