1
|
Wang X, Ma Y, Xu Q, Shikov AN, Pozharitskaya ON, Flisyuk EV, Liu M, Li H, Vargas-Murga L, Duez P. Flavonoids and saponins: What have we got or missed? PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154580. [PMID: 36610132 DOI: 10.1016/j.phymed.2022.154580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Flavonoids and saponins are important bioactive compounds that have attracted wide research interests. This review aims to summarise the state of the art of the pharmacology, toxicology and clinical efficacy of these compounds. METHODS Data were retrieved from PubMed, Cochrane Library, Web of Science, Proquest, CNKI, Chongqing VIP, Wanfang, NPASS and HIT 2.0 databases. Meta-analysis and systematic reviews were evaluated following the PRISMA guideline. Statistical analyses were conducted using SPSS23.0. RESULTS Rising research trends on flavonoids and saponins were observed since the 1990s and the 2000s, respectively. Studies on pharmacological targets and activities of flavonoids and saponins represent an important area of research advances over the past decade, and these important resources have been documented in open-access specialised databases and can be retrieved with ease. The rising research on flavonoids and saponins can be attributed, at least in part, to their links with some highly investigated fields of research, e.g., oxidative stress, inflammation and cancer; i.e., 6.88% and 3.03% of publications on oxidative stress cited by PubMed in 1990 - 2021 involved flavonoids and saponins, respectively, significantly higher than the percentage involving alkaloids (1.88%). The effects of flavonoids concern chronic venous insufficiency, cervical lesions, diabetes, rhinitis, dermatopathy, prostatitis, menopausal symptoms, angina pectoris, male pattern hair loss, lymphocytic leukaemia, gastrointestinal diseases and traumatic cerebral infarction, etc, while those of saponins may have impact on venous oedema in chronic deep vein incompetence, erectile dysfunction, acute impact injuries and systemic lupus erythematosus, etc. The volume of in vitro research appears way higher than in vivo and clinical studies, with only 10 meta-analyses and systematic reviews (involving 290 interventional and observational studies), and 36 clinical studies on flavonoids and saponins. Data are sorely needed on pharmacokinetics, in vitro pan-assay interferences, purity of tested compounds, interactions in complex herbal extracts, real impact of anti-oxidative strategies, and mid- and long-term toxicities. To fill these important gaps, further investigations are warranted. On the other hand, drug interactions may cause adverse effects but might also be useful for synergism, with the goals of enhancing effects or of detoxifying. Furthermore, the interactions between phytochemicals and the intestinal microbiota are worth investigating as the field may present a promising potential for novel drug development.
Collapse
Affiliation(s)
- Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital; Hubei Key Laboratory of Wudang Local Chinese Medicine Research; Biomedical Research Institute; School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, South Renmin Road, Shiyan, 442000, China..
| | - Yan Ma
- Molecular Research in Traditional Chinese Medicine, Division of Comparative Immunology and Oncology, Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Vienna General Hospital, Medical University of Vienna
| | - Qihe Xu
- Renal Sciences and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Alexander N Shikov
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, Saint-Petersburg, 197376, Russia
| | - Olga N Pozharitskaya
- Murmansk Marine Biological Institute of the Russian Academy of Sciences, Vladimirskaya, 17, Murmansk, 183010, Russia
| | - Elena V Flisyuk
- Saint-Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, Saint-Petersburg, 197376, Russia
| | - Meifeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacy, Renmin Hospital; Hubei Key Laboratory of Wudang Local Chinese Medicine Research; Biomedical Research Institute; School of Pharmaceutical Sciences and Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, South Renmin Road, Shiyan, 442000, China
| | - Liliana Vargas-Murga
- BIOTHANI, Can Lleganya, 17451 Sant Feliu de Buixalleu, Catalonia, Spain; Department of Chemical and Agricultural Engineering and Agrifood Technology, University of Girona (UdG), 17003 Girona, Catalonia, Spain
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, University of Mons (UMONS), 7000 Mons, Belgium..
| |
Collapse
|
2
|
Molecular docking and in vitro experiments verified that kaempferol induced apoptosis and inhibited human HepG2 cell proliferation by targeting BAX, CDK1, and JUN. Mol Cell Biochem 2022; 478:767-780. [PMID: 36083512 DOI: 10.1007/s11010-022-04546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/12/2022] [Indexed: 10/14/2022]
Abstract
Hepatocellular carcinoma, as a common liver cirrhosis complication, has become the sixth most common cancer worldwide, and its increasing incidence has resulted in considerable medical and economic burdens. As a natural polyphenolic compound, kaempferol has exhibits a wide range of antitumor activities against multiple cancer targets. In this study, the Autodock software was used for molecular docking to simulate the interaction process between kaempferol and HCC targets and the PyMOL software was used for visualization. Proliferation of kaempferol HepG2 cells under the effect of kaempferol was detected using Cell Counting Kit-8 (CCK-8) assay, and the apoptosis rate of HepG2 cells was detected using flow cytometry. The expressions of proteins BAX, CDK1, and JUN protein expressions were detected by Western blot. Molecular docking found that the kaempferol ligand has 3 rotatable bonds, 6 nonpolar hydrogen atoms, and 12 aromatic carbon atoms, and can form complexes with the kaempferol targets P53, BAX, AR, CDK1, and JUN through electrostatic energy. GO (Gene Ontology) enrichment analysis suggests that kaempferol regulates the biological function of hepatocellular carcinoma cells and is related to apoptosis. Cell Counting Kit-8 assay suggested that Kaempferol can significantly inhibited HepG2 cell proliferation, and the inhibition rate increased with the increase in drug concentration and incubation time. Moreover, kaempferol can promoted HepG2 cell apoptosis in a dose-dependent manner. This compound upregulated BAX and JUN expression and downregulated CDK1 expression. Thus, Kaempferol can promote HepG2 cell apoptosis, and the regulatory mechanism may be related to the regulation of the expression levels of the apoptosis-related proteins BAX, CDK1, and JUN.
Collapse
|
3
|
Lee HS, Lee IH, Park SI, Jung M, Yang SG, Kwon TW, Lee DY. A Study on the Mechanism of Herbal Drug FDY003 for Colorectal Cancer Treatment by Employing Network Pharmacology. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Colorectal cancer (CRC) originates from the uncontrolled growth of epithelial cells in the colon or rectum. Annually, 1.9 million new CRC cases are being reported, causing 0.9 million deaths worldwide. The suppressive effects of the herbal prescription FDY003, a mixture of Cordyceps militaris, Lonicera japonica Thunberg, and Artemisia capillaris Thunberg, against CRC have previously been reported. Nonetheless, the multiple compound-multiple target mechanisms of FDY003 in CRC cells have not been fully elucidated. In this study, we used network pharmacology (NP) to analyze the polypharmacological mechanisms of action of FDY003 in CRC treatment. FDY003 promoted the suppression of viability of CRC cells and strengthened their sensitivity to anticancer drugs. The NP study enabled the investigation of 17 pharmaceutical compounds and 90 CRC-related genes that were targets of the compounds. The gene ontology terms enriched with the CRC-related target genes of FDY003 were those involved in the control of a variety of phenotypes of CRC cells, for instance, the decision of apoptosis and survival, growth, stress response, and chemical response of cells. In addition, the targeted genes of FDY003 were further enriched in various Kyoto Encyclopedia of Genes and Genomes pathways that coordinate crucial pathological processes of CRC; these are ErbB, focal adhesion, HIF-1, IL-17, MAPK, PD-L1/PD-1, PI3K-Akt, Ras, TNF, and VEGF pathways. The overall analysis results obtained from the NP methodology support the multiple-compound-multiple-target-multiple-pathway pharmacological features of FDY003 as a potential agent for CRC treatment.
Collapse
Affiliation(s)
- Ho-Sung Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | - In-Hee Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| | | | - Minho Jung
- Forest Hospital, Seoul, Republic of Korea
| | | | | | - Dae-Yeon Lee
- The Fore, Seoul, Republic of Korea
- Forest Hospital, Seoul, Republic of Korea
| |
Collapse
|
4
|
Anjum J, Mitra S, Das R, Alam R, Mojumder A, Emran TB, Islam F, Rauf A, Hossain MJ, Aljohani ASM, Abdulmonem WA, Alsharif KF, Alzahrani KJ, Khan H. A renewed concept on the MAPK signaling pathway in cancers: Polyphenols as a choice of therapeutics. Pharmacol Res 2022; 184:106398. [PMID: 35988867 DOI: 10.1016/j.phrs.2022.106398] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 01/15/2023]
Abstract
Abnormalities in the mitogen-activated protein kinase (MAPK) signaling pathway are a key contributor to the carcinogenesis process and have therefore been implicated in several aspects of tumorigenesis, including cell differentiation, proliferation, invasion, angiogenesis, apoptosis, and metastasis. This pathway offers multiple molecular targets that may be modulated for anticancer activity and is of great interest for several malignancies. Polyphenols from various dietary sources have been observed to interfere with certain aspects of this pathway and consequently play a substantial role in the development and progression of cancer by suppressing cell growth, inactivating carcinogens, blocking angiogenesis, causing cell death, and changing immunity. A good number of polyphenolic compounds have shown promising outcomes in numerous pieces of research and are currently being investigated clinically to treat cancer patients. The current study concentrates on the role of the MAPK pathway in the development and metastasis of cancer, with particular emphasis on dietary polyphenolic compounds that influence the different MAPK sub-pathways to obtain an anticancer effect. This study aims to convey an overview of the various aspects of the MAPK pathway in cancer development and invasion, as well as a review of the advances achieved in the development of polyphenols to modulate the MAPK signaling pathway for better treatment of cancer.
Collapse
Affiliation(s)
- Juhaer Anjum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Roksana Alam
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Anik Mojumder
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, KPK, Pakistan
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 52571, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
5
|
Ferreira-Santos P, Badim H, Salvador ÂC, Silvestre AJD, Santos SAO, Rocha SM, Sousa AM, Pereira MO, Wilson CP, Rocha CMR, Teixeira JA, Botelho CM. Chemical Characterization of Sambucus nigra L. Flowers Aqueous Extract and Its Biological Implications. Biomolecules 2021; 11:biom11081222. [PMID: 34439888 PMCID: PMC8391949 DOI: 10.3390/biom11081222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
The main goal of this study was to chemically characterize an aqueous S. nigra flower extract and validate it as a bioactive agent. The elderflower aqueous extraction was performed at different temperatures (50, 70 and 90 °C). The extract obtained at 90 °C exhibited the highest phenolic content and antiradical activity. Therefore, this extract was analyzed by GC-MS and HPLC-MS, which allowed the identification of 46 compounds, being quercetin and chlorogenic acid derivatives representative of 86% of the total of phenolic compounds identified in hydrophilic fraction of the aqueous extract. Naringenin (27.2%) was the major compound present in the lipophilic fraction. The antiproliferative effects of the S. nigra extract were evaluated using the colon cancer cell lines RKO, HCT-116, Caco-2 and the extract’s antigenotoxic potential was evaluated by the Comet assay in RKO cells. The RKO cells were the most susceptible to S. nigra flower extract (IC50 = 1250 µg mL−1). Moreover, the extract showed antimicrobial activity against Gram-positive bacteria, particularly Staphylococcus aureus and S. epidermidis. These results show that S. nigra-based extracts can be an important dietary source of bioactive phenolic compounds that contribute to health-span improving life quality, demonstrating their potential as nutraceutical, functional foods and/or cosmetic components for therapeutic purposes.
Collapse
Affiliation(s)
- Pedro Ferreira-Santos
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
- Correspondence: (P.F.-S.); (C.M.B.)
| | - Helder Badim
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Ângelo C. Salvador
- CICECO—Aveiro Institute of Materials, Chemistry Department, Campus de Santiago, University of Aveiro, 3810-1930 Aveiro, Portugal; (Â.C.S.); (A.J.D.S.); (S.A.O.S.)
| | - Armando J. D. Silvestre
- CICECO—Aveiro Institute of Materials, Chemistry Department, Campus de Santiago, University of Aveiro, 3810-1930 Aveiro, Portugal; (Â.C.S.); (A.J.D.S.); (S.A.O.S.)
| | - Sónia A. O. Santos
- CICECO—Aveiro Institute of Materials, Chemistry Department, Campus de Santiago, University of Aveiro, 3810-1930 Aveiro, Portugal; (Â.C.S.); (A.J.D.S.); (S.A.O.S.)
| | - Sílvia M. Rocha
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana M. Sousa
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Maria Olívia Pereira
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Cristina Pereira Wilson
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
- Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cristina M. R. Rocha
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - José António Teixeira
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
| | - Cláudia M. Botelho
- CEB—Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (H.B.); (A.M.S.); (M.O.P.); (C.P.W.); (C.M.R.R.); (J.A.T.)
- Correspondence: (P.F.-S.); (C.M.B.)
| |
Collapse
|
6
|
Hosseinzadeh E, Hassanzadeh A, Marofi F, Alivand MR, Solali S. Flavonoid-Based Cancer Therapy: An Updated Review. Anticancer Agents Med Chem 2021; 20:1398-1414. [PMID: 32324520 DOI: 10.2174/1871520620666200423071759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/27/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022]
Abstract
As cancers are one of the most important causes of human morbidity and mortality worldwide, researchers try to discover novel compounds and therapeutic approaches to decrease survival of cancer cells, angiogenesis, proliferation and metastasis. In the last decade, use of special phytochemical compounds and flavonoids was reported to be an interesting and hopeful tactic in the field of cancer therapy. Flavonoids are natural polyphenols found in plant, fruits, vegetables, teas and medicinal herbs. Based on reports, over 10,000 flavonoids have been detected and categorized into several subclasses, including flavonols, anthocyanins, flavanones, flavones, isoflavones and chalcones. It seems that the anticancer effect of flavonoids is mainly due to their antioxidant and anti inflammatory activities and their potential to modulate molecular targets and signaling pathways involved in cell survival, proliferation, differentiation, migration, angiogenesis and hormone activities. The main aim of this review is to evaluate the relationship between flavonoids consumption and cancer risk, and discuss the anti-cancer effects of these natural compounds in human cancer cells. Hence, we tried to collect and revise important recent in vivo and in vitro researches about the most effective flavonoids and their main mechanisms of action in various types of cancer cells.
Collapse
Affiliation(s)
- Elham Hosseinzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Hassanzadeh
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, Division of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Solali
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Cid-Gallegos MS, Sánchez-Chino XM, Juárez Chairez MF, Álvarez González I, Madrigal-Bujaidar E, Jiménez-Martínez C. Anticarcinogenic Activity of Phenolic Compounds from Sprouted Legumes. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1840581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- María Stephanie Cid-Gallegos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Xariss M. Sánchez-Chino
- Cátedra-CONACyT, Departamento de Salud, El Colegio de la Frontera Sur-Villahermosa, Villahermosa, Mexico
| | - Milagros Faridy Juárez Chairez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Isela Álvarez González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| | - Cristian Jiménez-Martínez
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Mexico City, Mexico
| |
Collapse
|
8
|
Evaluation of antibacterial and enhancement of antibiotic action by the flavonoid kaempferol 7-O-β-D-(6″-O-cumaroyl)-glucopyranoside isolated from Croton piauhiensis müll. Microb Pathog 2020; 143:104144. [PMID: 32194182 DOI: 10.1016/j.micpath.2020.104144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 01/27/2023]
Abstract
There has been a rapid increase in the incidence and prevalence of opportunistic bacterial infections. Inappropriate use of current antibiotics has continuously contributed to the emergence of resistance to conventional antibiotic therapy. Therefore, the search for natural molecules that are able to combat infections is of great public interest, and many of these compounds with antimicrobial properties can be obtained from phytochemical studies of medicinal plants. In this context, this study reports the isolation and characterization of the flavonoid, kaempferol 7-O-β-D-(6″-O-cumaroyl)-glucopyranoside, from Croton piauhiensis leaves. Additionally, the intrinsic antimicrobial action of the compound and its enhancement against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus strains were assessed. The minimum inhibitory concentration (MIC) of the compound was determined using broth microdilution assays. To evaluate the modulatory effect of the flavonoid, the MIC of antibiotics amikacin and gentamicin, belonging to the class aminoglycosides was assessed, with and without the compound in sterile microplates. The results of intrinsic antibacterial activity tests revealed that the compound had no antibacterial activity against strains tested at concentrations <1024 μg/mL. The combination of the flavonoid at a concentration of 128 μg/mL with gentamicin presented synergistic effects against S. aureus 10 and E. coli 06, and also reduced the MIC from 16 μg/mL to 4 μg/mL and 8 μg/mL, respectively. Amikacin also showed synergistic effects against S. aureus 10 and E. coli 06. We also observed reduced MIC for both, from 128 μg/mL to 32 μg/mL; however, antagonism for P. aeruginosa increased the MIC from 16 μg/mL to 64 μg/mL. The combination of the flavonoid with the aminoglycosides may be an alternative to potentiate the expected results in treatment against S. aureus and E. coli, since their association leads to a synergistic effect, reducing the MIC of these drugs and decreasing the dose necessary for therapeutic success.
Collapse
|
9
|
Shen J, Li L, Yang T, Cohen PS, Sun G. Biphasic Mathematical Model of Cell-Drug Interaction That Separates Target-Specific and Off-Target Inhibition and Suggests Potent Targeted Drug Combinations for Multi-Driver Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12020436. [PMID: 32069833 PMCID: PMC7072552 DOI: 10.3390/cancers12020436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 11/25/2022] Open
Abstract
Quantifying the response of cancer cells to a drug, and understanding the mechanistic basis of the response, are the cornerstones for anti-cancer drug discovery. Classical single target-based IC50 measurements are inadequate at describing cancer cell responses to targeted drugs. In this study, based on an analysis of targeted inhibition of colorectal cancer cell lines, we develop a new biphasic mathematical model that accurately describes the cell–drug response. The model describes the drug response using three kinetic parameters: ratio of target-specific inhibition, F1, potency of target-specific inhibition, Kd1, and potency of off-target toxicity, Kd2. Determination of these kinetic parameters also provides a mechanistic basis for predicting effective combination targeted therapy for multi-driver cancer cells. The experiments confirmed that a combination of inhibitors, each blocking a driver pathway and having a distinct target-specific effect, resulted in a potent and synergistic blockade of cell viability, improving potency over mono-agent treatment by one to two orders of magnitude. We further demonstrate that mono-driver cancer cells represent a special scenario in which F1 becomes nearly 100%, and the drug response becomes monophasic. Application of this model to the responses of >400 cell lines to kinase inhibitor dasatinib revealed that the ratio of biphasic versus monophasic responses is about 4:1. This study develops a new mathematical model of quantifying cancer cell response to targeted therapy, and suggests a new framework for developing rational combination targeted therapy for colorectal and other multi-driver cancers.
Collapse
Affiliation(s)
- Jinyan Shen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Li Li
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan 030001, China
| | - Tao Yang
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
- Correspondence: ; Tel.: +1-401-874-5937
| |
Collapse
|
10
|
Gutierrez-Uribe JA, Salinas-Santander M, Serna-Guerrero D, Serna-Saldivar SRO, Rivas-Estilla AM, Rios-Ibarra CP. Inhibition of miR31 and miR92a as Oncological Biomarkers in RKO Colon Cancer Cells Treated with Kaempferol-3- O-Glycoside Isolated from Black Bean. J Med Food 2019; 23:50-55. [PMID: 31441682 DOI: 10.1089/jmf.2019.0059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small molecules of 19-23 nucleotides of RNA that act as regulators of the expression of proteins in eukaryotic cells. Currently, the participation of miRNAs in the development of different types of cancer has been observed. To evaluate the inhibitory effect of kaempferol-3-O-glycoside on the expression of oncological biomarkers, miR31 and miR92a in a colon cancer cell line (RKO) were analyzed. Cells were cultured and treated with 1 mM kaempferol-3-O-glycoside isolated from black bean. Expression levels of miR31 and miR92a were evaluated by real-time PCR using TaqMan probes; in addition, two oncogenes (KRAS and c-MYC) and two tumor suppressors (AMP-activated protein kinase [AMPK] and adenomatous tumors of polyposis coli [APC]) were quantified to validate the biological effects; normalization of expression levels were carried out by 2-ΔΔCt. Results were analyzed by one-way ANOVA. The expression levels of miR31, miR92a, KRAS oncogene, and the c-MYC transcription factor were subexpressed upon 72 h post-treatment with kaempferol-3-O-glycoside compared with the control without treatment (P < .05); in contrast, the tumor suppressor genes AMPK (∼4.85, P = .005) and APC (∼2.71, P = .066) tumor suppressors genes were overexpressed. Our results showed the inhibitory effect of isolated black bean flavonoid kaempferol-3-O-glycoside on cancer biomarkers: miR31 and miR92a; based on our results, this flavonoid may have interesting nutritional, therapeutic, and/or prophylactic applications to combat colon cancer.
Collapse
Affiliation(s)
| | - Mauricio Salinas-Santander
- Research Department School of Medicine Saltillo Unit, Autonomous University of Coahuila, Coahuila, Mexico
| | - Delia Serna-Guerrero
- Tecnologico de Monterrey, Protein Research and Development Center, Monterrey, Mexico
| | | | - Ana Maria Rivas-Estilla
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo Leon, Nuevo Leon, México
| | | |
Collapse
|
11
|
Caban M, Owczarek K, Chojnacka K, Lewandowska U. Overview of polyphenols and polyphenol-rich extracts as modulators of IGF-1, IGF-1R, and IGFBP expression in cancer diseases. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
12
|
Costea T, Hudiță A, Ciolac OA, Gălățeanu B, Ginghină O, Costache M, Ganea C, Mocanu MM. Chemoprevention of Colorectal Cancer by Dietary Compounds. Int J Mol Sci 2018; 19:E3787. [PMID: 30487390 PMCID: PMC6321468 DOI: 10.3390/ijms19123787] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/18/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the leading causes of death, and the third most diagnosed type of cancer, worldwide. It is most common amongst men and women over 50 years old. Risk factors include smoking, alcohol, diet, physical inactivity, genetics, alterations in gut microbiota, and associated pathologies (diabetes, obesity, chronic inflammatory bowel diseases). This review will discuss, in detail, the chemopreventive properties of some dietary compounds (phenolic compounds, carotenoids, iridoids, nitrogen compounds, organosulfur compounds, phytosterols, essential oil compounds, polyunsaturated fatty acids and dietary fiber) against colorectal cancer. We present recent data, focusing on in vitro, laboratory animals and clinical trials with the previously mentioned compounds. The chemopreventive properties of the dietary compounds involve multiple molecular and biochemical mechanisms of action, such as inhibition of cell growth, inhibition of tumor initiation, inhibition of adhesion, migration and angiogenesis, apoptosis, interaction with gut microbiota, regulation of cellular signal transduction pathways and xenobiotic metabolizing enzymes, etc. Moreover, this review will also focus on the natural dietary compounds' bioavailability, their synergistic protective effect, as well as the association with conventional therapy. Dietary natural compounds play a major role in colorectal chemoprevention and continuous research in this field is needed.
Collapse
Affiliation(s)
- Teodora Costea
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, "Carol Davila" University of Medicine and Pharmacy, 020956 Bucharest, Romania.
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Oana-Alina Ciolac
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Octav Ginghină
- Department of Surgery, "Sf. Ioan" Emergency Clinical Hospital, 042122 Bucharest, Romania.
- Department II, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 030167 Bucharest, Romania.
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Constanța Ganea
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Maria-Magdalena Mocanu
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
13
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernández TY, Cianciosi D, Reboredo-Rodriguez P, Zhang J, Manna PP, Daglia M, Atanasov AG, Battino M. Dietary phytochemicals in colorectal cancer prevention and treatment: A focus on the molecular mechanisms involved. Biotechnol Adv 2018; 38:107322. [PMID: 30476540 DOI: 10.1016/j.biotechadv.2018.11.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Worldwide, colorectal cancer (CRC) remains a major cancer type and leading cause of death. Unfortunately, current medical treatments are not sufficient due to lack of effective therapy, adverse side effects, chemoresistance and disease recurrence. In recent decades, epidemiologic observations have highlighted the association between the ingestion of several phytochemical-enriched foods and nutrients and the lower risk of CRC. According to preclinical studies, dietary phytochemicals exert chemopreventive effects on CRC by regulating different markers and signaling pathways; additionally, the gut microbiota plays a role as vital effector in CRC onset and progression, therefore, any dietary alterations in it may affect CRC occurrence. A high number of studies have displayed a key role of growth factors and their signaling pathways in the pathogenesis of CRC. Indeed, the efficiency of dietary phytochemicals to modulate carcinogenic processes through the alteration of different molecular targets, such as Wnt/β-catenin, PI3K/Akt/mTOR, MAPK (p38, JNK and Erk1/2), EGFR/Kras/Braf, TGF-β/Smad2/3, STAT1-STAT3, NF-кB, Nrf2 and cyclin-CDK complexes, has been proven, whereby many of these targets also represent the backbone of modern drug discovery programs. Furthermore, epigenetic analysis showed modified or reversed aberrant epigenetic changes exerted by dietary phytochemicals that led to possible CRC prevention or treatment. Therefore, our aim is to discuss the effects of some common dietary phytochemicals that might be useful in CRC as preventive or therapeutic agents. This review will provide new guidance for research, in order to identify the most studied phytochemicals, their occurrence in foods and to evaluate the therapeutic potential of dietary phytochemicals for the prevention or treatment of CRC by targeting several genes and signaling pathways, as well as epigenetic modifications. In addition, the results obtained by recent investigations aimed at improving the production of these phytochemicals in genetically modified plants have been reported. Overall, clinical data on phytochemicals against CRC are still not sufficient and therefore the preventive impacts of dietary phytochemicals on CRC development deserve further research so as to provide additional insights for human prospective studies.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Francesca Giampieri
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Danila Cianciosi
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Patricia Reboredo-Rodriguez
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain)
| | - Jiaojiao Zhang
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Piera Pia Manna
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia 27100, Italy
| | - Atanas Georgiev Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, Jastrzebiec 05-552, Poland.
| | - Maurizio Battino
- Nutrition and Food Science Group, Dept. of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, (Spain); Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| |
Collapse
|
14
|
Singh D, Tanwar H, Das S, Ganju L, Singh SB. A novel in vivo adjuvant activity of kaempferol: enhanced Tbx-21, GATA-3 expression and peritoneal CD11c +MHCII + dendritic cell infiltration. Immunopharmacol Immunotoxicol 2018; 40:242-249. [PMID: 29486619 DOI: 10.1080/08923973.2018.1434794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Kaempferol, a natural flavonol present in various traditional medicinal plants, is known to possess potent anti-inflammatory properties. This study was designed to study the adjuvant effect of kaempferol administration along with ovalbumin antigen (K + O) in balb/c mice. METHODS Mice were immunized with kaempferol (100 and 50 mg/kg body weight) without or with ovalbumin (20 µg/mouse). After priming, booster was administered on day 21. Antigen specific IgG titers and its subtypes, on day 28, were estimated by indirect ELISA. Effect of kaempferol administration on CD11c+MHCII+ peritoneal dendritic cells was studied by flow cytometry. Expression levels of proteins Tbx21, GATA-3, BLIMP-1, Caspase-1 and Oct-2 were studied by western blotting. LPS activated IL-1β production by peritoneal cells of immunized mice was estimated by sandwich ELISA. RESULTS Ovalbumin specific IgG, IgG1 and IgG2a antibody titers in sera samples of K + O immunized mice increased significantly (p < .01) as compared to controls. The enhanced Th1 and Th2 immune response in K + O immunized mice was also supported by the increased expression of Tbx21 and GATA-3 transcription factors in splenocytes. This corroborated with increased BLIMP-1 and Oct-2 protein expression. Kaempferol increased the infiltration of peritoneal CD11c+MHCII+ dendritic cells but failed to enhance LPS activated IL-1β by peritoneal macrophages and suppressed caspase-1 protein expression as compared to that in ovalbumin immunized mice. CONCLUSION Present study strongly demonstrates the novel adjuvant activity of kaempferol in vivo and its potential as an immunostimulatory agent.
Collapse
Affiliation(s)
- Divya Singh
- a Immunomodulation Laboratory , Defence Institute of Physiology and Allied Sciences , Delhi , India
| | - Himanshi Tanwar
- a Immunomodulation Laboratory , Defence Institute of Physiology and Allied Sciences , Delhi , India
| | - Sudeshna Das
- a Immunomodulation Laboratory , Defence Institute of Physiology and Allied Sciences , Delhi , India
| | - Lilly Ganju
- a Immunomodulation Laboratory , Defence Institute of Physiology and Allied Sciences , Delhi , India
| | - Shashi Bala Singh
- a Immunomodulation Laboratory , Defence Institute of Physiology and Allied Sciences , Delhi , India
| |
Collapse
|
15
|
Redondo-Blanco S, Fernández J, Gutiérrez-Del-Río I, Villar CJ, Lombó F. New Insights toward Colorectal Cancer Chemotherapy Using Natural Bioactive Compounds. Front Pharmacol 2017; 8:109. [PMID: 28352231 PMCID: PMC5348533 DOI: 10.3389/fphar.2017.00109] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
Combination therapy consists in the simultaneous administration of a conventional chemotherapy drug (or sometimes, a radiotherapy protocol) together with one or more natural bioactives (usually from plant or fungal origin) of small molecular weight. This combination of anticancer drugs may be applied to cell cultures of tumor cells, or to an animal model for a cancer type (or its xenograft), or to a clinical trial in patients. In this review, we summarize current knowledge describing diverse synergistic effects on colorectal cancer cell cultures, animal models, and clinical trials of various natural bioactives (stilbenes, flavonoids, terpenes, curcumin, and other structural families), which may be important with respect to diminish final doses of the chemotherapy drug, although maintaining its biological effect. This is important as these approaches may help reduce side effects in patients under conventional chemotherapy. Also, these molecules may exerts their synergistic effects via different cell cycle pathways, including different ones to those responsible of resistance phenotypes: transcription factors, membrane receptors, adhesion and structural molecules, cell cycle regulatory components, and apoptosis pathways.
Collapse
Affiliation(s)
- Saúl Redondo-Blanco
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Javier Fernández
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Ignacio Gutiérrez-Del-Río
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Claudio J Villar
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Felipe Lombó
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| |
Collapse
|
16
|
Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways. Biomed Pharmacother 2017; 89:573-577. [PMID: 28258039 DOI: 10.1016/j.biopha.2017.02.061] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/02/2017] [Indexed: 01/03/2023] Open
Abstract
Cervical cancer is one of the most frequent cancers in women worldwide. Defects in the apoptotic pathways are responsible for both the disease pathogenesis and its therapy resistance. It is thus a good candidate for treatment by pro-apoptotic agents. Kaempferol as a flavonoid has antioxidant and anti-tumor properties. Kaempferol has been shown to induce apoptosis and cell death in cancer cells. However, due to the problems in the treatment of cervical cancer, this study is designed to investigate the molecular mechanism by which kaempferol suppresses the growth of cervical cancer HeLa cell as compared with HFF cells (normal cells). Cells treated with kaempferol (12-100μM) and 5-FU (1-10μM), as the positive control, up to 72h. Cell viability was determined by MTT assay and real time PCR was used to investigate apoptosis and telomerase genes expression. The results showed that kaempferol decreased cell viability as concentration- and time-dependently. IC50 values were 10.48μM for HeLa and 707.00μM for HFF cells, as compared with 1.40μM and 16.38μM for 5-FU after 72h treatment, respectively. Also, kaempferol induced cellular apoptosis and aging through down-regulating the PI3K/AKT and hTERT pathways. This study suggests that kaempferol may be a useful adjuvant therapeutic agent in the treatment of cervical cancer.
Collapse
|
17
|
Islam MS, Segars JH, Castellucci M, Ciarmela P. Dietary phytochemicals for possible preventive and therapeutic option of uterine fibroids: Signaling pathways as target. Pharmacol Rep 2017; 69:57-70. [DOI: 10.1016/j.pharep.2016.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
|
18
|
Systems Pharmacology Uncovers the Multiple Mechanisms of Xijiao Dihuang Decoction for the Treatment of Viral Hemorrhagic Fever. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:9025036. [PMID: 27239215 PMCID: PMC4863105 DOI: 10.1155/2016/9025036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/17/2016] [Accepted: 03/23/2016] [Indexed: 11/17/2022]
Abstract
Background. Viral hemorrhagic fevers (VHF) are a group of systemic diseases characterized by fever and bleeding, which have posed a formidable potential threat to public health with high morbidity and mortality. Traditional Chinese Medicine (TCM) formulas have been acknowledged with striking effects in treatment of hemorrhagic fever syndromes in China's history. Nevertheless, their accurate mechanisms of action are still confusing. Objective. To systematically dissect the mechanisms of action of Chinese medicinal formula Xijiao Dihuang (XJDH) decoction as an effective treatment for VHF. Methods. In this study, a systems pharmacology method integrating absorption, distribution, metabolism, and excretion (ADME) screening, drug targeting, network, and pathway analysis was developed. Results. 23 active compounds of XJDH were obtained and 118 VHF-related targets were identified to have interactions with them. Moreover, systematic analysis of drug-target network and the integrated VHF pathway indicate that XJDH probably acts through multiple mechanisms to benefit VHF patients, which can be classified as boosting immune system, restraining inflammatory responses, repairing the vascular system, and blocking virus spread. Conclusions. The integrated systems pharmacology method provides precise probe to illuminate the molecular mechanisms of XJDH for VHF, which will also facilitate the application of traditional medicine in modern medicine.
Collapse
|
19
|
Kaur S, Mirza AH, Brorsson CA, Fløyel T, Størling J, Mortensen HB, Pociot F. The genetic and regulatory architecture of ERBB3-type 1 diabetes susceptibility locus. Mol Cell Endocrinol 2016; 419:83-91. [PMID: 26450151 DOI: 10.1016/j.mce.2015.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 12/11/2022]
Abstract
The study aimed to explore the role of ERBB3 in type 1 diabetes (T1D). We examined whether genetic variation of ERBB3 (rs2292239) affects residual β-cell function in T1D cases. Furthermore, we examined the expression of ERBB3 in human islets, the effect of ERBB3 knockdown on apoptosis in insulin-producing INS-1E cells and the genetic and regulatory architecture of the ERBB3 locus to provide insights to how rs2292239 may confer disease susceptibility. rs2292239 strongly correlated with residual β-cell function and metabolic control in children with T1D. ERBB3 locus associated lncRNA (NONHSAG011351) was found to be expressed in human islets. ERBB3 was expressed and down-regulated by pro-inflammatory cytokines in human islets and INS-1E cells; knockdown of ERBB3 in INS-1E cells decreased basal and cytokine-induced apoptosis. Our data suggests an important functional role of ERBB3 and its potential regulators in the β-cells and may constitute novel targets to prevent β-cell destruction in T1D.
Collapse
Affiliation(s)
- Simranjeet Kaur
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Aashiq H Mirza
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Non-coding RNA in Technology and Health, University of Copenhagen, Denmark
| | - Caroline A Brorsson
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Tina Fløyel
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Joachim Størling
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark
| | - Henrik B Mortensen
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Flemming Pociot
- Copenhagen Diabetes Research Center (CPH-DIRECT), Department of Pediatrics, Herlev University Hospital, Herlev Ringvej 75, DK-2730 Herlev, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Non-coding RNA in Technology and Health, University of Copenhagen, Denmark.
| |
Collapse
|
20
|
Kim SH, Park JG, Sung GH, Yang S, Yang WS, Kim E, Kim JH, Ha VT, Kim HG, Yi YS, Kim JH, Baek KS, Sung NY, Lee MN, Kim JH, Cho JY. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain. Mol Nutr Food Res 2015; 59:1400-5. [DOI: 10.1002/mnfr.201400820] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/10/2015] [Accepted: 04/06/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Shi Hyoung Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Jae Gwang Park
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Gi-Ho Sung
- Institute for Bio-medical Convergence; College of Medicine; Catholic Kwandong University; Gangneung Republic of Korea
- International St. Mary's Hospital, Catholic Kwandong University; Incheon Republic of Korea
| | - Sungjae Yang
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Woo Seok Yang
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Eunji Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Jun Ho Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Van Thai Ha
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Han Gyung Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Young-Su Yi
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Mi-nam Lee
- Department of Food and Nutrition; School of Foodservice Industry; Chungkang College of Cultural industries; Icheon Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology; College of Veterinary Medicine; Biosafety Research Institute; Chonbuk National University; Jeonju Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| |
Collapse
|